1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called COPYING.
27 * Contact Information:
28 * Intel Linux Wireless <linuxwifi@intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
66 #include "iwl-trans.h"
72 /*****************************************************************************
73 * INIT calibrations framework
74 *****************************************************************************/
76 /* Opaque calibration results */
77 struct iwl_calib_result
{
78 struct list_head list
;
80 struct iwl_calib_hdr hdr
;
84 struct statistics_general_data
{
85 u32 beacon_silence_rssi_a
;
86 u32 beacon_silence_rssi_b
;
87 u32 beacon_silence_rssi_c
;
93 int iwl_send_calib_results(struct iwl_priv
*priv
)
95 struct iwl_host_cmd hcmd
= {
96 .id
= REPLY_PHY_CALIBRATION_CMD
,
98 struct iwl_calib_result
*res
;
100 list_for_each_entry(res
, &priv
->calib_results
, list
) {
103 hcmd
.len
[0] = res
->cmd_len
;
104 hcmd
.data
[0] = &res
->hdr
;
105 hcmd
.dataflags
[0] = IWL_HCMD_DFL_NOCOPY
;
106 ret
= iwl_dvm_send_cmd(priv
, &hcmd
);
108 IWL_ERR(priv
, "Error %d on calib cmd %d\n",
109 ret
, res
->hdr
.op_code
);
117 int iwl_calib_set(struct iwl_priv
*priv
,
118 const struct iwl_calib_hdr
*cmd
, int len
)
120 struct iwl_calib_result
*res
, *tmp
;
122 res
= kmalloc(sizeof(*res
) + len
- sizeof(struct iwl_calib_hdr
),
126 memcpy(&res
->hdr
, cmd
, len
);
129 list_for_each_entry(tmp
, &priv
->calib_results
, list
) {
130 if (tmp
->hdr
.op_code
== res
->hdr
.op_code
) {
131 list_replace(&tmp
->list
, &res
->list
);
137 /* wasn't in list already */
138 list_add_tail(&res
->list
, &priv
->calib_results
);
143 void iwl_calib_free_results(struct iwl_priv
*priv
)
145 struct iwl_calib_result
*res
, *tmp
;
147 list_for_each_entry_safe(res
, tmp
, &priv
->calib_results
, list
) {
148 list_del(&res
->list
);
153 /*****************************************************************************
154 * RUNTIME calibrations framework
155 *****************************************************************************/
157 /* "false alarms" are signals that our DSP tries to lock onto,
158 * but then determines that they are either noise, or transmissions
159 * from a distant wireless network (also "noise", really) that get
160 * "stepped on" by stronger transmissions within our own network.
161 * This algorithm attempts to set a sensitivity level that is high
162 * enough to receive all of our own network traffic, but not so
163 * high that our DSP gets too busy trying to lock onto non-network
165 static int iwl_sens_energy_cck(struct iwl_priv
*priv
,
168 struct statistics_general_data
*rx_info
)
172 u8 max_silence_rssi
= 0;
174 u8 silence_rssi_a
= 0;
175 u8 silence_rssi_b
= 0;
176 u8 silence_rssi_c
= 0;
179 /* "false_alarms" values below are cross-multiplications to assess the
180 * numbers of false alarms within the measured period of actual Rx
181 * (Rx is off when we're txing), vs the min/max expected false alarms
182 * (some should be expected if rx is sensitive enough) in a
183 * hypothetical listening period of 200 time units (TU), 204.8 msec:
185 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
188 u32 false_alarms
= norm_fa
* 200 * 1024;
189 u32 max_false_alarms
= MAX_FA_CCK
* rx_enable_time
;
190 u32 min_false_alarms
= MIN_FA_CCK
* rx_enable_time
;
191 struct iwl_sensitivity_data
*data
= NULL
;
192 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
194 data
= &(priv
->sensitivity_data
);
196 data
->nrg_auto_corr_silence_diff
= 0;
198 /* Find max silence rssi among all 3 receivers.
199 * This is background noise, which may include transmissions from other
200 * networks, measured during silence before our network's beacon */
201 silence_rssi_a
= (u8
)((rx_info
->beacon_silence_rssi_a
&
202 ALL_BAND_FILTER
) >> 8);
203 silence_rssi_b
= (u8
)((rx_info
->beacon_silence_rssi_b
&
204 ALL_BAND_FILTER
) >> 8);
205 silence_rssi_c
= (u8
)((rx_info
->beacon_silence_rssi_c
&
206 ALL_BAND_FILTER
) >> 8);
208 val
= max(silence_rssi_b
, silence_rssi_c
);
209 max_silence_rssi
= max(silence_rssi_a
, (u8
) val
);
211 /* Store silence rssi in 20-beacon history table */
212 data
->nrg_silence_rssi
[data
->nrg_silence_idx
] = max_silence_rssi
;
213 data
->nrg_silence_idx
++;
214 if (data
->nrg_silence_idx
>= NRG_NUM_PREV_STAT_L
)
215 data
->nrg_silence_idx
= 0;
217 /* Find max silence rssi across 20 beacon history */
218 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++) {
219 val
= data
->nrg_silence_rssi
[i
];
220 silence_ref
= max(silence_ref
, val
);
222 IWL_DEBUG_CALIB(priv
, "silence a %u, b %u, c %u, 20-bcn max %u\n",
223 silence_rssi_a
, silence_rssi_b
, silence_rssi_c
,
226 /* Find max rx energy (min value!) among all 3 receivers,
227 * measured during beacon frame.
228 * Save it in 10-beacon history table. */
229 i
= data
->nrg_energy_idx
;
230 val
= min(rx_info
->beacon_energy_b
, rx_info
->beacon_energy_c
);
231 data
->nrg_value
[i
] = min(rx_info
->beacon_energy_a
, val
);
233 data
->nrg_energy_idx
++;
234 if (data
->nrg_energy_idx
>= 10)
235 data
->nrg_energy_idx
= 0;
237 /* Find min rx energy (max value) across 10 beacon history.
238 * This is the minimum signal level that we want to receive well.
239 * Add backoff (margin so we don't miss slightly lower energy frames).
240 * This establishes an upper bound (min value) for energy threshold. */
241 max_nrg_cck
= data
->nrg_value
[0];
242 for (i
= 1; i
< 10; i
++)
243 max_nrg_cck
= (u32
) max(max_nrg_cck
, (data
->nrg_value
[i
]));
246 IWL_DEBUG_CALIB(priv
, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
247 rx_info
->beacon_energy_a
, rx_info
->beacon_energy_b
,
248 rx_info
->beacon_energy_c
, max_nrg_cck
- 6);
250 /* Count number of consecutive beacons with fewer-than-desired
252 if (false_alarms
< min_false_alarms
)
253 data
->num_in_cck_no_fa
++;
255 data
->num_in_cck_no_fa
= 0;
256 IWL_DEBUG_CALIB(priv
, "consecutive bcns with few false alarms = %u\n",
257 data
->num_in_cck_no_fa
);
259 /* If we got too many false alarms this time, reduce sensitivity */
260 if ((false_alarms
> max_false_alarms
) &&
261 (data
->auto_corr_cck
> AUTO_CORR_MAX_TH_CCK
)) {
262 IWL_DEBUG_CALIB(priv
, "norm FA %u > max FA %u\n",
263 false_alarms
, max_false_alarms
);
264 IWL_DEBUG_CALIB(priv
, "... reducing sensitivity\n");
265 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
266 /* Store for "fewer than desired" on later beacon */
267 data
->nrg_silence_ref
= silence_ref
;
269 /* increase energy threshold (reduce nrg value)
270 * to decrease sensitivity */
271 data
->nrg_th_cck
= data
->nrg_th_cck
- NRG_STEP_CCK
;
272 /* Else if we got fewer than desired, increase sensitivity */
273 } else if (false_alarms
< min_false_alarms
) {
274 data
->nrg_curr_state
= IWL_FA_TOO_FEW
;
276 /* Compare silence level with silence level for most recent
277 * healthy number or too many false alarms */
278 data
->nrg_auto_corr_silence_diff
= (s32
)data
->nrg_silence_ref
-
281 IWL_DEBUG_CALIB(priv
, "norm FA %u < min FA %u, silence diff %d\n",
282 false_alarms
, min_false_alarms
,
283 data
->nrg_auto_corr_silence_diff
);
285 /* Increase value to increase sensitivity, but only if:
286 * 1a) previous beacon did *not* have *too many* false alarms
287 * 1b) AND there's a significant difference in Rx levels
288 * from a previous beacon with too many, or healthy # FAs
289 * OR 2) We've seen a lot of beacons (100) with too few
291 if ((data
->nrg_prev_state
!= IWL_FA_TOO_MANY
) &&
292 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
293 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
295 IWL_DEBUG_CALIB(priv
, "... increasing sensitivity\n");
296 /* Increase nrg value to increase sensitivity */
297 val
= data
->nrg_th_cck
+ NRG_STEP_CCK
;
298 data
->nrg_th_cck
= min((u32
)ranges
->min_nrg_cck
, val
);
300 IWL_DEBUG_CALIB(priv
, "... but not changing sensitivity\n");
303 /* Else we got a healthy number of false alarms, keep status quo */
305 IWL_DEBUG_CALIB(priv
, " FA in safe zone\n");
306 data
->nrg_curr_state
= IWL_FA_GOOD_RANGE
;
308 /* Store for use in "fewer than desired" with later beacon */
309 data
->nrg_silence_ref
= silence_ref
;
311 /* If previous beacon had too many false alarms,
312 * give it some extra margin by reducing sensitivity again
313 * (but don't go below measured energy of desired Rx) */
314 if (data
->nrg_prev_state
== IWL_FA_TOO_MANY
) {
315 IWL_DEBUG_CALIB(priv
, "... increasing margin\n");
316 if (data
->nrg_th_cck
> (max_nrg_cck
+ NRG_MARGIN
))
317 data
->nrg_th_cck
-= NRG_MARGIN
;
319 data
->nrg_th_cck
= max_nrg_cck
;
323 /* Make sure the energy threshold does not go above the measured
324 * energy of the desired Rx signals (reduced by backoff margin),
325 * or else we might start missing Rx frames.
326 * Lower value is higher energy, so we use max()!
328 data
->nrg_th_cck
= max(max_nrg_cck
, data
->nrg_th_cck
);
329 IWL_DEBUG_CALIB(priv
, "new nrg_th_cck %u\n", data
->nrg_th_cck
);
331 data
->nrg_prev_state
= data
->nrg_curr_state
;
333 /* Auto-correlation CCK algorithm */
334 if (false_alarms
> min_false_alarms
) {
336 /* increase auto_corr values to decrease sensitivity
337 * so the DSP won't be disturbed by the noise
339 if (data
->auto_corr_cck
< AUTO_CORR_MAX_TH_CCK
)
340 data
->auto_corr_cck
= AUTO_CORR_MAX_TH_CCK
+ 1;
342 val
= data
->auto_corr_cck
+ AUTO_CORR_STEP_CCK
;
343 data
->auto_corr_cck
=
344 min((u32
)ranges
->auto_corr_max_cck
, val
);
346 val
= data
->auto_corr_cck_mrc
+ AUTO_CORR_STEP_CCK
;
347 data
->auto_corr_cck_mrc
=
348 min((u32
)ranges
->auto_corr_max_cck_mrc
, val
);
349 } else if ((false_alarms
< min_false_alarms
) &&
350 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
351 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
353 /* Decrease auto_corr values to increase sensitivity */
354 val
= data
->auto_corr_cck
- AUTO_CORR_STEP_CCK
;
355 data
->auto_corr_cck
=
356 max((u32
)ranges
->auto_corr_min_cck
, val
);
357 val
= data
->auto_corr_cck_mrc
- AUTO_CORR_STEP_CCK
;
358 data
->auto_corr_cck_mrc
=
359 max((u32
)ranges
->auto_corr_min_cck_mrc
, val
);
366 static int iwl_sens_auto_corr_ofdm(struct iwl_priv
*priv
,
371 u32 false_alarms
= norm_fa
* 200 * 1024;
372 u32 max_false_alarms
= MAX_FA_OFDM
* rx_enable_time
;
373 u32 min_false_alarms
= MIN_FA_OFDM
* rx_enable_time
;
374 struct iwl_sensitivity_data
*data
= NULL
;
375 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
377 data
= &(priv
->sensitivity_data
);
379 /* If we got too many false alarms this time, reduce sensitivity */
380 if (false_alarms
> max_false_alarms
) {
382 IWL_DEBUG_CALIB(priv
, "norm FA %u > max FA %u)\n",
383 false_alarms
, max_false_alarms
);
385 val
= data
->auto_corr_ofdm
+ AUTO_CORR_STEP_OFDM
;
386 data
->auto_corr_ofdm
=
387 min((u32
)ranges
->auto_corr_max_ofdm
, val
);
389 val
= data
->auto_corr_ofdm_mrc
+ AUTO_CORR_STEP_OFDM
;
390 data
->auto_corr_ofdm_mrc
=
391 min((u32
)ranges
->auto_corr_max_ofdm_mrc
, val
);
393 val
= data
->auto_corr_ofdm_x1
+ AUTO_CORR_STEP_OFDM
;
394 data
->auto_corr_ofdm_x1
=
395 min((u32
)ranges
->auto_corr_max_ofdm_x1
, val
);
397 val
= data
->auto_corr_ofdm_mrc_x1
+ AUTO_CORR_STEP_OFDM
;
398 data
->auto_corr_ofdm_mrc_x1
=
399 min((u32
)ranges
->auto_corr_max_ofdm_mrc_x1
, val
);
402 /* Else if we got fewer than desired, increase sensitivity */
403 else if (false_alarms
< min_false_alarms
) {
405 IWL_DEBUG_CALIB(priv
, "norm FA %u < min FA %u\n",
406 false_alarms
, min_false_alarms
);
408 val
= data
->auto_corr_ofdm
- AUTO_CORR_STEP_OFDM
;
409 data
->auto_corr_ofdm
=
410 max((u32
)ranges
->auto_corr_min_ofdm
, val
);
412 val
= data
->auto_corr_ofdm_mrc
- AUTO_CORR_STEP_OFDM
;
413 data
->auto_corr_ofdm_mrc
=
414 max((u32
)ranges
->auto_corr_min_ofdm_mrc
, val
);
416 val
= data
->auto_corr_ofdm_x1
- AUTO_CORR_STEP_OFDM
;
417 data
->auto_corr_ofdm_x1
=
418 max((u32
)ranges
->auto_corr_min_ofdm_x1
, val
);
420 val
= data
->auto_corr_ofdm_mrc_x1
- AUTO_CORR_STEP_OFDM
;
421 data
->auto_corr_ofdm_mrc_x1
=
422 max((u32
)ranges
->auto_corr_min_ofdm_mrc_x1
, val
);
424 IWL_DEBUG_CALIB(priv
, "min FA %u < norm FA %u < max FA %u OK\n",
425 min_false_alarms
, false_alarms
, max_false_alarms
);
430 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv
*priv
,
431 struct iwl_sensitivity_data
*data
,
434 tbl
[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX
] =
435 cpu_to_le16((u16
)data
->auto_corr_ofdm
);
436 tbl
[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX
] =
437 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc
);
438 tbl
[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX
] =
439 cpu_to_le16((u16
)data
->auto_corr_ofdm_x1
);
440 tbl
[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX
] =
441 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc_x1
);
443 tbl
[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX
] =
444 cpu_to_le16((u16
)data
->auto_corr_cck
);
445 tbl
[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX
] =
446 cpu_to_le16((u16
)data
->auto_corr_cck_mrc
);
448 tbl
[HD_MIN_ENERGY_CCK_DET_INDEX
] =
449 cpu_to_le16((u16
)data
->nrg_th_cck
);
450 tbl
[HD_MIN_ENERGY_OFDM_DET_INDEX
] =
451 cpu_to_le16((u16
)data
->nrg_th_ofdm
);
453 tbl
[HD_BARKER_CORR_TH_ADD_MIN_INDEX
] =
454 cpu_to_le16(data
->barker_corr_th_min
);
455 tbl
[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX
] =
456 cpu_to_le16(data
->barker_corr_th_min_mrc
);
457 tbl
[HD_OFDM_ENERGY_TH_IN_INDEX
] =
458 cpu_to_le16(data
->nrg_th_cca
);
460 IWL_DEBUG_CALIB(priv
, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
461 data
->auto_corr_ofdm
, data
->auto_corr_ofdm_mrc
,
462 data
->auto_corr_ofdm_x1
, data
->auto_corr_ofdm_mrc_x1
,
465 IWL_DEBUG_CALIB(priv
, "cck: ac %u mrc %u thresh %u\n",
466 data
->auto_corr_cck
, data
->auto_corr_cck_mrc
,
470 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
471 static int iwl_sensitivity_write(struct iwl_priv
*priv
)
473 struct iwl_sensitivity_cmd cmd
;
474 struct iwl_sensitivity_data
*data
= NULL
;
475 struct iwl_host_cmd cmd_out
= {
476 .id
= SENSITIVITY_CMD
,
477 .len
= { sizeof(struct iwl_sensitivity_cmd
), },
482 data
= &(priv
->sensitivity_data
);
484 memset(&cmd
, 0, sizeof(cmd
));
486 iwl_prepare_legacy_sensitivity_tbl(priv
, data
, &cmd
.table
[0]);
488 /* Update uCode's "work" table, and copy it to DSP */
489 cmd
.control
= SENSITIVITY_CMD_CONTROL_WORK_TABLE
;
491 /* Don't send command to uCode if nothing has changed */
492 if (!memcmp(&cmd
.table
[0], &(priv
->sensitivity_tbl
[0]),
493 sizeof(u16
)*HD_TABLE_SIZE
)) {
494 IWL_DEBUG_CALIB(priv
, "No change in SENSITIVITY_CMD\n");
498 /* Copy table for comparison next time */
499 memcpy(&(priv
->sensitivity_tbl
[0]), &(cmd
.table
[0]),
500 sizeof(u16
)*HD_TABLE_SIZE
);
502 return iwl_dvm_send_cmd(priv
, &cmd_out
);
505 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
506 static int iwl_enhance_sensitivity_write(struct iwl_priv
*priv
)
508 struct iwl_enhance_sensitivity_cmd cmd
;
509 struct iwl_sensitivity_data
*data
= NULL
;
510 struct iwl_host_cmd cmd_out
= {
511 .id
= SENSITIVITY_CMD
,
512 .len
= { sizeof(struct iwl_enhance_sensitivity_cmd
), },
517 data
= &(priv
->sensitivity_data
);
519 memset(&cmd
, 0, sizeof(cmd
));
521 iwl_prepare_legacy_sensitivity_tbl(priv
, data
, &cmd
.enhance_table
[0]);
523 if (priv
->lib
->hd_v2
) {
524 cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_OFDM_INDEX
] =
525 HD_INA_NON_SQUARE_DET_OFDM_DATA_V2
;
526 cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_CCK_INDEX
] =
527 HD_INA_NON_SQUARE_DET_CCK_DATA_V2
;
528 cmd
.enhance_table
[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX
] =
529 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2
;
530 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX
] =
531 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2
;
532 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX
] =
533 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2
;
534 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX
] =
535 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2
;
536 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX
] =
537 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2
;
538 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX
] =
539 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2
;
540 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX
] =
541 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2
;
542 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX
] =
543 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2
;
544 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX
] =
545 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2
;
547 cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_OFDM_INDEX
] =
548 HD_INA_NON_SQUARE_DET_OFDM_DATA_V1
;
549 cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_CCK_INDEX
] =
550 HD_INA_NON_SQUARE_DET_CCK_DATA_V1
;
551 cmd
.enhance_table
[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX
] =
552 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1
;
553 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX
] =
554 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1
;
555 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX
] =
556 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1
;
557 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX
] =
558 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1
;
559 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX
] =
560 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1
;
561 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX
] =
562 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1
;
563 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX
] =
564 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1
;
565 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX
] =
566 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1
;
567 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX
] =
568 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1
;
571 /* Update uCode's "work" table, and copy it to DSP */
572 cmd
.control
= SENSITIVITY_CMD_CONTROL_WORK_TABLE
;
574 /* Don't send command to uCode if nothing has changed */
575 if (!memcmp(&cmd
.enhance_table
[0], &(priv
->sensitivity_tbl
[0]),
576 sizeof(u16
)*HD_TABLE_SIZE
) &&
577 !memcmp(&cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_OFDM_INDEX
],
578 &(priv
->enhance_sensitivity_tbl
[0]),
579 sizeof(u16
)*ENHANCE_HD_TABLE_ENTRIES
)) {
580 IWL_DEBUG_CALIB(priv
, "No change in SENSITIVITY_CMD\n");
584 /* Copy table for comparison next time */
585 memcpy(&(priv
->sensitivity_tbl
[0]), &(cmd
.enhance_table
[0]),
586 sizeof(u16
)*HD_TABLE_SIZE
);
587 memcpy(&(priv
->enhance_sensitivity_tbl
[0]),
588 &(cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_OFDM_INDEX
]),
589 sizeof(u16
)*ENHANCE_HD_TABLE_ENTRIES
);
591 return iwl_dvm_send_cmd(priv
, &cmd_out
);
594 void iwl_init_sensitivity(struct iwl_priv
*priv
)
598 struct iwl_sensitivity_data
*data
= NULL
;
599 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
601 if (priv
->calib_disabled
& IWL_SENSITIVITY_CALIB_DISABLED
)
604 IWL_DEBUG_CALIB(priv
, "Start iwl_init_sensitivity\n");
606 /* Clear driver's sensitivity algo data */
607 data
= &(priv
->sensitivity_data
);
612 memset(data
, 0, sizeof(struct iwl_sensitivity_data
));
614 data
->num_in_cck_no_fa
= 0;
615 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
616 data
->nrg_prev_state
= IWL_FA_TOO_MANY
;
617 data
->nrg_silence_ref
= 0;
618 data
->nrg_silence_idx
= 0;
619 data
->nrg_energy_idx
= 0;
621 for (i
= 0; i
< 10; i
++)
622 data
->nrg_value
[i
] = 0;
624 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++)
625 data
->nrg_silence_rssi
[i
] = 0;
627 data
->auto_corr_ofdm
= ranges
->auto_corr_min_ofdm
;
628 data
->auto_corr_ofdm_mrc
= ranges
->auto_corr_min_ofdm_mrc
;
629 data
->auto_corr_ofdm_x1
= ranges
->auto_corr_min_ofdm_x1
;
630 data
->auto_corr_ofdm_mrc_x1
= ranges
->auto_corr_min_ofdm_mrc_x1
;
631 data
->auto_corr_cck
= AUTO_CORR_CCK_MIN_VAL_DEF
;
632 data
->auto_corr_cck_mrc
= ranges
->auto_corr_min_cck_mrc
;
633 data
->nrg_th_cck
= ranges
->nrg_th_cck
;
634 data
->nrg_th_ofdm
= ranges
->nrg_th_ofdm
;
635 data
->barker_corr_th_min
= ranges
->barker_corr_th_min
;
636 data
->barker_corr_th_min_mrc
= ranges
->barker_corr_th_min_mrc
;
637 data
->nrg_th_cca
= ranges
->nrg_th_cca
;
639 data
->last_bad_plcp_cnt_ofdm
= 0;
640 data
->last_fa_cnt_ofdm
= 0;
641 data
->last_bad_plcp_cnt_cck
= 0;
642 data
->last_fa_cnt_cck
= 0;
644 if (priv
->fw
->enhance_sensitivity_table
)
645 ret
|= iwl_enhance_sensitivity_write(priv
);
647 ret
|= iwl_sensitivity_write(priv
);
648 IWL_DEBUG_CALIB(priv
, "<<return 0x%X\n", ret
);
651 void iwl_sensitivity_calibration(struct iwl_priv
*priv
)
660 struct iwl_sensitivity_data
*data
= NULL
;
661 struct statistics_rx_non_phy
*rx_info
;
662 struct statistics_rx_phy
*ofdm
, *cck
;
663 struct statistics_general_data statis
;
665 if (priv
->calib_disabled
& IWL_SENSITIVITY_CALIB_DISABLED
)
668 data
= &(priv
->sensitivity_data
);
670 if (!iwl_is_any_associated(priv
)) {
671 IWL_DEBUG_CALIB(priv
, "<< - not associated\n");
675 spin_lock_bh(&priv
->statistics
.lock
);
676 rx_info
= &priv
->statistics
.rx_non_phy
;
677 ofdm
= &priv
->statistics
.rx_ofdm
;
678 cck
= &priv
->statistics
.rx_cck
;
679 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
680 IWL_DEBUG_CALIB(priv
, "<< invalid data.\n");
681 spin_unlock_bh(&priv
->statistics
.lock
);
685 /* Extract Statistics: */
686 rx_enable_time
= le32_to_cpu(rx_info
->channel_load
);
687 fa_cck
= le32_to_cpu(cck
->false_alarm_cnt
);
688 fa_ofdm
= le32_to_cpu(ofdm
->false_alarm_cnt
);
689 bad_plcp_cck
= le32_to_cpu(cck
->plcp_err
);
690 bad_plcp_ofdm
= le32_to_cpu(ofdm
->plcp_err
);
692 statis
.beacon_silence_rssi_a
=
693 le32_to_cpu(rx_info
->beacon_silence_rssi_a
);
694 statis
.beacon_silence_rssi_b
=
695 le32_to_cpu(rx_info
->beacon_silence_rssi_b
);
696 statis
.beacon_silence_rssi_c
=
697 le32_to_cpu(rx_info
->beacon_silence_rssi_c
);
698 statis
.beacon_energy_a
=
699 le32_to_cpu(rx_info
->beacon_energy_a
);
700 statis
.beacon_energy_b
=
701 le32_to_cpu(rx_info
->beacon_energy_b
);
702 statis
.beacon_energy_c
=
703 le32_to_cpu(rx_info
->beacon_energy_c
);
705 spin_unlock_bh(&priv
->statistics
.lock
);
707 IWL_DEBUG_CALIB(priv
, "rx_enable_time = %u usecs\n", rx_enable_time
);
709 if (!rx_enable_time
) {
710 IWL_DEBUG_CALIB(priv
, "<< RX Enable Time == 0!\n");
714 /* These statistics increase monotonically, and do not reset
715 * at each beacon. Calculate difference from last value, or just
716 * use the new statistics value if it has reset or wrapped around. */
717 if (data
->last_bad_plcp_cnt_cck
> bad_plcp_cck
)
718 data
->last_bad_plcp_cnt_cck
= bad_plcp_cck
;
720 bad_plcp_cck
-= data
->last_bad_plcp_cnt_cck
;
721 data
->last_bad_plcp_cnt_cck
+= bad_plcp_cck
;
724 if (data
->last_bad_plcp_cnt_ofdm
> bad_plcp_ofdm
)
725 data
->last_bad_plcp_cnt_ofdm
= bad_plcp_ofdm
;
727 bad_plcp_ofdm
-= data
->last_bad_plcp_cnt_ofdm
;
728 data
->last_bad_plcp_cnt_ofdm
+= bad_plcp_ofdm
;
731 if (data
->last_fa_cnt_ofdm
> fa_ofdm
)
732 data
->last_fa_cnt_ofdm
= fa_ofdm
;
734 fa_ofdm
-= data
->last_fa_cnt_ofdm
;
735 data
->last_fa_cnt_ofdm
+= fa_ofdm
;
738 if (data
->last_fa_cnt_cck
> fa_cck
)
739 data
->last_fa_cnt_cck
= fa_cck
;
741 fa_cck
-= data
->last_fa_cnt_cck
;
742 data
->last_fa_cnt_cck
+= fa_cck
;
745 /* Total aborted signal locks */
746 norm_fa_ofdm
= fa_ofdm
+ bad_plcp_ofdm
;
747 norm_fa_cck
= fa_cck
+ bad_plcp_cck
;
749 IWL_DEBUG_CALIB(priv
, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck
,
750 bad_plcp_cck
, fa_ofdm
, bad_plcp_ofdm
);
752 iwl_sens_auto_corr_ofdm(priv
, norm_fa_ofdm
, rx_enable_time
);
753 iwl_sens_energy_cck(priv
, norm_fa_cck
, rx_enable_time
, &statis
);
754 if (priv
->fw
->enhance_sensitivity_table
)
755 iwl_enhance_sensitivity_write(priv
);
757 iwl_sensitivity_write(priv
);
760 static inline u8
find_first_chain(u8 mask
)
770 * Run disconnected antenna algorithm to find out which antennas are
773 static void iwl_find_disconn_antenna(struct iwl_priv
*priv
, u32
* average_sig
,
774 struct iwl_chain_noise_data
*data
)
776 u32 active_chains
= 0;
778 u16 max_average_sig_antenna_i
;
783 average_sig
[0] = data
->chain_signal_a
/ IWL_CAL_NUM_BEACONS
;
784 average_sig
[1] = data
->chain_signal_b
/ IWL_CAL_NUM_BEACONS
;
785 average_sig
[2] = data
->chain_signal_c
/ IWL_CAL_NUM_BEACONS
;
787 if (average_sig
[0] >= average_sig
[1]) {
788 max_average_sig
= average_sig
[0];
789 max_average_sig_antenna_i
= 0;
790 active_chains
= (1 << max_average_sig_antenna_i
);
792 max_average_sig
= average_sig
[1];
793 max_average_sig_antenna_i
= 1;
794 active_chains
= (1 << max_average_sig_antenna_i
);
797 if (average_sig
[2] >= max_average_sig
) {
798 max_average_sig
= average_sig
[2];
799 max_average_sig_antenna_i
= 2;
800 active_chains
= (1 << max_average_sig_antenna_i
);
803 IWL_DEBUG_CALIB(priv
, "average_sig: a %d b %d c %d\n",
804 average_sig
[0], average_sig
[1], average_sig
[2]);
805 IWL_DEBUG_CALIB(priv
, "max_average_sig = %d, antenna %d\n",
806 max_average_sig
, max_average_sig_antenna_i
);
808 /* Compare signal strengths for all 3 receivers. */
809 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
810 if (i
!= max_average_sig_antenna_i
) {
811 s32 rssi_delta
= (max_average_sig
- average_sig
[i
]);
813 /* If signal is very weak, compared with
814 * strongest, mark it as disconnected. */
815 if (rssi_delta
> MAXIMUM_ALLOWED_PATHLOSS
)
816 data
->disconn_array
[i
] = 1;
818 active_chains
|= (1 << i
);
819 IWL_DEBUG_CALIB(priv
, "i = %d rssiDelta = %d "
820 "disconn_array[i] = %d\n",
821 i
, rssi_delta
, data
->disconn_array
[i
]);
826 * The above algorithm sometimes fails when the ucode
827 * reports 0 for all chains. It's not clear why that
828 * happens to start with, but it is then causing trouble
829 * because this can make us enable more chains than the
830 * hardware really has.
832 * To be safe, simply mask out any chains that we know
833 * are not on the device.
835 active_chains
&= priv
->nvm_data
->valid_rx_ant
;
838 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
839 /* loops on all the bits of
840 * priv->hw_setting.valid_tx_ant */
841 u8 ant_msk
= (1 << i
);
842 if (!(priv
->nvm_data
->valid_tx_ant
& ant_msk
))
846 if (data
->disconn_array
[i
] == 0)
847 /* there is a Tx antenna connected */
849 if (num_tx_chains
== priv
->hw_params
.tx_chains_num
&&
850 data
->disconn_array
[i
]) {
852 * If all chains are disconnected
853 * connect the first valid tx chain
856 find_first_chain(priv
->nvm_data
->valid_tx_ant
);
857 data
->disconn_array
[first_chain
] = 0;
858 active_chains
|= BIT(first_chain
);
859 IWL_DEBUG_CALIB(priv
,
860 "All Tx chains are disconnected W/A - declare %d as connected\n",
866 if (active_chains
!= priv
->nvm_data
->valid_rx_ant
&&
867 active_chains
!= priv
->chain_noise_data
.active_chains
)
868 IWL_DEBUG_CALIB(priv
,
869 "Detected that not all antennas are connected! "
870 "Connected: %#x, valid: %#x.\n",
872 priv
->nvm_data
->valid_rx_ant
);
874 /* Save for use within RXON, TX, SCAN commands, etc. */
875 data
->active_chains
= active_chains
;
876 IWL_DEBUG_CALIB(priv
, "active_chains (bitwise) = 0x%x\n",
880 static void iwlagn_gain_computation(struct iwl_priv
*priv
,
881 u32 average_noise
[NUM_RX_CHAINS
],
886 struct iwl_chain_noise_data
*data
= &priv
->chain_noise_data
;
889 * Find Gain Code for the chains based on "default chain"
891 for (i
= default_chain
+ 1; i
< NUM_RX_CHAINS
; i
++) {
892 if ((data
->disconn_array
[i
])) {
893 data
->delta_gain_code
[i
] = 0;
897 delta_g
= (priv
->lib
->chain_noise_scale
*
898 ((s32
)average_noise
[default_chain
] -
899 (s32
)average_noise
[i
])) / 1500;
901 /* bound gain by 2 bits value max, 3rd bit is sign */
902 data
->delta_gain_code
[i
] =
904 (s32
) CHAIN_NOISE_MAX_DELTA_GAIN_CODE
);
908 * set negative sign ...
909 * note to Intel developers: This is uCode API format,
910 * not the format of any internal device registers.
911 * Do not change this format for e.g. 6050 or similar
912 * devices. Change format only if more resolution
913 * (i.e. more than 2 bits magnitude) is needed.
915 data
->delta_gain_code
[i
] |= (1 << 2);
918 IWL_DEBUG_CALIB(priv
, "Delta gains: ANT_B = %d ANT_C = %d\n",
919 data
->delta_gain_code
[1], data
->delta_gain_code
[2]);
921 if (!data
->radio_write
) {
922 struct iwl_calib_chain_noise_gain_cmd cmd
;
924 memset(&cmd
, 0, sizeof(cmd
));
926 iwl_set_calib_hdr(&cmd
.hdr
,
927 priv
->phy_calib_chain_noise_gain_cmd
);
928 cmd
.delta_gain_1
= data
->delta_gain_code
[1];
929 cmd
.delta_gain_2
= data
->delta_gain_code
[2];
930 iwl_dvm_send_cmd_pdu(priv
, REPLY_PHY_CALIBRATION_CMD
,
931 CMD_ASYNC
, sizeof(cmd
), &cmd
);
933 data
->radio_write
= 1;
934 data
->state
= IWL_CHAIN_NOISE_CALIBRATED
;
939 * Accumulate 16 beacons of signal and noise statistics for each of
940 * 3 receivers/antennas/rx-chains, then figure out:
941 * 1) Which antennas are connected.
942 * 2) Differential rx gain settings to balance the 3 receivers.
944 void iwl_chain_noise_calibration(struct iwl_priv
*priv
)
946 struct iwl_chain_noise_data
*data
= NULL
;
954 u32 average_sig
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
955 u32 average_noise
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
956 u32 min_average_noise
= MIN_AVERAGE_NOISE_MAX_VALUE
;
957 u16 min_average_noise_antenna_i
= INITIALIZATION_VALUE
;
959 u16 rxon_chnum
= INITIALIZATION_VALUE
;
960 u16 stat_chnum
= INITIALIZATION_VALUE
;
963 struct statistics_rx_non_phy
*rx_info
;
967 * When we support multiple interfaces on different channels,
968 * this must be modified/fixed.
970 struct iwl_rxon_context
*ctx
= &priv
->contexts
[IWL_RXON_CTX_BSS
];
972 if (priv
->calib_disabled
& IWL_CHAIN_NOISE_CALIB_DISABLED
)
975 data
= &(priv
->chain_noise_data
);
978 * Accumulate just the first "chain_noise_num_beacons" after
979 * the first association, then we're done forever.
981 if (data
->state
!= IWL_CHAIN_NOISE_ACCUMULATE
) {
982 if (data
->state
== IWL_CHAIN_NOISE_ALIVE
)
983 IWL_DEBUG_CALIB(priv
, "Wait for noise calib reset\n");
987 spin_lock_bh(&priv
->statistics
.lock
);
989 rx_info
= &priv
->statistics
.rx_non_phy
;
991 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
992 IWL_DEBUG_CALIB(priv
, " << Interference data unavailable\n");
993 spin_unlock_bh(&priv
->statistics
.lock
);
997 rxon_band24
= !!(ctx
->staging
.flags
& RXON_FLG_BAND_24G_MSK
);
998 rxon_chnum
= le16_to_cpu(ctx
->staging
.channel
);
1000 !!(priv
->statistics
.flag
& STATISTICS_REPLY_FLG_BAND_24G_MSK
);
1001 stat_chnum
= le32_to_cpu(priv
->statistics
.flag
) >> 16;
1003 /* Make sure we accumulate data for just the associated channel
1004 * (even if scanning). */
1005 if ((rxon_chnum
!= stat_chnum
) || (rxon_band24
!= stat_band24
)) {
1006 IWL_DEBUG_CALIB(priv
, "Stats not from chan=%d, band24=%d\n",
1007 rxon_chnum
, rxon_band24
);
1008 spin_unlock_bh(&priv
->statistics
.lock
);
1013 * Accumulate beacon statistics values across
1014 * "chain_noise_num_beacons"
1016 chain_noise_a
= le32_to_cpu(rx_info
->beacon_silence_rssi_a
) &
1018 chain_noise_b
= le32_to_cpu(rx_info
->beacon_silence_rssi_b
) &
1020 chain_noise_c
= le32_to_cpu(rx_info
->beacon_silence_rssi_c
) &
1023 chain_sig_a
= le32_to_cpu(rx_info
->beacon_rssi_a
) & IN_BAND_FILTER
;
1024 chain_sig_b
= le32_to_cpu(rx_info
->beacon_rssi_b
) & IN_BAND_FILTER
;
1025 chain_sig_c
= le32_to_cpu(rx_info
->beacon_rssi_c
) & IN_BAND_FILTER
;
1027 spin_unlock_bh(&priv
->statistics
.lock
);
1029 data
->beacon_count
++;
1031 data
->chain_noise_a
= (chain_noise_a
+ data
->chain_noise_a
);
1032 data
->chain_noise_b
= (chain_noise_b
+ data
->chain_noise_b
);
1033 data
->chain_noise_c
= (chain_noise_c
+ data
->chain_noise_c
);
1035 data
->chain_signal_a
= (chain_sig_a
+ data
->chain_signal_a
);
1036 data
->chain_signal_b
= (chain_sig_b
+ data
->chain_signal_b
);
1037 data
->chain_signal_c
= (chain_sig_c
+ data
->chain_signal_c
);
1039 IWL_DEBUG_CALIB(priv
, "chan=%d, band24=%d, beacon=%d\n",
1040 rxon_chnum
, rxon_band24
, data
->beacon_count
);
1041 IWL_DEBUG_CALIB(priv
, "chain_sig: a %d b %d c %d\n",
1042 chain_sig_a
, chain_sig_b
, chain_sig_c
);
1043 IWL_DEBUG_CALIB(priv
, "chain_noise: a %d b %d c %d\n",
1044 chain_noise_a
, chain_noise_b
, chain_noise_c
);
1046 /* If this is the "chain_noise_num_beacons", determine:
1047 * 1) Disconnected antennas (using signal strengths)
1048 * 2) Differential gain (using silence noise) to balance receivers */
1049 if (data
->beacon_count
!= IWL_CAL_NUM_BEACONS
)
1052 /* Analyze signal for disconnected antenna */
1053 if (priv
->lib
->bt_params
&&
1054 priv
->lib
->bt_params
->advanced_bt_coexist
) {
1055 /* Disable disconnected antenna algorithm for advanced
1056 bt coex, assuming valid antennas are connected */
1057 data
->active_chains
= priv
->nvm_data
->valid_rx_ant
;
1058 for (i
= 0; i
< NUM_RX_CHAINS
; i
++)
1059 if (!(data
->active_chains
& (1<<i
)))
1060 data
->disconn_array
[i
] = 1;
1062 iwl_find_disconn_antenna(priv
, average_sig
, data
);
1064 /* Analyze noise for rx balance */
1065 average_noise
[0] = data
->chain_noise_a
/ IWL_CAL_NUM_BEACONS
;
1066 average_noise
[1] = data
->chain_noise_b
/ IWL_CAL_NUM_BEACONS
;
1067 average_noise
[2] = data
->chain_noise_c
/ IWL_CAL_NUM_BEACONS
;
1069 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
1070 if (!(data
->disconn_array
[i
]) &&
1071 (average_noise
[i
] <= min_average_noise
)) {
1072 /* This means that chain i is active and has
1073 * lower noise values so far: */
1074 min_average_noise
= average_noise
[i
];
1075 min_average_noise_antenna_i
= i
;
1079 IWL_DEBUG_CALIB(priv
, "average_noise: a %d b %d c %d\n",
1080 average_noise
[0], average_noise
[1],
1083 IWL_DEBUG_CALIB(priv
, "min_average_noise = %d, antenna %d\n",
1084 min_average_noise
, min_average_noise_antenna_i
);
1086 iwlagn_gain_computation(
1087 priv
, average_noise
,
1088 find_first_chain(priv
->nvm_data
->valid_rx_ant
));
1090 /* Some power changes may have been made during the calibration.
1091 * Update and commit the RXON
1093 iwl_update_chain_flags(priv
);
1095 data
->state
= IWL_CHAIN_NOISE_DONE
;
1096 iwl_power_update_mode(priv
, false);
1099 void iwl_reset_run_time_calib(struct iwl_priv
*priv
)
1102 memset(&(priv
->sensitivity_data
), 0,
1103 sizeof(struct iwl_sensitivity_data
));
1104 memset(&(priv
->chain_noise_data
), 0,
1105 sizeof(struct iwl_chain_noise_data
));
1106 for (i
= 0; i
< NUM_RX_CHAINS
; i
++)
1107 priv
->chain_noise_data
.delta_gain_code
[i
] =
1108 CHAIN_NOISE_DELTA_GAIN_INIT_VAL
;
1110 /* Ask for statistics now, the uCode will send notification
1111 * periodically after association */
1112 iwl_send_statistics_request(priv
, CMD_ASYNC
, true);