net/mlx4_en: Move filters cleanup to a proper location
[linux/fpc-iii.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
blob0a4a3c502c3c567b45bb5c30b5806fe1f04c490c
1 /******************************************************************************
3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5 * Copyright(c) 2016 Intel Deutschland GmbH
7 * Portions of this file are derived from the ipw3945 project, as well
8 * as portions of the ieee80211 subsystem header files.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
23 * The full GNU General Public License is included in this distribution in the
24 * file called LICENSE.
26 * Contact Information:
27 * Intel Linux Wireless <linuxwifi@intel.com>
28 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *****************************************************************************/
31 #include <linux/sched.h>
32 #include <linux/wait.h>
33 #include <linux/gfp.h>
35 #include "iwl-prph.h"
36 #include "iwl-io.h"
37 #include "internal.h"
38 #include "iwl-op-mode.h"
40 /******************************************************************************
42 * RX path functions
44 ******************************************************************************/
47 * Rx theory of operation
49 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
50 * each of which point to Receive Buffers to be filled by the NIC. These get
51 * used not only for Rx frames, but for any command response or notification
52 * from the NIC. The driver and NIC manage the Rx buffers by means
53 * of indexes into the circular buffer.
55 * Rx Queue Indexes
56 * The host/firmware share two index registers for managing the Rx buffers.
58 * The READ index maps to the first position that the firmware may be writing
59 * to -- the driver can read up to (but not including) this position and get
60 * good data.
61 * The READ index is managed by the firmware once the card is enabled.
63 * The WRITE index maps to the last position the driver has read from -- the
64 * position preceding WRITE is the last slot the firmware can place a packet.
66 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
67 * WRITE = READ.
69 * During initialization, the host sets up the READ queue position to the first
70 * INDEX position, and WRITE to the last (READ - 1 wrapped)
72 * When the firmware places a packet in a buffer, it will advance the READ index
73 * and fire the RX interrupt. The driver can then query the READ index and
74 * process as many packets as possible, moving the WRITE index forward as it
75 * resets the Rx queue buffers with new memory.
77 * The management in the driver is as follows:
78 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
79 * When the interrupt handler is called, the request is processed.
80 * The page is either stolen - transferred to the upper layer
81 * or reused - added immediately to the iwl->rxq->rx_free list.
82 * + When the page is stolen - the driver updates the matching queue's used
83 * count, detaches the RBD and transfers it to the queue used list.
84 * When there are two used RBDs - they are transferred to the allocator empty
85 * list. Work is then scheduled for the allocator to start allocating
86 * eight buffers.
87 * When there are another 6 used RBDs - they are transferred to the allocator
88 * empty list and the driver tries to claim the pre-allocated buffers and
89 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
90 * until ready.
91 * When there are 8+ buffers in the free list - either from allocation or from
92 * 8 reused unstolen pages - restock is called to update the FW and indexes.
93 * + In order to make sure the allocator always has RBDs to use for allocation
94 * the allocator has initial pool in the size of num_queues*(8-2) - the
95 * maximum missing RBDs per allocation request (request posted with 2
96 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
97 * The queues supplies the recycle of the rest of the RBDs.
98 * + A received packet is processed and handed to the kernel network stack,
99 * detached from the iwl->rxq. The driver 'processed' index is updated.
100 * + If there are no allocated buffers in iwl->rxq->rx_free,
101 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
102 * If there were enough free buffers and RX_STALLED is set it is cleared.
105 * Driver sequence:
107 * iwl_rxq_alloc() Allocates rx_free
108 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
109 * iwl_pcie_rxq_restock.
110 * Used only during initialization.
111 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
112 * queue, updates firmware pointers, and updates
113 * the WRITE index.
114 * iwl_pcie_rx_allocator() Background work for allocating pages.
116 * -- enable interrupts --
117 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
118 * READ INDEX, detaching the SKB from the pool.
119 * Moves the packet buffer from queue to rx_used.
120 * Posts and claims requests to the allocator.
121 * Calls iwl_pcie_rxq_restock to refill any empty
122 * slots.
124 * RBD life-cycle:
126 * Init:
127 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
129 * Regular Receive interrupt:
130 * Page Stolen:
131 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
132 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
133 * Page not Stolen:
134 * rxq.queue -> rxq.rx_free -> rxq.queue
135 * ...
140 * iwl_rxq_space - Return number of free slots available in queue.
142 static int iwl_rxq_space(const struct iwl_rxq *rxq)
144 /* Make sure rx queue size is a power of 2 */
145 WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
148 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
149 * between empty and completely full queues.
150 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
151 * defined for negative dividends.
153 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
157 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
159 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
161 return cpu_to_le32((u32)(dma_addr >> 8));
164 static void iwl_pcie_write_prph_64_no_grab(struct iwl_trans *trans, u64 ofs,
165 u64 val)
167 iwl_write_prph_no_grab(trans, ofs, val & 0xffffffff);
168 iwl_write_prph_no_grab(trans, ofs + 4, val >> 32);
172 * iwl_pcie_rx_stop - stops the Rx DMA
174 int iwl_pcie_rx_stop(struct iwl_trans *trans)
176 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
177 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
178 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
182 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
184 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
185 struct iwl_rxq *rxq)
187 u32 reg;
189 lockdep_assert_held(&rxq->lock);
192 * explicitly wake up the NIC if:
193 * 1. shadow registers aren't enabled
194 * 2. there is a chance that the NIC is asleep
196 if (!trans->cfg->base_params->shadow_reg_enable &&
197 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
198 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
200 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
201 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
202 reg);
203 iwl_set_bit(trans, CSR_GP_CNTRL,
204 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
205 rxq->need_update = true;
206 return;
210 rxq->write_actual = round_down(rxq->write, 8);
211 if (trans->cfg->mq_rx_supported)
212 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
213 rxq->write_actual);
215 * write to FH_RSCSR_CHNL0_WPTR register even in MQ as a W/A to
216 * hardware shadow registers bug - writing to RFH_Q_FRBDCB_WIDX will
217 * not wake the NIC.
219 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
222 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
224 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
225 int i;
227 for (i = 0; i < trans->num_rx_queues; i++) {
228 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
230 if (!rxq->need_update)
231 continue;
232 spin_lock(&rxq->lock);
233 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
234 rxq->need_update = false;
235 spin_unlock(&rxq->lock);
240 * iwl_pcie_rxq_mq_restock - restock implementation for multi-queue rx
242 static void iwl_pcie_rxq_mq_restock(struct iwl_trans *trans,
243 struct iwl_rxq *rxq)
245 struct iwl_rx_mem_buffer *rxb;
248 * If the device isn't enabled - no need to try to add buffers...
249 * This can happen when we stop the device and still have an interrupt
250 * pending. We stop the APM before we sync the interrupts because we
251 * have to (see comment there). On the other hand, since the APM is
252 * stopped, we cannot access the HW (in particular not prph).
253 * So don't try to restock if the APM has been already stopped.
255 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
256 return;
258 spin_lock(&rxq->lock);
259 while (rxq->free_count) {
260 __le64 *bd = (__le64 *)rxq->bd;
262 /* Get next free Rx buffer, remove from free list */
263 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
264 list);
265 list_del(&rxb->list);
267 /* 12 first bits are expected to be empty */
268 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
269 /* Point to Rx buffer via next RBD in circular buffer */
270 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
271 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
272 rxq->free_count--;
274 spin_unlock(&rxq->lock);
277 * If we've added more space for the firmware to place data, tell it.
278 * Increment device's write pointer in multiples of 8.
280 if (rxq->write_actual != (rxq->write & ~0x7)) {
281 spin_lock(&rxq->lock);
282 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
283 spin_unlock(&rxq->lock);
288 * iwl_pcie_rxq_sq_restock - restock implementation for single queue rx
290 static void iwl_pcie_rxq_sq_restock(struct iwl_trans *trans,
291 struct iwl_rxq *rxq)
293 struct iwl_rx_mem_buffer *rxb;
296 * If the device isn't enabled - not need to try to add buffers...
297 * This can happen when we stop the device and still have an interrupt
298 * pending. We stop the APM before we sync the interrupts because we
299 * have to (see comment there). On the other hand, since the APM is
300 * stopped, we cannot access the HW (in particular not prph).
301 * So don't try to restock if the APM has been already stopped.
303 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
304 return;
306 spin_lock(&rxq->lock);
307 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
308 __le32 *bd = (__le32 *)rxq->bd;
309 /* The overwritten rxb must be a used one */
310 rxb = rxq->queue[rxq->write];
311 BUG_ON(rxb && rxb->page);
313 /* Get next free Rx buffer, remove from free list */
314 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
315 list);
316 list_del(&rxb->list);
318 /* Point to Rx buffer via next RBD in circular buffer */
319 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
320 rxq->queue[rxq->write] = rxb;
321 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
322 rxq->free_count--;
324 spin_unlock(&rxq->lock);
326 /* If we've added more space for the firmware to place data, tell it.
327 * Increment device's write pointer in multiples of 8. */
328 if (rxq->write_actual != (rxq->write & ~0x7)) {
329 spin_lock(&rxq->lock);
330 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
331 spin_unlock(&rxq->lock);
336 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
338 * If there are slots in the RX queue that need to be restocked,
339 * and we have free pre-allocated buffers, fill the ranks as much
340 * as we can, pulling from rx_free.
342 * This moves the 'write' index forward to catch up with 'processed', and
343 * also updates the memory address in the firmware to reference the new
344 * target buffer.
346 static
347 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
349 if (trans->cfg->mq_rx_supported)
350 iwl_pcie_rxq_mq_restock(trans, rxq);
351 else
352 iwl_pcie_rxq_sq_restock(trans, rxq);
356 * iwl_pcie_rx_alloc_page - allocates and returns a page.
359 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
360 gfp_t priority)
362 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
363 struct page *page;
364 gfp_t gfp_mask = priority;
366 if (trans_pcie->rx_page_order > 0)
367 gfp_mask |= __GFP_COMP;
369 /* Alloc a new receive buffer */
370 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
371 if (!page) {
372 if (net_ratelimit())
373 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
374 trans_pcie->rx_page_order);
376 * Issue an error if we don't have enough pre-allocated
377 * buffers.
378 ` */
379 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
380 IWL_CRIT(trans,
381 "Failed to alloc_pages\n");
382 return NULL;
384 return page;
388 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
390 * A used RBD is an Rx buffer that has been given to the stack. To use it again
391 * a page must be allocated and the RBD must point to the page. This function
392 * doesn't change the HW pointer but handles the list of pages that is used by
393 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
394 * allocated buffers.
396 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
397 struct iwl_rxq *rxq)
399 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
400 struct iwl_rx_mem_buffer *rxb;
401 struct page *page;
403 while (1) {
404 spin_lock(&rxq->lock);
405 if (list_empty(&rxq->rx_used)) {
406 spin_unlock(&rxq->lock);
407 return;
409 spin_unlock(&rxq->lock);
411 /* Alloc a new receive buffer */
412 page = iwl_pcie_rx_alloc_page(trans, priority);
413 if (!page)
414 return;
416 spin_lock(&rxq->lock);
418 if (list_empty(&rxq->rx_used)) {
419 spin_unlock(&rxq->lock);
420 __free_pages(page, trans_pcie->rx_page_order);
421 return;
423 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
424 list);
425 list_del(&rxb->list);
426 spin_unlock(&rxq->lock);
428 BUG_ON(rxb->page);
429 rxb->page = page;
430 /* Get physical address of the RB */
431 rxb->page_dma =
432 dma_map_page(trans->dev, page, 0,
433 PAGE_SIZE << trans_pcie->rx_page_order,
434 DMA_FROM_DEVICE);
435 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
436 rxb->page = NULL;
437 spin_lock(&rxq->lock);
438 list_add(&rxb->list, &rxq->rx_used);
439 spin_unlock(&rxq->lock);
440 __free_pages(page, trans_pcie->rx_page_order);
441 return;
444 spin_lock(&rxq->lock);
446 list_add_tail(&rxb->list, &rxq->rx_free);
447 rxq->free_count++;
449 spin_unlock(&rxq->lock);
453 static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
455 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
456 int i;
458 for (i = 0; i < RX_POOL_SIZE; i++) {
459 if (!trans_pcie->rx_pool[i].page)
460 continue;
461 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
462 PAGE_SIZE << trans_pcie->rx_page_order,
463 DMA_FROM_DEVICE);
464 __free_pages(trans_pcie->rx_pool[i].page,
465 trans_pcie->rx_page_order);
466 trans_pcie->rx_pool[i].page = NULL;
471 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
473 * Allocates for each received request 8 pages
474 * Called as a scheduled work item.
476 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
478 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
479 struct iwl_rb_allocator *rba = &trans_pcie->rba;
480 struct list_head local_empty;
481 int pending = atomic_xchg(&rba->req_pending, 0);
483 IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
485 /* If we were scheduled - there is at least one request */
486 spin_lock(&rba->lock);
487 /* swap out the rba->rbd_empty to a local list */
488 list_replace_init(&rba->rbd_empty, &local_empty);
489 spin_unlock(&rba->lock);
491 while (pending) {
492 int i;
493 struct list_head local_allocated;
494 gfp_t gfp_mask = GFP_KERNEL;
496 /* Do not post a warning if there are only a few requests */
497 if (pending < RX_PENDING_WATERMARK)
498 gfp_mask |= __GFP_NOWARN;
500 INIT_LIST_HEAD(&local_allocated);
502 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
503 struct iwl_rx_mem_buffer *rxb;
504 struct page *page;
506 /* List should never be empty - each reused RBD is
507 * returned to the list, and initial pool covers any
508 * possible gap between the time the page is allocated
509 * to the time the RBD is added.
511 BUG_ON(list_empty(&local_empty));
512 /* Get the first rxb from the rbd list */
513 rxb = list_first_entry(&local_empty,
514 struct iwl_rx_mem_buffer, list);
515 BUG_ON(rxb->page);
517 /* Alloc a new receive buffer */
518 page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
519 if (!page)
520 continue;
521 rxb->page = page;
523 /* Get physical address of the RB */
524 rxb->page_dma = dma_map_page(trans->dev, page, 0,
525 PAGE_SIZE << trans_pcie->rx_page_order,
526 DMA_FROM_DEVICE);
527 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
528 rxb->page = NULL;
529 __free_pages(page, trans_pcie->rx_page_order);
530 continue;
533 /* move the allocated entry to the out list */
534 list_move(&rxb->list, &local_allocated);
535 i++;
538 pending--;
539 if (!pending) {
540 pending = atomic_xchg(&rba->req_pending, 0);
541 IWL_DEBUG_RX(trans,
542 "Pending allocation requests = %d\n",
543 pending);
546 spin_lock(&rba->lock);
547 /* add the allocated rbds to the allocator allocated list */
548 list_splice_tail(&local_allocated, &rba->rbd_allocated);
549 /* get more empty RBDs for current pending requests */
550 list_splice_tail_init(&rba->rbd_empty, &local_empty);
551 spin_unlock(&rba->lock);
553 atomic_inc(&rba->req_ready);
556 spin_lock(&rba->lock);
557 /* return unused rbds to the allocator empty list */
558 list_splice_tail(&local_empty, &rba->rbd_empty);
559 spin_unlock(&rba->lock);
563 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
565 .* Called by queue when the queue posted allocation request and
566 * has freed 8 RBDs in order to restock itself.
567 * This function directly moves the allocated RBs to the queue's ownership
568 * and updates the relevant counters.
570 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
571 struct iwl_rxq *rxq)
573 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
574 struct iwl_rb_allocator *rba = &trans_pcie->rba;
575 int i;
577 lockdep_assert_held(&rxq->lock);
580 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
581 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
582 * function will return early, as there are no ready requests.
583 * atomic_dec_if_positive will perofrm the *actual* decrement only if
584 * req_ready > 0, i.e. - there are ready requests and the function
585 * hands one request to the caller.
587 if (atomic_dec_if_positive(&rba->req_ready) < 0)
588 return;
590 spin_lock(&rba->lock);
591 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
592 /* Get next free Rx buffer, remove it from free list */
593 struct iwl_rx_mem_buffer *rxb =
594 list_first_entry(&rba->rbd_allocated,
595 struct iwl_rx_mem_buffer, list);
597 list_move(&rxb->list, &rxq->rx_free);
599 spin_unlock(&rba->lock);
601 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
602 rxq->free_count += RX_CLAIM_REQ_ALLOC;
605 static void iwl_pcie_rx_allocator_work(struct work_struct *data)
607 struct iwl_rb_allocator *rba_p =
608 container_of(data, struct iwl_rb_allocator, rx_alloc);
609 struct iwl_trans_pcie *trans_pcie =
610 container_of(rba_p, struct iwl_trans_pcie, rba);
612 iwl_pcie_rx_allocator(trans_pcie->trans);
615 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
617 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
618 struct iwl_rb_allocator *rba = &trans_pcie->rba;
619 struct device *dev = trans->dev;
620 int i;
621 int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
622 sizeof(__le32);
624 if (WARN_ON(trans_pcie->rxq))
625 return -EINVAL;
627 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
628 GFP_KERNEL);
629 if (!trans_pcie->rxq)
630 return -EINVAL;
632 spin_lock_init(&rba->lock);
634 for (i = 0; i < trans->num_rx_queues; i++) {
635 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
637 spin_lock_init(&rxq->lock);
638 if (trans->cfg->mq_rx_supported)
639 rxq->queue_size = MQ_RX_TABLE_SIZE;
640 else
641 rxq->queue_size = RX_QUEUE_SIZE;
644 * Allocate the circular buffer of Read Buffer Descriptors
645 * (RBDs)
647 rxq->bd = dma_zalloc_coherent(dev,
648 free_size * rxq->queue_size,
649 &rxq->bd_dma, GFP_KERNEL);
650 if (!rxq->bd)
651 goto err;
653 if (trans->cfg->mq_rx_supported) {
654 rxq->used_bd = dma_zalloc_coherent(dev,
655 sizeof(__le32) *
656 rxq->queue_size,
657 &rxq->used_bd_dma,
658 GFP_KERNEL);
659 if (!rxq->used_bd)
660 goto err;
663 /*Allocate the driver's pointer to receive buffer status */
664 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
665 &rxq->rb_stts_dma,
666 GFP_KERNEL);
667 if (!rxq->rb_stts)
668 goto err;
670 return 0;
672 err:
673 for (i = 0; i < trans->num_rx_queues; i++) {
674 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
676 if (rxq->bd)
677 dma_free_coherent(dev, free_size * rxq->queue_size,
678 rxq->bd, rxq->bd_dma);
679 rxq->bd_dma = 0;
680 rxq->bd = NULL;
682 if (rxq->rb_stts)
683 dma_free_coherent(trans->dev,
684 sizeof(struct iwl_rb_status),
685 rxq->rb_stts, rxq->rb_stts_dma);
687 if (rxq->used_bd)
688 dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
689 rxq->used_bd, rxq->used_bd_dma);
690 rxq->used_bd_dma = 0;
691 rxq->used_bd = NULL;
693 kfree(trans_pcie->rxq);
695 return -ENOMEM;
698 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
700 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
701 u32 rb_size;
702 unsigned long flags;
703 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
705 switch (trans_pcie->rx_buf_size) {
706 case IWL_AMSDU_4K:
707 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
708 break;
709 case IWL_AMSDU_8K:
710 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
711 break;
712 case IWL_AMSDU_12K:
713 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
714 break;
715 default:
716 WARN_ON(1);
717 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
720 if (!iwl_trans_grab_nic_access(trans, &flags))
721 return;
723 /* Stop Rx DMA */
724 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
725 /* reset and flush pointers */
726 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
727 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
728 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
730 /* Reset driver's Rx queue write index */
731 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
733 /* Tell device where to find RBD circular buffer in DRAM */
734 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
735 (u32)(rxq->bd_dma >> 8));
737 /* Tell device where in DRAM to update its Rx status */
738 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
739 rxq->rb_stts_dma >> 4);
741 /* Enable Rx DMA
742 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
743 * the credit mechanism in 5000 HW RX FIFO
744 * Direct rx interrupts to hosts
745 * Rx buffer size 4 or 8k or 12k
746 * RB timeout 0x10
747 * 256 RBDs
749 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
750 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
751 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
752 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
753 rb_size |
754 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
755 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
757 iwl_trans_release_nic_access(trans, &flags);
759 /* Set interrupt coalescing timer to default (2048 usecs) */
760 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
762 /* W/A for interrupt coalescing bug in 7260 and 3160 */
763 if (trans->cfg->host_interrupt_operation_mode)
764 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
767 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
769 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
770 u32 rb_size, enabled = 0;
771 unsigned long flags;
772 int i;
774 switch (trans_pcie->rx_buf_size) {
775 case IWL_AMSDU_4K:
776 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
777 break;
778 case IWL_AMSDU_8K:
779 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
780 break;
781 case IWL_AMSDU_12K:
782 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
783 break;
784 default:
785 WARN_ON(1);
786 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
789 if (!iwl_trans_grab_nic_access(trans, &flags))
790 return;
792 /* Stop Rx DMA */
793 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
794 /* disable free amd used rx queue operation */
795 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
797 for (i = 0; i < trans->num_rx_queues; i++) {
798 /* Tell device where to find RBD free table in DRAM */
799 iwl_pcie_write_prph_64_no_grab(trans,
800 RFH_Q_FRBDCB_BA_LSB(i),
801 trans_pcie->rxq[i].bd_dma);
802 /* Tell device where to find RBD used table in DRAM */
803 iwl_pcie_write_prph_64_no_grab(trans,
804 RFH_Q_URBDCB_BA_LSB(i),
805 trans_pcie->rxq[i].used_bd_dma);
806 /* Tell device where in DRAM to update its Rx status */
807 iwl_pcie_write_prph_64_no_grab(trans,
808 RFH_Q_URBD_STTS_WPTR_LSB(i),
809 trans_pcie->rxq[i].rb_stts_dma);
810 /* Reset device indice tables */
811 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
812 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
813 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
815 enabled |= BIT(i) | BIT(i + 16);
818 /* restock default queue */
819 iwl_pcie_rxq_mq_restock(trans, &trans_pcie->rxq[0]);
822 * Enable Rx DMA
823 * Single frame mode
824 * Rx buffer size 4 or 8k or 12k
825 * Min RB size 4 or 8
826 * Drop frames that exceed RB size
827 * 512 RBDs
829 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
830 RFH_DMA_EN_ENABLE_VAL |
831 rb_size | RFH_RXF_DMA_SINGLE_FRAME_MASK |
832 RFH_RXF_DMA_MIN_RB_4_8 |
833 RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
834 RFH_RXF_DMA_RBDCB_SIZE_512);
837 * Activate DMA snooping.
838 * Set RX DMA chunk size to 64B
839 * Default queue is 0
841 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
842 (DEFAULT_RXQ_NUM <<
843 RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
844 RFH_GEN_CFG_SERVICE_DMA_SNOOP);
845 /* Enable the relevant rx queues */
846 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
848 iwl_trans_release_nic_access(trans, &flags);
850 /* Set interrupt coalescing timer to default (2048 usecs) */
851 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
854 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
856 lockdep_assert_held(&rxq->lock);
858 INIT_LIST_HEAD(&rxq->rx_free);
859 INIT_LIST_HEAD(&rxq->rx_used);
860 rxq->free_count = 0;
861 rxq->used_count = 0;
864 static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
866 WARN_ON(1);
867 return 0;
870 int iwl_pcie_rx_init(struct iwl_trans *trans)
872 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
873 struct iwl_rxq *def_rxq;
874 struct iwl_rb_allocator *rba = &trans_pcie->rba;
875 int i, err, queue_size, allocator_pool_size, num_alloc;
877 if (!trans_pcie->rxq) {
878 err = iwl_pcie_rx_alloc(trans);
879 if (err)
880 return err;
882 def_rxq = trans_pcie->rxq;
883 if (!rba->alloc_wq)
884 rba->alloc_wq = alloc_workqueue("rb_allocator",
885 WQ_HIGHPRI | WQ_UNBOUND, 1);
886 INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);
888 spin_lock(&rba->lock);
889 atomic_set(&rba->req_pending, 0);
890 atomic_set(&rba->req_ready, 0);
891 INIT_LIST_HEAD(&rba->rbd_allocated);
892 INIT_LIST_HEAD(&rba->rbd_empty);
893 spin_unlock(&rba->lock);
895 /* free all first - we might be reconfigured for a different size */
896 iwl_pcie_free_rbs_pool(trans);
898 for (i = 0; i < RX_QUEUE_SIZE; i++)
899 def_rxq->queue[i] = NULL;
901 for (i = 0; i < trans->num_rx_queues; i++) {
902 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
904 rxq->id = i;
906 spin_lock(&rxq->lock);
908 * Set read write pointer to reflect that we have processed
909 * and used all buffers, but have not restocked the Rx queue
910 * with fresh buffers
912 rxq->read = 0;
913 rxq->write = 0;
914 rxq->write_actual = 0;
915 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
917 iwl_pcie_rx_init_rxb_lists(rxq);
919 if (!rxq->napi.poll)
920 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
921 iwl_pcie_dummy_napi_poll, 64);
923 spin_unlock(&rxq->lock);
926 /* move the pool to the default queue and allocator ownerships */
927 queue_size = trans->cfg->mq_rx_supported ?
928 MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
929 allocator_pool_size = trans->num_rx_queues *
930 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
931 num_alloc = queue_size + allocator_pool_size;
932 BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
933 ARRAY_SIZE(trans_pcie->rx_pool));
934 for (i = 0; i < num_alloc; i++) {
935 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
937 if (i < allocator_pool_size)
938 list_add(&rxb->list, &rba->rbd_empty);
939 else
940 list_add(&rxb->list, &def_rxq->rx_used);
941 trans_pcie->global_table[i] = rxb;
942 rxb->vid = (u16)i;
945 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
946 if (trans->cfg->mq_rx_supported) {
947 iwl_pcie_rx_mq_hw_init(trans);
948 } else {
949 iwl_pcie_rxq_sq_restock(trans, def_rxq);
950 iwl_pcie_rx_hw_init(trans, def_rxq);
953 spin_lock(&def_rxq->lock);
954 iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
955 spin_unlock(&def_rxq->lock);
957 return 0;
960 void iwl_pcie_rx_free(struct iwl_trans *trans)
962 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
963 struct iwl_rb_allocator *rba = &trans_pcie->rba;
964 int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
965 sizeof(__le32);
966 int i;
969 * if rxq is NULL, it means that nothing has been allocated,
970 * exit now
972 if (!trans_pcie->rxq) {
973 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
974 return;
977 cancel_work_sync(&rba->rx_alloc);
978 if (rba->alloc_wq) {
979 destroy_workqueue(rba->alloc_wq);
980 rba->alloc_wq = NULL;
983 iwl_pcie_free_rbs_pool(trans);
985 for (i = 0; i < trans->num_rx_queues; i++) {
986 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
988 if (rxq->bd)
989 dma_free_coherent(trans->dev,
990 free_size * rxq->queue_size,
991 rxq->bd, rxq->bd_dma);
992 rxq->bd_dma = 0;
993 rxq->bd = NULL;
995 if (rxq->rb_stts)
996 dma_free_coherent(trans->dev,
997 sizeof(struct iwl_rb_status),
998 rxq->rb_stts, rxq->rb_stts_dma);
999 else
1000 IWL_DEBUG_INFO(trans,
1001 "Free rxq->rb_stts which is NULL\n");
1003 if (rxq->used_bd)
1004 dma_free_coherent(trans->dev,
1005 sizeof(__le32) * rxq->queue_size,
1006 rxq->used_bd, rxq->used_bd_dma);
1007 rxq->used_bd_dma = 0;
1008 rxq->used_bd = NULL;
1010 if (rxq->napi.poll)
1011 netif_napi_del(&rxq->napi);
1013 kfree(trans_pcie->rxq);
1017 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1019 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1020 * When there are 2 empty RBDs - a request for allocation is posted
1022 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1023 struct iwl_rx_mem_buffer *rxb,
1024 struct iwl_rxq *rxq, bool emergency)
1026 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1027 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1029 /* Move the RBD to the used list, will be moved to allocator in batches
1030 * before claiming or posting a request*/
1031 list_add_tail(&rxb->list, &rxq->rx_used);
1033 if (unlikely(emergency))
1034 return;
1036 /* Count the allocator owned RBDs */
1037 rxq->used_count++;
1039 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1040 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1041 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1042 * after but we still need to post another request.
1044 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1045 /* Move the 2 RBDs to the allocator ownership.
1046 Allocator has another 6 from pool for the request completion*/
1047 spin_lock(&rba->lock);
1048 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1049 spin_unlock(&rba->lock);
1051 atomic_inc(&rba->req_pending);
1052 queue_work(rba->alloc_wq, &rba->rx_alloc);
1056 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1057 struct iwl_rxq *rxq,
1058 struct iwl_rx_mem_buffer *rxb,
1059 bool emergency)
1061 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1062 struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
1063 bool page_stolen = false;
1064 int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1065 u32 offset = 0;
1067 if (WARN_ON(!rxb))
1068 return;
1070 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1072 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1073 struct iwl_rx_packet *pkt;
1074 u16 sequence;
1075 bool reclaim;
1076 int index, cmd_index, len;
1077 struct iwl_rx_cmd_buffer rxcb = {
1078 ._offset = offset,
1079 ._rx_page_order = trans_pcie->rx_page_order,
1080 ._page = rxb->page,
1081 ._page_stolen = false,
1082 .truesize = max_len,
1085 pkt = rxb_addr(&rxcb);
1087 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
1088 break;
1090 IWL_DEBUG_RX(trans,
1091 "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
1092 rxcb._offset,
1093 iwl_get_cmd_string(trans,
1094 iwl_cmd_id(pkt->hdr.cmd,
1095 pkt->hdr.group_id,
1096 0)),
1097 pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
1099 len = iwl_rx_packet_len(pkt);
1100 len += sizeof(u32); /* account for status word */
1101 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1102 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1104 /* Reclaim a command buffer only if this packet is a response
1105 * to a (driver-originated) command.
1106 * If the packet (e.g. Rx frame) originated from uCode,
1107 * there is no command buffer to reclaim.
1108 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1109 * but apparently a few don't get set; catch them here. */
1110 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1111 if (reclaim) {
1112 int i;
1114 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1115 if (trans_pcie->no_reclaim_cmds[i] ==
1116 pkt->hdr.cmd) {
1117 reclaim = false;
1118 break;
1123 sequence = le16_to_cpu(pkt->hdr.sequence);
1124 index = SEQ_TO_INDEX(sequence);
1125 cmd_index = get_cmd_index(&txq->q, index);
1127 if (rxq->id == 0)
1128 iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1129 &rxcb);
1130 else
1131 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1132 &rxcb, rxq->id);
1134 if (reclaim) {
1135 kzfree(txq->entries[cmd_index].free_buf);
1136 txq->entries[cmd_index].free_buf = NULL;
1140 * After here, we should always check rxcb._page_stolen,
1141 * if it is true then one of the handlers took the page.
1144 if (reclaim) {
1145 /* Invoke any callbacks, transfer the buffer to caller,
1146 * and fire off the (possibly) blocking
1147 * iwl_trans_send_cmd()
1148 * as we reclaim the driver command queue */
1149 if (!rxcb._page_stolen)
1150 iwl_pcie_hcmd_complete(trans, &rxcb);
1151 else
1152 IWL_WARN(trans, "Claim null rxb?\n");
1155 page_stolen |= rxcb._page_stolen;
1156 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1159 /* page was stolen from us -- free our reference */
1160 if (page_stolen) {
1161 __free_pages(rxb->page, trans_pcie->rx_page_order);
1162 rxb->page = NULL;
1165 /* Reuse the page if possible. For notification packets and
1166 * SKBs that fail to Rx correctly, add them back into the
1167 * rx_free list for reuse later. */
1168 if (rxb->page != NULL) {
1169 rxb->page_dma =
1170 dma_map_page(trans->dev, rxb->page, 0,
1171 PAGE_SIZE << trans_pcie->rx_page_order,
1172 DMA_FROM_DEVICE);
1173 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1175 * free the page(s) as well to not break
1176 * the invariant that the items on the used
1177 * list have no page(s)
1179 __free_pages(rxb->page, trans_pcie->rx_page_order);
1180 rxb->page = NULL;
1181 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1182 } else {
1183 list_add_tail(&rxb->list, &rxq->rx_free);
1184 rxq->free_count++;
1186 } else
1187 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1191 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1193 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1195 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1196 struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1197 u32 r, i, count = 0;
1198 bool emergency = false;
1200 restart:
1201 spin_lock(&rxq->lock);
1202 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1203 * buffer that the driver may process (last buffer filled by ucode). */
1204 r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1205 i = rxq->read;
1207 /* W/A 9000 device step A0 wrap-around bug */
1208 r &= (rxq->queue_size - 1);
1210 /* Rx interrupt, but nothing sent from uCode */
1211 if (i == r)
1212 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1214 while (i != r) {
1215 struct iwl_rx_mem_buffer *rxb;
1217 if (unlikely(rxq->used_count == rxq->queue_size / 2))
1218 emergency = true;
1220 if (trans->cfg->mq_rx_supported) {
1222 * used_bd is a 32 bit but only 12 are used to retrieve
1223 * the vid
1225 u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1227 if (WARN(vid >= ARRAY_SIZE(trans_pcie->global_table),
1228 "Invalid rxb index from HW %u\n", (u32)vid))
1229 goto out;
1230 rxb = trans_pcie->global_table[vid];
1231 } else {
1232 rxb = rxq->queue[i];
1233 rxq->queue[i] = NULL;
1236 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1237 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1239 i = (i + 1) & (rxq->queue_size - 1);
1242 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1243 * try to claim the pre-allocated buffers from the allocator.
1244 * If not ready - will try to reclaim next time.
1245 * There is no need to reschedule work - allocator exits only
1246 * on success
1248 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1249 iwl_pcie_rx_allocator_get(trans, rxq);
1251 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1252 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1254 /* Add the remaining empty RBDs for allocator use */
1255 spin_lock(&rba->lock);
1256 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1257 spin_unlock(&rba->lock);
1258 } else if (emergency) {
1259 count++;
1260 if (count == 8) {
1261 count = 0;
1262 if (rxq->used_count < rxq->queue_size / 3)
1263 emergency = false;
1265 rxq->read = i;
1266 spin_unlock(&rxq->lock);
1267 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1268 iwl_pcie_rxq_restock(trans, rxq);
1269 goto restart;
1273 out:
1274 /* Backtrack one entry */
1275 rxq->read = i;
1276 spin_unlock(&rxq->lock);
1279 * handle a case where in emergency there are some unallocated RBDs.
1280 * those RBDs are in the used list, but are not tracked by the queue's
1281 * used_count which counts allocator owned RBDs.
1282 * unallocated emergency RBDs must be allocated on exit, otherwise
1283 * when called again the function may not be in emergency mode and
1284 * they will be handed to the allocator with no tracking in the RBD
1285 * allocator counters, which will lead to them never being claimed back
1286 * by the queue.
1287 * by allocating them here, they are now in the queue free list, and
1288 * will be restocked by the next call of iwl_pcie_rxq_restock.
1290 if (unlikely(emergency && count))
1291 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1293 if (rxq->napi.poll)
1294 napi_gro_flush(&rxq->napi, false);
1296 iwl_pcie_rxq_restock(trans, rxq);
1299 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1301 u8 queue = entry->entry;
1302 struct msix_entry *entries = entry - queue;
1304 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1307 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
1308 struct msix_entry *entry)
1311 * Before sending the interrupt the HW disables it to prevent
1312 * a nested interrupt. This is done by writing 1 to the corresponding
1313 * bit in the mask register. After handling the interrupt, it should be
1314 * re-enabled by clearing this bit. This register is defined as
1315 * write 1 clear (W1C) register, meaning that it's being clear
1316 * by writing 1 to the bit.
1318 iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1322 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1323 * This interrupt handler should be used with RSS queue only.
1325 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1327 struct msix_entry *entry = dev_id;
1328 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1329 struct iwl_trans *trans = trans_pcie->trans;
1331 if (WARN_ON(entry->entry >= trans->num_rx_queues))
1332 return IRQ_NONE;
1334 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1336 local_bh_disable();
1337 iwl_pcie_rx_handle(trans, entry->entry);
1338 local_bh_enable();
1340 iwl_pcie_clear_irq(trans, entry);
1342 lock_map_release(&trans->sync_cmd_lockdep_map);
1344 return IRQ_HANDLED;
1348 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1350 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1352 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1353 int i;
1355 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1356 if (trans->cfg->internal_wimax_coex &&
1357 !trans->cfg->apmg_not_supported &&
1358 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1359 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1360 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1361 APMG_PS_CTRL_VAL_RESET_REQ))) {
1362 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1363 iwl_op_mode_wimax_active(trans->op_mode);
1364 wake_up(&trans_pcie->wait_command_queue);
1365 return;
1368 iwl_pcie_dump_csr(trans);
1369 iwl_dump_fh(trans, NULL);
1371 local_bh_disable();
1372 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1373 * before we wake up the command caller, to ensure a proper cleanup. */
1374 iwl_trans_fw_error(trans);
1375 local_bh_enable();
1377 for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
1378 del_timer(&trans_pcie->txq[i].stuck_timer);
1380 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1381 wake_up(&trans_pcie->wait_command_queue);
1384 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1386 u32 inta;
1388 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1390 trace_iwlwifi_dev_irq(trans->dev);
1392 /* Discover which interrupts are active/pending */
1393 inta = iwl_read32(trans, CSR_INT);
1395 /* the thread will service interrupts and re-enable them */
1396 return inta;
1399 /* a device (PCI-E) page is 4096 bytes long */
1400 #define ICT_SHIFT 12
1401 #define ICT_SIZE (1 << ICT_SHIFT)
1402 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1404 /* interrupt handler using ict table, with this interrupt driver will
1405 * stop using INTA register to get device's interrupt, reading this register
1406 * is expensive, device will write interrupts in ICT dram table, increment
1407 * index then will fire interrupt to driver, driver will OR all ICT table
1408 * entries from current index up to table entry with 0 value. the result is
1409 * the interrupt we need to service, driver will set the entries back to 0 and
1410 * set index.
1412 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1414 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1415 u32 inta;
1416 u32 val = 0;
1417 u32 read;
1419 trace_iwlwifi_dev_irq(trans->dev);
1421 /* Ignore interrupt if there's nothing in NIC to service.
1422 * This may be due to IRQ shared with another device,
1423 * or due to sporadic interrupts thrown from our NIC. */
1424 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1425 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1426 if (!read)
1427 return 0;
1430 * Collect all entries up to the first 0, starting from ict_index;
1431 * note we already read at ict_index.
1433 do {
1434 val |= read;
1435 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1436 trans_pcie->ict_index, read);
1437 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1438 trans_pcie->ict_index =
1439 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1441 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1442 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1443 read);
1444 } while (read);
1446 /* We should not get this value, just ignore it. */
1447 if (val == 0xffffffff)
1448 val = 0;
1451 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1452 * (bit 15 before shifting it to 31) to clear when using interrupt
1453 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1454 * so we use them to decide on the real state of the Rx bit.
1455 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1457 if (val & 0xC0000)
1458 val |= 0x8000;
1460 inta = (0xff & val) | ((0xff00 & val) << 16);
1461 return inta;
1464 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1466 struct iwl_trans *trans = dev_id;
1467 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1468 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1469 u32 inta = 0;
1470 u32 handled = 0;
1472 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1474 spin_lock(&trans_pcie->irq_lock);
1476 /* dram interrupt table not set yet,
1477 * use legacy interrupt.
1479 if (likely(trans_pcie->use_ict))
1480 inta = iwl_pcie_int_cause_ict(trans);
1481 else
1482 inta = iwl_pcie_int_cause_non_ict(trans);
1484 if (iwl_have_debug_level(IWL_DL_ISR)) {
1485 IWL_DEBUG_ISR(trans,
1486 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1487 inta, trans_pcie->inta_mask,
1488 iwl_read32(trans, CSR_INT_MASK),
1489 iwl_read32(trans, CSR_FH_INT_STATUS));
1490 if (inta & (~trans_pcie->inta_mask))
1491 IWL_DEBUG_ISR(trans,
1492 "We got a masked interrupt (0x%08x)\n",
1493 inta & (~trans_pcie->inta_mask));
1496 inta &= trans_pcie->inta_mask;
1499 * Ignore interrupt if there's nothing in NIC to service.
1500 * This may be due to IRQ shared with another device,
1501 * or due to sporadic interrupts thrown from our NIC.
1503 if (unlikely(!inta)) {
1504 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1506 * Re-enable interrupts here since we don't
1507 * have anything to service
1509 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1510 iwl_enable_interrupts(trans);
1511 spin_unlock(&trans_pcie->irq_lock);
1512 lock_map_release(&trans->sync_cmd_lockdep_map);
1513 return IRQ_NONE;
1516 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1518 * Hardware disappeared. It might have
1519 * already raised an interrupt.
1521 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1522 spin_unlock(&trans_pcie->irq_lock);
1523 goto out;
1526 /* Ack/clear/reset pending uCode interrupts.
1527 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1529 /* There is a hardware bug in the interrupt mask function that some
1530 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1531 * they are disabled in the CSR_INT_MASK register. Furthermore the
1532 * ICT interrupt handling mechanism has another bug that might cause
1533 * these unmasked interrupts fail to be detected. We workaround the
1534 * hardware bugs here by ACKing all the possible interrupts so that
1535 * interrupt coalescing can still be achieved.
1537 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1539 if (iwl_have_debug_level(IWL_DL_ISR))
1540 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1541 inta, iwl_read32(trans, CSR_INT_MASK));
1543 spin_unlock(&trans_pcie->irq_lock);
1545 /* Now service all interrupt bits discovered above. */
1546 if (inta & CSR_INT_BIT_HW_ERR) {
1547 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1549 /* Tell the device to stop sending interrupts */
1550 iwl_disable_interrupts(trans);
1552 isr_stats->hw++;
1553 iwl_pcie_irq_handle_error(trans);
1555 handled |= CSR_INT_BIT_HW_ERR;
1557 goto out;
1560 if (iwl_have_debug_level(IWL_DL_ISR)) {
1561 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1562 if (inta & CSR_INT_BIT_SCD) {
1563 IWL_DEBUG_ISR(trans,
1564 "Scheduler finished to transmit the frame/frames.\n");
1565 isr_stats->sch++;
1568 /* Alive notification via Rx interrupt will do the real work */
1569 if (inta & CSR_INT_BIT_ALIVE) {
1570 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1571 isr_stats->alive++;
1575 /* Safely ignore these bits for debug checks below */
1576 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1578 /* HW RF KILL switch toggled */
1579 if (inta & CSR_INT_BIT_RF_KILL) {
1580 bool hw_rfkill;
1582 hw_rfkill = iwl_is_rfkill_set(trans);
1583 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1584 hw_rfkill ? "disable radio" : "enable radio");
1586 isr_stats->rfkill++;
1588 mutex_lock(&trans_pcie->mutex);
1589 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1590 mutex_unlock(&trans_pcie->mutex);
1591 if (hw_rfkill) {
1592 set_bit(STATUS_RFKILL, &trans->status);
1593 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1594 &trans->status))
1595 IWL_DEBUG_RF_KILL(trans,
1596 "Rfkill while SYNC HCMD in flight\n");
1597 wake_up(&trans_pcie->wait_command_queue);
1598 } else {
1599 clear_bit(STATUS_RFKILL, &trans->status);
1602 handled |= CSR_INT_BIT_RF_KILL;
1605 /* Chip got too hot and stopped itself */
1606 if (inta & CSR_INT_BIT_CT_KILL) {
1607 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1608 isr_stats->ctkill++;
1609 handled |= CSR_INT_BIT_CT_KILL;
1612 /* Error detected by uCode */
1613 if (inta & CSR_INT_BIT_SW_ERR) {
1614 IWL_ERR(trans, "Microcode SW error detected. "
1615 " Restarting 0x%X.\n", inta);
1616 isr_stats->sw++;
1617 iwl_pcie_irq_handle_error(trans);
1618 handled |= CSR_INT_BIT_SW_ERR;
1621 /* uCode wakes up after power-down sleep */
1622 if (inta & CSR_INT_BIT_WAKEUP) {
1623 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1624 iwl_pcie_rxq_check_wrptr(trans);
1625 iwl_pcie_txq_check_wrptrs(trans);
1627 isr_stats->wakeup++;
1629 handled |= CSR_INT_BIT_WAKEUP;
1632 /* All uCode command responses, including Tx command responses,
1633 * Rx "responses" (frame-received notification), and other
1634 * notifications from uCode come through here*/
1635 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1636 CSR_INT_BIT_RX_PERIODIC)) {
1637 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1638 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1639 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1640 iwl_write32(trans, CSR_FH_INT_STATUS,
1641 CSR_FH_INT_RX_MASK);
1643 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1644 handled |= CSR_INT_BIT_RX_PERIODIC;
1645 iwl_write32(trans,
1646 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1648 /* Sending RX interrupt require many steps to be done in the
1649 * the device:
1650 * 1- write interrupt to current index in ICT table.
1651 * 2- dma RX frame.
1652 * 3- update RX shared data to indicate last write index.
1653 * 4- send interrupt.
1654 * This could lead to RX race, driver could receive RX interrupt
1655 * but the shared data changes does not reflect this;
1656 * periodic interrupt will detect any dangling Rx activity.
1659 /* Disable periodic interrupt; we use it as just a one-shot. */
1660 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1661 CSR_INT_PERIODIC_DIS);
1664 * Enable periodic interrupt in 8 msec only if we received
1665 * real RX interrupt (instead of just periodic int), to catch
1666 * any dangling Rx interrupt. If it was just the periodic
1667 * interrupt, there was no dangling Rx activity, and no need
1668 * to extend the periodic interrupt; one-shot is enough.
1670 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1671 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1672 CSR_INT_PERIODIC_ENA);
1674 isr_stats->rx++;
1676 local_bh_disable();
1677 iwl_pcie_rx_handle(trans, 0);
1678 local_bh_enable();
1681 /* This "Tx" DMA channel is used only for loading uCode */
1682 if (inta & CSR_INT_BIT_FH_TX) {
1683 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1684 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1685 isr_stats->tx++;
1686 handled |= CSR_INT_BIT_FH_TX;
1687 /* Wake up uCode load routine, now that load is complete */
1688 trans_pcie->ucode_write_complete = true;
1689 wake_up(&trans_pcie->ucode_write_waitq);
1692 if (inta & ~handled) {
1693 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1694 isr_stats->unhandled++;
1697 if (inta & ~(trans_pcie->inta_mask)) {
1698 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1699 inta & ~trans_pcie->inta_mask);
1702 /* we are loading the firmware, enable FH_TX interrupt only */
1703 if (handled & CSR_INT_BIT_FH_TX)
1704 iwl_enable_fw_load_int(trans);
1705 /* only Re-enable all interrupt if disabled by irq */
1706 else if (test_bit(STATUS_INT_ENABLED, &trans->status))
1707 iwl_enable_interrupts(trans);
1708 /* Re-enable RF_KILL if it occurred */
1709 else if (handled & CSR_INT_BIT_RF_KILL)
1710 iwl_enable_rfkill_int(trans);
1712 out:
1713 lock_map_release(&trans->sync_cmd_lockdep_map);
1714 return IRQ_HANDLED;
1717 /******************************************************************************
1719 * ICT functions
1721 ******************************************************************************/
1723 /* Free dram table */
1724 void iwl_pcie_free_ict(struct iwl_trans *trans)
1726 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1728 if (trans_pcie->ict_tbl) {
1729 dma_free_coherent(trans->dev, ICT_SIZE,
1730 trans_pcie->ict_tbl,
1731 trans_pcie->ict_tbl_dma);
1732 trans_pcie->ict_tbl = NULL;
1733 trans_pcie->ict_tbl_dma = 0;
1738 * allocate dram shared table, it is an aligned memory
1739 * block of ICT_SIZE.
1740 * also reset all data related to ICT table interrupt.
1742 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1744 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1746 trans_pcie->ict_tbl =
1747 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1748 &trans_pcie->ict_tbl_dma,
1749 GFP_KERNEL);
1750 if (!trans_pcie->ict_tbl)
1751 return -ENOMEM;
1753 /* just an API sanity check ... it is guaranteed to be aligned */
1754 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1755 iwl_pcie_free_ict(trans);
1756 return -EINVAL;
1759 return 0;
1762 /* Device is going up inform it about using ICT interrupt table,
1763 * also we need to tell the driver to start using ICT interrupt.
1765 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1767 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1768 u32 val;
1770 if (!trans_pcie->ict_tbl)
1771 return;
1773 spin_lock(&trans_pcie->irq_lock);
1774 iwl_disable_interrupts(trans);
1776 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1778 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1780 val |= CSR_DRAM_INT_TBL_ENABLE |
1781 CSR_DRAM_INIT_TBL_WRAP_CHECK |
1782 CSR_DRAM_INIT_TBL_WRITE_POINTER;
1784 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1786 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1787 trans_pcie->use_ict = true;
1788 trans_pcie->ict_index = 0;
1789 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1790 iwl_enable_interrupts(trans);
1791 spin_unlock(&trans_pcie->irq_lock);
1794 /* Device is going down disable ict interrupt usage */
1795 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1797 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1799 spin_lock(&trans_pcie->irq_lock);
1800 trans_pcie->use_ict = false;
1801 spin_unlock(&trans_pcie->irq_lock);
1804 irqreturn_t iwl_pcie_isr(int irq, void *data)
1806 struct iwl_trans *trans = data;
1808 if (!trans)
1809 return IRQ_NONE;
1811 /* Disable (but don't clear!) interrupts here to avoid
1812 * back-to-back ISRs and sporadic interrupts from our NIC.
1813 * If we have something to service, the tasklet will re-enable ints.
1814 * If we *don't* have something, we'll re-enable before leaving here.
1816 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1818 return IRQ_WAKE_THREAD;
1821 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
1823 return IRQ_WAKE_THREAD;
1826 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
1828 struct msix_entry *entry = dev_id;
1829 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1830 struct iwl_trans *trans = trans_pcie->trans;
1831 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1832 u32 inta_fh, inta_hw;
1834 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1836 spin_lock(&trans_pcie->irq_lock);
1837 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
1838 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1840 * Clear causes registers to avoid being handling the same cause.
1842 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
1843 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1844 spin_unlock(&trans_pcie->irq_lock);
1846 if (unlikely(!(inta_fh | inta_hw))) {
1847 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1848 lock_map_release(&trans->sync_cmd_lockdep_map);
1849 return IRQ_NONE;
1852 if (iwl_have_debug_level(IWL_DL_ISR))
1853 IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1854 inta_fh,
1855 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
1857 /* This "Tx" DMA channel is used only for loading uCode */
1858 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
1859 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1860 isr_stats->tx++;
1862 * Wake up uCode load routine,
1863 * now that load is complete
1865 trans_pcie->ucode_write_complete = true;
1866 wake_up(&trans_pcie->ucode_write_waitq);
1869 /* Error detected by uCode */
1870 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
1871 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
1872 IWL_ERR(trans,
1873 "Microcode SW error detected. Restarting 0x%X.\n",
1874 inta_fh);
1875 isr_stats->sw++;
1876 iwl_pcie_irq_handle_error(trans);
1879 /* After checking FH register check HW register */
1880 if (iwl_have_debug_level(IWL_DL_ISR))
1881 IWL_DEBUG_ISR(trans,
1882 "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1883 inta_hw,
1884 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
1886 /* Alive notification via Rx interrupt will do the real work */
1887 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
1888 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1889 isr_stats->alive++;
1892 /* uCode wakes up after power-down sleep */
1893 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
1894 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1895 iwl_pcie_rxq_check_wrptr(trans);
1896 iwl_pcie_txq_check_wrptrs(trans);
1898 isr_stats->wakeup++;
1901 /* Chip got too hot and stopped itself */
1902 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
1903 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1904 isr_stats->ctkill++;
1907 /* HW RF KILL switch toggled */
1908 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
1909 bool hw_rfkill;
1911 hw_rfkill = iwl_is_rfkill_set(trans);
1912 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1913 hw_rfkill ? "disable radio" : "enable radio");
1915 isr_stats->rfkill++;
1917 mutex_lock(&trans_pcie->mutex);
1918 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1919 mutex_unlock(&trans_pcie->mutex);
1920 if (hw_rfkill) {
1921 set_bit(STATUS_RFKILL, &trans->status);
1922 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1923 &trans->status))
1924 IWL_DEBUG_RF_KILL(trans,
1925 "Rfkill while SYNC HCMD in flight\n");
1926 wake_up(&trans_pcie->wait_command_queue);
1927 } else {
1928 clear_bit(STATUS_RFKILL, &trans->status);
1932 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
1933 IWL_ERR(trans,
1934 "Hardware error detected. Restarting.\n");
1936 isr_stats->hw++;
1937 iwl_pcie_irq_handle_error(trans);
1940 iwl_pcie_clear_irq(trans, entry);
1942 lock_map_release(&trans->sync_cmd_lockdep_map);
1944 return IRQ_HANDLED;