1 /******************************************************************************
3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5 * Copyright(c) 2016 Intel Deutschland GmbH
7 * Portions of this file are derived from the ipw3945 project, as well
8 * as portions of the ieee80211 subsystem header files.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
23 * The full GNU General Public License is included in this distribution in the
24 * file called LICENSE.
26 * Contact Information:
27 * Intel Linux Wireless <linuxwifi@intel.com>
28 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *****************************************************************************/
31 #include <linux/sched.h>
32 #include <linux/wait.h>
33 #include <linux/gfp.h>
38 #include "iwl-op-mode.h"
40 /******************************************************************************
44 ******************************************************************************/
47 * Rx theory of operation
49 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
50 * each of which point to Receive Buffers to be filled by the NIC. These get
51 * used not only for Rx frames, but for any command response or notification
52 * from the NIC. The driver and NIC manage the Rx buffers by means
53 * of indexes into the circular buffer.
56 * The host/firmware share two index registers for managing the Rx buffers.
58 * The READ index maps to the first position that the firmware may be writing
59 * to -- the driver can read up to (but not including) this position and get
61 * The READ index is managed by the firmware once the card is enabled.
63 * The WRITE index maps to the last position the driver has read from -- the
64 * position preceding WRITE is the last slot the firmware can place a packet.
66 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
69 * During initialization, the host sets up the READ queue position to the first
70 * INDEX position, and WRITE to the last (READ - 1 wrapped)
72 * When the firmware places a packet in a buffer, it will advance the READ index
73 * and fire the RX interrupt. The driver can then query the READ index and
74 * process as many packets as possible, moving the WRITE index forward as it
75 * resets the Rx queue buffers with new memory.
77 * The management in the driver is as follows:
78 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
79 * When the interrupt handler is called, the request is processed.
80 * The page is either stolen - transferred to the upper layer
81 * or reused - added immediately to the iwl->rxq->rx_free list.
82 * + When the page is stolen - the driver updates the matching queue's used
83 * count, detaches the RBD and transfers it to the queue used list.
84 * When there are two used RBDs - they are transferred to the allocator empty
85 * list. Work is then scheduled for the allocator to start allocating
87 * When there are another 6 used RBDs - they are transferred to the allocator
88 * empty list and the driver tries to claim the pre-allocated buffers and
89 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
91 * When there are 8+ buffers in the free list - either from allocation or from
92 * 8 reused unstolen pages - restock is called to update the FW and indexes.
93 * + In order to make sure the allocator always has RBDs to use for allocation
94 * the allocator has initial pool in the size of num_queues*(8-2) - the
95 * maximum missing RBDs per allocation request (request posted with 2
96 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
97 * The queues supplies the recycle of the rest of the RBDs.
98 * + A received packet is processed and handed to the kernel network stack,
99 * detached from the iwl->rxq. The driver 'processed' index is updated.
100 * + If there are no allocated buffers in iwl->rxq->rx_free,
101 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
102 * If there were enough free buffers and RX_STALLED is set it is cleared.
107 * iwl_rxq_alloc() Allocates rx_free
108 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
109 * iwl_pcie_rxq_restock.
110 * Used only during initialization.
111 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
112 * queue, updates firmware pointers, and updates
114 * iwl_pcie_rx_allocator() Background work for allocating pages.
116 * -- enable interrupts --
117 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
118 * READ INDEX, detaching the SKB from the pool.
119 * Moves the packet buffer from queue to rx_used.
120 * Posts and claims requests to the allocator.
121 * Calls iwl_pcie_rxq_restock to refill any empty
127 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
129 * Regular Receive interrupt:
131 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
132 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
134 * rxq.queue -> rxq.rx_free -> rxq.queue
140 * iwl_rxq_space - Return number of free slots available in queue.
142 static int iwl_rxq_space(const struct iwl_rxq
*rxq
)
144 /* Make sure rx queue size is a power of 2 */
145 WARN_ON(rxq
->queue_size
& (rxq
->queue_size
- 1));
148 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
149 * between empty and completely full queues.
150 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
151 * defined for negative dividends.
153 return (rxq
->read
- rxq
->write
- 1) & (rxq
->queue_size
- 1);
157 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
159 static inline __le32
iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr
)
161 return cpu_to_le32((u32
)(dma_addr
>> 8));
164 static void iwl_pcie_write_prph_64_no_grab(struct iwl_trans
*trans
, u64 ofs
,
167 iwl_write_prph_no_grab(trans
, ofs
, val
& 0xffffffff);
168 iwl_write_prph_no_grab(trans
, ofs
+ 4, val
>> 32);
172 * iwl_pcie_rx_stop - stops the Rx DMA
174 int iwl_pcie_rx_stop(struct iwl_trans
*trans
)
176 iwl_write_direct32(trans
, FH_MEM_RCSR_CHNL0_CONFIG_REG
, 0);
177 return iwl_poll_direct_bit(trans
, FH_MEM_RSSR_RX_STATUS_REG
,
178 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE
, 1000);
182 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
184 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans
*trans
,
189 lockdep_assert_held(&rxq
->lock
);
192 * explicitly wake up the NIC if:
193 * 1. shadow registers aren't enabled
194 * 2. there is a chance that the NIC is asleep
196 if (!trans
->cfg
->base_params
->shadow_reg_enable
&&
197 test_bit(STATUS_TPOWER_PMI
, &trans
->status
)) {
198 reg
= iwl_read32(trans
, CSR_UCODE_DRV_GP1
);
200 if (reg
& CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP
) {
201 IWL_DEBUG_INFO(trans
, "Rx queue requesting wakeup, GP1 = 0x%x\n",
203 iwl_set_bit(trans
, CSR_GP_CNTRL
,
204 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ
);
205 rxq
->need_update
= true;
210 rxq
->write_actual
= round_down(rxq
->write
, 8);
211 if (trans
->cfg
->mq_rx_supported
)
212 iwl_write32(trans
, RFH_Q_FRBDCB_WIDX_TRG(rxq
->id
),
215 * write to FH_RSCSR_CHNL0_WPTR register even in MQ as a W/A to
216 * hardware shadow registers bug - writing to RFH_Q_FRBDCB_WIDX will
219 iwl_write32(trans
, FH_RSCSR_CHNL0_WPTR
, rxq
->write_actual
);
222 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans
*trans
)
224 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
227 for (i
= 0; i
< trans
->num_rx_queues
; i
++) {
228 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
[i
];
230 if (!rxq
->need_update
)
232 spin_lock(&rxq
->lock
);
233 iwl_pcie_rxq_inc_wr_ptr(trans
, rxq
);
234 rxq
->need_update
= false;
235 spin_unlock(&rxq
->lock
);
240 * iwl_pcie_rxq_mq_restock - restock implementation for multi-queue rx
242 static void iwl_pcie_rxq_mq_restock(struct iwl_trans
*trans
,
245 struct iwl_rx_mem_buffer
*rxb
;
248 * If the device isn't enabled - no need to try to add buffers...
249 * This can happen when we stop the device and still have an interrupt
250 * pending. We stop the APM before we sync the interrupts because we
251 * have to (see comment there). On the other hand, since the APM is
252 * stopped, we cannot access the HW (in particular not prph).
253 * So don't try to restock if the APM has been already stopped.
255 if (!test_bit(STATUS_DEVICE_ENABLED
, &trans
->status
))
258 spin_lock(&rxq
->lock
);
259 while (rxq
->free_count
) {
260 __le64
*bd
= (__le64
*)rxq
->bd
;
262 /* Get next free Rx buffer, remove from free list */
263 rxb
= list_first_entry(&rxq
->rx_free
, struct iwl_rx_mem_buffer
,
265 list_del(&rxb
->list
);
267 /* 12 first bits are expected to be empty */
268 WARN_ON(rxb
->page_dma
& DMA_BIT_MASK(12));
269 /* Point to Rx buffer via next RBD in circular buffer */
270 bd
[rxq
->write
] = cpu_to_le64(rxb
->page_dma
| rxb
->vid
);
271 rxq
->write
= (rxq
->write
+ 1) & MQ_RX_TABLE_MASK
;
274 spin_unlock(&rxq
->lock
);
277 * If we've added more space for the firmware to place data, tell it.
278 * Increment device's write pointer in multiples of 8.
280 if (rxq
->write_actual
!= (rxq
->write
& ~0x7)) {
281 spin_lock(&rxq
->lock
);
282 iwl_pcie_rxq_inc_wr_ptr(trans
, rxq
);
283 spin_unlock(&rxq
->lock
);
288 * iwl_pcie_rxq_sq_restock - restock implementation for single queue rx
290 static void iwl_pcie_rxq_sq_restock(struct iwl_trans
*trans
,
293 struct iwl_rx_mem_buffer
*rxb
;
296 * If the device isn't enabled - not need to try to add buffers...
297 * This can happen when we stop the device and still have an interrupt
298 * pending. We stop the APM before we sync the interrupts because we
299 * have to (see comment there). On the other hand, since the APM is
300 * stopped, we cannot access the HW (in particular not prph).
301 * So don't try to restock if the APM has been already stopped.
303 if (!test_bit(STATUS_DEVICE_ENABLED
, &trans
->status
))
306 spin_lock(&rxq
->lock
);
307 while ((iwl_rxq_space(rxq
) > 0) && (rxq
->free_count
)) {
308 __le32
*bd
= (__le32
*)rxq
->bd
;
309 /* The overwritten rxb must be a used one */
310 rxb
= rxq
->queue
[rxq
->write
];
311 BUG_ON(rxb
&& rxb
->page
);
313 /* Get next free Rx buffer, remove from free list */
314 rxb
= list_first_entry(&rxq
->rx_free
, struct iwl_rx_mem_buffer
,
316 list_del(&rxb
->list
);
318 /* Point to Rx buffer via next RBD in circular buffer */
319 bd
[rxq
->write
] = iwl_pcie_dma_addr2rbd_ptr(rxb
->page_dma
);
320 rxq
->queue
[rxq
->write
] = rxb
;
321 rxq
->write
= (rxq
->write
+ 1) & RX_QUEUE_MASK
;
324 spin_unlock(&rxq
->lock
);
326 /* If we've added more space for the firmware to place data, tell it.
327 * Increment device's write pointer in multiples of 8. */
328 if (rxq
->write_actual
!= (rxq
->write
& ~0x7)) {
329 spin_lock(&rxq
->lock
);
330 iwl_pcie_rxq_inc_wr_ptr(trans
, rxq
);
331 spin_unlock(&rxq
->lock
);
336 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
338 * If there are slots in the RX queue that need to be restocked,
339 * and we have free pre-allocated buffers, fill the ranks as much
340 * as we can, pulling from rx_free.
342 * This moves the 'write' index forward to catch up with 'processed', and
343 * also updates the memory address in the firmware to reference the new
347 void iwl_pcie_rxq_restock(struct iwl_trans
*trans
, struct iwl_rxq
*rxq
)
349 if (trans
->cfg
->mq_rx_supported
)
350 iwl_pcie_rxq_mq_restock(trans
, rxq
);
352 iwl_pcie_rxq_sq_restock(trans
, rxq
);
356 * iwl_pcie_rx_alloc_page - allocates and returns a page.
359 static struct page
*iwl_pcie_rx_alloc_page(struct iwl_trans
*trans
,
362 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
364 gfp_t gfp_mask
= priority
;
366 if (trans_pcie
->rx_page_order
> 0)
367 gfp_mask
|= __GFP_COMP
;
369 /* Alloc a new receive buffer */
370 page
= alloc_pages(gfp_mask
, trans_pcie
->rx_page_order
);
373 IWL_DEBUG_INFO(trans
, "alloc_pages failed, order: %d\n",
374 trans_pcie
->rx_page_order
);
376 * Issue an error if we don't have enough pre-allocated
379 if (!(gfp_mask
& __GFP_NOWARN
) && net_ratelimit())
381 "Failed to alloc_pages\n");
388 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
390 * A used RBD is an Rx buffer that has been given to the stack. To use it again
391 * a page must be allocated and the RBD must point to the page. This function
392 * doesn't change the HW pointer but handles the list of pages that is used by
393 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
396 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans
*trans
, gfp_t priority
,
399 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
400 struct iwl_rx_mem_buffer
*rxb
;
404 spin_lock(&rxq
->lock
);
405 if (list_empty(&rxq
->rx_used
)) {
406 spin_unlock(&rxq
->lock
);
409 spin_unlock(&rxq
->lock
);
411 /* Alloc a new receive buffer */
412 page
= iwl_pcie_rx_alloc_page(trans
, priority
);
416 spin_lock(&rxq
->lock
);
418 if (list_empty(&rxq
->rx_used
)) {
419 spin_unlock(&rxq
->lock
);
420 __free_pages(page
, trans_pcie
->rx_page_order
);
423 rxb
= list_first_entry(&rxq
->rx_used
, struct iwl_rx_mem_buffer
,
425 list_del(&rxb
->list
);
426 spin_unlock(&rxq
->lock
);
430 /* Get physical address of the RB */
432 dma_map_page(trans
->dev
, page
, 0,
433 PAGE_SIZE
<< trans_pcie
->rx_page_order
,
435 if (dma_mapping_error(trans
->dev
, rxb
->page_dma
)) {
437 spin_lock(&rxq
->lock
);
438 list_add(&rxb
->list
, &rxq
->rx_used
);
439 spin_unlock(&rxq
->lock
);
440 __free_pages(page
, trans_pcie
->rx_page_order
);
444 spin_lock(&rxq
->lock
);
446 list_add_tail(&rxb
->list
, &rxq
->rx_free
);
449 spin_unlock(&rxq
->lock
);
453 static void iwl_pcie_free_rbs_pool(struct iwl_trans
*trans
)
455 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
458 for (i
= 0; i
< RX_POOL_SIZE
; i
++) {
459 if (!trans_pcie
->rx_pool
[i
].page
)
461 dma_unmap_page(trans
->dev
, trans_pcie
->rx_pool
[i
].page_dma
,
462 PAGE_SIZE
<< trans_pcie
->rx_page_order
,
464 __free_pages(trans_pcie
->rx_pool
[i
].page
,
465 trans_pcie
->rx_page_order
);
466 trans_pcie
->rx_pool
[i
].page
= NULL
;
471 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
473 * Allocates for each received request 8 pages
474 * Called as a scheduled work item.
476 static void iwl_pcie_rx_allocator(struct iwl_trans
*trans
)
478 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
479 struct iwl_rb_allocator
*rba
= &trans_pcie
->rba
;
480 struct list_head local_empty
;
481 int pending
= atomic_xchg(&rba
->req_pending
, 0);
483 IWL_DEBUG_RX(trans
, "Pending allocation requests = %d\n", pending
);
485 /* If we were scheduled - there is at least one request */
486 spin_lock(&rba
->lock
);
487 /* swap out the rba->rbd_empty to a local list */
488 list_replace_init(&rba
->rbd_empty
, &local_empty
);
489 spin_unlock(&rba
->lock
);
493 struct list_head local_allocated
;
494 gfp_t gfp_mask
= GFP_KERNEL
;
496 /* Do not post a warning if there are only a few requests */
497 if (pending
< RX_PENDING_WATERMARK
)
498 gfp_mask
|= __GFP_NOWARN
;
500 INIT_LIST_HEAD(&local_allocated
);
502 for (i
= 0; i
< RX_CLAIM_REQ_ALLOC
;) {
503 struct iwl_rx_mem_buffer
*rxb
;
506 /* List should never be empty - each reused RBD is
507 * returned to the list, and initial pool covers any
508 * possible gap between the time the page is allocated
509 * to the time the RBD is added.
511 BUG_ON(list_empty(&local_empty
));
512 /* Get the first rxb from the rbd list */
513 rxb
= list_first_entry(&local_empty
,
514 struct iwl_rx_mem_buffer
, list
);
517 /* Alloc a new receive buffer */
518 page
= iwl_pcie_rx_alloc_page(trans
, gfp_mask
);
523 /* Get physical address of the RB */
524 rxb
->page_dma
= dma_map_page(trans
->dev
, page
, 0,
525 PAGE_SIZE
<< trans_pcie
->rx_page_order
,
527 if (dma_mapping_error(trans
->dev
, rxb
->page_dma
)) {
529 __free_pages(page
, trans_pcie
->rx_page_order
);
533 /* move the allocated entry to the out list */
534 list_move(&rxb
->list
, &local_allocated
);
540 pending
= atomic_xchg(&rba
->req_pending
, 0);
542 "Pending allocation requests = %d\n",
546 spin_lock(&rba
->lock
);
547 /* add the allocated rbds to the allocator allocated list */
548 list_splice_tail(&local_allocated
, &rba
->rbd_allocated
);
549 /* get more empty RBDs for current pending requests */
550 list_splice_tail_init(&rba
->rbd_empty
, &local_empty
);
551 spin_unlock(&rba
->lock
);
553 atomic_inc(&rba
->req_ready
);
556 spin_lock(&rba
->lock
);
557 /* return unused rbds to the allocator empty list */
558 list_splice_tail(&local_empty
, &rba
->rbd_empty
);
559 spin_unlock(&rba
->lock
);
563 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
565 .* Called by queue when the queue posted allocation request and
566 * has freed 8 RBDs in order to restock itself.
567 * This function directly moves the allocated RBs to the queue's ownership
568 * and updates the relevant counters.
570 static void iwl_pcie_rx_allocator_get(struct iwl_trans
*trans
,
573 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
574 struct iwl_rb_allocator
*rba
= &trans_pcie
->rba
;
577 lockdep_assert_held(&rxq
->lock
);
580 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
581 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
582 * function will return early, as there are no ready requests.
583 * atomic_dec_if_positive will perofrm the *actual* decrement only if
584 * req_ready > 0, i.e. - there are ready requests and the function
585 * hands one request to the caller.
587 if (atomic_dec_if_positive(&rba
->req_ready
) < 0)
590 spin_lock(&rba
->lock
);
591 for (i
= 0; i
< RX_CLAIM_REQ_ALLOC
; i
++) {
592 /* Get next free Rx buffer, remove it from free list */
593 struct iwl_rx_mem_buffer
*rxb
=
594 list_first_entry(&rba
->rbd_allocated
,
595 struct iwl_rx_mem_buffer
, list
);
597 list_move(&rxb
->list
, &rxq
->rx_free
);
599 spin_unlock(&rba
->lock
);
601 rxq
->used_count
-= RX_CLAIM_REQ_ALLOC
;
602 rxq
->free_count
+= RX_CLAIM_REQ_ALLOC
;
605 static void iwl_pcie_rx_allocator_work(struct work_struct
*data
)
607 struct iwl_rb_allocator
*rba_p
=
608 container_of(data
, struct iwl_rb_allocator
, rx_alloc
);
609 struct iwl_trans_pcie
*trans_pcie
=
610 container_of(rba_p
, struct iwl_trans_pcie
, rba
);
612 iwl_pcie_rx_allocator(trans_pcie
->trans
);
615 static int iwl_pcie_rx_alloc(struct iwl_trans
*trans
)
617 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
618 struct iwl_rb_allocator
*rba
= &trans_pcie
->rba
;
619 struct device
*dev
= trans
->dev
;
621 int free_size
= trans
->cfg
->mq_rx_supported
? sizeof(__le64
) :
624 if (WARN_ON(trans_pcie
->rxq
))
627 trans_pcie
->rxq
= kcalloc(trans
->num_rx_queues
, sizeof(struct iwl_rxq
),
629 if (!trans_pcie
->rxq
)
632 spin_lock_init(&rba
->lock
);
634 for (i
= 0; i
< trans
->num_rx_queues
; i
++) {
635 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
[i
];
637 spin_lock_init(&rxq
->lock
);
638 if (trans
->cfg
->mq_rx_supported
)
639 rxq
->queue_size
= MQ_RX_TABLE_SIZE
;
641 rxq
->queue_size
= RX_QUEUE_SIZE
;
644 * Allocate the circular buffer of Read Buffer Descriptors
647 rxq
->bd
= dma_zalloc_coherent(dev
,
648 free_size
* rxq
->queue_size
,
649 &rxq
->bd_dma
, GFP_KERNEL
);
653 if (trans
->cfg
->mq_rx_supported
) {
654 rxq
->used_bd
= dma_zalloc_coherent(dev
,
663 /*Allocate the driver's pointer to receive buffer status */
664 rxq
->rb_stts
= dma_zalloc_coherent(dev
, sizeof(*rxq
->rb_stts
),
673 for (i
= 0; i
< trans
->num_rx_queues
; i
++) {
674 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
[i
];
677 dma_free_coherent(dev
, free_size
* rxq
->queue_size
,
678 rxq
->bd
, rxq
->bd_dma
);
683 dma_free_coherent(trans
->dev
,
684 sizeof(struct iwl_rb_status
),
685 rxq
->rb_stts
, rxq
->rb_stts_dma
);
688 dma_free_coherent(dev
, sizeof(__le32
) * rxq
->queue_size
,
689 rxq
->used_bd
, rxq
->used_bd_dma
);
690 rxq
->used_bd_dma
= 0;
693 kfree(trans_pcie
->rxq
);
698 static void iwl_pcie_rx_hw_init(struct iwl_trans
*trans
, struct iwl_rxq
*rxq
)
700 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
703 const u32 rfdnlog
= RX_QUEUE_SIZE_LOG
; /* 256 RBDs */
705 switch (trans_pcie
->rx_buf_size
) {
707 rb_size
= FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K
;
710 rb_size
= FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K
;
713 rb_size
= FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K
;
717 rb_size
= FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K
;
720 if (!iwl_trans_grab_nic_access(trans
, &flags
))
724 iwl_write32(trans
, FH_MEM_RCSR_CHNL0_CONFIG_REG
, 0);
725 /* reset and flush pointers */
726 iwl_write32(trans
, FH_MEM_RCSR_CHNL0_RBDCB_WPTR
, 0);
727 iwl_write32(trans
, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ
, 0);
728 iwl_write32(trans
, FH_RSCSR_CHNL0_RDPTR
, 0);
730 /* Reset driver's Rx queue write index */
731 iwl_write32(trans
, FH_RSCSR_CHNL0_RBDCB_WPTR_REG
, 0);
733 /* Tell device where to find RBD circular buffer in DRAM */
734 iwl_write32(trans
, FH_RSCSR_CHNL0_RBDCB_BASE_REG
,
735 (u32
)(rxq
->bd_dma
>> 8));
737 /* Tell device where in DRAM to update its Rx status */
738 iwl_write32(trans
, FH_RSCSR_CHNL0_STTS_WPTR_REG
,
739 rxq
->rb_stts_dma
>> 4);
742 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
743 * the credit mechanism in 5000 HW RX FIFO
744 * Direct rx interrupts to hosts
745 * Rx buffer size 4 or 8k or 12k
749 iwl_write32(trans
, FH_MEM_RCSR_CHNL0_CONFIG_REG
,
750 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL
|
751 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY
|
752 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL
|
754 (RX_RB_TIMEOUT
<< FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS
) |
755 (rfdnlog
<< FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS
));
757 iwl_trans_release_nic_access(trans
, &flags
);
759 /* Set interrupt coalescing timer to default (2048 usecs) */
760 iwl_write8(trans
, CSR_INT_COALESCING
, IWL_HOST_INT_TIMEOUT_DEF
);
762 /* W/A for interrupt coalescing bug in 7260 and 3160 */
763 if (trans
->cfg
->host_interrupt_operation_mode
)
764 iwl_set_bit(trans
, CSR_INT_COALESCING
, IWL_HOST_INT_OPER_MODE
);
767 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans
*trans
)
769 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
770 u32 rb_size
, enabled
= 0;
774 switch (trans_pcie
->rx_buf_size
) {
776 rb_size
= RFH_RXF_DMA_RB_SIZE_4K
;
779 rb_size
= RFH_RXF_DMA_RB_SIZE_8K
;
782 rb_size
= RFH_RXF_DMA_RB_SIZE_12K
;
786 rb_size
= RFH_RXF_DMA_RB_SIZE_4K
;
789 if (!iwl_trans_grab_nic_access(trans
, &flags
))
793 iwl_write_prph_no_grab(trans
, RFH_RXF_DMA_CFG
, 0);
794 /* disable free amd used rx queue operation */
795 iwl_write_prph_no_grab(trans
, RFH_RXF_RXQ_ACTIVE
, 0);
797 for (i
= 0; i
< trans
->num_rx_queues
; i
++) {
798 /* Tell device where to find RBD free table in DRAM */
799 iwl_pcie_write_prph_64_no_grab(trans
,
800 RFH_Q_FRBDCB_BA_LSB(i
),
801 trans_pcie
->rxq
[i
].bd_dma
);
802 /* Tell device where to find RBD used table in DRAM */
803 iwl_pcie_write_prph_64_no_grab(trans
,
804 RFH_Q_URBDCB_BA_LSB(i
),
805 trans_pcie
->rxq
[i
].used_bd_dma
);
806 /* Tell device where in DRAM to update its Rx status */
807 iwl_pcie_write_prph_64_no_grab(trans
,
808 RFH_Q_URBD_STTS_WPTR_LSB(i
),
809 trans_pcie
->rxq
[i
].rb_stts_dma
);
810 /* Reset device indice tables */
811 iwl_write_prph_no_grab(trans
, RFH_Q_FRBDCB_WIDX(i
), 0);
812 iwl_write_prph_no_grab(trans
, RFH_Q_FRBDCB_RIDX(i
), 0);
813 iwl_write_prph_no_grab(trans
, RFH_Q_URBDCB_WIDX(i
), 0);
815 enabled
|= BIT(i
) | BIT(i
+ 16);
818 /* restock default queue */
819 iwl_pcie_rxq_mq_restock(trans
, &trans_pcie
->rxq
[0]);
824 * Rx buffer size 4 or 8k or 12k
826 * Drop frames that exceed RB size
829 iwl_write_prph_no_grab(trans
, RFH_RXF_DMA_CFG
,
830 RFH_DMA_EN_ENABLE_VAL
|
831 rb_size
| RFH_RXF_DMA_SINGLE_FRAME_MASK
|
832 RFH_RXF_DMA_MIN_RB_4_8
|
833 RFH_RXF_DMA_DROP_TOO_LARGE_MASK
|
834 RFH_RXF_DMA_RBDCB_SIZE_512
);
837 * Activate DMA snooping.
838 * Set RX DMA chunk size to 64B
841 iwl_write_prph_no_grab(trans
, RFH_GEN_CFG
, RFH_GEN_CFG_RFH_DMA_SNOOP
|
843 RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS
) |
844 RFH_GEN_CFG_SERVICE_DMA_SNOOP
);
845 /* Enable the relevant rx queues */
846 iwl_write_prph_no_grab(trans
, RFH_RXF_RXQ_ACTIVE
, enabled
);
848 iwl_trans_release_nic_access(trans
, &flags
);
850 /* Set interrupt coalescing timer to default (2048 usecs) */
851 iwl_write8(trans
, CSR_INT_COALESCING
, IWL_HOST_INT_TIMEOUT_DEF
);
854 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq
*rxq
)
856 lockdep_assert_held(&rxq
->lock
);
858 INIT_LIST_HEAD(&rxq
->rx_free
);
859 INIT_LIST_HEAD(&rxq
->rx_used
);
864 static int iwl_pcie_dummy_napi_poll(struct napi_struct
*napi
, int budget
)
870 int iwl_pcie_rx_init(struct iwl_trans
*trans
)
872 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
873 struct iwl_rxq
*def_rxq
;
874 struct iwl_rb_allocator
*rba
= &trans_pcie
->rba
;
875 int i
, err
, queue_size
, allocator_pool_size
, num_alloc
;
877 if (!trans_pcie
->rxq
) {
878 err
= iwl_pcie_rx_alloc(trans
);
882 def_rxq
= trans_pcie
->rxq
;
884 rba
->alloc_wq
= alloc_workqueue("rb_allocator",
885 WQ_HIGHPRI
| WQ_UNBOUND
, 1);
886 INIT_WORK(&rba
->rx_alloc
, iwl_pcie_rx_allocator_work
);
888 spin_lock(&rba
->lock
);
889 atomic_set(&rba
->req_pending
, 0);
890 atomic_set(&rba
->req_ready
, 0);
891 INIT_LIST_HEAD(&rba
->rbd_allocated
);
892 INIT_LIST_HEAD(&rba
->rbd_empty
);
893 spin_unlock(&rba
->lock
);
895 /* free all first - we might be reconfigured for a different size */
896 iwl_pcie_free_rbs_pool(trans
);
898 for (i
= 0; i
< RX_QUEUE_SIZE
; i
++)
899 def_rxq
->queue
[i
] = NULL
;
901 for (i
= 0; i
< trans
->num_rx_queues
; i
++) {
902 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
[i
];
906 spin_lock(&rxq
->lock
);
908 * Set read write pointer to reflect that we have processed
909 * and used all buffers, but have not restocked the Rx queue
914 rxq
->write_actual
= 0;
915 memset(rxq
->rb_stts
, 0, sizeof(*rxq
->rb_stts
));
917 iwl_pcie_rx_init_rxb_lists(rxq
);
920 netif_napi_add(&trans_pcie
->napi_dev
, &rxq
->napi
,
921 iwl_pcie_dummy_napi_poll
, 64);
923 spin_unlock(&rxq
->lock
);
926 /* move the pool to the default queue and allocator ownerships */
927 queue_size
= trans
->cfg
->mq_rx_supported
?
928 MQ_RX_NUM_RBDS
: RX_QUEUE_SIZE
;
929 allocator_pool_size
= trans
->num_rx_queues
*
930 (RX_CLAIM_REQ_ALLOC
- RX_POST_REQ_ALLOC
);
931 num_alloc
= queue_size
+ allocator_pool_size
;
932 BUILD_BUG_ON(ARRAY_SIZE(trans_pcie
->global_table
) !=
933 ARRAY_SIZE(trans_pcie
->rx_pool
));
934 for (i
= 0; i
< num_alloc
; i
++) {
935 struct iwl_rx_mem_buffer
*rxb
= &trans_pcie
->rx_pool
[i
];
937 if (i
< allocator_pool_size
)
938 list_add(&rxb
->list
, &rba
->rbd_empty
);
940 list_add(&rxb
->list
, &def_rxq
->rx_used
);
941 trans_pcie
->global_table
[i
] = rxb
;
945 iwl_pcie_rxq_alloc_rbs(trans
, GFP_KERNEL
, def_rxq
);
946 if (trans
->cfg
->mq_rx_supported
) {
947 iwl_pcie_rx_mq_hw_init(trans
);
949 iwl_pcie_rxq_sq_restock(trans
, def_rxq
);
950 iwl_pcie_rx_hw_init(trans
, def_rxq
);
953 spin_lock(&def_rxq
->lock
);
954 iwl_pcie_rxq_inc_wr_ptr(trans
, def_rxq
);
955 spin_unlock(&def_rxq
->lock
);
960 void iwl_pcie_rx_free(struct iwl_trans
*trans
)
962 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
963 struct iwl_rb_allocator
*rba
= &trans_pcie
->rba
;
964 int free_size
= trans
->cfg
->mq_rx_supported
? sizeof(__le64
) :
969 * if rxq is NULL, it means that nothing has been allocated,
972 if (!trans_pcie
->rxq
) {
973 IWL_DEBUG_INFO(trans
, "Free NULL rx context\n");
977 cancel_work_sync(&rba
->rx_alloc
);
979 destroy_workqueue(rba
->alloc_wq
);
980 rba
->alloc_wq
= NULL
;
983 iwl_pcie_free_rbs_pool(trans
);
985 for (i
= 0; i
< trans
->num_rx_queues
; i
++) {
986 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
[i
];
989 dma_free_coherent(trans
->dev
,
990 free_size
* rxq
->queue_size
,
991 rxq
->bd
, rxq
->bd_dma
);
996 dma_free_coherent(trans
->dev
,
997 sizeof(struct iwl_rb_status
),
998 rxq
->rb_stts
, rxq
->rb_stts_dma
);
1000 IWL_DEBUG_INFO(trans
,
1001 "Free rxq->rb_stts which is NULL\n");
1004 dma_free_coherent(trans
->dev
,
1005 sizeof(__le32
) * rxq
->queue_size
,
1006 rxq
->used_bd
, rxq
->used_bd_dma
);
1007 rxq
->used_bd_dma
= 0;
1008 rxq
->used_bd
= NULL
;
1011 netif_napi_del(&rxq
->napi
);
1013 kfree(trans_pcie
->rxq
);
1017 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1019 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1020 * When there are 2 empty RBDs - a request for allocation is posted
1022 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans
*trans
,
1023 struct iwl_rx_mem_buffer
*rxb
,
1024 struct iwl_rxq
*rxq
, bool emergency
)
1026 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1027 struct iwl_rb_allocator
*rba
= &trans_pcie
->rba
;
1029 /* Move the RBD to the used list, will be moved to allocator in batches
1030 * before claiming or posting a request*/
1031 list_add_tail(&rxb
->list
, &rxq
->rx_used
);
1033 if (unlikely(emergency
))
1036 /* Count the allocator owned RBDs */
1039 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1040 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1041 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1042 * after but we still need to post another request.
1044 if ((rxq
->used_count
% RX_CLAIM_REQ_ALLOC
) == RX_POST_REQ_ALLOC
) {
1045 /* Move the 2 RBDs to the allocator ownership.
1046 Allocator has another 6 from pool for the request completion*/
1047 spin_lock(&rba
->lock
);
1048 list_splice_tail_init(&rxq
->rx_used
, &rba
->rbd_empty
);
1049 spin_unlock(&rba
->lock
);
1051 atomic_inc(&rba
->req_pending
);
1052 queue_work(rba
->alloc_wq
, &rba
->rx_alloc
);
1056 static void iwl_pcie_rx_handle_rb(struct iwl_trans
*trans
,
1057 struct iwl_rxq
*rxq
,
1058 struct iwl_rx_mem_buffer
*rxb
,
1061 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1062 struct iwl_txq
*txq
= &trans_pcie
->txq
[trans_pcie
->cmd_queue
];
1063 bool page_stolen
= false;
1064 int max_len
= PAGE_SIZE
<< trans_pcie
->rx_page_order
;
1070 dma_unmap_page(trans
->dev
, rxb
->page_dma
, max_len
, DMA_FROM_DEVICE
);
1072 while (offset
+ sizeof(u32
) + sizeof(struct iwl_cmd_header
) < max_len
) {
1073 struct iwl_rx_packet
*pkt
;
1076 int index
, cmd_index
, len
;
1077 struct iwl_rx_cmd_buffer rxcb
= {
1079 ._rx_page_order
= trans_pcie
->rx_page_order
,
1081 ._page_stolen
= false,
1082 .truesize
= max_len
,
1085 pkt
= rxb_addr(&rxcb
);
1087 if (pkt
->len_n_flags
== cpu_to_le32(FH_RSCSR_FRAME_INVALID
))
1091 "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
1093 iwl_get_cmd_string(trans
,
1094 iwl_cmd_id(pkt
->hdr
.cmd
,
1097 pkt
->hdr
.cmd
, le16_to_cpu(pkt
->hdr
.sequence
));
1099 len
= iwl_rx_packet_len(pkt
);
1100 len
+= sizeof(u32
); /* account for status word */
1101 trace_iwlwifi_dev_rx(trans
->dev
, trans
, pkt
, len
);
1102 trace_iwlwifi_dev_rx_data(trans
->dev
, trans
, pkt
, len
);
1104 /* Reclaim a command buffer only if this packet is a response
1105 * to a (driver-originated) command.
1106 * If the packet (e.g. Rx frame) originated from uCode,
1107 * there is no command buffer to reclaim.
1108 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1109 * but apparently a few don't get set; catch them here. */
1110 reclaim
= !(pkt
->hdr
.sequence
& SEQ_RX_FRAME
);
1114 for (i
= 0; i
< trans_pcie
->n_no_reclaim_cmds
; i
++) {
1115 if (trans_pcie
->no_reclaim_cmds
[i
] ==
1123 sequence
= le16_to_cpu(pkt
->hdr
.sequence
);
1124 index
= SEQ_TO_INDEX(sequence
);
1125 cmd_index
= get_cmd_index(&txq
->q
, index
);
1128 iwl_op_mode_rx(trans
->op_mode
, &rxq
->napi
,
1131 iwl_op_mode_rx_rss(trans
->op_mode
, &rxq
->napi
,
1135 kzfree(txq
->entries
[cmd_index
].free_buf
);
1136 txq
->entries
[cmd_index
].free_buf
= NULL
;
1140 * After here, we should always check rxcb._page_stolen,
1141 * if it is true then one of the handlers took the page.
1145 /* Invoke any callbacks, transfer the buffer to caller,
1146 * and fire off the (possibly) blocking
1147 * iwl_trans_send_cmd()
1148 * as we reclaim the driver command queue */
1149 if (!rxcb
._page_stolen
)
1150 iwl_pcie_hcmd_complete(trans
, &rxcb
);
1152 IWL_WARN(trans
, "Claim null rxb?\n");
1155 page_stolen
|= rxcb
._page_stolen
;
1156 offset
+= ALIGN(len
, FH_RSCSR_FRAME_ALIGN
);
1159 /* page was stolen from us -- free our reference */
1161 __free_pages(rxb
->page
, trans_pcie
->rx_page_order
);
1165 /* Reuse the page if possible. For notification packets and
1166 * SKBs that fail to Rx correctly, add them back into the
1167 * rx_free list for reuse later. */
1168 if (rxb
->page
!= NULL
) {
1170 dma_map_page(trans
->dev
, rxb
->page
, 0,
1171 PAGE_SIZE
<< trans_pcie
->rx_page_order
,
1173 if (dma_mapping_error(trans
->dev
, rxb
->page_dma
)) {
1175 * free the page(s) as well to not break
1176 * the invariant that the items on the used
1177 * list have no page(s)
1179 __free_pages(rxb
->page
, trans_pcie
->rx_page_order
);
1181 iwl_pcie_rx_reuse_rbd(trans
, rxb
, rxq
, emergency
);
1183 list_add_tail(&rxb
->list
, &rxq
->rx_free
);
1187 iwl_pcie_rx_reuse_rbd(trans
, rxb
, rxq
, emergency
);
1191 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1193 static void iwl_pcie_rx_handle(struct iwl_trans
*trans
, int queue
)
1195 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1196 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
[queue
];
1197 u32 r
, i
, count
= 0;
1198 bool emergency
= false;
1201 spin_lock(&rxq
->lock
);
1202 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1203 * buffer that the driver may process (last buffer filled by ucode). */
1204 r
= le16_to_cpu(ACCESS_ONCE(rxq
->rb_stts
->closed_rb_num
)) & 0x0FFF;
1207 /* W/A 9000 device step A0 wrap-around bug */
1208 r
&= (rxq
->queue_size
- 1);
1210 /* Rx interrupt, but nothing sent from uCode */
1212 IWL_DEBUG_RX(trans
, "Q %d: HW = SW = %d\n", rxq
->id
, r
);
1215 struct iwl_rx_mem_buffer
*rxb
;
1217 if (unlikely(rxq
->used_count
== rxq
->queue_size
/ 2))
1220 if (trans
->cfg
->mq_rx_supported
) {
1222 * used_bd is a 32 bit but only 12 are used to retrieve
1225 u16 vid
= le32_to_cpu(rxq
->used_bd
[i
]) & 0x0FFF;
1227 if (WARN(vid
>= ARRAY_SIZE(trans_pcie
->global_table
),
1228 "Invalid rxb index from HW %u\n", (u32
)vid
))
1230 rxb
= trans_pcie
->global_table
[vid
];
1232 rxb
= rxq
->queue
[i
];
1233 rxq
->queue
[i
] = NULL
;
1236 IWL_DEBUG_RX(trans
, "Q %d: HW = %d, SW = %d\n", rxq
->id
, r
, i
);
1237 iwl_pcie_rx_handle_rb(trans
, rxq
, rxb
, emergency
);
1239 i
= (i
+ 1) & (rxq
->queue_size
- 1);
1242 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1243 * try to claim the pre-allocated buffers from the allocator.
1244 * If not ready - will try to reclaim next time.
1245 * There is no need to reschedule work - allocator exits only
1248 if (rxq
->used_count
>= RX_CLAIM_REQ_ALLOC
)
1249 iwl_pcie_rx_allocator_get(trans
, rxq
);
1251 if (rxq
->used_count
% RX_CLAIM_REQ_ALLOC
== 0 && !emergency
) {
1252 struct iwl_rb_allocator
*rba
= &trans_pcie
->rba
;
1254 /* Add the remaining empty RBDs for allocator use */
1255 spin_lock(&rba
->lock
);
1256 list_splice_tail_init(&rxq
->rx_used
, &rba
->rbd_empty
);
1257 spin_unlock(&rba
->lock
);
1258 } else if (emergency
) {
1262 if (rxq
->used_count
< rxq
->queue_size
/ 3)
1266 spin_unlock(&rxq
->lock
);
1267 iwl_pcie_rxq_alloc_rbs(trans
, GFP_ATOMIC
, rxq
);
1268 iwl_pcie_rxq_restock(trans
, rxq
);
1274 /* Backtrack one entry */
1276 spin_unlock(&rxq
->lock
);
1279 * handle a case where in emergency there are some unallocated RBDs.
1280 * those RBDs are in the used list, but are not tracked by the queue's
1281 * used_count which counts allocator owned RBDs.
1282 * unallocated emergency RBDs must be allocated on exit, otherwise
1283 * when called again the function may not be in emergency mode and
1284 * they will be handed to the allocator with no tracking in the RBD
1285 * allocator counters, which will lead to them never being claimed back
1287 * by allocating them here, they are now in the queue free list, and
1288 * will be restocked by the next call of iwl_pcie_rxq_restock.
1290 if (unlikely(emergency
&& count
))
1291 iwl_pcie_rxq_alloc_rbs(trans
, GFP_ATOMIC
, rxq
);
1294 napi_gro_flush(&rxq
->napi
, false);
1296 iwl_pcie_rxq_restock(trans
, rxq
);
1299 static struct iwl_trans_pcie
*iwl_pcie_get_trans_pcie(struct msix_entry
*entry
)
1301 u8 queue
= entry
->entry
;
1302 struct msix_entry
*entries
= entry
- queue
;
1304 return container_of(entries
, struct iwl_trans_pcie
, msix_entries
[0]);
1307 static inline void iwl_pcie_clear_irq(struct iwl_trans
*trans
,
1308 struct msix_entry
*entry
)
1311 * Before sending the interrupt the HW disables it to prevent
1312 * a nested interrupt. This is done by writing 1 to the corresponding
1313 * bit in the mask register. After handling the interrupt, it should be
1314 * re-enabled by clearing this bit. This register is defined as
1315 * write 1 clear (W1C) register, meaning that it's being clear
1316 * by writing 1 to the bit.
1318 iwl_write32(trans
, CSR_MSIX_AUTOMASK_ST_AD
, BIT(entry
->entry
));
1322 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1323 * This interrupt handler should be used with RSS queue only.
1325 irqreturn_t
iwl_pcie_irq_rx_msix_handler(int irq
, void *dev_id
)
1327 struct msix_entry
*entry
= dev_id
;
1328 struct iwl_trans_pcie
*trans_pcie
= iwl_pcie_get_trans_pcie(entry
);
1329 struct iwl_trans
*trans
= trans_pcie
->trans
;
1331 if (WARN_ON(entry
->entry
>= trans
->num_rx_queues
))
1334 lock_map_acquire(&trans
->sync_cmd_lockdep_map
);
1337 iwl_pcie_rx_handle(trans
, entry
->entry
);
1340 iwl_pcie_clear_irq(trans
, entry
);
1342 lock_map_release(&trans
->sync_cmd_lockdep_map
);
1348 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1350 static void iwl_pcie_irq_handle_error(struct iwl_trans
*trans
)
1352 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1355 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1356 if (trans
->cfg
->internal_wimax_coex
&&
1357 !trans
->cfg
->apmg_not_supported
&&
1358 (!(iwl_read_prph(trans
, APMG_CLK_CTRL_REG
) &
1359 APMS_CLK_VAL_MRB_FUNC_MODE
) ||
1360 (iwl_read_prph(trans
, APMG_PS_CTRL_REG
) &
1361 APMG_PS_CTRL_VAL_RESET_REQ
))) {
1362 clear_bit(STATUS_SYNC_HCMD_ACTIVE
, &trans
->status
);
1363 iwl_op_mode_wimax_active(trans
->op_mode
);
1364 wake_up(&trans_pcie
->wait_command_queue
);
1368 iwl_pcie_dump_csr(trans
);
1369 iwl_dump_fh(trans
, NULL
);
1372 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1373 * before we wake up the command caller, to ensure a proper cleanup. */
1374 iwl_trans_fw_error(trans
);
1377 for (i
= 0; i
< trans
->cfg
->base_params
->num_of_queues
; i
++)
1378 del_timer(&trans_pcie
->txq
[i
].stuck_timer
);
1380 clear_bit(STATUS_SYNC_HCMD_ACTIVE
, &trans
->status
);
1381 wake_up(&trans_pcie
->wait_command_queue
);
1384 static u32
iwl_pcie_int_cause_non_ict(struct iwl_trans
*trans
)
1388 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans
)->irq_lock
);
1390 trace_iwlwifi_dev_irq(trans
->dev
);
1392 /* Discover which interrupts are active/pending */
1393 inta
= iwl_read32(trans
, CSR_INT
);
1395 /* the thread will service interrupts and re-enable them */
1399 /* a device (PCI-E) page is 4096 bytes long */
1400 #define ICT_SHIFT 12
1401 #define ICT_SIZE (1 << ICT_SHIFT)
1402 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1404 /* interrupt handler using ict table, with this interrupt driver will
1405 * stop using INTA register to get device's interrupt, reading this register
1406 * is expensive, device will write interrupts in ICT dram table, increment
1407 * index then will fire interrupt to driver, driver will OR all ICT table
1408 * entries from current index up to table entry with 0 value. the result is
1409 * the interrupt we need to service, driver will set the entries back to 0 and
1412 static u32
iwl_pcie_int_cause_ict(struct iwl_trans
*trans
)
1414 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1419 trace_iwlwifi_dev_irq(trans
->dev
);
1421 /* Ignore interrupt if there's nothing in NIC to service.
1422 * This may be due to IRQ shared with another device,
1423 * or due to sporadic interrupts thrown from our NIC. */
1424 read
= le32_to_cpu(trans_pcie
->ict_tbl
[trans_pcie
->ict_index
]);
1425 trace_iwlwifi_dev_ict_read(trans
->dev
, trans_pcie
->ict_index
, read
);
1430 * Collect all entries up to the first 0, starting from ict_index;
1431 * note we already read at ict_index.
1435 IWL_DEBUG_ISR(trans
, "ICT index %d value 0x%08X\n",
1436 trans_pcie
->ict_index
, read
);
1437 trans_pcie
->ict_tbl
[trans_pcie
->ict_index
] = 0;
1438 trans_pcie
->ict_index
=
1439 ((trans_pcie
->ict_index
+ 1) & (ICT_COUNT
- 1));
1441 read
= le32_to_cpu(trans_pcie
->ict_tbl
[trans_pcie
->ict_index
]);
1442 trace_iwlwifi_dev_ict_read(trans
->dev
, trans_pcie
->ict_index
,
1446 /* We should not get this value, just ignore it. */
1447 if (val
== 0xffffffff)
1451 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1452 * (bit 15 before shifting it to 31) to clear when using interrupt
1453 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1454 * so we use them to decide on the real state of the Rx bit.
1455 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1460 inta
= (0xff & val
) | ((0xff00 & val
) << 16);
1464 irqreturn_t
iwl_pcie_irq_handler(int irq
, void *dev_id
)
1466 struct iwl_trans
*trans
= dev_id
;
1467 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1468 struct isr_statistics
*isr_stats
= &trans_pcie
->isr_stats
;
1472 lock_map_acquire(&trans
->sync_cmd_lockdep_map
);
1474 spin_lock(&trans_pcie
->irq_lock
);
1476 /* dram interrupt table not set yet,
1477 * use legacy interrupt.
1479 if (likely(trans_pcie
->use_ict
))
1480 inta
= iwl_pcie_int_cause_ict(trans
);
1482 inta
= iwl_pcie_int_cause_non_ict(trans
);
1484 if (iwl_have_debug_level(IWL_DL_ISR
)) {
1485 IWL_DEBUG_ISR(trans
,
1486 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1487 inta
, trans_pcie
->inta_mask
,
1488 iwl_read32(trans
, CSR_INT_MASK
),
1489 iwl_read32(trans
, CSR_FH_INT_STATUS
));
1490 if (inta
& (~trans_pcie
->inta_mask
))
1491 IWL_DEBUG_ISR(trans
,
1492 "We got a masked interrupt (0x%08x)\n",
1493 inta
& (~trans_pcie
->inta_mask
));
1496 inta
&= trans_pcie
->inta_mask
;
1499 * Ignore interrupt if there's nothing in NIC to service.
1500 * This may be due to IRQ shared with another device,
1501 * or due to sporadic interrupts thrown from our NIC.
1503 if (unlikely(!inta
)) {
1504 IWL_DEBUG_ISR(trans
, "Ignore interrupt, inta == 0\n");
1506 * Re-enable interrupts here since we don't
1507 * have anything to service
1509 if (test_bit(STATUS_INT_ENABLED
, &trans
->status
))
1510 iwl_enable_interrupts(trans
);
1511 spin_unlock(&trans_pcie
->irq_lock
);
1512 lock_map_release(&trans
->sync_cmd_lockdep_map
);
1516 if (unlikely(inta
== 0xFFFFFFFF || (inta
& 0xFFFFFFF0) == 0xa5a5a5a0)) {
1518 * Hardware disappeared. It might have
1519 * already raised an interrupt.
1521 IWL_WARN(trans
, "HARDWARE GONE?? INTA == 0x%08x\n", inta
);
1522 spin_unlock(&trans_pcie
->irq_lock
);
1526 /* Ack/clear/reset pending uCode interrupts.
1527 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1529 /* There is a hardware bug in the interrupt mask function that some
1530 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1531 * they are disabled in the CSR_INT_MASK register. Furthermore the
1532 * ICT interrupt handling mechanism has another bug that might cause
1533 * these unmasked interrupts fail to be detected. We workaround the
1534 * hardware bugs here by ACKing all the possible interrupts so that
1535 * interrupt coalescing can still be achieved.
1537 iwl_write32(trans
, CSR_INT
, inta
| ~trans_pcie
->inta_mask
);
1539 if (iwl_have_debug_level(IWL_DL_ISR
))
1540 IWL_DEBUG_ISR(trans
, "inta 0x%08x, enabled 0x%08x\n",
1541 inta
, iwl_read32(trans
, CSR_INT_MASK
));
1543 spin_unlock(&trans_pcie
->irq_lock
);
1545 /* Now service all interrupt bits discovered above. */
1546 if (inta
& CSR_INT_BIT_HW_ERR
) {
1547 IWL_ERR(trans
, "Hardware error detected. Restarting.\n");
1549 /* Tell the device to stop sending interrupts */
1550 iwl_disable_interrupts(trans
);
1553 iwl_pcie_irq_handle_error(trans
);
1555 handled
|= CSR_INT_BIT_HW_ERR
;
1560 if (iwl_have_debug_level(IWL_DL_ISR
)) {
1561 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1562 if (inta
& CSR_INT_BIT_SCD
) {
1563 IWL_DEBUG_ISR(trans
,
1564 "Scheduler finished to transmit the frame/frames.\n");
1568 /* Alive notification via Rx interrupt will do the real work */
1569 if (inta
& CSR_INT_BIT_ALIVE
) {
1570 IWL_DEBUG_ISR(trans
, "Alive interrupt\n");
1575 /* Safely ignore these bits for debug checks below */
1576 inta
&= ~(CSR_INT_BIT_SCD
| CSR_INT_BIT_ALIVE
);
1578 /* HW RF KILL switch toggled */
1579 if (inta
& CSR_INT_BIT_RF_KILL
) {
1582 hw_rfkill
= iwl_is_rfkill_set(trans
);
1583 IWL_WARN(trans
, "RF_KILL bit toggled to %s.\n",
1584 hw_rfkill
? "disable radio" : "enable radio");
1586 isr_stats
->rfkill
++;
1588 mutex_lock(&trans_pcie
->mutex
);
1589 iwl_trans_pcie_rf_kill(trans
, hw_rfkill
);
1590 mutex_unlock(&trans_pcie
->mutex
);
1592 set_bit(STATUS_RFKILL
, &trans
->status
);
1593 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE
,
1595 IWL_DEBUG_RF_KILL(trans
,
1596 "Rfkill while SYNC HCMD in flight\n");
1597 wake_up(&trans_pcie
->wait_command_queue
);
1599 clear_bit(STATUS_RFKILL
, &trans
->status
);
1602 handled
|= CSR_INT_BIT_RF_KILL
;
1605 /* Chip got too hot and stopped itself */
1606 if (inta
& CSR_INT_BIT_CT_KILL
) {
1607 IWL_ERR(trans
, "Microcode CT kill error detected.\n");
1608 isr_stats
->ctkill
++;
1609 handled
|= CSR_INT_BIT_CT_KILL
;
1612 /* Error detected by uCode */
1613 if (inta
& CSR_INT_BIT_SW_ERR
) {
1614 IWL_ERR(trans
, "Microcode SW error detected. "
1615 " Restarting 0x%X.\n", inta
);
1617 iwl_pcie_irq_handle_error(trans
);
1618 handled
|= CSR_INT_BIT_SW_ERR
;
1621 /* uCode wakes up after power-down sleep */
1622 if (inta
& CSR_INT_BIT_WAKEUP
) {
1623 IWL_DEBUG_ISR(trans
, "Wakeup interrupt\n");
1624 iwl_pcie_rxq_check_wrptr(trans
);
1625 iwl_pcie_txq_check_wrptrs(trans
);
1627 isr_stats
->wakeup
++;
1629 handled
|= CSR_INT_BIT_WAKEUP
;
1632 /* All uCode command responses, including Tx command responses,
1633 * Rx "responses" (frame-received notification), and other
1634 * notifications from uCode come through here*/
1635 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
|
1636 CSR_INT_BIT_RX_PERIODIC
)) {
1637 IWL_DEBUG_ISR(trans
, "Rx interrupt\n");
1638 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
)) {
1639 handled
|= (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
);
1640 iwl_write32(trans
, CSR_FH_INT_STATUS
,
1641 CSR_FH_INT_RX_MASK
);
1643 if (inta
& CSR_INT_BIT_RX_PERIODIC
) {
1644 handled
|= CSR_INT_BIT_RX_PERIODIC
;
1646 CSR_INT
, CSR_INT_BIT_RX_PERIODIC
);
1648 /* Sending RX interrupt require many steps to be done in the
1650 * 1- write interrupt to current index in ICT table.
1652 * 3- update RX shared data to indicate last write index.
1653 * 4- send interrupt.
1654 * This could lead to RX race, driver could receive RX interrupt
1655 * but the shared data changes does not reflect this;
1656 * periodic interrupt will detect any dangling Rx activity.
1659 /* Disable periodic interrupt; we use it as just a one-shot. */
1660 iwl_write8(trans
, CSR_INT_PERIODIC_REG
,
1661 CSR_INT_PERIODIC_DIS
);
1664 * Enable periodic interrupt in 8 msec only if we received
1665 * real RX interrupt (instead of just periodic int), to catch
1666 * any dangling Rx interrupt. If it was just the periodic
1667 * interrupt, there was no dangling Rx activity, and no need
1668 * to extend the periodic interrupt; one-shot is enough.
1670 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
))
1671 iwl_write8(trans
, CSR_INT_PERIODIC_REG
,
1672 CSR_INT_PERIODIC_ENA
);
1677 iwl_pcie_rx_handle(trans
, 0);
1681 /* This "Tx" DMA channel is used only for loading uCode */
1682 if (inta
& CSR_INT_BIT_FH_TX
) {
1683 iwl_write32(trans
, CSR_FH_INT_STATUS
, CSR_FH_INT_TX_MASK
);
1684 IWL_DEBUG_ISR(trans
, "uCode load interrupt\n");
1686 handled
|= CSR_INT_BIT_FH_TX
;
1687 /* Wake up uCode load routine, now that load is complete */
1688 trans_pcie
->ucode_write_complete
= true;
1689 wake_up(&trans_pcie
->ucode_write_waitq
);
1692 if (inta
& ~handled
) {
1693 IWL_ERR(trans
, "Unhandled INTA bits 0x%08x\n", inta
& ~handled
);
1694 isr_stats
->unhandled
++;
1697 if (inta
& ~(trans_pcie
->inta_mask
)) {
1698 IWL_WARN(trans
, "Disabled INTA bits 0x%08x were pending\n",
1699 inta
& ~trans_pcie
->inta_mask
);
1702 /* we are loading the firmware, enable FH_TX interrupt only */
1703 if (handled
& CSR_INT_BIT_FH_TX
)
1704 iwl_enable_fw_load_int(trans
);
1705 /* only Re-enable all interrupt if disabled by irq */
1706 else if (test_bit(STATUS_INT_ENABLED
, &trans
->status
))
1707 iwl_enable_interrupts(trans
);
1708 /* Re-enable RF_KILL if it occurred */
1709 else if (handled
& CSR_INT_BIT_RF_KILL
)
1710 iwl_enable_rfkill_int(trans
);
1713 lock_map_release(&trans
->sync_cmd_lockdep_map
);
1717 /******************************************************************************
1721 ******************************************************************************/
1723 /* Free dram table */
1724 void iwl_pcie_free_ict(struct iwl_trans
*trans
)
1726 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1728 if (trans_pcie
->ict_tbl
) {
1729 dma_free_coherent(trans
->dev
, ICT_SIZE
,
1730 trans_pcie
->ict_tbl
,
1731 trans_pcie
->ict_tbl_dma
);
1732 trans_pcie
->ict_tbl
= NULL
;
1733 trans_pcie
->ict_tbl_dma
= 0;
1738 * allocate dram shared table, it is an aligned memory
1739 * block of ICT_SIZE.
1740 * also reset all data related to ICT table interrupt.
1742 int iwl_pcie_alloc_ict(struct iwl_trans
*trans
)
1744 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1746 trans_pcie
->ict_tbl
=
1747 dma_zalloc_coherent(trans
->dev
, ICT_SIZE
,
1748 &trans_pcie
->ict_tbl_dma
,
1750 if (!trans_pcie
->ict_tbl
)
1753 /* just an API sanity check ... it is guaranteed to be aligned */
1754 if (WARN_ON(trans_pcie
->ict_tbl_dma
& (ICT_SIZE
- 1))) {
1755 iwl_pcie_free_ict(trans
);
1762 /* Device is going up inform it about using ICT interrupt table,
1763 * also we need to tell the driver to start using ICT interrupt.
1765 void iwl_pcie_reset_ict(struct iwl_trans
*trans
)
1767 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1770 if (!trans_pcie
->ict_tbl
)
1773 spin_lock(&trans_pcie
->irq_lock
);
1774 iwl_disable_interrupts(trans
);
1776 memset(trans_pcie
->ict_tbl
, 0, ICT_SIZE
);
1778 val
= trans_pcie
->ict_tbl_dma
>> ICT_SHIFT
;
1780 val
|= CSR_DRAM_INT_TBL_ENABLE
|
1781 CSR_DRAM_INIT_TBL_WRAP_CHECK
|
1782 CSR_DRAM_INIT_TBL_WRITE_POINTER
;
1784 IWL_DEBUG_ISR(trans
, "CSR_DRAM_INT_TBL_REG =0x%x\n", val
);
1786 iwl_write32(trans
, CSR_DRAM_INT_TBL_REG
, val
);
1787 trans_pcie
->use_ict
= true;
1788 trans_pcie
->ict_index
= 0;
1789 iwl_write32(trans
, CSR_INT
, trans_pcie
->inta_mask
);
1790 iwl_enable_interrupts(trans
);
1791 spin_unlock(&trans_pcie
->irq_lock
);
1794 /* Device is going down disable ict interrupt usage */
1795 void iwl_pcie_disable_ict(struct iwl_trans
*trans
)
1797 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1799 spin_lock(&trans_pcie
->irq_lock
);
1800 trans_pcie
->use_ict
= false;
1801 spin_unlock(&trans_pcie
->irq_lock
);
1804 irqreturn_t
iwl_pcie_isr(int irq
, void *data
)
1806 struct iwl_trans
*trans
= data
;
1811 /* Disable (but don't clear!) interrupts here to avoid
1812 * back-to-back ISRs and sporadic interrupts from our NIC.
1813 * If we have something to service, the tasklet will re-enable ints.
1814 * If we *don't* have something, we'll re-enable before leaving here.
1816 iwl_write32(trans
, CSR_INT_MASK
, 0x00000000);
1818 return IRQ_WAKE_THREAD
;
1821 irqreturn_t
iwl_pcie_msix_isr(int irq
, void *data
)
1823 return IRQ_WAKE_THREAD
;
1826 irqreturn_t
iwl_pcie_irq_msix_handler(int irq
, void *dev_id
)
1828 struct msix_entry
*entry
= dev_id
;
1829 struct iwl_trans_pcie
*trans_pcie
= iwl_pcie_get_trans_pcie(entry
);
1830 struct iwl_trans
*trans
= trans_pcie
->trans
;
1831 struct isr_statistics
*isr_stats
= &trans_pcie
->isr_stats
;
1832 u32 inta_fh
, inta_hw
;
1834 lock_map_acquire(&trans
->sync_cmd_lockdep_map
);
1836 spin_lock(&trans_pcie
->irq_lock
);
1837 inta_fh
= iwl_read32(trans
, CSR_MSIX_FH_INT_CAUSES_AD
);
1838 inta_hw
= iwl_read32(trans
, CSR_MSIX_HW_INT_CAUSES_AD
);
1840 * Clear causes registers to avoid being handling the same cause.
1842 iwl_write32(trans
, CSR_MSIX_FH_INT_CAUSES_AD
, inta_fh
);
1843 iwl_write32(trans
, CSR_MSIX_HW_INT_CAUSES_AD
, inta_hw
);
1844 spin_unlock(&trans_pcie
->irq_lock
);
1846 if (unlikely(!(inta_fh
| inta_hw
))) {
1847 IWL_DEBUG_ISR(trans
, "Ignore interrupt, inta == 0\n");
1848 lock_map_release(&trans
->sync_cmd_lockdep_map
);
1852 if (iwl_have_debug_level(IWL_DL_ISR
))
1853 IWL_DEBUG_ISR(trans
, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1855 iwl_read32(trans
, CSR_MSIX_FH_INT_MASK_AD
));
1857 /* This "Tx" DMA channel is used only for loading uCode */
1858 if (inta_fh
& MSIX_FH_INT_CAUSES_D2S_CH0_NUM
) {
1859 IWL_DEBUG_ISR(trans
, "uCode load interrupt\n");
1862 * Wake up uCode load routine,
1863 * now that load is complete
1865 trans_pcie
->ucode_write_complete
= true;
1866 wake_up(&trans_pcie
->ucode_write_waitq
);
1869 /* Error detected by uCode */
1870 if ((inta_fh
& MSIX_FH_INT_CAUSES_FH_ERR
) ||
1871 (inta_hw
& MSIX_HW_INT_CAUSES_REG_SW_ERR
)) {
1873 "Microcode SW error detected. Restarting 0x%X.\n",
1876 iwl_pcie_irq_handle_error(trans
);
1879 /* After checking FH register check HW register */
1880 if (iwl_have_debug_level(IWL_DL_ISR
))
1881 IWL_DEBUG_ISR(trans
,
1882 "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1884 iwl_read32(trans
, CSR_MSIX_HW_INT_MASK_AD
));
1886 /* Alive notification via Rx interrupt will do the real work */
1887 if (inta_hw
& MSIX_HW_INT_CAUSES_REG_ALIVE
) {
1888 IWL_DEBUG_ISR(trans
, "Alive interrupt\n");
1892 /* uCode wakes up after power-down sleep */
1893 if (inta_hw
& MSIX_HW_INT_CAUSES_REG_WAKEUP
) {
1894 IWL_DEBUG_ISR(trans
, "Wakeup interrupt\n");
1895 iwl_pcie_rxq_check_wrptr(trans
);
1896 iwl_pcie_txq_check_wrptrs(trans
);
1898 isr_stats
->wakeup
++;
1901 /* Chip got too hot and stopped itself */
1902 if (inta_hw
& MSIX_HW_INT_CAUSES_REG_CT_KILL
) {
1903 IWL_ERR(trans
, "Microcode CT kill error detected.\n");
1904 isr_stats
->ctkill
++;
1907 /* HW RF KILL switch toggled */
1908 if (inta_hw
& MSIX_HW_INT_CAUSES_REG_RF_KILL
) {
1911 hw_rfkill
= iwl_is_rfkill_set(trans
);
1912 IWL_WARN(trans
, "RF_KILL bit toggled to %s.\n",
1913 hw_rfkill
? "disable radio" : "enable radio");
1915 isr_stats
->rfkill
++;
1917 mutex_lock(&trans_pcie
->mutex
);
1918 iwl_trans_pcie_rf_kill(trans
, hw_rfkill
);
1919 mutex_unlock(&trans_pcie
->mutex
);
1921 set_bit(STATUS_RFKILL
, &trans
->status
);
1922 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE
,
1924 IWL_DEBUG_RF_KILL(trans
,
1925 "Rfkill while SYNC HCMD in flight\n");
1926 wake_up(&trans_pcie
->wait_command_queue
);
1928 clear_bit(STATUS_RFKILL
, &trans
->status
);
1932 if (inta_hw
& MSIX_HW_INT_CAUSES_REG_HW_ERR
) {
1934 "Hardware error detected. Restarting.\n");
1937 iwl_pcie_irq_handle_error(trans
);
1940 iwl_pcie_clear_irq(trans
, entry
);
1942 lock_map_release(&trans
->sync_cmd_lockdep_map
);