net/mlx4_en: Move filters cleanup to a proper location
[linux/fpc-iii.git] / drivers / net / wireless / rsi / rsi_91x_mgmt.c
blob40658b62d07780ea1f1aa39cecf59673ca73c16e
1 /**
2 * Copyright (c) 2014 Redpine Signals Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/etherdevice.h>
18 #include "rsi_mgmt.h"
19 #include "rsi_common.h"
21 static struct bootup_params boot_params_20 = {
22 .magic_number = cpu_to_le16(0x5aa5),
23 .crystal_good_time = 0x0,
24 .valid = cpu_to_le32(VALID_20),
25 .reserved_for_valids = 0x0,
26 .bootup_mode_info = 0x0,
27 .digital_loop_back_params = 0x0,
28 .rtls_timestamp_en = 0x0,
29 .host_spi_intr_cfg = 0x0,
30 .device_clk_info = {{
31 .pll_config_g = {
32 .tapll_info_g = {
33 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
34 (TA_PLL_M_VAL_20)),
35 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
37 .pll960_info_g = {
38 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
39 (PLL960_N_VAL_20)),
40 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
41 .pll_reg_3 = 0x0,
43 .afepll_info_g = {
44 .pll_reg = cpu_to_le16(0x9f0),
47 .switch_clk_g = {
48 .switch_clk_info = cpu_to_le16(BIT(3)),
49 .bbp_lmac_clk_reg_val = cpu_to_le16(0x121),
50 .umac_clock_reg_config = 0x0,
51 .qspi_uart_clock_reg_config = 0x0
55 .pll_config_g = {
56 .tapll_info_g = {
57 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
58 (TA_PLL_M_VAL_20)),
59 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
61 .pll960_info_g = {
62 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
63 (PLL960_N_VAL_20)),
64 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
65 .pll_reg_3 = 0x0,
67 .afepll_info_g = {
68 .pll_reg = cpu_to_le16(0x9f0),
71 .switch_clk_g = {
72 .switch_clk_info = 0x0,
73 .bbp_lmac_clk_reg_val = 0x0,
74 .umac_clock_reg_config = 0x0,
75 .qspi_uart_clock_reg_config = 0x0
79 .pll_config_g = {
80 .tapll_info_g = {
81 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
82 (TA_PLL_M_VAL_20)),
83 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
85 .pll960_info_g = {
86 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
87 (PLL960_N_VAL_20)),
88 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
89 .pll_reg_3 = 0x0,
91 .afepll_info_g = {
92 .pll_reg = cpu_to_le16(0x9f0),
95 .switch_clk_g = {
96 .switch_clk_info = 0x0,
97 .bbp_lmac_clk_reg_val = 0x0,
98 .umac_clock_reg_config = 0x0,
99 .qspi_uart_clock_reg_config = 0x0
101 } },
102 .buckboost_wakeup_cnt = 0x0,
103 .pmu_wakeup_wait = 0x0,
104 .shutdown_wait_time = 0x0,
105 .pmu_slp_clkout_sel = 0x0,
106 .wdt_prog_value = 0x0,
107 .wdt_soc_rst_delay = 0x0,
108 .dcdc_operation_mode = 0x0,
109 .soc_reset_wait_cnt = 0x0
112 static struct bootup_params boot_params_40 = {
113 .magic_number = cpu_to_le16(0x5aa5),
114 .crystal_good_time = 0x0,
115 .valid = cpu_to_le32(VALID_40),
116 .reserved_for_valids = 0x0,
117 .bootup_mode_info = 0x0,
118 .digital_loop_back_params = 0x0,
119 .rtls_timestamp_en = 0x0,
120 .host_spi_intr_cfg = 0x0,
121 .device_clk_info = {{
122 .pll_config_g = {
123 .tapll_info_g = {
124 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
125 (TA_PLL_M_VAL_40)),
126 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
128 .pll960_info_g = {
129 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
130 (PLL960_N_VAL_40)),
131 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
132 .pll_reg_3 = 0x0,
134 .afepll_info_g = {
135 .pll_reg = cpu_to_le16(0x9f0),
138 .switch_clk_g = {
139 .switch_clk_info = cpu_to_le16(0x09),
140 .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
141 .umac_clock_reg_config = cpu_to_le16(0x48),
142 .qspi_uart_clock_reg_config = 0x0
146 .pll_config_g = {
147 .tapll_info_g = {
148 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
149 (TA_PLL_M_VAL_40)),
150 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
152 .pll960_info_g = {
153 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
154 (PLL960_N_VAL_40)),
155 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
156 .pll_reg_3 = 0x0,
158 .afepll_info_g = {
159 .pll_reg = cpu_to_le16(0x9f0),
162 .switch_clk_g = {
163 .switch_clk_info = 0x0,
164 .bbp_lmac_clk_reg_val = 0x0,
165 .umac_clock_reg_config = 0x0,
166 .qspi_uart_clock_reg_config = 0x0
170 .pll_config_g = {
171 .tapll_info_g = {
172 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
173 (TA_PLL_M_VAL_40)),
174 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
176 .pll960_info_g = {
177 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
178 (PLL960_N_VAL_40)),
179 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
180 .pll_reg_3 = 0x0,
182 .afepll_info_g = {
183 .pll_reg = cpu_to_le16(0x9f0),
186 .switch_clk_g = {
187 .switch_clk_info = 0x0,
188 .bbp_lmac_clk_reg_val = 0x0,
189 .umac_clock_reg_config = 0x0,
190 .qspi_uart_clock_reg_config = 0x0
192 } },
193 .buckboost_wakeup_cnt = 0x0,
194 .pmu_wakeup_wait = 0x0,
195 .shutdown_wait_time = 0x0,
196 .pmu_slp_clkout_sel = 0x0,
197 .wdt_prog_value = 0x0,
198 .wdt_soc_rst_delay = 0x0,
199 .dcdc_operation_mode = 0x0,
200 .soc_reset_wait_cnt = 0x0
203 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
206 * rsi_set_default_parameters() - This function sets default parameters.
207 * @common: Pointer to the driver private structure.
209 * Return: none
211 static void rsi_set_default_parameters(struct rsi_common *common)
213 common->band = NL80211_BAND_2GHZ;
214 common->channel_width = BW_20MHZ;
215 common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
216 common->channel = 1;
217 common->min_rate = 0xffff;
218 common->fsm_state = FSM_CARD_NOT_READY;
219 common->iface_down = true;
220 common->endpoint = EP_2GHZ_20MHZ;
224 * rsi_set_contention_vals() - This function sets the contention values for the
225 * backoff procedure.
226 * @common: Pointer to the driver private structure.
228 * Return: None.
230 static void rsi_set_contention_vals(struct rsi_common *common)
232 u8 ii = 0;
234 for (; ii < NUM_EDCA_QUEUES; ii++) {
235 common->tx_qinfo[ii].wme_params =
236 (((common->edca_params[ii].cw_min / 2) +
237 (common->edca_params[ii].aifs)) *
238 WMM_SHORT_SLOT_TIME + SIFS_DURATION);
239 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
240 common->tx_qinfo[ii].pkt_contended = 0;
245 * rsi_send_internal_mgmt_frame() - This function sends management frames to
246 * firmware.Also schedules packet to queue
247 * for transmission.
248 * @common: Pointer to the driver private structure.
249 * @skb: Pointer to the socket buffer structure.
251 * Return: 0 on success, -1 on failure.
253 static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
254 struct sk_buff *skb)
256 struct skb_info *tx_params;
258 if (skb == NULL) {
259 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
260 return -ENOMEM;
262 tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
263 tx_params->flags |= INTERNAL_MGMT_PKT;
264 skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
265 rsi_set_event(&common->tx_thread.event);
266 return 0;
270 * rsi_load_radio_caps() - This function is used to send radio capabilities
271 * values to firmware.
272 * @common: Pointer to the driver private structure.
274 * Return: 0 on success, corresponding negative error code on failure.
276 static int rsi_load_radio_caps(struct rsi_common *common)
278 struct rsi_radio_caps *radio_caps;
279 struct rsi_hw *adapter = common->priv;
280 u16 inx = 0;
281 u8 ii;
282 u8 radio_id = 0;
283 u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
284 0xf0, 0xf0, 0xf0, 0xf0,
285 0xf0, 0xf0, 0xf0, 0xf0,
286 0xf0, 0xf0, 0xf0, 0xf0,
287 0xf0, 0xf0, 0xf0, 0xf0};
288 struct sk_buff *skb;
290 rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
292 skb = dev_alloc_skb(sizeof(struct rsi_radio_caps));
294 if (!skb) {
295 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
296 __func__);
297 return -ENOMEM;
300 memset(skb->data, 0, sizeof(struct rsi_radio_caps));
301 radio_caps = (struct rsi_radio_caps *)skb->data;
303 radio_caps->desc_word[1] = cpu_to_le16(RADIO_CAPABILITIES);
304 radio_caps->desc_word[4] = cpu_to_le16(RSI_RF_TYPE << 8);
306 if (common->channel_width == BW_40MHZ) {
307 radio_caps->desc_word[7] |= cpu_to_le16(RSI_LMAC_CLOCK_80MHZ);
308 radio_caps->desc_word[7] |= cpu_to_le16(RSI_ENABLE_40MHZ);
310 if (common->fsm_state == FSM_MAC_INIT_DONE) {
311 struct ieee80211_hw *hw = adapter->hw;
312 struct ieee80211_conf *conf = &hw->conf;
313 if (conf_is_ht40_plus(conf)) {
314 radio_caps->desc_word[5] =
315 cpu_to_le16(LOWER_20_ENABLE);
316 radio_caps->desc_word[5] |=
317 cpu_to_le16(LOWER_20_ENABLE >> 12);
318 } else if (conf_is_ht40_minus(conf)) {
319 radio_caps->desc_word[5] =
320 cpu_to_le16(UPPER_20_ENABLE);
321 radio_caps->desc_word[5] |=
322 cpu_to_le16(UPPER_20_ENABLE >> 12);
323 } else {
324 radio_caps->desc_word[5] =
325 cpu_to_le16(BW_40MHZ << 12);
326 radio_caps->desc_word[5] |=
327 cpu_to_le16(FULL40M_ENABLE);
332 radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
333 radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
334 radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
335 radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
336 radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
337 radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
339 radio_caps->desc_word[7] |= cpu_to_le16(radio_id << 8);
341 for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
342 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
343 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
344 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
345 radio_caps->qos_params[ii].txop_q = 0;
348 for (ii = 0; ii < MAX_HW_QUEUES - 4; ii++) {
349 radio_caps->qos_params[ii].cont_win_min_q =
350 cpu_to_le16(common->edca_params[ii].cw_min);
351 radio_caps->qos_params[ii].cont_win_max_q =
352 cpu_to_le16(common->edca_params[ii].cw_max);
353 radio_caps->qos_params[ii].aifsn_val_q =
354 cpu_to_le16((common->edca_params[ii].aifs) << 8);
355 radio_caps->qos_params[ii].txop_q =
356 cpu_to_le16(common->edca_params[ii].txop);
359 memcpy(&common->rate_pwr[0], &gc[0], 40);
360 for (ii = 0; ii < 20; ii++)
361 radio_caps->gcpd_per_rate[inx++] =
362 cpu_to_le16(common->rate_pwr[ii] & 0x00FF);
364 radio_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_radio_caps) -
365 FRAME_DESC_SZ) |
366 (RSI_WIFI_MGMT_Q << 12));
369 skb_put(skb, (sizeof(struct rsi_radio_caps)));
371 return rsi_send_internal_mgmt_frame(common, skb);
375 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
376 * @common: Pointer to the driver private structure.
377 * @msg: Pointer to received packet.
378 * @msg_len: Length of the recieved packet.
379 * @type: Type of recieved packet.
381 * Return: 0 on success, -1 on failure.
383 static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
384 u8 *msg,
385 s32 msg_len,
386 u8 type)
388 struct rsi_hw *adapter = common->priv;
389 struct ieee80211_tx_info *info;
390 struct skb_info *rx_params;
391 u8 pad_bytes = msg[4];
392 u8 pkt_recv;
393 struct sk_buff *skb;
394 char *buffer;
396 if (type == RX_DOT11_MGMT) {
397 if (!adapter->sc_nvifs)
398 return -ENOLINK;
400 msg_len -= pad_bytes;
401 if ((msg_len <= 0) || (!msg)) {
402 rsi_dbg(MGMT_RX_ZONE,
403 "%s: Invalid rx msg of len = %d\n",
404 __func__, msg_len);
405 return -EINVAL;
408 skb = dev_alloc_skb(msg_len);
409 if (!skb) {
410 rsi_dbg(ERR_ZONE, "%s: Failed to allocate skb\n",
411 __func__);
412 return -ENOMEM;
415 buffer = skb_put(skb, msg_len);
417 memcpy(buffer,
418 (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
419 msg_len);
421 pkt_recv = buffer[0];
423 info = IEEE80211_SKB_CB(skb);
424 rx_params = (struct skb_info *)info->driver_data;
425 rx_params->rssi = rsi_get_rssi(msg);
426 rx_params->channel = rsi_get_channel(msg);
427 rsi_indicate_pkt_to_os(common, skb);
428 } else {
429 rsi_dbg(MGMT_TX_ZONE, "%s: Internal Packet\n", __func__);
432 return 0;
436 * rsi_hal_send_sta_notify_frame() - This function sends the station notify
437 * frame to firmware.
438 * @common: Pointer to the driver private structure.
439 * @opmode: Operating mode of device.
440 * @notify_event: Notification about station connection.
441 * @bssid: bssid.
442 * @qos_enable: Qos is enabled.
443 * @aid: Aid (unique for all STA).
445 * Return: status: 0 on success, corresponding negative error code on failure.
447 static int rsi_hal_send_sta_notify_frame(struct rsi_common *common,
448 u8 opmode,
449 u8 notify_event,
450 const unsigned char *bssid,
451 u8 qos_enable,
452 u16 aid)
454 struct sk_buff *skb = NULL;
455 struct rsi_peer_notify *peer_notify;
456 u16 vap_id = 0;
457 int status;
459 rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
461 skb = dev_alloc_skb(sizeof(struct rsi_peer_notify));
463 if (!skb) {
464 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
465 __func__);
466 return -ENOMEM;
469 memset(skb->data, 0, sizeof(struct rsi_peer_notify));
470 peer_notify = (struct rsi_peer_notify *)skb->data;
472 peer_notify->command = cpu_to_le16(opmode << 1);
474 switch (notify_event) {
475 case STA_CONNECTED:
476 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
477 break;
478 case STA_DISCONNECTED:
479 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
480 break;
481 default:
482 break;
485 peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
486 ether_addr_copy(peer_notify->mac_addr, bssid);
488 peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
490 peer_notify->desc_word[0] =
491 cpu_to_le16((sizeof(struct rsi_peer_notify) - FRAME_DESC_SZ) |
492 (RSI_WIFI_MGMT_Q << 12));
493 peer_notify->desc_word[1] = cpu_to_le16(PEER_NOTIFY);
494 peer_notify->desc_word[7] |= cpu_to_le16(vap_id << 8);
496 skb_put(skb, sizeof(struct rsi_peer_notify));
498 status = rsi_send_internal_mgmt_frame(common, skb);
500 if (!status && qos_enable) {
501 rsi_set_contention_vals(common);
502 status = rsi_load_radio_caps(common);
504 return status;
508 * rsi_send_aggregation_params_frame() - This function sends the ampdu
509 * indication frame to firmware.
510 * @common: Pointer to the driver private structure.
511 * @tid: traffic identifier.
512 * @ssn: ssn.
513 * @buf_size: buffer size.
514 * @event: notification about station connection.
516 * Return: 0 on success, corresponding negative error code on failure.
518 int rsi_send_aggregation_params_frame(struct rsi_common *common,
519 u16 tid,
520 u16 ssn,
521 u8 buf_size,
522 u8 event)
524 struct sk_buff *skb = NULL;
525 struct rsi_mac_frame *mgmt_frame;
526 u8 peer_id = 0;
528 skb = dev_alloc_skb(FRAME_DESC_SZ);
530 if (!skb) {
531 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
532 __func__);
533 return -ENOMEM;
536 memset(skb->data, 0, FRAME_DESC_SZ);
537 mgmt_frame = (struct rsi_mac_frame *)skb->data;
539 rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
541 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
542 mgmt_frame->desc_word[1] = cpu_to_le16(AMPDU_IND);
544 if (event == STA_TX_ADDBA_DONE) {
545 mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
546 mgmt_frame->desc_word[5] = cpu_to_le16(buf_size);
547 mgmt_frame->desc_word[7] =
548 cpu_to_le16((tid | (START_AMPDU_AGGR << 4) | (peer_id << 8)));
549 } else if (event == STA_RX_ADDBA_DONE) {
550 mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
551 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
552 (START_AMPDU_AGGR << 4) |
553 (RX_BA_INDICATION << 5) |
554 (peer_id << 8));
555 } else if (event == STA_TX_DELBA) {
556 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
557 (STOP_AMPDU_AGGR << 4) |
558 (peer_id << 8));
559 } else if (event == STA_RX_DELBA) {
560 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
561 (STOP_AMPDU_AGGR << 4) |
562 (RX_BA_INDICATION << 5) |
563 (peer_id << 8));
566 skb_put(skb, FRAME_DESC_SZ);
568 return rsi_send_internal_mgmt_frame(common, skb);
572 * rsi_program_bb_rf() - This function starts base band and RF programming.
573 * This is called after initial configurations are done.
574 * @common: Pointer to the driver private structure.
576 * Return: 0 on success, corresponding negative error code on failure.
578 static int rsi_program_bb_rf(struct rsi_common *common)
580 struct sk_buff *skb;
581 struct rsi_mac_frame *mgmt_frame;
583 rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
585 skb = dev_alloc_skb(FRAME_DESC_SZ);
586 if (!skb) {
587 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
588 __func__);
589 return -ENOMEM;
592 memset(skb->data, 0, FRAME_DESC_SZ);
593 mgmt_frame = (struct rsi_mac_frame *)skb->data;
595 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
596 mgmt_frame->desc_word[1] = cpu_to_le16(BBP_PROG_IN_TA);
597 mgmt_frame->desc_word[4] = cpu_to_le16(common->endpoint);
599 if (common->rf_reset) {
600 mgmt_frame->desc_word[7] = cpu_to_le16(RF_RESET_ENABLE);
601 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
602 __func__);
603 common->rf_reset = 0;
605 common->bb_rf_prog_count = 1;
606 mgmt_frame->desc_word[7] |= cpu_to_le16(PUT_BBP_RESET |
607 BBP_REG_WRITE | (RSI_RF_TYPE << 4));
608 skb_put(skb, FRAME_DESC_SZ);
610 return rsi_send_internal_mgmt_frame(common, skb);
614 * rsi_set_vap_capabilities() - This function send vap capability to firmware.
615 * @common: Pointer to the driver private structure.
616 * @opmode: Operating mode of device.
618 * Return: 0 on success, corresponding negative error code on failure.
620 int rsi_set_vap_capabilities(struct rsi_common *common, enum opmode mode)
622 struct sk_buff *skb = NULL;
623 struct rsi_vap_caps *vap_caps;
624 struct rsi_hw *adapter = common->priv;
625 struct ieee80211_hw *hw = adapter->hw;
626 struct ieee80211_conf *conf = &hw->conf;
627 u16 vap_id = 0;
629 rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
631 skb = dev_alloc_skb(sizeof(struct rsi_vap_caps));
632 if (!skb) {
633 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
634 __func__);
635 return -ENOMEM;
638 memset(skb->data, 0, sizeof(struct rsi_vap_caps));
639 vap_caps = (struct rsi_vap_caps *)skb->data;
641 vap_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_vap_caps) -
642 FRAME_DESC_SZ) |
643 (RSI_WIFI_MGMT_Q << 12));
644 vap_caps->desc_word[1] = cpu_to_le16(VAP_CAPABILITIES);
645 vap_caps->desc_word[4] = cpu_to_le16(mode |
646 (common->channel_width << 8));
647 vap_caps->desc_word[7] = cpu_to_le16((vap_id << 8) |
648 (common->mac_id << 4) |
649 common->radio_id);
651 memcpy(vap_caps->mac_addr, common->mac_addr, IEEE80211_ADDR_LEN);
652 vap_caps->keep_alive_period = cpu_to_le16(90);
653 vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
655 vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
656 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
658 if (common->band == NL80211_BAND_5GHZ) {
659 vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_6);
660 if (conf_is_ht40(&common->priv->hw->conf)) {
661 vap_caps->default_ctrl_rate |=
662 cpu_to_le32(FULL40M_ENABLE << 16);
664 } else {
665 vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_1);
666 if (conf_is_ht40_minus(conf))
667 vap_caps->default_ctrl_rate |=
668 cpu_to_le32(UPPER_20_ENABLE << 16);
669 else if (conf_is_ht40_plus(conf))
670 vap_caps->default_ctrl_rate |=
671 cpu_to_le32(LOWER_20_ENABLE << 16);
674 vap_caps->default_data_rate = 0;
675 vap_caps->beacon_interval = cpu_to_le16(200);
676 vap_caps->dtim_period = cpu_to_le16(4);
678 skb_put(skb, sizeof(*vap_caps));
680 return rsi_send_internal_mgmt_frame(common, skb);
684 * rsi_hal_load_key() - This function is used to load keys within the firmware.
685 * @common: Pointer to the driver private structure.
686 * @data: Pointer to the key data.
687 * @key_len: Key length to be loaded.
688 * @key_type: Type of key: GROUP/PAIRWISE.
689 * @key_id: Key index.
690 * @cipher: Type of cipher used.
692 * Return: 0 on success, -1 on failure.
694 int rsi_hal_load_key(struct rsi_common *common,
695 u8 *data,
696 u16 key_len,
697 u8 key_type,
698 u8 key_id,
699 u32 cipher)
701 struct sk_buff *skb = NULL;
702 struct rsi_set_key *set_key;
703 u16 key_descriptor = 0;
705 rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
707 skb = dev_alloc_skb(sizeof(struct rsi_set_key));
708 if (!skb) {
709 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
710 __func__);
711 return -ENOMEM;
714 memset(skb->data, 0, sizeof(struct rsi_set_key));
715 set_key = (struct rsi_set_key *)skb->data;
717 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
718 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
719 key_len += 1;
720 key_descriptor |= BIT(2);
721 if (key_len >= 13)
722 key_descriptor |= BIT(3);
723 } else if (cipher != KEY_TYPE_CLEAR) {
724 key_descriptor |= BIT(4);
725 if (key_type == RSI_PAIRWISE_KEY)
726 key_id = 0;
727 if (cipher == WLAN_CIPHER_SUITE_TKIP)
728 key_descriptor |= BIT(5);
730 key_descriptor |= (key_type | BIT(13) | (key_id << 14));
732 set_key->desc_word[0] = cpu_to_le16((sizeof(struct rsi_set_key) -
733 FRAME_DESC_SZ) |
734 (RSI_WIFI_MGMT_Q << 12));
735 set_key->desc_word[1] = cpu_to_le16(SET_KEY_REQ);
736 set_key->desc_word[4] = cpu_to_le16(key_descriptor);
738 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
739 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
740 memcpy(&set_key->key[key_id][1],
741 data,
742 key_len * 2);
743 } else {
744 memcpy(&set_key->key[0][0], data, key_len);
747 memcpy(set_key->tx_mic_key, &data[16], 8);
748 memcpy(set_key->rx_mic_key, &data[24], 8);
750 skb_put(skb, sizeof(struct rsi_set_key));
752 return rsi_send_internal_mgmt_frame(common, skb);
756 * rsi_load_bootup_params() - This function send bootup params to the firmware.
757 * @common: Pointer to the driver private structure.
759 * Return: 0 on success, corresponding error code on failure.
761 static int rsi_load_bootup_params(struct rsi_common *common)
763 struct sk_buff *skb;
764 struct rsi_boot_params *boot_params;
766 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
767 skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
768 if (!skb) {
769 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
770 __func__);
771 return -ENOMEM;
774 memset(skb->data, 0, sizeof(struct rsi_boot_params));
775 boot_params = (struct rsi_boot_params *)skb->data;
777 rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
779 if (common->channel_width == BW_40MHZ) {
780 memcpy(&boot_params->bootup_params,
781 &boot_params_40,
782 sizeof(struct bootup_params));
783 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
784 UMAC_CLK_40BW);
785 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
786 } else {
787 memcpy(&boot_params->bootup_params,
788 &boot_params_20,
789 sizeof(struct bootup_params));
790 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
791 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
792 rsi_dbg(MGMT_TX_ZONE,
793 "%s: Packet 20MHZ <=== %d\n", __func__,
794 UMAC_CLK_20BW);
795 } else {
796 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
797 rsi_dbg(MGMT_TX_ZONE,
798 "%s: Packet 20MHZ <=== %d\n", __func__,
799 UMAC_CLK_40MHZ);
804 * Bit{0:11} indicates length of the Packet
805 * Bit{12:15} indicates host queue number
807 boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
808 (RSI_WIFI_MGMT_Q << 12));
809 boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
811 skb_put(skb, sizeof(struct rsi_boot_params));
813 return rsi_send_internal_mgmt_frame(common, skb);
817 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
818 * internal management frame to indicate it to firmware.
819 * @common: Pointer to the driver private structure.
821 * Return: 0 on success, corresponding error code on failure.
823 static int rsi_send_reset_mac(struct rsi_common *common)
825 struct sk_buff *skb;
826 struct rsi_mac_frame *mgmt_frame;
828 rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
830 skb = dev_alloc_skb(FRAME_DESC_SZ);
831 if (!skb) {
832 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
833 __func__);
834 return -ENOMEM;
837 memset(skb->data, 0, FRAME_DESC_SZ);
838 mgmt_frame = (struct rsi_mac_frame *)skb->data;
840 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
841 mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
842 mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
844 skb_put(skb, FRAME_DESC_SZ);
846 return rsi_send_internal_mgmt_frame(common, skb);
850 * rsi_band_check() - This function programs the band
851 * @common: Pointer to the driver private structure.
853 * Return: 0 on success, corresponding error code on failure.
855 int rsi_band_check(struct rsi_common *common)
857 struct rsi_hw *adapter = common->priv;
858 struct ieee80211_hw *hw = adapter->hw;
859 u8 prev_bw = common->channel_width;
860 u8 prev_ep = common->endpoint;
861 struct ieee80211_channel *curchan = hw->conf.chandef.chan;
862 int status = 0;
864 if (common->band != curchan->band) {
865 common->rf_reset = 1;
866 common->band = curchan->band;
869 if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
870 (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
871 common->channel_width = BW_20MHZ;
872 else
873 common->channel_width = BW_40MHZ;
875 if (common->band == NL80211_BAND_2GHZ) {
876 if (common->channel_width)
877 common->endpoint = EP_2GHZ_40MHZ;
878 else
879 common->endpoint = EP_2GHZ_20MHZ;
880 } else {
881 if (common->channel_width)
882 common->endpoint = EP_5GHZ_40MHZ;
883 else
884 common->endpoint = EP_5GHZ_20MHZ;
887 if (common->endpoint != prev_ep) {
888 status = rsi_program_bb_rf(common);
889 if (status)
890 return status;
893 if (common->channel_width != prev_bw) {
894 status = rsi_load_bootup_params(common);
895 if (status)
896 return status;
898 status = rsi_load_radio_caps(common);
899 if (status)
900 return status;
903 return status;
907 * rsi_set_channel() - This function programs the channel.
908 * @common: Pointer to the driver private structure.
909 * @channel: Channel value to be set.
911 * Return: 0 on success, corresponding error code on failure.
913 int rsi_set_channel(struct rsi_common *common, u16 channel)
915 struct sk_buff *skb = NULL;
916 struct rsi_mac_frame *mgmt_frame;
918 rsi_dbg(MGMT_TX_ZONE,
919 "%s: Sending scan req frame\n", __func__);
921 skb = dev_alloc_skb(FRAME_DESC_SZ);
922 if (!skb) {
923 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
924 __func__);
925 return -ENOMEM;
928 memset(skb->data, 0, FRAME_DESC_SZ);
929 mgmt_frame = (struct rsi_mac_frame *)skb->data;
931 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
932 mgmt_frame->desc_word[1] = cpu_to_le16(SCAN_REQUEST);
933 mgmt_frame->desc_word[4] = cpu_to_le16(channel);
935 mgmt_frame->desc_word[7] = cpu_to_le16(PUT_BBP_RESET |
936 BBP_REG_WRITE |
937 (RSI_RF_TYPE << 4));
939 mgmt_frame->desc_word[5] = cpu_to_le16(0x01);
940 mgmt_frame->desc_word[6] = cpu_to_le16(0x12);
942 if (common->channel_width == BW_40MHZ)
943 mgmt_frame->desc_word[5] |= cpu_to_le16(0x1 << 8);
945 common->channel = channel;
947 skb_put(skb, FRAME_DESC_SZ);
949 return rsi_send_internal_mgmt_frame(common, skb);
953 * rsi_compare() - This function is used to compare two integers
954 * @a: pointer to the first integer
955 * @b: pointer to the second integer
957 * Return: 0 if both are equal, -1 if the first is smaller, else 1
959 static int rsi_compare(const void *a, const void *b)
961 u16 _a = *(const u16 *)(a);
962 u16 _b = *(const u16 *)(b);
964 if (_a > _b)
965 return -1;
967 if (_a < _b)
968 return 1;
970 return 0;
974 * rsi_map_rates() - This function is used to map selected rates to hw rates.
975 * @rate: The standard rate to be mapped.
976 * @offset: Offset that will be returned.
978 * Return: 0 if it is a mcs rate, else 1
980 static bool rsi_map_rates(u16 rate, int *offset)
982 int kk;
983 for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
984 if (rate == mcs[kk]) {
985 *offset = kk;
986 return false;
990 for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
991 if (rate == rsi_rates[kk].bitrate / 5) {
992 *offset = kk;
993 break;
996 return true;
1000 * rsi_send_auto_rate_request() - This function is to set rates for connection
1001 * and send autorate request to firmware.
1002 * @common: Pointer to the driver private structure.
1004 * Return: 0 on success, corresponding error code on failure.
1006 static int rsi_send_auto_rate_request(struct rsi_common *common)
1008 struct sk_buff *skb;
1009 struct rsi_auto_rate *auto_rate;
1010 int ii = 0, jj = 0, kk = 0;
1011 struct ieee80211_hw *hw = common->priv->hw;
1012 u8 band = hw->conf.chandef.chan->band;
1013 u8 num_supported_rates = 0;
1014 u8 rate_table_offset, rate_offset = 0;
1015 u32 rate_bitmap = common->bitrate_mask[band];
1017 u16 *selected_rates, min_rate;
1019 skb = dev_alloc_skb(sizeof(struct rsi_auto_rate));
1020 if (!skb) {
1021 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1022 __func__);
1023 return -ENOMEM;
1026 selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1027 if (!selected_rates) {
1028 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1029 __func__);
1030 dev_kfree_skb(skb);
1031 return -ENOMEM;
1034 memset(skb->data, 0, sizeof(struct rsi_auto_rate));
1036 auto_rate = (struct rsi_auto_rate *)skb->data;
1038 auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1039 auto_rate->collision_tolerance = cpu_to_le16(3);
1040 auto_rate->failure_limit = cpu_to_le16(3);
1041 auto_rate->initial_boundary = cpu_to_le16(3);
1042 auto_rate->max_threshold_limt = cpu_to_le16(27);
1044 auto_rate->desc_word[1] = cpu_to_le16(AUTO_RATE_IND);
1046 if (common->channel_width == BW_40MHZ)
1047 auto_rate->desc_word[7] |= cpu_to_le16(1);
1049 if (band == NL80211_BAND_2GHZ) {
1050 min_rate = RSI_RATE_1;
1051 rate_table_offset = 0;
1052 } else {
1053 min_rate = RSI_RATE_6;
1054 rate_table_offset = 4;
1057 for (ii = 0, jj = 0;
1058 ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1059 if (rate_bitmap & BIT(ii)) {
1060 selected_rates[jj++] =
1061 (rsi_rates[ii + rate_table_offset].bitrate / 5);
1062 rate_offset++;
1065 num_supported_rates = jj;
1067 if (common->vif_info[0].is_ht) {
1068 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1069 selected_rates[jj++] = mcs[ii];
1070 num_supported_rates += ARRAY_SIZE(mcs);
1071 rate_offset += ARRAY_SIZE(mcs);
1074 sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1076 /* mapping the rates to RSI rates */
1077 for (ii = 0; ii < jj; ii++) {
1078 if (rsi_map_rates(selected_rates[ii], &kk)) {
1079 auto_rate->supported_rates[ii] =
1080 cpu_to_le16(rsi_rates[kk].hw_value);
1081 } else {
1082 auto_rate->supported_rates[ii] =
1083 cpu_to_le16(rsi_mcsrates[kk]);
1087 /* loading HT rates in the bottom half of the auto rate table */
1088 if (common->vif_info[0].is_ht) {
1089 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1090 ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1091 if (common->vif_info[0].sgi ||
1092 conf_is_ht40(&common->priv->hw->conf))
1093 auto_rate->supported_rates[ii++] =
1094 cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1095 auto_rate->supported_rates[ii] =
1096 cpu_to_le16(rsi_mcsrates[kk--]);
1099 for (; ii < (RSI_TBL_SZ - 1); ii++) {
1100 auto_rate->supported_rates[ii] =
1101 cpu_to_le16(rsi_mcsrates[0]);
1105 for (; ii < RSI_TBL_SZ; ii++)
1106 auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1108 auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1109 auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1110 auto_rate->desc_word[7] |= cpu_to_le16(0 << 8);
1111 num_supported_rates *= 2;
1113 auto_rate->desc_word[0] = cpu_to_le16((sizeof(*auto_rate) -
1114 FRAME_DESC_SZ) |
1115 (RSI_WIFI_MGMT_Q << 12));
1117 skb_put(skb,
1118 sizeof(struct rsi_auto_rate));
1119 kfree(selected_rates);
1121 return rsi_send_internal_mgmt_frame(common, skb);
1125 * rsi_inform_bss_status() - This function informs about bss status with the
1126 * help of sta notify params by sending an internal
1127 * management frame to firmware.
1128 * @common: Pointer to the driver private structure.
1129 * @status: Bss status type.
1130 * @bssid: Bssid.
1131 * @qos_enable: Qos is enabled.
1132 * @aid: Aid (unique for all STAs).
1134 * Return: None.
1136 void rsi_inform_bss_status(struct rsi_common *common,
1137 u8 status,
1138 const unsigned char *bssid,
1139 u8 qos_enable,
1140 u16 aid)
1142 if (status) {
1143 rsi_hal_send_sta_notify_frame(common,
1144 RSI_IFTYPE_STATION,
1145 STA_CONNECTED,
1146 bssid,
1147 qos_enable,
1148 aid);
1149 if (common->min_rate == 0xffff)
1150 rsi_send_auto_rate_request(common);
1151 } else {
1152 rsi_hal_send_sta_notify_frame(common,
1153 RSI_IFTYPE_STATION,
1154 STA_DISCONNECTED,
1155 bssid,
1156 qos_enable,
1157 aid);
1162 * rsi_eeprom_read() - This function sends a frame to read the mac address
1163 * from the eeprom.
1164 * @common: Pointer to the driver private structure.
1166 * Return: 0 on success, -1 on failure.
1168 static int rsi_eeprom_read(struct rsi_common *common)
1170 struct rsi_mac_frame *mgmt_frame;
1171 struct sk_buff *skb;
1173 rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1175 skb = dev_alloc_skb(FRAME_DESC_SZ);
1176 if (!skb) {
1177 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1178 __func__);
1179 return -ENOMEM;
1182 memset(skb->data, 0, FRAME_DESC_SZ);
1183 mgmt_frame = (struct rsi_mac_frame *)skb->data;
1185 /* FrameType */
1186 mgmt_frame->desc_word[1] = cpu_to_le16(EEPROM_READ_TYPE);
1187 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1188 /* Number of bytes to read */
1189 mgmt_frame->desc_word[3] = cpu_to_le16(ETH_ALEN +
1190 WLAN_MAC_MAGIC_WORD_LEN +
1191 WLAN_HOST_MODE_LEN +
1192 WLAN_FW_VERSION_LEN);
1193 /* Address to read */
1194 mgmt_frame->desc_word[4] = cpu_to_le16(WLAN_MAC_EEPROM_ADDR);
1196 skb_put(skb, FRAME_DESC_SZ);
1198 return rsi_send_internal_mgmt_frame(common, skb);
1202 * This function sends a frame to block/unblock
1203 * data queues in the firmware
1205 * @param common Pointer to the driver private structure.
1206 * @param block event - block if true, unblock if false
1207 * @return 0 on success, -1 on failure.
1209 int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1211 struct rsi_mac_frame *mgmt_frame;
1212 struct sk_buff *skb;
1214 rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1216 skb = dev_alloc_skb(FRAME_DESC_SZ);
1217 if (!skb) {
1218 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1219 __func__);
1220 return -ENOMEM;
1223 memset(skb->data, 0, FRAME_DESC_SZ);
1224 mgmt_frame = (struct rsi_mac_frame *)skb->data;
1226 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1227 mgmt_frame->desc_word[1] = cpu_to_le16(BLOCK_HW_QUEUE);
1229 if (block_event) {
1230 rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1231 mgmt_frame->desc_word[4] = cpu_to_le16(0xf);
1232 } else {
1233 rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1234 mgmt_frame->desc_word[5] = cpu_to_le16(0xf);
1237 skb_put(skb, FRAME_DESC_SZ);
1239 return rsi_send_internal_mgmt_frame(common, skb);
1245 * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1246 * @common: Pointer to the driver private structure.
1247 * @msg: Pointer to received packet.
1249 * Return: 0 on success, -1 on failure.
1251 static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1252 u8 *msg)
1254 u8 sub_type = (msg[15] & 0xff);
1256 switch (sub_type) {
1257 case BOOTUP_PARAMS_REQUEST:
1258 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1259 __func__);
1260 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1261 if (rsi_eeprom_read(common)) {
1262 common->fsm_state = FSM_CARD_NOT_READY;
1263 goto out;
1264 } else {
1265 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1267 } else {
1268 rsi_dbg(INFO_ZONE,
1269 "%s: Received bootup params cfm in %d state\n",
1270 __func__, common->fsm_state);
1271 return 0;
1273 break;
1275 case EEPROM_READ_TYPE:
1276 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1277 if (msg[16] == MAGIC_WORD) {
1278 u8 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN
1279 + WLAN_MAC_MAGIC_WORD_LEN);
1280 memcpy(common->mac_addr,
1281 &msg[offset],
1282 ETH_ALEN);
1283 memcpy(&common->fw_ver,
1284 &msg[offset + ETH_ALEN],
1285 sizeof(struct version_info));
1287 } else {
1288 common->fsm_state = FSM_CARD_NOT_READY;
1289 break;
1291 if (rsi_send_reset_mac(common))
1292 goto out;
1293 else
1294 common->fsm_state = FSM_RESET_MAC_SENT;
1295 } else {
1296 rsi_dbg(ERR_ZONE,
1297 "%s: Received eeprom mac addr in %d state\n",
1298 __func__, common->fsm_state);
1299 return 0;
1301 break;
1303 case RESET_MAC_REQ:
1304 if (common->fsm_state == FSM_RESET_MAC_SENT) {
1305 rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
1306 __func__);
1308 if (rsi_load_radio_caps(common))
1309 goto out;
1310 else
1311 common->fsm_state = FSM_RADIO_CAPS_SENT;
1312 } else {
1313 rsi_dbg(ERR_ZONE,
1314 "%s: Received reset mac cfm in %d state\n",
1315 __func__, common->fsm_state);
1316 return 0;
1318 break;
1320 case RADIO_CAPABILITIES:
1321 if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
1322 common->rf_reset = 1;
1323 if (rsi_program_bb_rf(common)) {
1324 goto out;
1325 } else {
1326 common->fsm_state = FSM_BB_RF_PROG_SENT;
1327 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
1328 __func__);
1330 } else {
1331 rsi_dbg(INFO_ZONE,
1332 "%s: Received radio caps cfm in %d state\n",
1333 __func__, common->fsm_state);
1334 return 0;
1336 break;
1338 case BB_PROG_VALUES_REQUEST:
1339 case RF_PROG_VALUES_REQUEST:
1340 case BBP_PROG_IN_TA:
1341 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
1342 if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
1343 common->bb_rf_prog_count--;
1344 if (!common->bb_rf_prog_count) {
1345 common->fsm_state = FSM_MAC_INIT_DONE;
1346 return rsi_mac80211_attach(common);
1348 } else {
1349 rsi_dbg(INFO_ZONE,
1350 "%s: Received bbb_rf cfm in %d state\n",
1351 __func__, common->fsm_state);
1352 return 0;
1354 break;
1356 default:
1357 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
1358 __func__);
1359 break;
1361 return 0;
1362 out:
1363 rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
1364 __func__);
1365 return -EINVAL;
1369 * rsi_mgmt_pkt_recv() - This function processes the management packets
1370 * recieved from the hardware.
1371 * @common: Pointer to the driver private structure.
1372 * @msg: Pointer to the received packet.
1374 * Return: 0 on success, -1 on failure.
1376 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
1378 s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
1379 u16 msg_type = (msg[2]);
1380 int ret;
1382 rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
1383 __func__, msg_len, msg_type);
1385 if (msg_type == TA_CONFIRM_TYPE) {
1386 return rsi_handle_ta_confirm_type(common, msg);
1387 } else if (msg_type == CARD_READY_IND) {
1388 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
1389 __func__);
1390 if (common->fsm_state == FSM_CARD_NOT_READY) {
1391 rsi_set_default_parameters(common);
1393 ret = rsi_load_bootup_params(common);
1394 if (ret)
1395 return ret;
1396 else
1397 common->fsm_state = FSM_BOOT_PARAMS_SENT;
1398 } else {
1399 return -EINVAL;
1401 } else if (msg_type == TX_STATUS_IND) {
1402 if (msg[15] == PROBEREQ_CONFIRM) {
1403 common->mgmt_q_block = false;
1404 rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
1405 __func__);
1407 } else {
1408 return rsi_mgmt_pkt_to_core(common, msg, msg_len, msg_type);
1410 return 0;