2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
58 #include "dev-replace.h"
63 #include "compression.h"
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
71 struct btrfs_ioctl_timespec_32
{
74 } __attribute__ ((__packed__
));
76 struct btrfs_ioctl_received_subvol_args_32
{
77 char uuid
[BTRFS_UUID_SIZE
]; /* in */
78 __u64 stransid
; /* in */
79 __u64 rtransid
; /* out */
80 struct btrfs_ioctl_timespec_32 stime
; /* in */
81 struct btrfs_ioctl_timespec_32 rtime
; /* out */
83 __u64 reserved
[16]; /* in */
84 } __attribute__ ((__packed__
));
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
91 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
92 u64 off
, u64 olen
, u64 olen_aligned
, u64 destoff
,
95 /* Mask out flags that are inappropriate for the given type of inode. */
96 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
100 else if (S_ISREG(mode
))
101 return flags
& ~FS_DIRSYNC_FL
;
103 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
111 unsigned int iflags
= 0;
113 if (flags
& BTRFS_INODE_SYNC
)
114 iflags
|= FS_SYNC_FL
;
115 if (flags
& BTRFS_INODE_IMMUTABLE
)
116 iflags
|= FS_IMMUTABLE_FL
;
117 if (flags
& BTRFS_INODE_APPEND
)
118 iflags
|= FS_APPEND_FL
;
119 if (flags
& BTRFS_INODE_NODUMP
)
120 iflags
|= FS_NODUMP_FL
;
121 if (flags
& BTRFS_INODE_NOATIME
)
122 iflags
|= FS_NOATIME_FL
;
123 if (flags
& BTRFS_INODE_DIRSYNC
)
124 iflags
|= FS_DIRSYNC_FL
;
125 if (flags
& BTRFS_INODE_NODATACOW
)
126 iflags
|= FS_NOCOW_FL
;
128 if (flags
& BTRFS_INODE_NOCOMPRESS
)
129 iflags
|= FS_NOCOMP_FL
;
130 else if (flags
& BTRFS_INODE_COMPRESS
)
131 iflags
|= FS_COMPR_FL
;
137 * Update inode->i_flags based on the btrfs internal flags.
139 void btrfs_update_iflags(struct inode
*inode
)
141 struct btrfs_inode
*ip
= BTRFS_I(inode
);
142 unsigned int new_fl
= 0;
144 if (ip
->flags
& BTRFS_INODE_SYNC
)
146 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
147 new_fl
|= S_IMMUTABLE
;
148 if (ip
->flags
& BTRFS_INODE_APPEND
)
150 if (ip
->flags
& BTRFS_INODE_NOATIME
)
152 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
155 set_mask_bits(&inode
->i_flags
,
156 S_SYNC
| S_APPEND
| S_IMMUTABLE
| S_NOATIME
| S_DIRSYNC
,
161 * Inherit flags from the parent inode.
163 * Currently only the compression flags and the cow flags are inherited.
165 void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
172 flags
= BTRFS_I(dir
)->flags
;
174 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
175 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
176 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
177 } else if (flags
& BTRFS_INODE_COMPRESS
) {
178 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
179 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
182 if (flags
& BTRFS_INODE_NODATACOW
) {
183 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
184 if (S_ISREG(inode
->i_mode
))
185 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
188 btrfs_update_iflags(inode
);
191 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
193 struct btrfs_inode
*ip
= BTRFS_I(file_inode(file
));
194 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
196 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
201 static int check_flags(unsigned int flags
)
203 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
204 FS_NOATIME_FL
| FS_NODUMP_FL
| \
205 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
206 FS_NOCOMP_FL
| FS_COMPR_FL
|
210 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
216 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
218 struct inode
*inode
= file_inode(file
);
219 struct btrfs_inode
*ip
= BTRFS_I(inode
);
220 struct btrfs_root
*root
= ip
->root
;
221 struct btrfs_trans_handle
*trans
;
222 unsigned int flags
, oldflags
;
225 unsigned int i_oldflags
;
228 if (!inode_owner_or_capable(inode
))
231 if (btrfs_root_readonly(root
))
234 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
237 ret
= check_flags(flags
);
241 ret
= mnt_want_write_file(file
);
247 ip_oldflags
= ip
->flags
;
248 i_oldflags
= inode
->i_flags
;
249 mode
= inode
->i_mode
;
251 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
252 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
253 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
254 if (!capable(CAP_LINUX_IMMUTABLE
)) {
260 if (flags
& FS_SYNC_FL
)
261 ip
->flags
|= BTRFS_INODE_SYNC
;
263 ip
->flags
&= ~BTRFS_INODE_SYNC
;
264 if (flags
& FS_IMMUTABLE_FL
)
265 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
267 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
268 if (flags
& FS_APPEND_FL
)
269 ip
->flags
|= BTRFS_INODE_APPEND
;
271 ip
->flags
&= ~BTRFS_INODE_APPEND
;
272 if (flags
& FS_NODUMP_FL
)
273 ip
->flags
|= BTRFS_INODE_NODUMP
;
275 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
276 if (flags
& FS_NOATIME_FL
)
277 ip
->flags
|= BTRFS_INODE_NOATIME
;
279 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
280 if (flags
& FS_DIRSYNC_FL
)
281 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
283 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
284 if (flags
& FS_NOCOW_FL
) {
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
291 if (inode
->i_size
== 0)
292 ip
->flags
|= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM
;
295 ip
->flags
|= BTRFS_INODE_NODATACOW
;
299 * Revert back under same assumptions as above
302 if (inode
->i_size
== 0)
303 ip
->flags
&= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM
);
306 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
315 if (flags
& FS_NOCOMP_FL
) {
316 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
317 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
319 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
320 if (ret
&& ret
!= -ENODATA
)
322 } else if (flags
& FS_COMPR_FL
) {
325 ip
->flags
|= BTRFS_INODE_COMPRESS
;
326 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
328 if (root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
332 ret
= btrfs_set_prop(inode
, "btrfs.compression",
333 comp
, strlen(comp
), 0);
338 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
339 if (ret
&& ret
!= -ENODATA
)
341 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
344 trans
= btrfs_start_transaction(root
, 1);
346 ret
= PTR_ERR(trans
);
350 btrfs_update_iflags(inode
);
351 inode_inc_iversion(inode
);
352 inode
->i_ctime
= current_time(inode
);
353 ret
= btrfs_update_inode(trans
, root
, inode
);
355 btrfs_end_transaction(trans
, root
);
358 ip
->flags
= ip_oldflags
;
359 inode
->i_flags
= i_oldflags
;
364 mnt_drop_write_file(file
);
368 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
370 struct inode
*inode
= file_inode(file
);
372 return put_user(inode
->i_generation
, arg
);
375 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
377 struct btrfs_fs_info
*fs_info
= btrfs_sb(file_inode(file
)->i_sb
);
378 struct btrfs_device
*device
;
379 struct request_queue
*q
;
380 struct fstrim_range range
;
381 u64 minlen
= ULLONG_MAX
;
383 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
386 if (!capable(CAP_SYS_ADMIN
))
390 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
394 q
= bdev_get_queue(device
->bdev
);
395 if (blk_queue_discard(q
)) {
397 minlen
= min((u64
)q
->limits
.discard_granularity
,
405 if (copy_from_user(&range
, arg
, sizeof(range
)))
407 if (range
.start
> total_bytes
||
408 range
.len
< fs_info
->sb
->s_blocksize
)
411 range
.len
= min(range
.len
, total_bytes
- range
.start
);
412 range
.minlen
= max(range
.minlen
, minlen
);
413 ret
= btrfs_trim_fs(fs_info
->tree_root
, &range
);
417 if (copy_to_user(arg
, &range
, sizeof(range
)))
423 int btrfs_is_empty_uuid(u8
*uuid
)
427 for (i
= 0; i
< BTRFS_UUID_SIZE
; i
++) {
434 static noinline
int create_subvol(struct inode
*dir
,
435 struct dentry
*dentry
,
436 char *name
, int namelen
,
438 struct btrfs_qgroup_inherit
*inherit
)
440 struct btrfs_trans_handle
*trans
;
441 struct btrfs_key key
;
442 struct btrfs_root_item
*root_item
;
443 struct btrfs_inode_item
*inode_item
;
444 struct extent_buffer
*leaf
;
445 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
446 struct btrfs_root
*new_root
;
447 struct btrfs_block_rsv block_rsv
;
448 struct timespec cur_time
= current_time(dir
);
453 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
458 root_item
= kzalloc(sizeof(*root_item
), GFP_KERNEL
);
462 ret
= btrfs_find_free_objectid(root
->fs_info
->tree_root
, &objectid
);
467 * Don't create subvolume whose level is not zero. Or qgroup will be
468 * screwed up since it assumes subvolume qgroup's level to be 0.
470 if (btrfs_qgroup_level(objectid
)) {
475 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
477 * The same as the snapshot creation, please see the comment
478 * of create_snapshot().
480 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
481 8, &qgroup_reserved
, false);
485 trans
= btrfs_start_transaction(root
, 0);
487 ret
= PTR_ERR(trans
);
488 btrfs_subvolume_release_metadata(root
, &block_rsv
,
492 trans
->block_rsv
= &block_rsv
;
493 trans
->bytes_reserved
= block_rsv
.size
;
495 ret
= btrfs_qgroup_inherit(trans
, root
->fs_info
, 0, objectid
, inherit
);
499 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
505 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
506 btrfs_set_header_bytenr(leaf
, leaf
->start
);
507 btrfs_set_header_generation(leaf
, trans
->transid
);
508 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
509 btrfs_set_header_owner(leaf
, objectid
);
511 write_extent_buffer(leaf
, root
->fs_info
->fsid
, btrfs_header_fsid(),
513 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
514 btrfs_header_chunk_tree_uuid(leaf
),
516 btrfs_mark_buffer_dirty(leaf
);
518 inode_item
= &root_item
->inode
;
519 btrfs_set_stack_inode_generation(inode_item
, 1);
520 btrfs_set_stack_inode_size(inode_item
, 3);
521 btrfs_set_stack_inode_nlink(inode_item
, 1);
522 btrfs_set_stack_inode_nbytes(inode_item
, root
->nodesize
);
523 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
525 btrfs_set_root_flags(root_item
, 0);
526 btrfs_set_root_limit(root_item
, 0);
527 btrfs_set_stack_inode_flags(inode_item
, BTRFS_INODE_ROOT_ITEM_INIT
);
529 btrfs_set_root_bytenr(root_item
, leaf
->start
);
530 btrfs_set_root_generation(root_item
, trans
->transid
);
531 btrfs_set_root_level(root_item
, 0);
532 btrfs_set_root_refs(root_item
, 1);
533 btrfs_set_root_used(root_item
, leaf
->len
);
534 btrfs_set_root_last_snapshot(root_item
, 0);
536 btrfs_set_root_generation_v2(root_item
,
537 btrfs_root_generation(root_item
));
538 uuid_le_gen(&new_uuid
);
539 memcpy(root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
540 btrfs_set_stack_timespec_sec(&root_item
->otime
, cur_time
.tv_sec
);
541 btrfs_set_stack_timespec_nsec(&root_item
->otime
, cur_time
.tv_nsec
);
542 root_item
->ctime
= root_item
->otime
;
543 btrfs_set_root_ctransid(root_item
, trans
->transid
);
544 btrfs_set_root_otransid(root_item
, trans
->transid
);
546 btrfs_tree_unlock(leaf
);
547 free_extent_buffer(leaf
);
550 btrfs_set_root_dirid(root_item
, new_dirid
);
552 key
.objectid
= objectid
;
554 key
.type
= BTRFS_ROOT_ITEM_KEY
;
555 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
560 key
.offset
= (u64
)-1;
561 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
562 if (IS_ERR(new_root
)) {
563 ret
= PTR_ERR(new_root
);
564 btrfs_abort_transaction(trans
, ret
);
568 btrfs_record_root_in_trans(trans
, new_root
);
570 ret
= btrfs_create_subvol_root(trans
, new_root
, root
, new_dirid
);
572 /* We potentially lose an unused inode item here */
573 btrfs_abort_transaction(trans
, ret
);
577 mutex_lock(&new_root
->objectid_mutex
);
578 new_root
->highest_objectid
= new_dirid
;
579 mutex_unlock(&new_root
->objectid_mutex
);
582 * insert the directory item
584 ret
= btrfs_set_inode_index(dir
, &index
);
586 btrfs_abort_transaction(trans
, ret
);
590 ret
= btrfs_insert_dir_item(trans
, root
,
591 name
, namelen
, dir
, &key
,
592 BTRFS_FT_DIR
, index
);
594 btrfs_abort_transaction(trans
, ret
);
598 btrfs_i_size_write(dir
, dir
->i_size
+ namelen
* 2);
599 ret
= btrfs_update_inode(trans
, root
, dir
);
602 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
603 objectid
, root
->root_key
.objectid
,
604 btrfs_ino(dir
), index
, name
, namelen
);
607 ret
= btrfs_uuid_tree_add(trans
, root
->fs_info
->uuid_root
,
608 root_item
->uuid
, BTRFS_UUID_KEY_SUBVOL
,
611 btrfs_abort_transaction(trans
, ret
);
615 trans
->block_rsv
= NULL
;
616 trans
->bytes_reserved
= 0;
617 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
620 *async_transid
= trans
->transid
;
621 err
= btrfs_commit_transaction_async(trans
, root
, 1);
623 err
= btrfs_commit_transaction(trans
, root
);
625 err
= btrfs_commit_transaction(trans
, root
);
631 inode
= btrfs_lookup_dentry(dir
, dentry
);
633 return PTR_ERR(inode
);
634 d_instantiate(dentry
, inode
);
643 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root
*root
)
649 prepare_to_wait(&root
->subv_writers
->wait
, &wait
,
650 TASK_UNINTERRUPTIBLE
);
652 writers
= percpu_counter_sum(&root
->subv_writers
->counter
);
656 finish_wait(&root
->subv_writers
->wait
, &wait
);
660 static int create_snapshot(struct btrfs_root
*root
, struct inode
*dir
,
661 struct dentry
*dentry
, char *name
, int namelen
,
662 u64
*async_transid
, bool readonly
,
663 struct btrfs_qgroup_inherit
*inherit
)
666 struct btrfs_pending_snapshot
*pending_snapshot
;
667 struct btrfs_trans_handle
*trans
;
670 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
673 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_NOFS
);
674 if (!pending_snapshot
)
677 pending_snapshot
->root_item
= kzalloc(sizeof(struct btrfs_root_item
),
679 pending_snapshot
->path
= btrfs_alloc_path();
680 if (!pending_snapshot
->root_item
|| !pending_snapshot
->path
) {
685 atomic_inc(&root
->will_be_snapshoted
);
686 smp_mb__after_atomic();
687 btrfs_wait_for_no_snapshoting_writes(root
);
689 ret
= btrfs_start_delalloc_inodes(root
, 0);
693 btrfs_wait_ordered_extents(root
, -1, 0, (u64
)-1);
695 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
696 BTRFS_BLOCK_RSV_TEMP
);
698 * 1 - parent dir inode
701 * 2 - root ref/backref
702 * 1 - root of snapshot
705 ret
= btrfs_subvolume_reserve_metadata(BTRFS_I(dir
)->root
,
706 &pending_snapshot
->block_rsv
, 8,
707 &pending_snapshot
->qgroup_reserved
,
712 pending_snapshot
->dentry
= dentry
;
713 pending_snapshot
->root
= root
;
714 pending_snapshot
->readonly
= readonly
;
715 pending_snapshot
->dir
= dir
;
716 pending_snapshot
->inherit
= inherit
;
718 trans
= btrfs_start_transaction(root
, 0);
720 ret
= PTR_ERR(trans
);
724 spin_lock(&root
->fs_info
->trans_lock
);
725 list_add(&pending_snapshot
->list
,
726 &trans
->transaction
->pending_snapshots
);
727 spin_unlock(&root
->fs_info
->trans_lock
);
729 *async_transid
= trans
->transid
;
730 ret
= btrfs_commit_transaction_async(trans
,
731 root
->fs_info
->extent_root
, 1);
733 ret
= btrfs_commit_transaction(trans
, root
);
735 ret
= btrfs_commit_transaction(trans
,
736 root
->fs_info
->extent_root
);
741 ret
= pending_snapshot
->error
;
745 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
749 inode
= btrfs_lookup_dentry(d_inode(dentry
->d_parent
), dentry
);
751 ret
= PTR_ERR(inode
);
755 d_instantiate(dentry
, inode
);
758 btrfs_subvolume_release_metadata(BTRFS_I(dir
)->root
,
759 &pending_snapshot
->block_rsv
,
760 pending_snapshot
->qgroup_reserved
);
762 if (atomic_dec_and_test(&root
->will_be_snapshoted
))
763 wake_up_atomic_t(&root
->will_be_snapshoted
);
765 kfree(pending_snapshot
->root_item
);
766 btrfs_free_path(pending_snapshot
->path
);
767 kfree(pending_snapshot
);
772 /* copy of may_delete in fs/namei.c()
773 * Check whether we can remove a link victim from directory dir, check
774 * whether the type of victim is right.
775 * 1. We can't do it if dir is read-only (done in permission())
776 * 2. We should have write and exec permissions on dir
777 * 3. We can't remove anything from append-only dir
778 * 4. We can't do anything with immutable dir (done in permission())
779 * 5. If the sticky bit on dir is set we should either
780 * a. be owner of dir, or
781 * b. be owner of victim, or
782 * c. have CAP_FOWNER capability
783 * 6. If the victim is append-only or immutable we can't do anything with
784 * links pointing to it.
785 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
786 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
787 * 9. We can't remove a root or mountpoint.
788 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
789 * nfs_async_unlink().
792 static int btrfs_may_delete(struct inode
*dir
, struct dentry
*victim
, int isdir
)
796 if (d_really_is_negative(victim
))
799 BUG_ON(d_inode(victim
->d_parent
) != dir
);
800 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
802 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
807 if (check_sticky(dir
, d_inode(victim
)) || IS_APPEND(d_inode(victim
)) ||
808 IS_IMMUTABLE(d_inode(victim
)) || IS_SWAPFILE(d_inode(victim
)))
811 if (!d_is_dir(victim
))
815 } else if (d_is_dir(victim
))
819 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
824 /* copy of may_create in fs/namei.c() */
825 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
827 if (d_really_is_positive(child
))
831 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
835 * Create a new subvolume below @parent. This is largely modeled after
836 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
837 * inside this filesystem so it's quite a bit simpler.
839 static noinline
int btrfs_mksubvol(struct path
*parent
,
840 char *name
, int namelen
,
841 struct btrfs_root
*snap_src
,
842 u64
*async_transid
, bool readonly
,
843 struct btrfs_qgroup_inherit
*inherit
)
845 struct inode
*dir
= d_inode(parent
->dentry
);
846 struct dentry
*dentry
;
849 error
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
853 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
854 error
= PTR_ERR(dentry
);
858 error
= btrfs_may_create(dir
, dentry
);
863 * even if this name doesn't exist, we may get hash collisions.
864 * check for them now when we can safely fail
866 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
872 down_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
874 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
878 error
= create_snapshot(snap_src
, dir
, dentry
, name
, namelen
,
879 async_transid
, readonly
, inherit
);
881 error
= create_subvol(dir
, dentry
, name
, namelen
,
882 async_transid
, inherit
);
885 fsnotify_mkdir(dir
, dentry
);
887 up_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
896 * When we're defragging a range, we don't want to kick it off again
897 * if it is really just waiting for delalloc to send it down.
898 * If we find a nice big extent or delalloc range for the bytes in the
899 * file you want to defrag, we return 0 to let you know to skip this
902 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, u32 thresh
)
904 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
905 struct extent_map
*em
= NULL
;
906 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
909 read_lock(&em_tree
->lock
);
910 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_SIZE
);
911 read_unlock(&em_tree
->lock
);
914 end
= extent_map_end(em
);
916 if (end
- offset
> thresh
)
919 /* if we already have a nice delalloc here, just stop */
921 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
922 thresh
, EXTENT_DELALLOC
, 1);
929 * helper function to walk through a file and find extents
930 * newer than a specific transid, and smaller than thresh.
932 * This is used by the defragging code to find new and small
935 static int find_new_extents(struct btrfs_root
*root
,
936 struct inode
*inode
, u64 newer_than
,
937 u64
*off
, u32 thresh
)
939 struct btrfs_path
*path
;
940 struct btrfs_key min_key
;
941 struct extent_buffer
*leaf
;
942 struct btrfs_file_extent_item
*extent
;
945 u64 ino
= btrfs_ino(inode
);
947 path
= btrfs_alloc_path();
951 min_key
.objectid
= ino
;
952 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
953 min_key
.offset
= *off
;
956 ret
= btrfs_search_forward(root
, &min_key
, path
, newer_than
);
960 if (min_key
.objectid
!= ino
)
962 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
965 leaf
= path
->nodes
[0];
966 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
967 struct btrfs_file_extent_item
);
969 type
= btrfs_file_extent_type(leaf
, extent
);
970 if (type
== BTRFS_FILE_EXTENT_REG
&&
971 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
972 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
973 *off
= min_key
.offset
;
974 btrfs_free_path(path
);
979 if (path
->slots
[0] < btrfs_header_nritems(leaf
)) {
980 btrfs_item_key_to_cpu(leaf
, &min_key
, path
->slots
[0]);
984 if (min_key
.offset
== (u64
)-1)
988 btrfs_release_path(path
);
991 btrfs_free_path(path
);
995 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
997 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
998 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
999 struct extent_map
*em
;
1000 u64 len
= PAGE_SIZE
;
1003 * hopefully we have this extent in the tree already, try without
1004 * the full extent lock
1006 read_lock(&em_tree
->lock
);
1007 em
= lookup_extent_mapping(em_tree
, start
, len
);
1008 read_unlock(&em_tree
->lock
);
1011 struct extent_state
*cached
= NULL
;
1012 u64 end
= start
+ len
- 1;
1014 /* get the big lock and read metadata off disk */
1015 lock_extent_bits(io_tree
, start
, end
, &cached
);
1016 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
1017 unlock_extent_cached(io_tree
, start
, end
, &cached
, GFP_NOFS
);
1026 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
1028 struct extent_map
*next
;
1031 /* this is the last extent */
1032 if (em
->start
+ em
->len
>= i_size_read(inode
))
1035 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
1036 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
1038 else if ((em
->block_start
+ em
->block_len
== next
->block_start
) &&
1039 (em
->block_len
> SZ_128K
&& next
->block_len
> SZ_128K
))
1042 free_extent_map(next
);
1046 static int should_defrag_range(struct inode
*inode
, u64 start
, u32 thresh
,
1047 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
1050 struct extent_map
*em
;
1052 bool next_mergeable
= true;
1053 bool prev_mergeable
= true;
1056 * make sure that once we start defragging an extent, we keep on
1059 if (start
< *defrag_end
)
1064 em
= defrag_lookup_extent(inode
, start
);
1068 /* this will cover holes, and inline extents */
1069 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1075 prev_mergeable
= false;
1077 next_mergeable
= defrag_check_next_extent(inode
, em
);
1079 * we hit a real extent, if it is big or the next extent is not a
1080 * real extent, don't bother defragging it
1082 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
1083 (em
->len
>= thresh
|| (!next_mergeable
&& !prev_mergeable
)))
1087 * last_len ends up being a counter of how many bytes we've defragged.
1088 * every time we choose not to defrag an extent, we reset *last_len
1089 * so that the next tiny extent will force a defrag.
1091 * The end result of this is that tiny extents before a single big
1092 * extent will force at least part of that big extent to be defragged.
1095 *defrag_end
= extent_map_end(em
);
1098 *skip
= extent_map_end(em
);
1102 free_extent_map(em
);
1107 * it doesn't do much good to defrag one or two pages
1108 * at a time. This pulls in a nice chunk of pages
1109 * to COW and defrag.
1111 * It also makes sure the delalloc code has enough
1112 * dirty data to avoid making new small extents as part
1115 * It's a good idea to start RA on this range
1116 * before calling this.
1118 static int cluster_pages_for_defrag(struct inode
*inode
,
1119 struct page
**pages
,
1120 unsigned long start_index
,
1121 unsigned long num_pages
)
1123 unsigned long file_end
;
1124 u64 isize
= i_size_read(inode
);
1131 struct btrfs_ordered_extent
*ordered
;
1132 struct extent_state
*cached_state
= NULL
;
1133 struct extent_io_tree
*tree
;
1134 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1136 file_end
= (isize
- 1) >> PAGE_SHIFT
;
1137 if (!isize
|| start_index
> file_end
)
1140 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
1142 ret
= btrfs_delalloc_reserve_space(inode
,
1143 start_index
<< PAGE_SHIFT
,
1144 page_cnt
<< PAGE_SHIFT
);
1148 tree
= &BTRFS_I(inode
)->io_tree
;
1150 /* step one, lock all the pages */
1151 for (i
= 0; i
< page_cnt
; i
++) {
1154 page
= find_or_create_page(inode
->i_mapping
,
1155 start_index
+ i
, mask
);
1159 page_start
= page_offset(page
);
1160 page_end
= page_start
+ PAGE_SIZE
- 1;
1162 lock_extent_bits(tree
, page_start
, page_end
,
1164 ordered
= btrfs_lookup_ordered_extent(inode
,
1166 unlock_extent_cached(tree
, page_start
, page_end
,
1167 &cached_state
, GFP_NOFS
);
1172 btrfs_start_ordered_extent(inode
, ordered
, 1);
1173 btrfs_put_ordered_extent(ordered
);
1176 * we unlocked the page above, so we need check if
1177 * it was released or not.
1179 if (page
->mapping
!= inode
->i_mapping
) {
1186 if (!PageUptodate(page
)) {
1187 btrfs_readpage(NULL
, page
);
1189 if (!PageUptodate(page
)) {
1197 if (page
->mapping
!= inode
->i_mapping
) {
1209 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1213 * so now we have a nice long stream of locked
1214 * and up to date pages, lets wait on them
1216 for (i
= 0; i
< i_done
; i
++)
1217 wait_on_page_writeback(pages
[i
]);
1219 page_start
= page_offset(pages
[0]);
1220 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_SIZE
;
1222 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1223 page_start
, page_end
- 1, &cached_state
);
1224 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1225 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1226 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1227 &cached_state
, GFP_NOFS
);
1229 if (i_done
!= page_cnt
) {
1230 spin_lock(&BTRFS_I(inode
)->lock
);
1231 BTRFS_I(inode
)->outstanding_extents
++;
1232 spin_unlock(&BTRFS_I(inode
)->lock
);
1233 btrfs_delalloc_release_space(inode
,
1234 start_index
<< PAGE_SHIFT
,
1235 (page_cnt
- i_done
) << PAGE_SHIFT
);
1239 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1242 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1243 page_start
, page_end
- 1, &cached_state
,
1246 for (i
= 0; i
< i_done
; i
++) {
1247 clear_page_dirty_for_io(pages
[i
]);
1248 ClearPageChecked(pages
[i
]);
1249 set_page_extent_mapped(pages
[i
]);
1250 set_page_dirty(pages
[i
]);
1251 unlock_page(pages
[i
]);
1256 for (i
= 0; i
< i_done
; i
++) {
1257 unlock_page(pages
[i
]);
1260 btrfs_delalloc_release_space(inode
,
1261 start_index
<< PAGE_SHIFT
,
1262 page_cnt
<< PAGE_SHIFT
);
1267 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1268 struct btrfs_ioctl_defrag_range_args
*range
,
1269 u64 newer_than
, unsigned long max_to_defrag
)
1271 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1272 struct file_ra_state
*ra
= NULL
;
1273 unsigned long last_index
;
1274 u64 isize
= i_size_read(inode
);
1278 u64 newer_off
= range
->start
;
1280 unsigned long ra_index
= 0;
1282 int defrag_count
= 0;
1283 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1284 u32 extent_thresh
= range
->extent_thresh
;
1285 unsigned long max_cluster
= SZ_256K
>> PAGE_SHIFT
;
1286 unsigned long cluster
= max_cluster
;
1287 u64 new_align
= ~((u64
)SZ_128K
- 1);
1288 struct page
**pages
= NULL
;
1293 if (range
->start
>= isize
)
1296 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1297 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1299 if (range
->compress_type
)
1300 compress_type
= range
->compress_type
;
1303 if (extent_thresh
== 0)
1304 extent_thresh
= SZ_256K
;
1307 * if we were not given a file, allocate a readahead
1311 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
1314 file_ra_state_init(ra
, inode
->i_mapping
);
1319 pages
= kmalloc_array(max_cluster
, sizeof(struct page
*),
1326 /* find the last page to defrag */
1327 if (range
->start
+ range
->len
> range
->start
) {
1328 last_index
= min_t(u64
, isize
- 1,
1329 range
->start
+ range
->len
- 1) >> PAGE_SHIFT
;
1331 last_index
= (isize
- 1) >> PAGE_SHIFT
;
1335 ret
= find_new_extents(root
, inode
, newer_than
,
1336 &newer_off
, SZ_64K
);
1338 range
->start
= newer_off
;
1340 * we always align our defrag to help keep
1341 * the extents in the file evenly spaced
1343 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1347 i
= range
->start
>> PAGE_SHIFT
;
1350 max_to_defrag
= last_index
- i
+ 1;
1353 * make writeback starts from i, so the defrag range can be
1354 * written sequentially.
1356 if (i
< inode
->i_mapping
->writeback_index
)
1357 inode
->i_mapping
->writeback_index
= i
;
1359 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1360 (i
< DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
))) {
1362 * make sure we stop running if someone unmounts
1365 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1368 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1369 btrfs_debug(root
->fs_info
, "defrag_file cancelled");
1374 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_SHIFT
,
1375 extent_thresh
, &last_len
, &skip
,
1376 &defrag_end
, range
->flags
&
1377 BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1380 * the should_defrag function tells us how much to skip
1381 * bump our counter by the suggested amount
1383 next
= DIV_ROUND_UP(skip
, PAGE_SIZE
);
1384 i
= max(i
+ 1, next
);
1389 cluster
= (PAGE_ALIGN(defrag_end
) >>
1391 cluster
= min(cluster
, max_cluster
);
1393 cluster
= max_cluster
;
1396 if (i
+ cluster
> ra_index
) {
1397 ra_index
= max(i
, ra_index
);
1398 btrfs_force_ra(inode
->i_mapping
, ra
, file
, ra_index
,
1400 ra_index
+= cluster
;
1404 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)
1405 BTRFS_I(inode
)->force_compress
= compress_type
;
1406 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1408 inode_unlock(inode
);
1412 defrag_count
+= ret
;
1413 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1414 inode_unlock(inode
);
1417 if (newer_off
== (u64
)-1)
1423 newer_off
= max(newer_off
+ 1,
1424 (u64
)i
<< PAGE_SHIFT
);
1426 ret
= find_new_extents(root
, inode
, newer_than
,
1427 &newer_off
, SZ_64K
);
1429 range
->start
= newer_off
;
1430 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1437 last_len
+= ret
<< PAGE_SHIFT
;
1445 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
)) {
1446 filemap_flush(inode
->i_mapping
);
1447 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1448 &BTRFS_I(inode
)->runtime_flags
))
1449 filemap_flush(inode
->i_mapping
);
1452 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1453 /* the filemap_flush will queue IO into the worker threads, but
1454 * we have to make sure the IO is actually started and that
1455 * ordered extents get created before we return
1457 atomic_inc(&root
->fs_info
->async_submit_draining
);
1458 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
1459 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1460 wait_event(root
->fs_info
->async_submit_wait
,
1461 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
1462 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
1464 atomic_dec(&root
->fs_info
->async_submit_draining
);
1467 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1468 btrfs_set_fs_incompat(root
->fs_info
, COMPRESS_LZO
);
1474 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1476 BTRFS_I(inode
)->force_compress
= BTRFS_COMPRESS_NONE
;
1477 inode_unlock(inode
);
1485 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1491 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
1492 struct btrfs_ioctl_vol_args
*vol_args
;
1493 struct btrfs_trans_handle
*trans
;
1494 struct btrfs_device
*device
= NULL
;
1497 char *devstr
= NULL
;
1501 if (!capable(CAP_SYS_ADMIN
))
1504 ret
= mnt_want_write_file(file
);
1508 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
1510 mnt_drop_write_file(file
);
1511 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
1514 mutex_lock(&root
->fs_info
->volume_mutex
);
1515 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1516 if (IS_ERR(vol_args
)) {
1517 ret
= PTR_ERR(vol_args
);
1521 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1523 sizestr
= vol_args
->name
;
1524 devstr
= strchr(sizestr
, ':');
1526 sizestr
= devstr
+ 1;
1528 devstr
= vol_args
->name
;
1529 ret
= kstrtoull(devstr
, 10, &devid
);
1536 btrfs_info(root
->fs_info
, "resizing devid %llu", devid
);
1539 device
= btrfs_find_device(root
->fs_info
, devid
, NULL
, NULL
);
1541 btrfs_info(root
->fs_info
, "resizer unable to find device %llu",
1547 if (!device
->writeable
) {
1548 btrfs_info(root
->fs_info
,
1549 "resizer unable to apply on readonly device %llu",
1555 if (!strcmp(sizestr
, "max"))
1556 new_size
= device
->bdev
->bd_inode
->i_size
;
1558 if (sizestr
[0] == '-') {
1561 } else if (sizestr
[0] == '+') {
1565 new_size
= memparse(sizestr
, &retptr
);
1566 if (*retptr
!= '\0' || new_size
== 0) {
1572 if (device
->is_tgtdev_for_dev_replace
) {
1577 old_size
= btrfs_device_get_total_bytes(device
);
1580 if (new_size
> old_size
) {
1584 new_size
= old_size
- new_size
;
1585 } else if (mod
> 0) {
1586 if (new_size
> ULLONG_MAX
- old_size
) {
1590 new_size
= old_size
+ new_size
;
1593 if (new_size
< SZ_256M
) {
1597 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1602 new_size
= div_u64(new_size
, root
->sectorsize
);
1603 new_size
*= root
->sectorsize
;
1605 btrfs_info_in_rcu(root
->fs_info
, "new size for %s is %llu",
1606 rcu_str_deref(device
->name
), new_size
);
1608 if (new_size
> old_size
) {
1609 trans
= btrfs_start_transaction(root
, 0);
1610 if (IS_ERR(trans
)) {
1611 ret
= PTR_ERR(trans
);
1614 ret
= btrfs_grow_device(trans
, device
, new_size
);
1615 btrfs_commit_transaction(trans
, root
);
1616 } else if (new_size
< old_size
) {
1617 ret
= btrfs_shrink_device(device
, new_size
);
1618 } /* equal, nothing need to do */
1623 mutex_unlock(&root
->fs_info
->volume_mutex
);
1624 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
1625 mnt_drop_write_file(file
);
1629 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1630 char *name
, unsigned long fd
, int subvol
,
1631 u64
*transid
, bool readonly
,
1632 struct btrfs_qgroup_inherit
*inherit
)
1637 if (!S_ISDIR(file_inode(file
)->i_mode
))
1640 ret
= mnt_want_write_file(file
);
1644 namelen
= strlen(name
);
1645 if (strchr(name
, '/')) {
1647 goto out_drop_write
;
1650 if (name
[0] == '.' &&
1651 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1653 goto out_drop_write
;
1657 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1658 NULL
, transid
, readonly
, inherit
);
1660 struct fd src
= fdget(fd
);
1661 struct inode
*src_inode
;
1664 goto out_drop_write
;
1667 src_inode
= file_inode(src
.file
);
1668 if (src_inode
->i_sb
!= file_inode(file
)->i_sb
) {
1669 btrfs_info(BTRFS_I(file_inode(file
))->root
->fs_info
,
1670 "Snapshot src from another FS");
1672 } else if (!inode_owner_or_capable(src_inode
)) {
1674 * Subvolume creation is not restricted, but snapshots
1675 * are limited to own subvolumes only
1679 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1680 BTRFS_I(src_inode
)->root
,
1681 transid
, readonly
, inherit
);
1686 mnt_drop_write_file(file
);
1691 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1692 void __user
*arg
, int subvol
)
1694 struct btrfs_ioctl_vol_args
*vol_args
;
1697 if (!S_ISDIR(file_inode(file
)->i_mode
))
1700 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1701 if (IS_ERR(vol_args
))
1702 return PTR_ERR(vol_args
);
1703 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1705 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1706 vol_args
->fd
, subvol
,
1713 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1714 void __user
*arg
, int subvol
)
1716 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1720 bool readonly
= false;
1721 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1723 if (!S_ISDIR(file_inode(file
)->i_mode
))
1726 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1727 if (IS_ERR(vol_args
))
1728 return PTR_ERR(vol_args
);
1729 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1731 if (vol_args
->flags
&
1732 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
|
1733 BTRFS_SUBVOL_QGROUP_INHERIT
)) {
1738 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1740 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1742 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1743 if (vol_args
->size
> PAGE_SIZE
) {
1747 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1748 if (IS_ERR(inherit
)) {
1749 ret
= PTR_ERR(inherit
);
1754 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1755 vol_args
->fd
, subvol
, ptr
,
1760 if (ptr
&& copy_to_user(arg
+
1761 offsetof(struct btrfs_ioctl_vol_args_v2
,
1773 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1776 struct inode
*inode
= file_inode(file
);
1777 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1781 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1784 down_read(&root
->fs_info
->subvol_sem
);
1785 if (btrfs_root_readonly(root
))
1786 flags
|= BTRFS_SUBVOL_RDONLY
;
1787 up_read(&root
->fs_info
->subvol_sem
);
1789 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1795 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1798 struct inode
*inode
= file_inode(file
);
1799 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1800 struct btrfs_trans_handle
*trans
;
1805 if (!inode_owner_or_capable(inode
))
1808 ret
= mnt_want_write_file(file
);
1812 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
1814 goto out_drop_write
;
1817 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1819 goto out_drop_write
;
1822 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
) {
1824 goto out_drop_write
;
1827 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1829 goto out_drop_write
;
1832 down_write(&root
->fs_info
->subvol_sem
);
1835 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1838 root_flags
= btrfs_root_flags(&root
->root_item
);
1839 if (flags
& BTRFS_SUBVOL_RDONLY
) {
1840 btrfs_set_root_flags(&root
->root_item
,
1841 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1844 * Block RO -> RW transition if this subvolume is involved in
1847 spin_lock(&root
->root_item_lock
);
1848 if (root
->send_in_progress
== 0) {
1849 btrfs_set_root_flags(&root
->root_item
,
1850 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1851 spin_unlock(&root
->root_item_lock
);
1853 spin_unlock(&root
->root_item_lock
);
1854 btrfs_warn(root
->fs_info
,
1855 "Attempt to set subvolume %llu read-write during send",
1856 root
->root_key
.objectid
);
1862 trans
= btrfs_start_transaction(root
, 1);
1863 if (IS_ERR(trans
)) {
1864 ret
= PTR_ERR(trans
);
1868 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
1869 &root
->root_key
, &root
->root_item
);
1871 btrfs_commit_transaction(trans
, root
);
1874 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1876 up_write(&root
->fs_info
->subvol_sem
);
1878 mnt_drop_write_file(file
);
1884 * helper to check if the subvolume references other subvolumes
1886 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1888 struct btrfs_path
*path
;
1889 struct btrfs_dir_item
*di
;
1890 struct btrfs_key key
;
1894 path
= btrfs_alloc_path();
1898 /* Make sure this root isn't set as the default subvol */
1899 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
1900 di
= btrfs_lookup_dir_item(NULL
, root
->fs_info
->tree_root
, path
,
1901 dir_id
, "default", 7, 0);
1902 if (di
&& !IS_ERR(di
)) {
1903 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1904 if (key
.objectid
== root
->root_key
.objectid
) {
1906 btrfs_err(root
->fs_info
,
1907 "deleting default subvolume %llu is not allowed",
1911 btrfs_release_path(path
);
1914 key
.objectid
= root
->root_key
.objectid
;
1915 key
.type
= BTRFS_ROOT_REF_KEY
;
1916 key
.offset
= (u64
)-1;
1918 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
,
1925 if (path
->slots
[0] > 0) {
1927 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1928 if (key
.objectid
== root
->root_key
.objectid
&&
1929 key
.type
== BTRFS_ROOT_REF_KEY
)
1933 btrfs_free_path(path
);
1937 static noinline
int key_in_sk(struct btrfs_key
*key
,
1938 struct btrfs_ioctl_search_key
*sk
)
1940 struct btrfs_key test
;
1943 test
.objectid
= sk
->min_objectid
;
1944 test
.type
= sk
->min_type
;
1945 test
.offset
= sk
->min_offset
;
1947 ret
= btrfs_comp_cpu_keys(key
, &test
);
1951 test
.objectid
= sk
->max_objectid
;
1952 test
.type
= sk
->max_type
;
1953 test
.offset
= sk
->max_offset
;
1955 ret
= btrfs_comp_cpu_keys(key
, &test
);
1961 static noinline
int copy_to_sk(struct btrfs_path
*path
,
1962 struct btrfs_key
*key
,
1963 struct btrfs_ioctl_search_key
*sk
,
1966 unsigned long *sk_offset
,
1970 struct extent_buffer
*leaf
;
1971 struct btrfs_ioctl_search_header sh
;
1972 struct btrfs_key test
;
1973 unsigned long item_off
;
1974 unsigned long item_len
;
1980 leaf
= path
->nodes
[0];
1981 slot
= path
->slots
[0];
1982 nritems
= btrfs_header_nritems(leaf
);
1984 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1988 found_transid
= btrfs_header_generation(leaf
);
1990 for (i
= slot
; i
< nritems
; i
++) {
1991 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1992 item_len
= btrfs_item_size_nr(leaf
, i
);
1994 btrfs_item_key_to_cpu(leaf
, key
, i
);
1995 if (!key_in_sk(key
, sk
))
1998 if (sizeof(sh
) + item_len
> *buf_size
) {
2005 * return one empty item back for v1, which does not
2009 *buf_size
= sizeof(sh
) + item_len
;
2014 if (sizeof(sh
) + item_len
+ *sk_offset
> *buf_size
) {
2019 sh
.objectid
= key
->objectid
;
2020 sh
.offset
= key
->offset
;
2021 sh
.type
= key
->type
;
2023 sh
.transid
= found_transid
;
2025 /* copy search result header */
2026 if (copy_to_user(ubuf
+ *sk_offset
, &sh
, sizeof(sh
))) {
2031 *sk_offset
+= sizeof(sh
);
2034 char __user
*up
= ubuf
+ *sk_offset
;
2036 if (read_extent_buffer_to_user(leaf
, up
,
2037 item_off
, item_len
)) {
2042 *sk_offset
+= item_len
;
2046 if (ret
) /* -EOVERFLOW from above */
2049 if (*num_found
>= sk
->nr_items
) {
2056 test
.objectid
= sk
->max_objectid
;
2057 test
.type
= sk
->max_type
;
2058 test
.offset
= sk
->max_offset
;
2059 if (btrfs_comp_cpu_keys(key
, &test
) >= 0)
2061 else if (key
->offset
< (u64
)-1)
2063 else if (key
->type
< (u8
)-1) {
2066 } else if (key
->objectid
< (u64
)-1) {
2074 * 0: all items from this leaf copied, continue with next
2075 * 1: * more items can be copied, but unused buffer is too small
2076 * * all items were found
2077 * Either way, it will stops the loop which iterates to the next
2079 * -EOVERFLOW: item was to large for buffer
2080 * -EFAULT: could not copy extent buffer back to userspace
2085 static noinline
int search_ioctl(struct inode
*inode
,
2086 struct btrfs_ioctl_search_key
*sk
,
2090 struct btrfs_root
*root
;
2091 struct btrfs_key key
;
2092 struct btrfs_path
*path
;
2093 struct btrfs_fs_info
*info
= BTRFS_I(inode
)->root
->fs_info
;
2096 unsigned long sk_offset
= 0;
2098 if (*buf_size
< sizeof(struct btrfs_ioctl_search_header
)) {
2099 *buf_size
= sizeof(struct btrfs_ioctl_search_header
);
2103 path
= btrfs_alloc_path();
2107 if (sk
->tree_id
== 0) {
2108 /* search the root of the inode that was passed */
2109 root
= BTRFS_I(inode
)->root
;
2111 key
.objectid
= sk
->tree_id
;
2112 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2113 key
.offset
= (u64
)-1;
2114 root
= btrfs_read_fs_root_no_name(info
, &key
);
2116 btrfs_free_path(path
);
2121 key
.objectid
= sk
->min_objectid
;
2122 key
.type
= sk
->min_type
;
2123 key
.offset
= sk
->min_offset
;
2126 ret
= btrfs_search_forward(root
, &key
, path
, sk
->min_transid
);
2132 ret
= copy_to_sk(path
, &key
, sk
, buf_size
, ubuf
,
2133 &sk_offset
, &num_found
);
2134 btrfs_release_path(path
);
2142 sk
->nr_items
= num_found
;
2143 btrfs_free_path(path
);
2147 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
2150 struct btrfs_ioctl_search_args __user
*uargs
;
2151 struct btrfs_ioctl_search_key sk
;
2152 struct inode
*inode
;
2156 if (!capable(CAP_SYS_ADMIN
))
2159 uargs
= (struct btrfs_ioctl_search_args __user
*)argp
;
2161 if (copy_from_user(&sk
, &uargs
->key
, sizeof(sk
)))
2164 buf_size
= sizeof(uargs
->buf
);
2166 inode
= file_inode(file
);
2167 ret
= search_ioctl(inode
, &sk
, &buf_size
, uargs
->buf
);
2170 * In the origin implementation an overflow is handled by returning a
2171 * search header with a len of zero, so reset ret.
2173 if (ret
== -EOVERFLOW
)
2176 if (ret
== 0 && copy_to_user(&uargs
->key
, &sk
, sizeof(sk
)))
2181 static noinline
int btrfs_ioctl_tree_search_v2(struct file
*file
,
2184 struct btrfs_ioctl_search_args_v2 __user
*uarg
;
2185 struct btrfs_ioctl_search_args_v2 args
;
2186 struct inode
*inode
;
2189 const size_t buf_limit
= SZ_16M
;
2191 if (!capable(CAP_SYS_ADMIN
))
2194 /* copy search header and buffer size */
2195 uarg
= (struct btrfs_ioctl_search_args_v2 __user
*)argp
;
2196 if (copy_from_user(&args
, uarg
, sizeof(args
)))
2199 buf_size
= args
.buf_size
;
2201 if (buf_size
< sizeof(struct btrfs_ioctl_search_header
))
2204 /* limit result size to 16MB */
2205 if (buf_size
> buf_limit
)
2206 buf_size
= buf_limit
;
2208 inode
= file_inode(file
);
2209 ret
= search_ioctl(inode
, &args
.key
, &buf_size
,
2210 (char *)(&uarg
->buf
[0]));
2211 if (ret
== 0 && copy_to_user(&uarg
->key
, &args
.key
, sizeof(args
.key
)))
2213 else if (ret
== -EOVERFLOW
&&
2214 copy_to_user(&uarg
->buf_size
, &buf_size
, sizeof(buf_size
)))
2221 * Search INODE_REFs to identify path name of 'dirid' directory
2222 * in a 'tree_id' tree. and sets path name to 'name'.
2224 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
2225 u64 tree_id
, u64 dirid
, char *name
)
2227 struct btrfs_root
*root
;
2228 struct btrfs_key key
;
2234 struct btrfs_inode_ref
*iref
;
2235 struct extent_buffer
*l
;
2236 struct btrfs_path
*path
;
2238 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
2243 path
= btrfs_alloc_path();
2247 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
2249 key
.objectid
= tree_id
;
2250 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2251 key
.offset
= (u64
)-1;
2252 root
= btrfs_read_fs_root_no_name(info
, &key
);
2254 btrfs_err(info
, "could not find root %llu", tree_id
);
2259 key
.objectid
= dirid
;
2260 key
.type
= BTRFS_INODE_REF_KEY
;
2261 key
.offset
= (u64
)-1;
2264 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2268 ret
= btrfs_previous_item(root
, path
, dirid
,
2269 BTRFS_INODE_REF_KEY
);
2279 slot
= path
->slots
[0];
2280 btrfs_item_key_to_cpu(l
, &key
, slot
);
2282 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
2283 len
= btrfs_inode_ref_name_len(l
, iref
);
2285 total_len
+= len
+ 1;
2287 ret
= -ENAMETOOLONG
;
2292 read_extent_buffer(l
, ptr
, (unsigned long)(iref
+ 1), len
);
2294 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
2297 btrfs_release_path(path
);
2298 key
.objectid
= key
.offset
;
2299 key
.offset
= (u64
)-1;
2300 dirid
= key
.objectid
;
2302 memmove(name
, ptr
, total_len
);
2303 name
[total_len
] = '\0';
2306 btrfs_free_path(path
);
2310 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2313 struct btrfs_ioctl_ino_lookup_args
*args
;
2314 struct inode
*inode
;
2317 args
= memdup_user(argp
, sizeof(*args
));
2319 return PTR_ERR(args
);
2321 inode
= file_inode(file
);
2324 * Unprivileged query to obtain the containing subvolume root id. The
2325 * path is reset so it's consistent with btrfs_search_path_in_tree.
2327 if (args
->treeid
== 0)
2328 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2330 if (args
->objectid
== BTRFS_FIRST_FREE_OBJECTID
) {
2335 if (!capable(CAP_SYS_ADMIN
)) {
2340 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2341 args
->treeid
, args
->objectid
,
2345 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2352 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2355 struct dentry
*parent
= file
->f_path
.dentry
;
2356 struct dentry
*dentry
;
2357 struct inode
*dir
= d_inode(parent
);
2358 struct inode
*inode
;
2359 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2360 struct btrfs_root
*dest
= NULL
;
2361 struct btrfs_ioctl_vol_args
*vol_args
;
2362 struct btrfs_trans_handle
*trans
;
2363 struct btrfs_block_rsv block_rsv
;
2365 u64 qgroup_reserved
;
2370 if (!S_ISDIR(dir
->i_mode
))
2373 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2374 if (IS_ERR(vol_args
))
2375 return PTR_ERR(vol_args
);
2377 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2378 namelen
= strlen(vol_args
->name
);
2379 if (strchr(vol_args
->name
, '/') ||
2380 strncmp(vol_args
->name
, "..", namelen
) == 0) {
2385 err
= mnt_want_write_file(file
);
2390 err
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
2392 goto out_drop_write
;
2393 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
2394 if (IS_ERR(dentry
)) {
2395 err
= PTR_ERR(dentry
);
2396 goto out_unlock_dir
;
2399 if (d_really_is_negative(dentry
)) {
2404 inode
= d_inode(dentry
);
2405 dest
= BTRFS_I(inode
)->root
;
2406 if (!capable(CAP_SYS_ADMIN
)) {
2408 * Regular user. Only allow this with a special mount
2409 * option, when the user has write+exec access to the
2410 * subvol root, and when rmdir(2) would have been
2413 * Note that this is _not_ check that the subvol is
2414 * empty or doesn't contain data that we wouldn't
2415 * otherwise be able to delete.
2417 * Users who want to delete empty subvols should try
2421 if (!btrfs_test_opt(root
->fs_info
, USER_SUBVOL_RM_ALLOWED
))
2425 * Do not allow deletion if the parent dir is the same
2426 * as the dir to be deleted. That means the ioctl
2427 * must be called on the dentry referencing the root
2428 * of the subvol, not a random directory contained
2435 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2440 /* check if subvolume may be deleted by a user */
2441 err
= btrfs_may_delete(dir
, dentry
, 1);
2445 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
2453 * Don't allow to delete a subvolume with send in progress. This is
2454 * inside the i_mutex so the error handling that has to drop the bit
2455 * again is not run concurrently.
2457 spin_lock(&dest
->root_item_lock
);
2458 root_flags
= btrfs_root_flags(&dest
->root_item
);
2459 if (dest
->send_in_progress
== 0) {
2460 btrfs_set_root_flags(&dest
->root_item
,
2461 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
2462 spin_unlock(&dest
->root_item_lock
);
2464 spin_unlock(&dest
->root_item_lock
);
2465 btrfs_warn(root
->fs_info
,
2466 "Attempt to delete subvolume %llu during send",
2467 dest
->root_key
.objectid
);
2469 goto out_unlock_inode
;
2472 down_write(&root
->fs_info
->subvol_sem
);
2474 err
= may_destroy_subvol(dest
);
2478 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
2480 * One for dir inode, two for dir entries, two for root
2483 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
2484 5, &qgroup_reserved
, true);
2488 trans
= btrfs_start_transaction(root
, 0);
2489 if (IS_ERR(trans
)) {
2490 err
= PTR_ERR(trans
);
2493 trans
->block_rsv
= &block_rsv
;
2494 trans
->bytes_reserved
= block_rsv
.size
;
2496 btrfs_record_snapshot_destroy(trans
, dir
);
2498 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
2499 dest
->root_key
.objectid
,
2500 dentry
->d_name
.name
,
2501 dentry
->d_name
.len
);
2504 btrfs_abort_transaction(trans
, ret
);
2508 btrfs_record_root_in_trans(trans
, dest
);
2510 memset(&dest
->root_item
.drop_progress
, 0,
2511 sizeof(dest
->root_item
.drop_progress
));
2512 dest
->root_item
.drop_level
= 0;
2513 btrfs_set_root_refs(&dest
->root_item
, 0);
2515 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
2516 ret
= btrfs_insert_orphan_item(trans
,
2517 root
->fs_info
->tree_root
,
2518 dest
->root_key
.objectid
);
2520 btrfs_abort_transaction(trans
, ret
);
2526 ret
= btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
2527 dest
->root_item
.uuid
, BTRFS_UUID_KEY_SUBVOL
,
2528 dest
->root_key
.objectid
);
2529 if (ret
&& ret
!= -ENOENT
) {
2530 btrfs_abort_transaction(trans
, ret
);
2534 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
2535 ret
= btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
2536 dest
->root_item
.received_uuid
,
2537 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
2538 dest
->root_key
.objectid
);
2539 if (ret
&& ret
!= -ENOENT
) {
2540 btrfs_abort_transaction(trans
, ret
);
2547 trans
->block_rsv
= NULL
;
2548 trans
->bytes_reserved
= 0;
2549 ret
= btrfs_end_transaction(trans
, root
);
2552 inode
->i_flags
|= S_DEAD
;
2554 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
2556 up_write(&root
->fs_info
->subvol_sem
);
2558 spin_lock(&dest
->root_item_lock
);
2559 root_flags
= btrfs_root_flags(&dest
->root_item
);
2560 btrfs_set_root_flags(&dest
->root_item
,
2561 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
2562 spin_unlock(&dest
->root_item_lock
);
2565 inode_unlock(inode
);
2567 d_invalidate(dentry
);
2568 btrfs_invalidate_inodes(dest
);
2570 ASSERT(dest
->send_in_progress
== 0);
2573 if (dest
->ino_cache_inode
) {
2574 iput(dest
->ino_cache_inode
);
2575 dest
->ino_cache_inode
= NULL
;
2583 mnt_drop_write_file(file
);
2589 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2591 struct inode
*inode
= file_inode(file
);
2592 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2593 struct btrfs_ioctl_defrag_range_args
*range
;
2596 ret
= mnt_want_write_file(file
);
2600 if (btrfs_root_readonly(root
)) {
2605 switch (inode
->i_mode
& S_IFMT
) {
2607 if (!capable(CAP_SYS_ADMIN
)) {
2611 ret
= btrfs_defrag_root(root
);
2614 ret
= btrfs_defrag_root(root
->fs_info
->extent_root
);
2617 if (!(file
->f_mode
& FMODE_WRITE
)) {
2622 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2629 if (copy_from_user(range
, argp
,
2635 /* compression requires us to start the IO */
2636 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2637 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2638 range
->extent_thresh
= (u32
)-1;
2641 /* the rest are all set to zero by kzalloc */
2642 range
->len
= (u64
)-1;
2644 ret
= btrfs_defrag_file(file_inode(file
), file
,
2654 mnt_drop_write_file(file
);
2658 static long btrfs_ioctl_add_dev(struct btrfs_root
*root
, void __user
*arg
)
2660 struct btrfs_ioctl_vol_args
*vol_args
;
2663 if (!capable(CAP_SYS_ADMIN
))
2666 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2668 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2671 mutex_lock(&root
->fs_info
->volume_mutex
);
2672 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2673 if (IS_ERR(vol_args
)) {
2674 ret
= PTR_ERR(vol_args
);
2678 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2679 ret
= btrfs_init_new_device(root
, vol_args
->name
);
2682 btrfs_info(root
->fs_info
, "disk added %s",vol_args
->name
);
2686 mutex_unlock(&root
->fs_info
->volume_mutex
);
2687 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2691 static long btrfs_ioctl_rm_dev_v2(struct file
*file
, void __user
*arg
)
2693 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
2694 struct btrfs_ioctl_vol_args_v2
*vol_args
;
2697 if (!capable(CAP_SYS_ADMIN
))
2700 ret
= mnt_want_write_file(file
);
2704 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2705 if (IS_ERR(vol_args
)) {
2706 ret
= PTR_ERR(vol_args
);
2710 /* Check for compatibility reject unknown flags */
2711 if (vol_args
->flags
& ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED
)
2714 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2716 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2720 mutex_lock(&root
->fs_info
->volume_mutex
);
2721 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
) {
2722 ret
= btrfs_rm_device(root
, NULL
, vol_args
->devid
);
2724 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
2725 ret
= btrfs_rm_device(root
, vol_args
->name
, 0);
2727 mutex_unlock(&root
->fs_info
->volume_mutex
);
2728 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2731 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
)
2732 btrfs_info(root
->fs_info
, "device deleted: id %llu",
2735 btrfs_info(root
->fs_info
, "device deleted: %s",
2741 mnt_drop_write_file(file
);
2745 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
2747 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
2748 struct btrfs_ioctl_vol_args
*vol_args
;
2751 if (!capable(CAP_SYS_ADMIN
))
2754 ret
= mnt_want_write_file(file
);
2758 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2760 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2761 goto out_drop_write
;
2764 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2765 if (IS_ERR(vol_args
)) {
2766 ret
= PTR_ERR(vol_args
);
2770 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2771 mutex_lock(&root
->fs_info
->volume_mutex
);
2772 ret
= btrfs_rm_device(root
, vol_args
->name
, 0);
2773 mutex_unlock(&root
->fs_info
->volume_mutex
);
2776 btrfs_info(root
->fs_info
, "disk deleted %s",vol_args
->name
);
2779 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2781 mnt_drop_write_file(file
);
2786 static long btrfs_ioctl_fs_info(struct btrfs_root
*root
, void __user
*arg
)
2788 struct btrfs_ioctl_fs_info_args
*fi_args
;
2789 struct btrfs_device
*device
;
2790 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2793 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2797 mutex_lock(&fs_devices
->device_list_mutex
);
2798 fi_args
->num_devices
= fs_devices
->num_devices
;
2799 memcpy(&fi_args
->fsid
, root
->fs_info
->fsid
, sizeof(fi_args
->fsid
));
2801 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
2802 if (device
->devid
> fi_args
->max_id
)
2803 fi_args
->max_id
= device
->devid
;
2805 mutex_unlock(&fs_devices
->device_list_mutex
);
2807 fi_args
->nodesize
= root
->fs_info
->super_copy
->nodesize
;
2808 fi_args
->sectorsize
= root
->fs_info
->super_copy
->sectorsize
;
2809 fi_args
->clone_alignment
= root
->fs_info
->super_copy
->sectorsize
;
2811 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2818 static long btrfs_ioctl_dev_info(struct btrfs_root
*root
, void __user
*arg
)
2820 struct btrfs_ioctl_dev_info_args
*di_args
;
2821 struct btrfs_device
*dev
;
2822 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2824 char *s_uuid
= NULL
;
2826 di_args
= memdup_user(arg
, sizeof(*di_args
));
2827 if (IS_ERR(di_args
))
2828 return PTR_ERR(di_args
);
2830 if (!btrfs_is_empty_uuid(di_args
->uuid
))
2831 s_uuid
= di_args
->uuid
;
2833 mutex_lock(&fs_devices
->device_list_mutex
);
2834 dev
= btrfs_find_device(root
->fs_info
, di_args
->devid
, s_uuid
, NULL
);
2841 di_args
->devid
= dev
->devid
;
2842 di_args
->bytes_used
= btrfs_device_get_bytes_used(dev
);
2843 di_args
->total_bytes
= btrfs_device_get_total_bytes(dev
);
2844 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2846 struct rcu_string
*name
;
2849 name
= rcu_dereference(dev
->name
);
2850 strncpy(di_args
->path
, name
->str
, sizeof(di_args
->path
));
2852 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
2854 di_args
->path
[0] = '\0';
2858 mutex_unlock(&fs_devices
->device_list_mutex
);
2859 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2866 static struct page
*extent_same_get_page(struct inode
*inode
, pgoff_t index
)
2870 page
= grab_cache_page(inode
->i_mapping
, index
);
2872 return ERR_PTR(-ENOMEM
);
2874 if (!PageUptodate(page
)) {
2877 ret
= btrfs_readpage(NULL
, page
);
2879 return ERR_PTR(ret
);
2881 if (!PageUptodate(page
)) {
2884 return ERR_PTR(-EIO
);
2886 if (page
->mapping
!= inode
->i_mapping
) {
2889 return ERR_PTR(-EAGAIN
);
2896 static int gather_extent_pages(struct inode
*inode
, struct page
**pages
,
2897 int num_pages
, u64 off
)
2900 pgoff_t index
= off
>> PAGE_SHIFT
;
2902 for (i
= 0; i
< num_pages
; i
++) {
2904 pages
[i
] = extent_same_get_page(inode
, index
+ i
);
2905 if (IS_ERR(pages
[i
])) {
2906 int err
= PTR_ERR(pages
[i
]);
2917 static int lock_extent_range(struct inode
*inode
, u64 off
, u64 len
,
2918 bool retry_range_locking
)
2921 * Do any pending delalloc/csum calculations on inode, one way or
2922 * another, and lock file content.
2923 * The locking order is:
2926 * 2) range in the inode's io tree
2929 struct btrfs_ordered_extent
*ordered
;
2930 lock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2931 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2934 ordered
->file_offset
+ ordered
->len
<= off
||
2935 ordered
->file_offset
>= off
+ len
) &&
2936 !test_range_bit(&BTRFS_I(inode
)->io_tree
, off
,
2937 off
+ len
- 1, EXTENT_DELALLOC
, 0, NULL
)) {
2939 btrfs_put_ordered_extent(ordered
);
2942 unlock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2944 btrfs_put_ordered_extent(ordered
);
2945 if (!retry_range_locking
)
2947 btrfs_wait_ordered_range(inode
, off
, len
);
2952 static void btrfs_double_inode_unlock(struct inode
*inode1
, struct inode
*inode2
)
2954 inode_unlock(inode1
);
2955 inode_unlock(inode2
);
2958 static void btrfs_double_inode_lock(struct inode
*inode1
, struct inode
*inode2
)
2960 if (inode1
< inode2
)
2961 swap(inode1
, inode2
);
2963 inode_lock_nested(inode1
, I_MUTEX_PARENT
);
2964 inode_lock_nested(inode2
, I_MUTEX_CHILD
);
2967 static void btrfs_double_extent_unlock(struct inode
*inode1
, u64 loff1
,
2968 struct inode
*inode2
, u64 loff2
, u64 len
)
2970 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
, loff1
+ len
- 1);
2971 unlock_extent(&BTRFS_I(inode2
)->io_tree
, loff2
, loff2
+ len
- 1);
2974 static int btrfs_double_extent_lock(struct inode
*inode1
, u64 loff1
,
2975 struct inode
*inode2
, u64 loff2
, u64 len
,
2976 bool retry_range_locking
)
2980 if (inode1
< inode2
) {
2981 swap(inode1
, inode2
);
2984 ret
= lock_extent_range(inode1
, loff1
, len
, retry_range_locking
);
2987 ret
= lock_extent_range(inode2
, loff2
, len
, retry_range_locking
);
2989 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
,
2996 struct page
**src_pages
;
2997 struct page
**dst_pages
;
3000 static void btrfs_cmp_data_free(struct cmp_pages
*cmp
)
3005 for (i
= 0; i
< cmp
->num_pages
; i
++) {
3006 pg
= cmp
->src_pages
[i
];
3011 pg
= cmp
->dst_pages
[i
];
3017 kfree(cmp
->src_pages
);
3018 kfree(cmp
->dst_pages
);
3021 static int btrfs_cmp_data_prepare(struct inode
*src
, u64 loff
,
3022 struct inode
*dst
, u64 dst_loff
,
3023 u64 len
, struct cmp_pages
*cmp
)
3026 int num_pages
= PAGE_ALIGN(len
) >> PAGE_SHIFT
;
3027 struct page
**src_pgarr
, **dst_pgarr
;
3030 * We must gather up all the pages before we initiate our
3031 * extent locking. We use an array for the page pointers. Size
3032 * of the array is bounded by len, which is in turn bounded by
3033 * BTRFS_MAX_DEDUPE_LEN.
3035 src_pgarr
= kcalloc(num_pages
, sizeof(struct page
*), GFP_KERNEL
);
3036 dst_pgarr
= kcalloc(num_pages
, sizeof(struct page
*), GFP_KERNEL
);
3037 if (!src_pgarr
|| !dst_pgarr
) {
3042 cmp
->num_pages
= num_pages
;
3043 cmp
->src_pages
= src_pgarr
;
3044 cmp
->dst_pages
= dst_pgarr
;
3046 ret
= gather_extent_pages(src
, cmp
->src_pages
, cmp
->num_pages
, loff
);
3050 ret
= gather_extent_pages(dst
, cmp
->dst_pages
, cmp
->num_pages
, dst_loff
);
3054 btrfs_cmp_data_free(cmp
);
3058 static int btrfs_cmp_data(struct inode
*src
, u64 loff
, struct inode
*dst
,
3059 u64 dst_loff
, u64 len
, struct cmp_pages
*cmp
)
3063 struct page
*src_page
, *dst_page
;
3064 unsigned int cmp_len
= PAGE_SIZE
;
3065 void *addr
, *dst_addr
;
3069 if (len
< PAGE_SIZE
)
3072 BUG_ON(i
>= cmp
->num_pages
);
3074 src_page
= cmp
->src_pages
[i
];
3075 dst_page
= cmp
->dst_pages
[i
];
3076 ASSERT(PageLocked(src_page
));
3077 ASSERT(PageLocked(dst_page
));
3079 addr
= kmap_atomic(src_page
);
3080 dst_addr
= kmap_atomic(dst_page
);
3082 flush_dcache_page(src_page
);
3083 flush_dcache_page(dst_page
);
3085 if (memcmp(addr
, dst_addr
, cmp_len
))
3088 kunmap_atomic(addr
);
3089 kunmap_atomic(dst_addr
);
3101 static int extent_same_check_offsets(struct inode
*inode
, u64 off
, u64
*plen
,
3105 u64 bs
= BTRFS_I(inode
)->root
->fs_info
->sb
->s_blocksize
;
3107 if (off
+ olen
> inode
->i_size
|| off
+ olen
< off
)
3110 /* if we extend to eof, continue to block boundary */
3111 if (off
+ len
== inode
->i_size
)
3112 *plen
= len
= ALIGN(inode
->i_size
, bs
) - off
;
3114 /* Check that we are block aligned - btrfs_clone() requires this */
3115 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
))
3121 static int btrfs_extent_same(struct inode
*src
, u64 loff
, u64 olen
,
3122 struct inode
*dst
, u64 dst_loff
)
3126 struct cmp_pages cmp
;
3128 u64 same_lock_start
= 0;
3129 u64 same_lock_len
= 0;
3140 ret
= extent_same_check_offsets(src
, loff
, &len
, olen
);
3143 ret
= extent_same_check_offsets(src
, dst_loff
, &len
, olen
);
3148 * Single inode case wants the same checks, except we
3149 * don't want our length pushed out past i_size as
3150 * comparing that data range makes no sense.
3152 * extent_same_check_offsets() will do this for an
3153 * unaligned length at i_size, so catch it here and
3154 * reject the request.
3156 * This effectively means we require aligned extents
3157 * for the single-inode case, whereas the other cases
3158 * allow an unaligned length so long as it ends at
3166 /* Check for overlapping ranges */
3167 if (dst_loff
+ len
> loff
&& dst_loff
< loff
+ len
) {
3172 same_lock_start
= min_t(u64
, loff
, dst_loff
);
3173 same_lock_len
= max_t(u64
, loff
, dst_loff
) + len
- same_lock_start
;
3175 btrfs_double_inode_lock(src
, dst
);
3177 ret
= extent_same_check_offsets(src
, loff
, &len
, olen
);
3181 ret
= extent_same_check_offsets(dst
, dst_loff
, &len
, olen
);
3186 /* don't make the dst file partly checksummed */
3187 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3188 (BTRFS_I(dst
)->flags
& BTRFS_INODE_NODATASUM
)) {
3194 ret
= btrfs_cmp_data_prepare(src
, loff
, dst
, dst_loff
, olen
, &cmp
);
3199 ret
= lock_extent_range(src
, same_lock_start
, same_lock_len
,
3202 ret
= btrfs_double_extent_lock(src
, loff
, dst
, dst_loff
, len
,
3205 * If one of the inodes has dirty pages in the respective range or
3206 * ordered extents, we need to flush dellaloc and wait for all ordered
3207 * extents in the range. We must unlock the pages and the ranges in the
3208 * io trees to avoid deadlocks when flushing delalloc (requires locking
3209 * pages) and when waiting for ordered extents to complete (they require
3212 if (ret
== -EAGAIN
) {
3214 * Ranges in the io trees already unlocked. Now unlock all
3215 * pages before waiting for all IO to complete.
3217 btrfs_cmp_data_free(&cmp
);
3219 btrfs_wait_ordered_range(src
, same_lock_start
,
3222 btrfs_wait_ordered_range(src
, loff
, len
);
3223 btrfs_wait_ordered_range(dst
, dst_loff
, len
);
3229 /* ranges in the io trees already unlocked */
3230 btrfs_cmp_data_free(&cmp
);
3234 /* pass original length for comparison so we stay within i_size */
3235 ret
= btrfs_cmp_data(src
, loff
, dst
, dst_loff
, olen
, &cmp
);
3237 ret
= btrfs_clone(src
, dst
, loff
, olen
, len
, dst_loff
, 1);
3240 unlock_extent(&BTRFS_I(src
)->io_tree
, same_lock_start
,
3241 same_lock_start
+ same_lock_len
- 1);
3243 btrfs_double_extent_unlock(src
, loff
, dst
, dst_loff
, len
);
3245 btrfs_cmp_data_free(&cmp
);
3250 btrfs_double_inode_unlock(src
, dst
);
3255 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3257 ssize_t
btrfs_dedupe_file_range(struct file
*src_file
, u64 loff
, u64 olen
,
3258 struct file
*dst_file
, u64 dst_loff
)
3260 struct inode
*src
= file_inode(src_file
);
3261 struct inode
*dst
= file_inode(dst_file
);
3262 u64 bs
= BTRFS_I(src
)->root
->fs_info
->sb
->s_blocksize
;
3265 if (olen
> BTRFS_MAX_DEDUPE_LEN
)
3266 olen
= BTRFS_MAX_DEDUPE_LEN
;
3268 if (WARN_ON_ONCE(bs
< PAGE_SIZE
)) {
3270 * Btrfs does not support blocksize < page_size. As a
3271 * result, btrfs_cmp_data() won't correctly handle
3272 * this situation without an update.
3277 res
= btrfs_extent_same(src
, loff
, olen
, dst
, dst_loff
);
3283 static int clone_finish_inode_update(struct btrfs_trans_handle
*trans
,
3284 struct inode
*inode
,
3290 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3293 inode_inc_iversion(inode
);
3294 if (!no_time_update
)
3295 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
3297 * We round up to the block size at eof when determining which
3298 * extents to clone above, but shouldn't round up the file size.
3300 if (endoff
> destoff
+ olen
)
3301 endoff
= destoff
+ olen
;
3302 if (endoff
> inode
->i_size
)
3303 btrfs_i_size_write(inode
, endoff
);
3305 ret
= btrfs_update_inode(trans
, root
, inode
);
3307 btrfs_abort_transaction(trans
, ret
);
3308 btrfs_end_transaction(trans
, root
);
3311 ret
= btrfs_end_transaction(trans
, root
);
3316 static void clone_update_extent_map(struct inode
*inode
,
3317 const struct btrfs_trans_handle
*trans
,
3318 const struct btrfs_path
*path
,
3319 const u64 hole_offset
,
3322 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
3323 struct extent_map
*em
;
3326 em
= alloc_extent_map();
3328 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3329 &BTRFS_I(inode
)->runtime_flags
);
3334 struct btrfs_file_extent_item
*fi
;
3336 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3337 struct btrfs_file_extent_item
);
3338 btrfs_extent_item_to_extent_map(inode
, path
, fi
, false, em
);
3339 em
->generation
= -1;
3340 if (btrfs_file_extent_type(path
->nodes
[0], fi
) ==
3341 BTRFS_FILE_EXTENT_INLINE
)
3342 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3343 &BTRFS_I(inode
)->runtime_flags
);
3345 em
->start
= hole_offset
;
3347 em
->ram_bytes
= em
->len
;
3348 em
->orig_start
= hole_offset
;
3349 em
->block_start
= EXTENT_MAP_HOLE
;
3351 em
->orig_block_len
= 0;
3352 em
->compress_type
= BTRFS_COMPRESS_NONE
;
3353 em
->generation
= trans
->transid
;
3357 write_lock(&em_tree
->lock
);
3358 ret
= add_extent_mapping(em_tree
, em
, 1);
3359 write_unlock(&em_tree
->lock
);
3360 if (ret
!= -EEXIST
) {
3361 free_extent_map(em
);
3364 btrfs_drop_extent_cache(inode
, em
->start
,
3365 em
->start
+ em
->len
- 1, 0);
3369 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3370 &BTRFS_I(inode
)->runtime_flags
);
3374 * Make sure we do not end up inserting an inline extent into a file that has
3375 * already other (non-inline) extents. If a file has an inline extent it can
3376 * not have any other extents and the (single) inline extent must start at the
3377 * file offset 0. Failing to respect these rules will lead to file corruption,
3378 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3380 * We can have extents that have been already written to disk or we can have
3381 * dirty ranges still in delalloc, in which case the extent maps and items are
3382 * created only when we run delalloc, and the delalloc ranges might fall outside
3383 * the range we are currently locking in the inode's io tree. So we check the
3384 * inode's i_size because of that (i_size updates are done while holding the
3385 * i_mutex, which we are holding here).
3386 * We also check to see if the inode has a size not greater than "datal" but has
3387 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3388 * protected against such concurrent fallocate calls by the i_mutex).
3390 * If the file has no extents but a size greater than datal, do not allow the
3391 * copy because we would need turn the inline extent into a non-inline one (even
3392 * with NO_HOLES enabled). If we find our destination inode only has one inline
3393 * extent, just overwrite it with the source inline extent if its size is less
3394 * than the source extent's size, or we could copy the source inline extent's
3395 * data into the destination inode's inline extent if the later is greater then
3398 static int clone_copy_inline_extent(struct inode
*src
,
3400 struct btrfs_trans_handle
*trans
,
3401 struct btrfs_path
*path
,
3402 struct btrfs_key
*new_key
,
3403 const u64 drop_start
,
3409 struct btrfs_root
*root
= BTRFS_I(dst
)->root
;
3410 const u64 aligned_end
= ALIGN(new_key
->offset
+ datal
,
3413 struct btrfs_key key
;
3415 if (new_key
->offset
> 0)
3418 key
.objectid
= btrfs_ino(dst
);
3419 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3421 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3424 } else if (ret
> 0) {
3425 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
3426 ret
= btrfs_next_leaf(root
, path
);
3430 goto copy_inline_extent
;
3432 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
3433 if (key
.objectid
== btrfs_ino(dst
) &&
3434 key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3435 ASSERT(key
.offset
> 0);
3438 } else if (i_size_read(dst
) <= datal
) {
3439 struct btrfs_file_extent_item
*ei
;
3443 * If the file size is <= datal, make sure there are no other
3444 * extents following (can happen do to an fallocate call with
3445 * the flag FALLOC_FL_KEEP_SIZE).
3447 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3448 struct btrfs_file_extent_item
);
3450 * If it's an inline extent, it can not have other extents
3453 if (btrfs_file_extent_type(path
->nodes
[0], ei
) ==
3454 BTRFS_FILE_EXTENT_INLINE
)
3455 goto copy_inline_extent
;
3457 ext_len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
3458 if (ext_len
> aligned_end
)
3461 ret
= btrfs_next_item(root
, path
);
3464 } else if (ret
== 0) {
3465 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3467 if (key
.objectid
== btrfs_ino(dst
) &&
3468 key
.type
== BTRFS_EXTENT_DATA_KEY
)
3475 * We have no extent items, or we have an extent at offset 0 which may
3476 * or may not be inlined. All these cases are dealt the same way.
3478 if (i_size_read(dst
) > datal
) {
3480 * If the destination inode has an inline extent...
3481 * This would require copying the data from the source inline
3482 * extent into the beginning of the destination's inline extent.
3483 * But this is really complex, both extents can be compressed
3484 * or just one of them, which would require decompressing and
3485 * re-compressing data (which could increase the new compressed
3486 * size, not allowing the compressed data to fit anymore in an
3488 * So just don't support this case for now (it should be rare,
3489 * we are not really saving space when cloning inline extents).
3494 btrfs_release_path(path
);
3495 ret
= btrfs_drop_extents(trans
, root
, dst
, drop_start
, aligned_end
, 1);
3498 ret
= btrfs_insert_empty_item(trans
, root
, path
, new_key
, size
);
3503 const u32 start
= btrfs_file_extent_calc_inline_size(0);
3505 memmove(inline_data
+ start
, inline_data
+ start
+ skip
, datal
);
3508 write_extent_buffer(path
->nodes
[0], inline_data
,
3509 btrfs_item_ptr_offset(path
->nodes
[0],
3512 inode_add_bytes(dst
, datal
);
3518 * btrfs_clone() - clone a range from inode file to another
3520 * @src: Inode to clone from
3521 * @inode: Inode to clone to
3522 * @off: Offset within source to start clone from
3523 * @olen: Original length, passed by user, of range to clone
3524 * @olen_aligned: Block-aligned value of olen
3525 * @destoff: Offset within @inode to start clone
3526 * @no_time_update: Whether to update mtime/ctime on the target inode
3528 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
3529 const u64 off
, const u64 olen
, const u64 olen_aligned
,
3530 const u64 destoff
, int no_time_update
)
3532 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3533 struct btrfs_path
*path
= NULL
;
3534 struct extent_buffer
*leaf
;
3535 struct btrfs_trans_handle
*trans
;
3537 struct btrfs_key key
;
3541 const u64 len
= olen_aligned
;
3542 u64 last_dest_end
= destoff
;
3545 buf
= kmalloc(root
->nodesize
, GFP_KERNEL
| __GFP_NOWARN
);
3547 buf
= vmalloc(root
->nodesize
);
3552 path
= btrfs_alloc_path();
3558 path
->reada
= READA_FORWARD
;
3560 key
.objectid
= btrfs_ino(src
);
3561 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3565 u64 next_key_min_offset
= key
.offset
+ 1;
3568 * note the key will change type as we walk through the
3571 path
->leave_spinning
= 1;
3572 ret
= btrfs_search_slot(NULL
, BTRFS_I(src
)->root
, &key
, path
,
3577 * First search, if no extent item that starts at offset off was
3578 * found but the previous item is an extent item, it's possible
3579 * it might overlap our target range, therefore process it.
3581 if (key
.offset
== off
&& ret
> 0 && path
->slots
[0] > 0) {
3582 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3583 path
->slots
[0] - 1);
3584 if (key
.type
== BTRFS_EXTENT_DATA_KEY
)
3588 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3590 if (path
->slots
[0] >= nritems
) {
3591 ret
= btrfs_next_leaf(BTRFS_I(src
)->root
, path
);
3596 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3598 leaf
= path
->nodes
[0];
3599 slot
= path
->slots
[0];
3601 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
3602 if (key
.type
> BTRFS_EXTENT_DATA_KEY
||
3603 key
.objectid
!= btrfs_ino(src
))
3606 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3607 struct btrfs_file_extent_item
*extent
;
3610 struct btrfs_key new_key
;
3611 u64 disko
= 0, diskl
= 0;
3612 u64 datao
= 0, datal
= 0;
3616 extent
= btrfs_item_ptr(leaf
, slot
,
3617 struct btrfs_file_extent_item
);
3618 comp
= btrfs_file_extent_compression(leaf
, extent
);
3619 type
= btrfs_file_extent_type(leaf
, extent
);
3620 if (type
== BTRFS_FILE_EXTENT_REG
||
3621 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3622 disko
= btrfs_file_extent_disk_bytenr(leaf
,
3624 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
3626 datao
= btrfs_file_extent_offset(leaf
, extent
);
3627 datal
= btrfs_file_extent_num_bytes(leaf
,
3629 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3630 /* take upper bound, may be compressed */
3631 datal
= btrfs_file_extent_ram_bytes(leaf
,
3636 * The first search might have left us at an extent
3637 * item that ends before our target range's start, can
3638 * happen if we have holes and NO_HOLES feature enabled.
3640 if (key
.offset
+ datal
<= off
) {
3643 } else if (key
.offset
>= off
+ len
) {
3646 next_key_min_offset
= key
.offset
+ datal
;
3647 size
= btrfs_item_size_nr(leaf
, slot
);
3648 read_extent_buffer(leaf
, buf
,
3649 btrfs_item_ptr_offset(leaf
, slot
),
3652 btrfs_release_path(path
);
3653 path
->leave_spinning
= 0;
3655 memcpy(&new_key
, &key
, sizeof(new_key
));
3656 new_key
.objectid
= btrfs_ino(inode
);
3657 if (off
<= key
.offset
)
3658 new_key
.offset
= key
.offset
+ destoff
- off
;
3660 new_key
.offset
= destoff
;
3663 * Deal with a hole that doesn't have an extent item
3664 * that represents it (NO_HOLES feature enabled).
3665 * This hole is either in the middle of the cloning
3666 * range or at the beginning (fully overlaps it or
3667 * partially overlaps it).
3669 if (new_key
.offset
!= last_dest_end
)
3670 drop_start
= last_dest_end
;
3672 drop_start
= new_key
.offset
;
3675 * 1 - adjusting old extent (we may have to split it)
3676 * 1 - add new extent
3679 trans
= btrfs_start_transaction(root
, 3);
3680 if (IS_ERR(trans
)) {
3681 ret
= PTR_ERR(trans
);
3685 if (type
== BTRFS_FILE_EXTENT_REG
||
3686 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3688 * a | --- range to clone ---| b
3689 * | ------------- extent ------------- |
3692 /* subtract range b */
3693 if (key
.offset
+ datal
> off
+ len
)
3694 datal
= off
+ len
- key
.offset
;
3696 /* subtract range a */
3697 if (off
> key
.offset
) {
3698 datao
+= off
- key
.offset
;
3699 datal
-= off
- key
.offset
;
3702 ret
= btrfs_drop_extents(trans
, root
, inode
,
3704 new_key
.offset
+ datal
,
3707 if (ret
!= -EOPNOTSUPP
)
3708 btrfs_abort_transaction(trans
,
3710 btrfs_end_transaction(trans
, root
);
3714 ret
= btrfs_insert_empty_item(trans
, root
, path
,
3717 btrfs_abort_transaction(trans
, ret
);
3718 btrfs_end_transaction(trans
, root
);
3722 leaf
= path
->nodes
[0];
3723 slot
= path
->slots
[0];
3724 write_extent_buffer(leaf
, buf
,
3725 btrfs_item_ptr_offset(leaf
, slot
),
3728 extent
= btrfs_item_ptr(leaf
, slot
,
3729 struct btrfs_file_extent_item
);
3731 /* disko == 0 means it's a hole */
3735 btrfs_set_file_extent_offset(leaf
, extent
,
3737 btrfs_set_file_extent_num_bytes(leaf
, extent
,
3741 inode_add_bytes(inode
, datal
);
3742 ret
= btrfs_inc_extent_ref(trans
, root
,
3744 root
->root_key
.objectid
,
3746 new_key
.offset
- datao
);
3748 btrfs_abort_transaction(trans
,
3750 btrfs_end_transaction(trans
,
3756 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3760 if (off
> key
.offset
) {
3761 skip
= off
- key
.offset
;
3762 new_key
.offset
+= skip
;
3765 if (key
.offset
+ datal
> off
+ len
)
3766 trim
= key
.offset
+ datal
- (off
+ len
);
3768 if (comp
&& (skip
|| trim
)) {
3770 btrfs_end_transaction(trans
, root
);
3773 size
-= skip
+ trim
;
3774 datal
-= skip
+ trim
;
3776 ret
= clone_copy_inline_extent(src
, inode
,
3783 if (ret
!= -EOPNOTSUPP
)
3784 btrfs_abort_transaction(trans
,
3786 btrfs_end_transaction(trans
, root
);
3789 leaf
= path
->nodes
[0];
3790 slot
= path
->slots
[0];
3793 /* If we have an implicit hole (NO_HOLES feature). */
3794 if (drop_start
< new_key
.offset
)
3795 clone_update_extent_map(inode
, trans
,
3797 new_key
.offset
- drop_start
);
3799 clone_update_extent_map(inode
, trans
, path
, 0, 0);
3801 btrfs_mark_buffer_dirty(leaf
);
3802 btrfs_release_path(path
);
3804 last_dest_end
= ALIGN(new_key
.offset
+ datal
,
3806 ret
= clone_finish_inode_update(trans
, inode
,
3812 if (new_key
.offset
+ datal
>= destoff
+ len
)
3815 btrfs_release_path(path
);
3816 key
.offset
= next_key_min_offset
;
3818 if (fatal_signal_pending(current
)) {
3825 if (last_dest_end
< destoff
+ len
) {
3827 * We have an implicit hole (NO_HOLES feature is enabled) that
3828 * fully or partially overlaps our cloning range at its end.
3830 btrfs_release_path(path
);
3833 * 1 - remove extent(s)
3836 trans
= btrfs_start_transaction(root
, 2);
3837 if (IS_ERR(trans
)) {
3838 ret
= PTR_ERR(trans
);
3841 ret
= btrfs_drop_extents(trans
, root
, inode
,
3842 last_dest_end
, destoff
+ len
, 1);
3844 if (ret
!= -EOPNOTSUPP
)
3845 btrfs_abort_transaction(trans
, ret
);
3846 btrfs_end_transaction(trans
, root
);
3849 clone_update_extent_map(inode
, trans
, NULL
, last_dest_end
,
3850 destoff
+ len
- last_dest_end
);
3851 ret
= clone_finish_inode_update(trans
, inode
, destoff
+ len
,
3852 destoff
, olen
, no_time_update
);
3856 btrfs_free_path(path
);
3861 static noinline
int btrfs_clone_files(struct file
*file
, struct file
*file_src
,
3862 u64 off
, u64 olen
, u64 destoff
)
3864 struct inode
*inode
= file_inode(file
);
3865 struct inode
*src
= file_inode(file_src
);
3866 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3869 u64 bs
= root
->fs_info
->sb
->s_blocksize
;
3870 int same_inode
= src
== inode
;
3874 * - split compressed inline extents. annoying: we need to
3875 * decompress into destination's address_space (the file offset
3876 * may change, so source mapping won't do), then recompress (or
3877 * otherwise reinsert) a subrange.
3879 * - split destination inode's inline extents. The inline extents can
3880 * be either compressed or non-compressed.
3883 if (btrfs_root_readonly(root
))
3886 if (file_src
->f_path
.mnt
!= file
->f_path
.mnt
||
3887 src
->i_sb
!= inode
->i_sb
)
3890 /* don't make the dst file partly checksummed */
3891 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3892 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
3895 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
3899 btrfs_double_inode_lock(src
, inode
);
3904 /* determine range to clone */
3906 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
3909 olen
= len
= src
->i_size
- off
;
3910 /* if we extend to eof, continue to block boundary */
3911 if (off
+ len
== src
->i_size
)
3912 len
= ALIGN(src
->i_size
, bs
) - off
;
3919 /* verify the end result is block aligned */
3920 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
3921 !IS_ALIGNED(destoff
, bs
))
3924 /* verify if ranges are overlapped within the same file */
3926 if (destoff
+ len
> off
&& destoff
< off
+ len
)
3930 if (destoff
> inode
->i_size
) {
3931 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
3937 * Lock the target range too. Right after we replace the file extent
3938 * items in the fs tree (which now point to the cloned data), we might
3939 * have a worker replace them with extent items relative to a write
3940 * operation that was issued before this clone operation (i.e. confront
3941 * with inode.c:btrfs_finish_ordered_io).
3944 u64 lock_start
= min_t(u64
, off
, destoff
);
3945 u64 lock_len
= max_t(u64
, off
, destoff
) + len
- lock_start
;
3947 ret
= lock_extent_range(src
, lock_start
, lock_len
, true);
3949 ret
= btrfs_double_extent_lock(src
, off
, inode
, destoff
, len
,
3954 /* ranges in the io trees already unlocked */
3958 ret
= btrfs_clone(src
, inode
, off
, olen
, len
, destoff
, 0);
3961 u64 lock_start
= min_t(u64
, off
, destoff
);
3962 u64 lock_end
= max_t(u64
, off
, destoff
) + len
- 1;
3964 unlock_extent(&BTRFS_I(src
)->io_tree
, lock_start
, lock_end
);
3966 btrfs_double_extent_unlock(src
, off
, inode
, destoff
, len
);
3969 * Truncate page cache pages so that future reads will see the cloned
3970 * data immediately and not the previous data.
3972 truncate_inode_pages_range(&inode
->i_data
,
3973 round_down(destoff
, PAGE_SIZE
),
3974 round_up(destoff
+ len
, PAGE_SIZE
) - 1);
3977 btrfs_double_inode_unlock(src
, inode
);
3983 ssize_t
btrfs_copy_file_range(struct file
*file_in
, loff_t pos_in
,
3984 struct file
*file_out
, loff_t pos_out
,
3985 size_t len
, unsigned int flags
)
3989 ret
= btrfs_clone_files(file_out
, file_in
, pos_in
, len
, pos_out
);
3995 int btrfs_clone_file_range(struct file
*src_file
, loff_t off
,
3996 struct file
*dst_file
, loff_t destoff
, u64 len
)
3998 return btrfs_clone_files(dst_file
, src_file
, off
, len
, destoff
);
4002 * there are many ways the trans_start and trans_end ioctls can lead
4003 * to deadlocks. They should only be used by applications that
4004 * basically own the machine, and have a very in depth understanding
4005 * of all the possible deadlocks and enospc problems.
4007 static long btrfs_ioctl_trans_start(struct file
*file
)
4009 struct inode
*inode
= file_inode(file
);
4010 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4011 struct btrfs_trans_handle
*trans
;
4015 if (!capable(CAP_SYS_ADMIN
))
4019 if (file
->private_data
)
4023 if (btrfs_root_readonly(root
))
4026 ret
= mnt_want_write_file(file
);
4030 atomic_inc(&root
->fs_info
->open_ioctl_trans
);
4033 trans
= btrfs_start_ioctl_transaction(root
);
4037 file
->private_data
= trans
;
4041 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
4042 mnt_drop_write_file(file
);
4047 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
4049 struct inode
*inode
= file_inode(file
);
4050 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4051 struct btrfs_root
*new_root
;
4052 struct btrfs_dir_item
*di
;
4053 struct btrfs_trans_handle
*trans
;
4054 struct btrfs_path
*path
;
4055 struct btrfs_key location
;
4056 struct btrfs_disk_key disk_key
;
4061 if (!capable(CAP_SYS_ADMIN
))
4064 ret
= mnt_want_write_file(file
);
4068 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
4074 objectid
= BTRFS_FS_TREE_OBJECTID
;
4076 location
.objectid
= objectid
;
4077 location
.type
= BTRFS_ROOT_ITEM_KEY
;
4078 location
.offset
= (u64
)-1;
4080 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
4081 if (IS_ERR(new_root
)) {
4082 ret
= PTR_ERR(new_root
);
4086 path
= btrfs_alloc_path();
4091 path
->leave_spinning
= 1;
4093 trans
= btrfs_start_transaction(root
, 1);
4094 if (IS_ERR(trans
)) {
4095 btrfs_free_path(path
);
4096 ret
= PTR_ERR(trans
);
4100 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
4101 di
= btrfs_lookup_dir_item(trans
, root
->fs_info
->tree_root
, path
,
4102 dir_id
, "default", 7, 1);
4103 if (IS_ERR_OR_NULL(di
)) {
4104 btrfs_free_path(path
);
4105 btrfs_end_transaction(trans
, root
);
4106 btrfs_err(new_root
->fs_info
,
4107 "Umm, you don't have the default diritem, this isn't going to work");
4112 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
4113 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
4114 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4115 btrfs_free_path(path
);
4117 btrfs_set_fs_incompat(root
->fs_info
, DEFAULT_SUBVOL
);
4118 btrfs_end_transaction(trans
, root
);
4120 mnt_drop_write_file(file
);
4124 void btrfs_get_block_group_info(struct list_head
*groups_list
,
4125 struct btrfs_ioctl_space_info
*space
)
4127 struct btrfs_block_group_cache
*block_group
;
4129 space
->total_bytes
= 0;
4130 space
->used_bytes
= 0;
4132 list_for_each_entry(block_group
, groups_list
, list
) {
4133 space
->flags
= block_group
->flags
;
4134 space
->total_bytes
+= block_group
->key
.offset
;
4135 space
->used_bytes
+=
4136 btrfs_block_group_used(&block_group
->item
);
4140 static long btrfs_ioctl_space_info(struct btrfs_root
*root
, void __user
*arg
)
4142 struct btrfs_ioctl_space_args space_args
;
4143 struct btrfs_ioctl_space_info space
;
4144 struct btrfs_ioctl_space_info
*dest
;
4145 struct btrfs_ioctl_space_info
*dest_orig
;
4146 struct btrfs_ioctl_space_info __user
*user_dest
;
4147 struct btrfs_space_info
*info
;
4148 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
4149 BTRFS_BLOCK_GROUP_SYSTEM
,
4150 BTRFS_BLOCK_GROUP_METADATA
,
4151 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
4158 if (copy_from_user(&space_args
,
4159 (struct btrfs_ioctl_space_args __user
*)arg
,
4160 sizeof(space_args
)))
4163 for (i
= 0; i
< num_types
; i
++) {
4164 struct btrfs_space_info
*tmp
;
4168 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
4170 if (tmp
->flags
== types
[i
]) {
4180 down_read(&info
->groups_sem
);
4181 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4182 if (!list_empty(&info
->block_groups
[c
]))
4185 up_read(&info
->groups_sem
);
4189 * Global block reserve, exported as a space_info
4193 /* space_slots == 0 means they are asking for a count */
4194 if (space_args
.space_slots
== 0) {
4195 space_args
.total_spaces
= slot_count
;
4199 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
4201 alloc_size
= sizeof(*dest
) * slot_count
;
4203 /* we generally have at most 6 or so space infos, one for each raid
4204 * level. So, a whole page should be more than enough for everyone
4206 if (alloc_size
> PAGE_SIZE
)
4209 space_args
.total_spaces
= 0;
4210 dest
= kmalloc(alloc_size
, GFP_KERNEL
);
4215 /* now we have a buffer to copy into */
4216 for (i
= 0; i
< num_types
; i
++) {
4217 struct btrfs_space_info
*tmp
;
4224 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
4226 if (tmp
->flags
== types
[i
]) {
4235 down_read(&info
->groups_sem
);
4236 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4237 if (!list_empty(&info
->block_groups
[c
])) {
4238 btrfs_get_block_group_info(
4239 &info
->block_groups
[c
], &space
);
4240 memcpy(dest
, &space
, sizeof(space
));
4242 space_args
.total_spaces
++;
4248 up_read(&info
->groups_sem
);
4252 * Add global block reserve
4255 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->global_block_rsv
;
4257 spin_lock(&block_rsv
->lock
);
4258 space
.total_bytes
= block_rsv
->size
;
4259 space
.used_bytes
= block_rsv
->size
- block_rsv
->reserved
;
4260 spin_unlock(&block_rsv
->lock
);
4261 space
.flags
= BTRFS_SPACE_INFO_GLOBAL_RSV
;
4262 memcpy(dest
, &space
, sizeof(space
));
4263 space_args
.total_spaces
++;
4266 user_dest
= (struct btrfs_ioctl_space_info __user
*)
4267 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
4269 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
4274 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
4281 * there are many ways the trans_start and trans_end ioctls can lead
4282 * to deadlocks. They should only be used by applications that
4283 * basically own the machine, and have a very in depth understanding
4284 * of all the possible deadlocks and enospc problems.
4286 long btrfs_ioctl_trans_end(struct file
*file
)
4288 struct inode
*inode
= file_inode(file
);
4289 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4290 struct btrfs_trans_handle
*trans
;
4292 trans
= file
->private_data
;
4295 file
->private_data
= NULL
;
4297 btrfs_end_transaction(trans
, root
);
4299 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
4301 mnt_drop_write_file(file
);
4305 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
4308 struct btrfs_trans_handle
*trans
;
4312 trans
= btrfs_attach_transaction_barrier(root
);
4313 if (IS_ERR(trans
)) {
4314 if (PTR_ERR(trans
) != -ENOENT
)
4315 return PTR_ERR(trans
);
4317 /* No running transaction, don't bother */
4318 transid
= root
->fs_info
->last_trans_committed
;
4321 transid
= trans
->transid
;
4322 ret
= btrfs_commit_transaction_async(trans
, root
, 0);
4324 btrfs_end_transaction(trans
, root
);
4329 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
4334 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_root
*root
,
4340 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
4343 transid
= 0; /* current trans */
4345 return btrfs_wait_for_commit(root
, transid
);
4348 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
4350 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4351 struct btrfs_ioctl_scrub_args
*sa
;
4354 if (!capable(CAP_SYS_ADMIN
))
4357 sa
= memdup_user(arg
, sizeof(*sa
));
4361 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
4362 ret
= mnt_want_write_file(file
);
4367 ret
= btrfs_scrub_dev(root
->fs_info
, sa
->devid
, sa
->start
, sa
->end
,
4368 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
4371 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4374 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
4375 mnt_drop_write_file(file
);
4381 static long btrfs_ioctl_scrub_cancel(struct btrfs_root
*root
, void __user
*arg
)
4383 if (!capable(CAP_SYS_ADMIN
))
4386 return btrfs_scrub_cancel(root
->fs_info
);
4389 static long btrfs_ioctl_scrub_progress(struct btrfs_root
*root
,
4392 struct btrfs_ioctl_scrub_args
*sa
;
4395 if (!capable(CAP_SYS_ADMIN
))
4398 sa
= memdup_user(arg
, sizeof(*sa
));
4402 ret
= btrfs_scrub_progress(root
, sa
->devid
, &sa
->progress
);
4404 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4411 static long btrfs_ioctl_get_dev_stats(struct btrfs_root
*root
,
4414 struct btrfs_ioctl_get_dev_stats
*sa
;
4417 sa
= memdup_user(arg
, sizeof(*sa
));
4421 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
4426 ret
= btrfs_get_dev_stats(root
, sa
);
4428 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4435 static long btrfs_ioctl_dev_replace(struct btrfs_root
*root
, void __user
*arg
)
4437 struct btrfs_ioctl_dev_replace_args
*p
;
4440 if (!capable(CAP_SYS_ADMIN
))
4443 p
= memdup_user(arg
, sizeof(*p
));
4448 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
4449 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
) {
4454 &root
->fs_info
->mutually_exclusive_operation_running
,
4456 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4458 ret
= btrfs_dev_replace_by_ioctl(root
, p
);
4460 &root
->fs_info
->mutually_exclusive_operation_running
,
4464 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
4465 btrfs_dev_replace_status(root
->fs_info
, p
);
4468 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
4469 ret
= btrfs_dev_replace_cancel(root
->fs_info
, p
);
4476 if (copy_to_user(arg
, p
, sizeof(*p
)))
4483 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
4489 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
4490 struct inode_fs_paths
*ipath
= NULL
;
4491 struct btrfs_path
*path
;
4493 if (!capable(CAP_DAC_READ_SEARCH
))
4496 path
= btrfs_alloc_path();
4502 ipa
= memdup_user(arg
, sizeof(*ipa
));
4509 size
= min_t(u32
, ipa
->size
, 4096);
4510 ipath
= init_ipath(size
, root
, path
);
4511 if (IS_ERR(ipath
)) {
4512 ret
= PTR_ERR(ipath
);
4517 ret
= paths_from_inode(ipa
->inum
, ipath
);
4521 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
4522 rel_ptr
= ipath
->fspath
->val
[i
] -
4523 (u64
)(unsigned long)ipath
->fspath
->val
;
4524 ipath
->fspath
->val
[i
] = rel_ptr
;
4527 ret
= copy_to_user((void *)(unsigned long)ipa
->fspath
,
4528 (void *)(unsigned long)ipath
->fspath
, size
);
4535 btrfs_free_path(path
);
4542 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4544 struct btrfs_data_container
*inodes
= ctx
;
4545 const size_t c
= 3 * sizeof(u64
);
4547 if (inodes
->bytes_left
>= c
) {
4548 inodes
->bytes_left
-= c
;
4549 inodes
->val
[inodes
->elem_cnt
] = inum
;
4550 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
4551 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
4552 inodes
->elem_cnt
+= 3;
4554 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
4555 inodes
->bytes_left
= 0;
4556 inodes
->elem_missed
+= 3;
4562 static long btrfs_ioctl_logical_to_ino(struct btrfs_root
*root
,
4567 struct btrfs_ioctl_logical_ino_args
*loi
;
4568 struct btrfs_data_container
*inodes
= NULL
;
4569 struct btrfs_path
*path
= NULL
;
4571 if (!capable(CAP_SYS_ADMIN
))
4574 loi
= memdup_user(arg
, sizeof(*loi
));
4581 path
= btrfs_alloc_path();
4587 size
= min_t(u32
, loi
->size
, SZ_64K
);
4588 inodes
= init_data_container(size
);
4589 if (IS_ERR(inodes
)) {
4590 ret
= PTR_ERR(inodes
);
4595 ret
= iterate_inodes_from_logical(loi
->logical
, root
->fs_info
, path
,
4596 build_ino_list
, inodes
);
4602 ret
= copy_to_user((void *)(unsigned long)loi
->inodes
,
4603 (void *)(unsigned long)inodes
, size
);
4608 btrfs_free_path(path
);
4615 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
4616 struct btrfs_ioctl_balance_args
*bargs
)
4618 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4620 bargs
->flags
= bctl
->flags
;
4622 if (atomic_read(&fs_info
->balance_running
))
4623 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
4624 if (atomic_read(&fs_info
->balance_pause_req
))
4625 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
4626 if (atomic_read(&fs_info
->balance_cancel_req
))
4627 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
4629 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
4630 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
4631 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
4634 spin_lock(&fs_info
->balance_lock
);
4635 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4636 spin_unlock(&fs_info
->balance_lock
);
4638 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4642 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
4644 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4645 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4646 struct btrfs_ioctl_balance_args
*bargs
;
4647 struct btrfs_balance_control
*bctl
;
4648 bool need_unlock
; /* for mut. excl. ops lock */
4651 if (!capable(CAP_SYS_ADMIN
))
4654 ret
= mnt_want_write_file(file
);
4659 if (!atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1)) {
4660 mutex_lock(&fs_info
->volume_mutex
);
4661 mutex_lock(&fs_info
->balance_mutex
);
4667 * mut. excl. ops lock is locked. Three possibilities:
4668 * (1) some other op is running
4669 * (2) balance is running
4670 * (3) balance is paused -- special case (think resume)
4672 mutex_lock(&fs_info
->balance_mutex
);
4673 if (fs_info
->balance_ctl
) {
4674 /* this is either (2) or (3) */
4675 if (!atomic_read(&fs_info
->balance_running
)) {
4676 mutex_unlock(&fs_info
->balance_mutex
);
4677 if (!mutex_trylock(&fs_info
->volume_mutex
))
4679 mutex_lock(&fs_info
->balance_mutex
);
4681 if (fs_info
->balance_ctl
&&
4682 !atomic_read(&fs_info
->balance_running
)) {
4684 need_unlock
= false;
4688 mutex_unlock(&fs_info
->balance_mutex
);
4689 mutex_unlock(&fs_info
->volume_mutex
);
4693 mutex_unlock(&fs_info
->balance_mutex
);
4699 mutex_unlock(&fs_info
->balance_mutex
);
4700 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4705 BUG_ON(!atomic_read(&fs_info
->mutually_exclusive_operation_running
));
4708 bargs
= memdup_user(arg
, sizeof(*bargs
));
4709 if (IS_ERR(bargs
)) {
4710 ret
= PTR_ERR(bargs
);
4714 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
4715 if (!fs_info
->balance_ctl
) {
4720 bctl
= fs_info
->balance_ctl
;
4721 spin_lock(&fs_info
->balance_lock
);
4722 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4723 spin_unlock(&fs_info
->balance_lock
);
4731 if (fs_info
->balance_ctl
) {
4736 bctl
= kzalloc(sizeof(*bctl
), GFP_KERNEL
);
4742 bctl
->fs_info
= fs_info
;
4744 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
4745 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
4746 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
4748 bctl
->flags
= bargs
->flags
;
4750 /* balance everything - no filters */
4751 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
4754 if (bctl
->flags
& ~(BTRFS_BALANCE_ARGS_MASK
| BTRFS_BALANCE_TYPE_MASK
)) {
4761 * Ownership of bctl and mutually_exclusive_operation_running
4762 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4763 * or, if restriper was paused all the way until unmount, in
4764 * free_fs_info. mutually_exclusive_operation_running is
4765 * cleared in __cancel_balance.
4767 need_unlock
= false;
4769 ret
= btrfs_balance(bctl
, bargs
);
4773 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4782 mutex_unlock(&fs_info
->balance_mutex
);
4783 mutex_unlock(&fs_info
->volume_mutex
);
4785 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
4787 mnt_drop_write_file(file
);
4791 static long btrfs_ioctl_balance_ctl(struct btrfs_root
*root
, int cmd
)
4793 if (!capable(CAP_SYS_ADMIN
))
4797 case BTRFS_BALANCE_CTL_PAUSE
:
4798 return btrfs_pause_balance(root
->fs_info
);
4799 case BTRFS_BALANCE_CTL_CANCEL
:
4800 return btrfs_cancel_balance(root
->fs_info
);
4806 static long btrfs_ioctl_balance_progress(struct btrfs_root
*root
,
4809 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4810 struct btrfs_ioctl_balance_args
*bargs
;
4813 if (!capable(CAP_SYS_ADMIN
))
4816 mutex_lock(&fs_info
->balance_mutex
);
4817 if (!fs_info
->balance_ctl
) {
4822 bargs
= kzalloc(sizeof(*bargs
), GFP_KERNEL
);
4828 update_ioctl_balance_args(fs_info
, 1, bargs
);
4830 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4835 mutex_unlock(&fs_info
->balance_mutex
);
4839 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
4841 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4842 struct btrfs_ioctl_quota_ctl_args
*sa
;
4843 struct btrfs_trans_handle
*trans
= NULL
;
4847 if (!capable(CAP_SYS_ADMIN
))
4850 ret
= mnt_want_write_file(file
);
4854 sa
= memdup_user(arg
, sizeof(*sa
));
4860 down_write(&root
->fs_info
->subvol_sem
);
4861 trans
= btrfs_start_transaction(root
->fs_info
->tree_root
, 2);
4862 if (IS_ERR(trans
)) {
4863 ret
= PTR_ERR(trans
);
4868 case BTRFS_QUOTA_CTL_ENABLE
:
4869 ret
= btrfs_quota_enable(trans
, root
->fs_info
);
4871 case BTRFS_QUOTA_CTL_DISABLE
:
4872 ret
= btrfs_quota_disable(trans
, root
->fs_info
);
4879 err
= btrfs_commit_transaction(trans
, root
->fs_info
->tree_root
);
4884 up_write(&root
->fs_info
->subvol_sem
);
4886 mnt_drop_write_file(file
);
4890 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
4892 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4893 struct btrfs_ioctl_qgroup_assign_args
*sa
;
4894 struct btrfs_trans_handle
*trans
;
4898 if (!capable(CAP_SYS_ADMIN
))
4901 ret
= mnt_want_write_file(file
);
4905 sa
= memdup_user(arg
, sizeof(*sa
));
4911 trans
= btrfs_join_transaction(root
);
4912 if (IS_ERR(trans
)) {
4913 ret
= PTR_ERR(trans
);
4917 /* FIXME: check if the IDs really exist */
4919 ret
= btrfs_add_qgroup_relation(trans
, root
->fs_info
,
4922 ret
= btrfs_del_qgroup_relation(trans
, root
->fs_info
,
4926 /* update qgroup status and info */
4927 err
= btrfs_run_qgroups(trans
, root
->fs_info
);
4929 btrfs_handle_fs_error(root
->fs_info
, err
,
4930 "failed to update qgroup status and info");
4931 err
= btrfs_end_transaction(trans
, root
);
4938 mnt_drop_write_file(file
);
4942 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
4944 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4945 struct btrfs_ioctl_qgroup_create_args
*sa
;
4946 struct btrfs_trans_handle
*trans
;
4950 if (!capable(CAP_SYS_ADMIN
))
4953 ret
= mnt_want_write_file(file
);
4957 sa
= memdup_user(arg
, sizeof(*sa
));
4963 if (!sa
->qgroupid
) {
4968 trans
= btrfs_join_transaction(root
);
4969 if (IS_ERR(trans
)) {
4970 ret
= PTR_ERR(trans
);
4974 /* FIXME: check if the IDs really exist */
4976 ret
= btrfs_create_qgroup(trans
, root
->fs_info
, sa
->qgroupid
);
4978 ret
= btrfs_remove_qgroup(trans
, root
->fs_info
, sa
->qgroupid
);
4981 err
= btrfs_end_transaction(trans
, root
);
4988 mnt_drop_write_file(file
);
4992 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
4994 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4995 struct btrfs_ioctl_qgroup_limit_args
*sa
;
4996 struct btrfs_trans_handle
*trans
;
5001 if (!capable(CAP_SYS_ADMIN
))
5004 ret
= mnt_want_write_file(file
);
5008 sa
= memdup_user(arg
, sizeof(*sa
));
5014 trans
= btrfs_join_transaction(root
);
5015 if (IS_ERR(trans
)) {
5016 ret
= PTR_ERR(trans
);
5020 qgroupid
= sa
->qgroupid
;
5022 /* take the current subvol as qgroup */
5023 qgroupid
= root
->root_key
.objectid
;
5026 /* FIXME: check if the IDs really exist */
5027 ret
= btrfs_limit_qgroup(trans
, root
->fs_info
, qgroupid
, &sa
->lim
);
5029 err
= btrfs_end_transaction(trans
, root
);
5036 mnt_drop_write_file(file
);
5040 static long btrfs_ioctl_quota_rescan(struct file
*file
, void __user
*arg
)
5042 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5043 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5046 if (!capable(CAP_SYS_ADMIN
))
5049 ret
= mnt_want_write_file(file
);
5053 qsa
= memdup_user(arg
, sizeof(*qsa
));
5064 ret
= btrfs_qgroup_rescan(root
->fs_info
);
5069 mnt_drop_write_file(file
);
5073 static long btrfs_ioctl_quota_rescan_status(struct file
*file
, void __user
*arg
)
5075 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5076 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5079 if (!capable(CAP_SYS_ADMIN
))
5082 qsa
= kzalloc(sizeof(*qsa
), GFP_KERNEL
);
5086 if (root
->fs_info
->qgroup_flags
& BTRFS_QGROUP_STATUS_FLAG_RESCAN
) {
5088 qsa
->progress
= root
->fs_info
->qgroup_rescan_progress
.objectid
;
5091 if (copy_to_user(arg
, qsa
, sizeof(*qsa
)))
5098 static long btrfs_ioctl_quota_rescan_wait(struct file
*file
, void __user
*arg
)
5100 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5102 if (!capable(CAP_SYS_ADMIN
))
5105 return btrfs_qgroup_wait_for_completion(root
->fs_info
, true);
5108 static long _btrfs_ioctl_set_received_subvol(struct file
*file
,
5109 struct btrfs_ioctl_received_subvol_args
*sa
)
5111 struct inode
*inode
= file_inode(file
);
5112 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5113 struct btrfs_root_item
*root_item
= &root
->root_item
;
5114 struct btrfs_trans_handle
*trans
;
5115 struct timespec ct
= current_time(inode
);
5117 int received_uuid_changed
;
5119 if (!inode_owner_or_capable(inode
))
5122 ret
= mnt_want_write_file(file
);
5126 down_write(&root
->fs_info
->subvol_sem
);
5128 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
5133 if (btrfs_root_readonly(root
)) {
5140 * 2 - uuid items (received uuid + subvol uuid)
5142 trans
= btrfs_start_transaction(root
, 3);
5143 if (IS_ERR(trans
)) {
5144 ret
= PTR_ERR(trans
);
5149 sa
->rtransid
= trans
->transid
;
5150 sa
->rtime
.sec
= ct
.tv_sec
;
5151 sa
->rtime
.nsec
= ct
.tv_nsec
;
5153 received_uuid_changed
= memcmp(root_item
->received_uuid
, sa
->uuid
,
5155 if (received_uuid_changed
&&
5156 !btrfs_is_empty_uuid(root_item
->received_uuid
))
5157 btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
5158 root_item
->received_uuid
,
5159 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5160 root
->root_key
.objectid
);
5161 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
5162 btrfs_set_root_stransid(root_item
, sa
->stransid
);
5163 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
5164 btrfs_set_stack_timespec_sec(&root_item
->stime
, sa
->stime
.sec
);
5165 btrfs_set_stack_timespec_nsec(&root_item
->stime
, sa
->stime
.nsec
);
5166 btrfs_set_stack_timespec_sec(&root_item
->rtime
, sa
->rtime
.sec
);
5167 btrfs_set_stack_timespec_nsec(&root_item
->rtime
, sa
->rtime
.nsec
);
5169 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
5170 &root
->root_key
, &root
->root_item
);
5172 btrfs_end_transaction(trans
, root
);
5175 if (received_uuid_changed
&& !btrfs_is_empty_uuid(sa
->uuid
)) {
5176 ret
= btrfs_uuid_tree_add(trans
, root
->fs_info
->uuid_root
,
5178 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5179 root
->root_key
.objectid
);
5180 if (ret
< 0 && ret
!= -EEXIST
) {
5181 btrfs_abort_transaction(trans
, ret
);
5185 ret
= btrfs_commit_transaction(trans
, root
);
5187 btrfs_abort_transaction(trans
, ret
);
5192 up_write(&root
->fs_info
->subvol_sem
);
5193 mnt_drop_write_file(file
);
5198 static long btrfs_ioctl_set_received_subvol_32(struct file
*file
,
5201 struct btrfs_ioctl_received_subvol_args_32
*args32
= NULL
;
5202 struct btrfs_ioctl_received_subvol_args
*args64
= NULL
;
5205 args32
= memdup_user(arg
, sizeof(*args32
));
5206 if (IS_ERR(args32
)) {
5207 ret
= PTR_ERR(args32
);
5212 args64
= kmalloc(sizeof(*args64
), GFP_KERNEL
);
5218 memcpy(args64
->uuid
, args32
->uuid
, BTRFS_UUID_SIZE
);
5219 args64
->stransid
= args32
->stransid
;
5220 args64
->rtransid
= args32
->rtransid
;
5221 args64
->stime
.sec
= args32
->stime
.sec
;
5222 args64
->stime
.nsec
= args32
->stime
.nsec
;
5223 args64
->rtime
.sec
= args32
->rtime
.sec
;
5224 args64
->rtime
.nsec
= args32
->rtime
.nsec
;
5225 args64
->flags
= args32
->flags
;
5227 ret
= _btrfs_ioctl_set_received_subvol(file
, args64
);
5231 memcpy(args32
->uuid
, args64
->uuid
, BTRFS_UUID_SIZE
);
5232 args32
->stransid
= args64
->stransid
;
5233 args32
->rtransid
= args64
->rtransid
;
5234 args32
->stime
.sec
= args64
->stime
.sec
;
5235 args32
->stime
.nsec
= args64
->stime
.nsec
;
5236 args32
->rtime
.sec
= args64
->rtime
.sec
;
5237 args32
->rtime
.nsec
= args64
->rtime
.nsec
;
5238 args32
->flags
= args64
->flags
;
5240 ret
= copy_to_user(arg
, args32
, sizeof(*args32
));
5251 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
5254 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
5257 sa
= memdup_user(arg
, sizeof(*sa
));
5264 ret
= _btrfs_ioctl_set_received_subvol(file
, sa
);
5269 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
5278 static int btrfs_ioctl_get_fslabel(struct file
*file
, void __user
*arg
)
5280 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5283 char label
[BTRFS_LABEL_SIZE
];
5285 spin_lock(&root
->fs_info
->super_lock
);
5286 memcpy(label
, root
->fs_info
->super_copy
->label
, BTRFS_LABEL_SIZE
);
5287 spin_unlock(&root
->fs_info
->super_lock
);
5289 len
= strnlen(label
, BTRFS_LABEL_SIZE
);
5291 if (len
== BTRFS_LABEL_SIZE
) {
5292 btrfs_warn(root
->fs_info
,
5293 "label is too long, return the first %zu bytes", --len
);
5296 ret
= copy_to_user(arg
, label
, len
);
5298 return ret
? -EFAULT
: 0;
5301 static int btrfs_ioctl_set_fslabel(struct file
*file
, void __user
*arg
)
5303 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5304 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5305 struct btrfs_trans_handle
*trans
;
5306 char label
[BTRFS_LABEL_SIZE
];
5309 if (!capable(CAP_SYS_ADMIN
))
5312 if (copy_from_user(label
, arg
, sizeof(label
)))
5315 if (strnlen(label
, BTRFS_LABEL_SIZE
) == BTRFS_LABEL_SIZE
) {
5316 btrfs_err(root
->fs_info
,
5317 "unable to set label with more than %d bytes",
5318 BTRFS_LABEL_SIZE
- 1);
5322 ret
= mnt_want_write_file(file
);
5326 trans
= btrfs_start_transaction(root
, 0);
5327 if (IS_ERR(trans
)) {
5328 ret
= PTR_ERR(trans
);
5332 spin_lock(&root
->fs_info
->super_lock
);
5333 strcpy(super_block
->label
, label
);
5334 spin_unlock(&root
->fs_info
->super_lock
);
5335 ret
= btrfs_commit_transaction(trans
, root
);
5338 mnt_drop_write_file(file
);
5342 #define INIT_FEATURE_FLAGS(suffix) \
5343 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5344 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5345 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5347 int btrfs_ioctl_get_supported_features(void __user
*arg
)
5349 static const struct btrfs_ioctl_feature_flags features
[3] = {
5350 INIT_FEATURE_FLAGS(SUPP
),
5351 INIT_FEATURE_FLAGS(SAFE_SET
),
5352 INIT_FEATURE_FLAGS(SAFE_CLEAR
)
5355 if (copy_to_user(arg
, &features
, sizeof(features
)))
5361 static int btrfs_ioctl_get_features(struct file
*file
, void __user
*arg
)
5363 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5364 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5365 struct btrfs_ioctl_feature_flags features
;
5367 features
.compat_flags
= btrfs_super_compat_flags(super_block
);
5368 features
.compat_ro_flags
= btrfs_super_compat_ro_flags(super_block
);
5369 features
.incompat_flags
= btrfs_super_incompat_flags(super_block
);
5371 if (copy_to_user(arg
, &features
, sizeof(features
)))
5377 static int check_feature_bits(struct btrfs_root
*root
,
5378 enum btrfs_feature_set set
,
5379 u64 change_mask
, u64 flags
, u64 supported_flags
,
5380 u64 safe_set
, u64 safe_clear
)
5382 const char *type
= btrfs_feature_set_names
[set
];
5384 u64 disallowed
, unsupported
;
5385 u64 set_mask
= flags
& change_mask
;
5386 u64 clear_mask
= ~flags
& change_mask
;
5388 unsupported
= set_mask
& ~supported_flags
;
5390 names
= btrfs_printable_features(set
, unsupported
);
5392 btrfs_warn(root
->fs_info
,
5393 "this kernel does not support the %s feature bit%s",
5394 names
, strchr(names
, ',') ? "s" : "");
5397 btrfs_warn(root
->fs_info
,
5398 "this kernel does not support %s bits 0x%llx",
5403 disallowed
= set_mask
& ~safe_set
;
5405 names
= btrfs_printable_features(set
, disallowed
);
5407 btrfs_warn(root
->fs_info
,
5408 "can't set the %s feature bit%s while mounted",
5409 names
, strchr(names
, ',') ? "s" : "");
5412 btrfs_warn(root
->fs_info
,
5413 "can't set %s bits 0x%llx while mounted",
5418 disallowed
= clear_mask
& ~safe_clear
;
5420 names
= btrfs_printable_features(set
, disallowed
);
5422 btrfs_warn(root
->fs_info
,
5423 "can't clear the %s feature bit%s while mounted",
5424 names
, strchr(names
, ',') ? "s" : "");
5427 btrfs_warn(root
->fs_info
,
5428 "can't clear %s bits 0x%llx while mounted",
5436 #define check_feature(root, change_mask, flags, mask_base) \
5437 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5438 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5439 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5440 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5442 static int btrfs_ioctl_set_features(struct file
*file
, void __user
*arg
)
5444 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5445 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5446 struct btrfs_ioctl_feature_flags flags
[2];
5447 struct btrfs_trans_handle
*trans
;
5451 if (!capable(CAP_SYS_ADMIN
))
5454 if (copy_from_user(flags
, arg
, sizeof(flags
)))
5458 if (!flags
[0].compat_flags
&& !flags
[0].compat_ro_flags
&&
5459 !flags
[0].incompat_flags
)
5462 ret
= check_feature(root
, flags
[0].compat_flags
,
5463 flags
[1].compat_flags
, COMPAT
);
5467 ret
= check_feature(root
, flags
[0].compat_ro_flags
,
5468 flags
[1].compat_ro_flags
, COMPAT_RO
);
5472 ret
= check_feature(root
, flags
[0].incompat_flags
,
5473 flags
[1].incompat_flags
, INCOMPAT
);
5477 ret
= mnt_want_write_file(file
);
5481 trans
= btrfs_start_transaction(root
, 0);
5482 if (IS_ERR(trans
)) {
5483 ret
= PTR_ERR(trans
);
5484 goto out_drop_write
;
5487 spin_lock(&root
->fs_info
->super_lock
);
5488 newflags
= btrfs_super_compat_flags(super_block
);
5489 newflags
|= flags
[0].compat_flags
& flags
[1].compat_flags
;
5490 newflags
&= ~(flags
[0].compat_flags
& ~flags
[1].compat_flags
);
5491 btrfs_set_super_compat_flags(super_block
, newflags
);
5493 newflags
= btrfs_super_compat_ro_flags(super_block
);
5494 newflags
|= flags
[0].compat_ro_flags
& flags
[1].compat_ro_flags
;
5495 newflags
&= ~(flags
[0].compat_ro_flags
& ~flags
[1].compat_ro_flags
);
5496 btrfs_set_super_compat_ro_flags(super_block
, newflags
);
5498 newflags
= btrfs_super_incompat_flags(super_block
);
5499 newflags
|= flags
[0].incompat_flags
& flags
[1].incompat_flags
;
5500 newflags
&= ~(flags
[0].incompat_flags
& ~flags
[1].incompat_flags
);
5501 btrfs_set_super_incompat_flags(super_block
, newflags
);
5502 spin_unlock(&root
->fs_info
->super_lock
);
5504 ret
= btrfs_commit_transaction(trans
, root
);
5506 mnt_drop_write_file(file
);
5511 long btrfs_ioctl(struct file
*file
, unsigned int
5512 cmd
, unsigned long arg
)
5514 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5515 void __user
*argp
= (void __user
*)arg
;
5518 case FS_IOC_GETFLAGS
:
5519 return btrfs_ioctl_getflags(file
, argp
);
5520 case FS_IOC_SETFLAGS
:
5521 return btrfs_ioctl_setflags(file
, argp
);
5522 case FS_IOC_GETVERSION
:
5523 return btrfs_ioctl_getversion(file
, argp
);
5525 return btrfs_ioctl_fitrim(file
, argp
);
5526 case BTRFS_IOC_SNAP_CREATE
:
5527 return btrfs_ioctl_snap_create(file
, argp
, 0);
5528 case BTRFS_IOC_SNAP_CREATE_V2
:
5529 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
5530 case BTRFS_IOC_SUBVOL_CREATE
:
5531 return btrfs_ioctl_snap_create(file
, argp
, 1);
5532 case BTRFS_IOC_SUBVOL_CREATE_V2
:
5533 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
5534 case BTRFS_IOC_SNAP_DESTROY
:
5535 return btrfs_ioctl_snap_destroy(file
, argp
);
5536 case BTRFS_IOC_SUBVOL_GETFLAGS
:
5537 return btrfs_ioctl_subvol_getflags(file
, argp
);
5538 case BTRFS_IOC_SUBVOL_SETFLAGS
:
5539 return btrfs_ioctl_subvol_setflags(file
, argp
);
5540 case BTRFS_IOC_DEFAULT_SUBVOL
:
5541 return btrfs_ioctl_default_subvol(file
, argp
);
5542 case BTRFS_IOC_DEFRAG
:
5543 return btrfs_ioctl_defrag(file
, NULL
);
5544 case BTRFS_IOC_DEFRAG_RANGE
:
5545 return btrfs_ioctl_defrag(file
, argp
);
5546 case BTRFS_IOC_RESIZE
:
5547 return btrfs_ioctl_resize(file
, argp
);
5548 case BTRFS_IOC_ADD_DEV
:
5549 return btrfs_ioctl_add_dev(root
, argp
);
5550 case BTRFS_IOC_RM_DEV
:
5551 return btrfs_ioctl_rm_dev(file
, argp
);
5552 case BTRFS_IOC_RM_DEV_V2
:
5553 return btrfs_ioctl_rm_dev_v2(file
, argp
);
5554 case BTRFS_IOC_FS_INFO
:
5555 return btrfs_ioctl_fs_info(root
, argp
);
5556 case BTRFS_IOC_DEV_INFO
:
5557 return btrfs_ioctl_dev_info(root
, argp
);
5558 case BTRFS_IOC_BALANCE
:
5559 return btrfs_ioctl_balance(file
, NULL
);
5560 case BTRFS_IOC_TRANS_START
:
5561 return btrfs_ioctl_trans_start(file
);
5562 case BTRFS_IOC_TRANS_END
:
5563 return btrfs_ioctl_trans_end(file
);
5564 case BTRFS_IOC_TREE_SEARCH
:
5565 return btrfs_ioctl_tree_search(file
, argp
);
5566 case BTRFS_IOC_TREE_SEARCH_V2
:
5567 return btrfs_ioctl_tree_search_v2(file
, argp
);
5568 case BTRFS_IOC_INO_LOOKUP
:
5569 return btrfs_ioctl_ino_lookup(file
, argp
);
5570 case BTRFS_IOC_INO_PATHS
:
5571 return btrfs_ioctl_ino_to_path(root
, argp
);
5572 case BTRFS_IOC_LOGICAL_INO
:
5573 return btrfs_ioctl_logical_to_ino(root
, argp
);
5574 case BTRFS_IOC_SPACE_INFO
:
5575 return btrfs_ioctl_space_info(root
, argp
);
5576 case BTRFS_IOC_SYNC
: {
5579 ret
= btrfs_start_delalloc_roots(root
->fs_info
, 0, -1);
5582 ret
= btrfs_sync_fs(file_inode(file
)->i_sb
, 1);
5584 * The transaction thread may want to do more work,
5585 * namely it pokes the cleaner kthread that will start
5586 * processing uncleaned subvols.
5588 wake_up_process(root
->fs_info
->transaction_kthread
);
5591 case BTRFS_IOC_START_SYNC
:
5592 return btrfs_ioctl_start_sync(root
, argp
);
5593 case BTRFS_IOC_WAIT_SYNC
:
5594 return btrfs_ioctl_wait_sync(root
, argp
);
5595 case BTRFS_IOC_SCRUB
:
5596 return btrfs_ioctl_scrub(file
, argp
);
5597 case BTRFS_IOC_SCRUB_CANCEL
:
5598 return btrfs_ioctl_scrub_cancel(root
, argp
);
5599 case BTRFS_IOC_SCRUB_PROGRESS
:
5600 return btrfs_ioctl_scrub_progress(root
, argp
);
5601 case BTRFS_IOC_BALANCE_V2
:
5602 return btrfs_ioctl_balance(file
, argp
);
5603 case BTRFS_IOC_BALANCE_CTL
:
5604 return btrfs_ioctl_balance_ctl(root
, arg
);
5605 case BTRFS_IOC_BALANCE_PROGRESS
:
5606 return btrfs_ioctl_balance_progress(root
, argp
);
5607 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
5608 return btrfs_ioctl_set_received_subvol(file
, argp
);
5610 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32
:
5611 return btrfs_ioctl_set_received_subvol_32(file
, argp
);
5613 case BTRFS_IOC_SEND
:
5614 return btrfs_ioctl_send(file
, argp
);
5615 case BTRFS_IOC_GET_DEV_STATS
:
5616 return btrfs_ioctl_get_dev_stats(root
, argp
);
5617 case BTRFS_IOC_QUOTA_CTL
:
5618 return btrfs_ioctl_quota_ctl(file
, argp
);
5619 case BTRFS_IOC_QGROUP_ASSIGN
:
5620 return btrfs_ioctl_qgroup_assign(file
, argp
);
5621 case BTRFS_IOC_QGROUP_CREATE
:
5622 return btrfs_ioctl_qgroup_create(file
, argp
);
5623 case BTRFS_IOC_QGROUP_LIMIT
:
5624 return btrfs_ioctl_qgroup_limit(file
, argp
);
5625 case BTRFS_IOC_QUOTA_RESCAN
:
5626 return btrfs_ioctl_quota_rescan(file
, argp
);
5627 case BTRFS_IOC_QUOTA_RESCAN_STATUS
:
5628 return btrfs_ioctl_quota_rescan_status(file
, argp
);
5629 case BTRFS_IOC_QUOTA_RESCAN_WAIT
:
5630 return btrfs_ioctl_quota_rescan_wait(file
, argp
);
5631 case BTRFS_IOC_DEV_REPLACE
:
5632 return btrfs_ioctl_dev_replace(root
, argp
);
5633 case BTRFS_IOC_GET_FSLABEL
:
5634 return btrfs_ioctl_get_fslabel(file
, argp
);
5635 case BTRFS_IOC_SET_FSLABEL
:
5636 return btrfs_ioctl_set_fslabel(file
, argp
);
5637 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
5638 return btrfs_ioctl_get_supported_features(argp
);
5639 case BTRFS_IOC_GET_FEATURES
:
5640 return btrfs_ioctl_get_features(file
, argp
);
5641 case BTRFS_IOC_SET_FEATURES
:
5642 return btrfs_ioctl_set_features(file
, argp
);
5648 #ifdef CONFIG_COMPAT
5649 long btrfs_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
5652 case FS_IOC32_GETFLAGS
:
5653 cmd
= FS_IOC_GETFLAGS
;
5655 case FS_IOC32_SETFLAGS
:
5656 cmd
= FS_IOC_SETFLAGS
;
5658 case FS_IOC32_GETVERSION
:
5659 cmd
= FS_IOC_GETVERSION
;
5662 return -ENOIOCTLCMD
;
5665 return btrfs_ioctl(file
, cmd
, (unsigned long) compat_ptr(arg
));