2 * NVMe over Fabrics RDMA target.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
32 #include <linux/nvme-rdma.h>
36 * We allow up to a page of inline data to go with the SQE
38 #define NVMET_RDMA_INLINE_DATA_SIZE PAGE_SIZE
40 struct nvmet_rdma_cmd
{
44 struct scatterlist inline_sg
;
45 struct page
*inline_page
;
46 struct nvme_command
*nvme_cmd
;
47 struct nvmet_rdma_queue
*queue
;
51 NVMET_RDMA_REQ_INLINE_DATA
= (1 << 0),
52 NVMET_RDMA_REQ_INVALIDATE_RKEY
= (1 << 1),
55 struct nvmet_rdma_rsp
{
56 struct ib_sge send_sge
;
57 struct ib_cqe send_cqe
;
58 struct ib_send_wr send_wr
;
60 struct nvmet_rdma_cmd
*cmd
;
61 struct nvmet_rdma_queue
*queue
;
63 struct ib_cqe read_cqe
;
64 struct rdma_rw_ctx rw
;
72 struct list_head wait_list
;
73 struct list_head free_list
;
76 enum nvmet_rdma_queue_state
{
77 NVMET_RDMA_Q_CONNECTING
,
79 NVMET_RDMA_Q_DISCONNECTING
,
82 struct nvmet_rdma_queue
{
83 struct rdma_cm_id
*cm_id
;
84 struct nvmet_port
*port
;
87 struct nvmet_rdma_device
*dev
;
88 spinlock_t state_lock
;
89 enum nvmet_rdma_queue_state state
;
90 struct nvmet_cq nvme_cq
;
91 struct nvmet_sq nvme_sq
;
93 struct nvmet_rdma_rsp
*rsps
;
94 struct list_head free_rsps
;
96 struct nvmet_rdma_cmd
*cmds
;
98 struct work_struct release_work
;
99 struct list_head rsp_wait_list
;
100 struct list_head rsp_wr_wait_list
;
101 spinlock_t rsp_wr_wait_lock
;
108 struct list_head queue_list
;
111 struct nvmet_rdma_device
{
112 struct ib_device
*device
;
115 struct nvmet_rdma_cmd
*srq_cmds
;
118 struct list_head entry
;
121 static bool nvmet_rdma_use_srq
;
122 module_param_named(use_srq
, nvmet_rdma_use_srq
, bool, 0444);
123 MODULE_PARM_DESC(use_srq
, "Use shared receive queue.");
125 static DEFINE_IDA(nvmet_rdma_queue_ida
);
126 static LIST_HEAD(nvmet_rdma_queue_list
);
127 static DEFINE_MUTEX(nvmet_rdma_queue_mutex
);
129 static LIST_HEAD(device_list
);
130 static DEFINE_MUTEX(device_list_mutex
);
132 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp
*rsp
);
133 static void nvmet_rdma_send_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
134 static void nvmet_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
135 static void nvmet_rdma_read_data_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
136 static void nvmet_rdma_qp_event(struct ib_event
*event
, void *priv
);
137 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue
*queue
);
139 static struct nvmet_fabrics_ops nvmet_rdma_ops
;
141 /* XXX: really should move to a generic header sooner or later.. */
142 static inline u32
get_unaligned_le24(const u8
*p
)
144 return (u32
)p
[0] | (u32
)p
[1] << 8 | (u32
)p
[2] << 16;
147 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp
*rsp
)
149 return nvme_is_write(rsp
->req
.cmd
) &&
151 !(rsp
->flags
& NVMET_RDMA_REQ_INLINE_DATA
);
154 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp
*rsp
)
156 return !nvme_is_write(rsp
->req
.cmd
) &&
158 !rsp
->req
.rsp
->status
&&
159 !(rsp
->flags
& NVMET_RDMA_REQ_INLINE_DATA
);
162 static inline struct nvmet_rdma_rsp
*
163 nvmet_rdma_get_rsp(struct nvmet_rdma_queue
*queue
)
165 struct nvmet_rdma_rsp
*rsp
;
168 spin_lock_irqsave(&queue
->rsps_lock
, flags
);
169 rsp
= list_first_entry(&queue
->free_rsps
,
170 struct nvmet_rdma_rsp
, free_list
);
171 list_del(&rsp
->free_list
);
172 spin_unlock_irqrestore(&queue
->rsps_lock
, flags
);
178 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp
*rsp
)
182 spin_lock_irqsave(&rsp
->queue
->rsps_lock
, flags
);
183 list_add_tail(&rsp
->free_list
, &rsp
->queue
->free_rsps
);
184 spin_unlock_irqrestore(&rsp
->queue
->rsps_lock
, flags
);
187 static void nvmet_rdma_free_sgl(struct scatterlist
*sgl
, unsigned int nents
)
189 struct scatterlist
*sg
;
195 for_each_sg(sgl
, sg
, nents
, count
)
196 __free_page(sg_page(sg
));
200 static int nvmet_rdma_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
,
203 struct scatterlist
*sg
;
208 nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
209 sg
= kmalloc_array(nent
, sizeof(struct scatterlist
), GFP_KERNEL
);
213 sg_init_table(sg
, nent
);
216 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
218 page
= alloc_page(GFP_KERNEL
);
222 sg_set_page(&sg
[i
], page
, page_len
, 0);
233 __free_page(sg_page(&sg
[i
]));
237 return NVME_SC_INTERNAL
;
240 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device
*ndev
,
241 struct nvmet_rdma_cmd
*c
, bool admin
)
243 /* NVMe command / RDMA RECV */
244 c
->nvme_cmd
= kmalloc(sizeof(*c
->nvme_cmd
), GFP_KERNEL
);
248 c
->sge
[0].addr
= ib_dma_map_single(ndev
->device
, c
->nvme_cmd
,
249 sizeof(*c
->nvme_cmd
), DMA_FROM_DEVICE
);
250 if (ib_dma_mapping_error(ndev
->device
, c
->sge
[0].addr
))
253 c
->sge
[0].length
= sizeof(*c
->nvme_cmd
);
254 c
->sge
[0].lkey
= ndev
->pd
->local_dma_lkey
;
257 c
->inline_page
= alloc_pages(GFP_KERNEL
,
258 get_order(NVMET_RDMA_INLINE_DATA_SIZE
));
261 c
->sge
[1].addr
= ib_dma_map_page(ndev
->device
,
262 c
->inline_page
, 0, NVMET_RDMA_INLINE_DATA_SIZE
,
264 if (ib_dma_mapping_error(ndev
->device
, c
->sge
[1].addr
))
265 goto out_free_inline_page
;
266 c
->sge
[1].length
= NVMET_RDMA_INLINE_DATA_SIZE
;
267 c
->sge
[1].lkey
= ndev
->pd
->local_dma_lkey
;
270 c
->cqe
.done
= nvmet_rdma_recv_done
;
272 c
->wr
.wr_cqe
= &c
->cqe
;
273 c
->wr
.sg_list
= c
->sge
;
274 c
->wr
.num_sge
= admin
? 1 : 2;
278 out_free_inline_page
:
280 __free_pages(c
->inline_page
,
281 get_order(NVMET_RDMA_INLINE_DATA_SIZE
));
284 ib_dma_unmap_single(ndev
->device
, c
->sge
[0].addr
,
285 sizeof(*c
->nvme_cmd
), DMA_FROM_DEVICE
);
293 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device
*ndev
,
294 struct nvmet_rdma_cmd
*c
, bool admin
)
297 ib_dma_unmap_page(ndev
->device
, c
->sge
[1].addr
,
298 NVMET_RDMA_INLINE_DATA_SIZE
, DMA_FROM_DEVICE
);
299 __free_pages(c
->inline_page
,
300 get_order(NVMET_RDMA_INLINE_DATA_SIZE
));
302 ib_dma_unmap_single(ndev
->device
, c
->sge
[0].addr
,
303 sizeof(*c
->nvme_cmd
), DMA_FROM_DEVICE
);
307 static struct nvmet_rdma_cmd
*
308 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device
*ndev
,
309 int nr_cmds
, bool admin
)
311 struct nvmet_rdma_cmd
*cmds
;
312 int ret
= -EINVAL
, i
;
314 cmds
= kcalloc(nr_cmds
, sizeof(struct nvmet_rdma_cmd
), GFP_KERNEL
);
318 for (i
= 0; i
< nr_cmds
; i
++) {
319 ret
= nvmet_rdma_alloc_cmd(ndev
, cmds
+ i
, admin
);
328 nvmet_rdma_free_cmd(ndev
, cmds
+ i
, admin
);
334 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device
*ndev
,
335 struct nvmet_rdma_cmd
*cmds
, int nr_cmds
, bool admin
)
339 for (i
= 0; i
< nr_cmds
; i
++)
340 nvmet_rdma_free_cmd(ndev
, cmds
+ i
, admin
);
344 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device
*ndev
,
345 struct nvmet_rdma_rsp
*r
)
347 /* NVMe CQE / RDMA SEND */
348 r
->req
.rsp
= kmalloc(sizeof(*r
->req
.rsp
), GFP_KERNEL
);
352 r
->send_sge
.addr
= ib_dma_map_single(ndev
->device
, r
->req
.rsp
,
353 sizeof(*r
->req
.rsp
), DMA_TO_DEVICE
);
354 if (ib_dma_mapping_error(ndev
->device
, r
->send_sge
.addr
))
357 r
->send_sge
.length
= sizeof(*r
->req
.rsp
);
358 r
->send_sge
.lkey
= ndev
->pd
->local_dma_lkey
;
360 r
->send_cqe
.done
= nvmet_rdma_send_done
;
362 r
->send_wr
.wr_cqe
= &r
->send_cqe
;
363 r
->send_wr
.sg_list
= &r
->send_sge
;
364 r
->send_wr
.num_sge
= 1;
365 r
->send_wr
.send_flags
= IB_SEND_SIGNALED
;
367 /* Data In / RDMA READ */
368 r
->read_cqe
.done
= nvmet_rdma_read_data_done
;
377 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device
*ndev
,
378 struct nvmet_rdma_rsp
*r
)
380 ib_dma_unmap_single(ndev
->device
, r
->send_sge
.addr
,
381 sizeof(*r
->req
.rsp
), DMA_TO_DEVICE
);
386 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue
*queue
)
388 struct nvmet_rdma_device
*ndev
= queue
->dev
;
389 int nr_rsps
= queue
->recv_queue_size
* 2;
390 int ret
= -EINVAL
, i
;
392 queue
->rsps
= kcalloc(nr_rsps
, sizeof(struct nvmet_rdma_rsp
),
397 for (i
= 0; i
< nr_rsps
; i
++) {
398 struct nvmet_rdma_rsp
*rsp
= &queue
->rsps
[i
];
400 ret
= nvmet_rdma_alloc_rsp(ndev
, rsp
);
404 list_add_tail(&rsp
->free_list
, &queue
->free_rsps
);
411 struct nvmet_rdma_rsp
*rsp
= &queue
->rsps
[i
];
413 list_del(&rsp
->free_list
);
414 nvmet_rdma_free_rsp(ndev
, rsp
);
421 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue
*queue
)
423 struct nvmet_rdma_device
*ndev
= queue
->dev
;
424 int i
, nr_rsps
= queue
->recv_queue_size
* 2;
426 for (i
= 0; i
< nr_rsps
; i
++) {
427 struct nvmet_rdma_rsp
*rsp
= &queue
->rsps
[i
];
429 list_del(&rsp
->free_list
);
430 nvmet_rdma_free_rsp(ndev
, rsp
);
435 static int nvmet_rdma_post_recv(struct nvmet_rdma_device
*ndev
,
436 struct nvmet_rdma_cmd
*cmd
)
438 struct ib_recv_wr
*bad_wr
;
441 return ib_post_srq_recv(ndev
->srq
, &cmd
->wr
, &bad_wr
);
442 return ib_post_recv(cmd
->queue
->cm_id
->qp
, &cmd
->wr
, &bad_wr
);
445 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue
*queue
)
447 spin_lock(&queue
->rsp_wr_wait_lock
);
448 while (!list_empty(&queue
->rsp_wr_wait_list
)) {
449 struct nvmet_rdma_rsp
*rsp
;
452 rsp
= list_entry(queue
->rsp_wr_wait_list
.next
,
453 struct nvmet_rdma_rsp
, wait_list
);
454 list_del(&rsp
->wait_list
);
456 spin_unlock(&queue
->rsp_wr_wait_lock
);
457 ret
= nvmet_rdma_execute_command(rsp
);
458 spin_lock(&queue
->rsp_wr_wait_lock
);
461 list_add(&rsp
->wait_list
, &queue
->rsp_wr_wait_list
);
465 spin_unlock(&queue
->rsp_wr_wait_lock
);
469 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp
*rsp
)
471 struct nvmet_rdma_queue
*queue
= rsp
->queue
;
473 atomic_add(1 + rsp
->n_rdma
, &queue
->sq_wr_avail
);
476 rdma_rw_ctx_destroy(&rsp
->rw
, queue
->cm_id
->qp
,
477 queue
->cm_id
->port_num
, rsp
->req
.sg
,
478 rsp
->req
.sg_cnt
, nvmet_data_dir(&rsp
->req
));
481 if (rsp
->req
.sg
!= &rsp
->cmd
->inline_sg
)
482 nvmet_rdma_free_sgl(rsp
->req
.sg
, rsp
->req
.sg_cnt
);
484 if (unlikely(!list_empty_careful(&queue
->rsp_wr_wait_list
)))
485 nvmet_rdma_process_wr_wait_list(queue
);
487 nvmet_rdma_put_rsp(rsp
);
490 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue
*queue
)
492 if (queue
->nvme_sq
.ctrl
) {
493 nvmet_ctrl_fatal_error(queue
->nvme_sq
.ctrl
);
496 * we didn't setup the controller yet in case
497 * of admin connect error, just disconnect and
500 nvmet_rdma_queue_disconnect(queue
);
504 static void nvmet_rdma_send_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
506 struct nvmet_rdma_rsp
*rsp
=
507 container_of(wc
->wr_cqe
, struct nvmet_rdma_rsp
, send_cqe
);
509 nvmet_rdma_release_rsp(rsp
);
511 if (unlikely(wc
->status
!= IB_WC_SUCCESS
&&
512 wc
->status
!= IB_WC_WR_FLUSH_ERR
)) {
513 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
514 wc
->wr_cqe
, ib_wc_status_msg(wc
->status
), wc
->status
);
515 nvmet_rdma_error_comp(rsp
->queue
);
519 static void nvmet_rdma_queue_response(struct nvmet_req
*req
)
521 struct nvmet_rdma_rsp
*rsp
=
522 container_of(req
, struct nvmet_rdma_rsp
, req
);
523 struct rdma_cm_id
*cm_id
= rsp
->queue
->cm_id
;
524 struct ib_send_wr
*first_wr
, *bad_wr
;
526 if (rsp
->flags
& NVMET_RDMA_REQ_INVALIDATE_RKEY
) {
527 rsp
->send_wr
.opcode
= IB_WR_SEND_WITH_INV
;
528 rsp
->send_wr
.ex
.invalidate_rkey
= rsp
->invalidate_rkey
;
530 rsp
->send_wr
.opcode
= IB_WR_SEND
;
533 if (nvmet_rdma_need_data_out(rsp
))
534 first_wr
= rdma_rw_ctx_wrs(&rsp
->rw
, cm_id
->qp
,
535 cm_id
->port_num
, NULL
, &rsp
->send_wr
);
537 first_wr
= &rsp
->send_wr
;
539 nvmet_rdma_post_recv(rsp
->queue
->dev
, rsp
->cmd
);
540 if (ib_post_send(cm_id
->qp
, first_wr
, &bad_wr
)) {
541 pr_err("sending cmd response failed\n");
542 nvmet_rdma_release_rsp(rsp
);
546 static void nvmet_rdma_read_data_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
548 struct nvmet_rdma_rsp
*rsp
=
549 container_of(wc
->wr_cqe
, struct nvmet_rdma_rsp
, read_cqe
);
550 struct nvmet_rdma_queue
*queue
= cq
->cq_context
;
552 WARN_ON(rsp
->n_rdma
<= 0);
553 atomic_add(rsp
->n_rdma
, &queue
->sq_wr_avail
);
554 rdma_rw_ctx_destroy(&rsp
->rw
, queue
->cm_id
->qp
,
555 queue
->cm_id
->port_num
, rsp
->req
.sg
,
556 rsp
->req
.sg_cnt
, nvmet_data_dir(&rsp
->req
));
559 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
560 nvmet_rdma_release_rsp(rsp
);
561 if (wc
->status
!= IB_WC_WR_FLUSH_ERR
) {
562 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
563 wc
->wr_cqe
, ib_wc_status_msg(wc
->status
), wc
->status
);
564 nvmet_rdma_error_comp(queue
);
569 rsp
->req
.execute(&rsp
->req
);
572 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp
*rsp
, u32 len
,
575 sg_init_table(&rsp
->cmd
->inline_sg
, 1);
576 sg_set_page(&rsp
->cmd
->inline_sg
, rsp
->cmd
->inline_page
, len
, off
);
577 rsp
->req
.sg
= &rsp
->cmd
->inline_sg
;
581 static u16
nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp
*rsp
)
583 struct nvme_sgl_desc
*sgl
= &rsp
->req
.cmd
->common
.dptr
.sgl
;
584 u64 off
= le64_to_cpu(sgl
->addr
);
585 u32 len
= le32_to_cpu(sgl
->length
);
587 if (!nvme_is_write(rsp
->req
.cmd
))
588 return NVME_SC_INVALID_FIELD
| NVME_SC_DNR
;
590 if (off
+ len
> NVMET_RDMA_INLINE_DATA_SIZE
) {
591 pr_err("invalid inline data offset!\n");
592 return NVME_SC_SGL_INVALID_OFFSET
| NVME_SC_DNR
;
595 /* no data command? */
599 nvmet_rdma_use_inline_sg(rsp
, len
, off
);
600 rsp
->flags
|= NVMET_RDMA_REQ_INLINE_DATA
;
604 static u16
nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp
*rsp
,
605 struct nvme_keyed_sgl_desc
*sgl
, bool invalidate
)
607 struct rdma_cm_id
*cm_id
= rsp
->queue
->cm_id
;
608 u64 addr
= le64_to_cpu(sgl
->addr
);
609 u32 len
= get_unaligned_le24(sgl
->length
);
610 u32 key
= get_unaligned_le32(sgl
->key
);
614 /* no data command? */
618 /* use the already allocated data buffer if possible */
619 if (len
<= NVMET_RDMA_INLINE_DATA_SIZE
&& rsp
->queue
->host_qid
) {
620 nvmet_rdma_use_inline_sg(rsp
, len
, 0);
622 status
= nvmet_rdma_alloc_sgl(&rsp
->req
.sg
, &rsp
->req
.sg_cnt
,
628 ret
= rdma_rw_ctx_init(&rsp
->rw
, cm_id
->qp
, cm_id
->port_num
,
629 rsp
->req
.sg
, rsp
->req
.sg_cnt
, 0, addr
, key
,
630 nvmet_data_dir(&rsp
->req
));
632 return NVME_SC_INTERNAL
;
636 rsp
->invalidate_rkey
= key
;
637 rsp
->flags
|= NVMET_RDMA_REQ_INVALIDATE_RKEY
;
643 static u16
nvmet_rdma_map_sgl(struct nvmet_rdma_rsp
*rsp
)
645 struct nvme_keyed_sgl_desc
*sgl
= &rsp
->req
.cmd
->common
.dptr
.ksgl
;
647 switch (sgl
->type
>> 4) {
648 case NVME_SGL_FMT_DATA_DESC
:
649 switch (sgl
->type
& 0xf) {
650 case NVME_SGL_FMT_OFFSET
:
651 return nvmet_rdma_map_sgl_inline(rsp
);
653 pr_err("invalid SGL subtype: %#x\n", sgl
->type
);
654 return NVME_SC_INVALID_FIELD
| NVME_SC_DNR
;
656 case NVME_KEY_SGL_FMT_DATA_DESC
:
657 switch (sgl
->type
& 0xf) {
658 case NVME_SGL_FMT_ADDRESS
| NVME_SGL_FMT_INVALIDATE
:
659 return nvmet_rdma_map_sgl_keyed(rsp
, sgl
, true);
660 case NVME_SGL_FMT_ADDRESS
:
661 return nvmet_rdma_map_sgl_keyed(rsp
, sgl
, false);
663 pr_err("invalid SGL subtype: %#x\n", sgl
->type
);
664 return NVME_SC_INVALID_FIELD
| NVME_SC_DNR
;
667 pr_err("invalid SGL type: %#x\n", sgl
->type
);
668 return NVME_SC_SGL_INVALID_TYPE
| NVME_SC_DNR
;
672 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp
*rsp
)
674 struct nvmet_rdma_queue
*queue
= rsp
->queue
;
676 if (unlikely(atomic_sub_return(1 + rsp
->n_rdma
,
677 &queue
->sq_wr_avail
) < 0)) {
678 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
679 1 + rsp
->n_rdma
, queue
->idx
,
680 queue
->nvme_sq
.ctrl
->cntlid
);
681 atomic_add(1 + rsp
->n_rdma
, &queue
->sq_wr_avail
);
685 if (nvmet_rdma_need_data_in(rsp
)) {
686 if (rdma_rw_ctx_post(&rsp
->rw
, queue
->cm_id
->qp
,
687 queue
->cm_id
->port_num
, &rsp
->read_cqe
, NULL
))
688 nvmet_req_complete(&rsp
->req
, NVME_SC_DATA_XFER_ERROR
);
690 rsp
->req
.execute(&rsp
->req
);
696 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue
*queue
,
697 struct nvmet_rdma_rsp
*cmd
)
703 cmd
->req
.port
= queue
->port
;
705 if (!nvmet_req_init(&cmd
->req
, &queue
->nvme_cq
,
706 &queue
->nvme_sq
, &nvmet_rdma_ops
))
709 status
= nvmet_rdma_map_sgl(cmd
);
713 if (unlikely(!nvmet_rdma_execute_command(cmd
))) {
714 spin_lock(&queue
->rsp_wr_wait_lock
);
715 list_add_tail(&cmd
->wait_list
, &queue
->rsp_wr_wait_list
);
716 spin_unlock(&queue
->rsp_wr_wait_lock
);
722 nvmet_req_complete(&cmd
->req
, status
);
725 static void nvmet_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
727 struct nvmet_rdma_cmd
*cmd
=
728 container_of(wc
->wr_cqe
, struct nvmet_rdma_cmd
, cqe
);
729 struct nvmet_rdma_queue
*queue
= cq
->cq_context
;
730 struct nvmet_rdma_rsp
*rsp
;
732 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
733 if (wc
->status
!= IB_WC_WR_FLUSH_ERR
) {
734 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
735 wc
->wr_cqe
, ib_wc_status_msg(wc
->status
),
737 nvmet_rdma_error_comp(queue
);
742 if (unlikely(wc
->byte_len
< sizeof(struct nvme_command
))) {
743 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
744 nvmet_rdma_error_comp(queue
);
749 rsp
= nvmet_rdma_get_rsp(queue
);
752 rsp
->req
.cmd
= cmd
->nvme_cmd
;
754 if (unlikely(queue
->state
!= NVMET_RDMA_Q_LIVE
)) {
757 spin_lock_irqsave(&queue
->state_lock
, flags
);
758 if (queue
->state
== NVMET_RDMA_Q_CONNECTING
)
759 list_add_tail(&rsp
->wait_list
, &queue
->rsp_wait_list
);
761 nvmet_rdma_put_rsp(rsp
);
762 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
766 nvmet_rdma_handle_command(queue
, rsp
);
769 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device
*ndev
)
774 nvmet_rdma_free_cmds(ndev
, ndev
->srq_cmds
, ndev
->srq_size
, false);
775 ib_destroy_srq(ndev
->srq
);
778 static int nvmet_rdma_init_srq(struct nvmet_rdma_device
*ndev
)
780 struct ib_srq_init_attr srq_attr
= { NULL
, };
785 srq_size
= 4095; /* XXX: tune */
787 srq_attr
.attr
.max_wr
= srq_size
;
788 srq_attr
.attr
.max_sge
= 2;
789 srq_attr
.attr
.srq_limit
= 0;
790 srq_attr
.srq_type
= IB_SRQT_BASIC
;
791 srq
= ib_create_srq(ndev
->pd
, &srq_attr
);
794 * If SRQs aren't supported we just go ahead and use normal
795 * non-shared receive queues.
797 pr_info("SRQ requested but not supported.\n");
801 ndev
->srq_cmds
= nvmet_rdma_alloc_cmds(ndev
, srq_size
, false);
802 if (IS_ERR(ndev
->srq_cmds
)) {
803 ret
= PTR_ERR(ndev
->srq_cmds
);
804 goto out_destroy_srq
;
808 ndev
->srq_size
= srq_size
;
810 for (i
= 0; i
< srq_size
; i
++)
811 nvmet_rdma_post_recv(ndev
, &ndev
->srq_cmds
[i
]);
820 static void nvmet_rdma_free_dev(struct kref
*ref
)
822 struct nvmet_rdma_device
*ndev
=
823 container_of(ref
, struct nvmet_rdma_device
, ref
);
825 mutex_lock(&device_list_mutex
);
826 list_del(&ndev
->entry
);
827 mutex_unlock(&device_list_mutex
);
829 nvmet_rdma_destroy_srq(ndev
);
830 ib_dealloc_pd(ndev
->pd
);
835 static struct nvmet_rdma_device
*
836 nvmet_rdma_find_get_device(struct rdma_cm_id
*cm_id
)
838 struct nvmet_rdma_device
*ndev
;
841 mutex_lock(&device_list_mutex
);
842 list_for_each_entry(ndev
, &device_list
, entry
) {
843 if (ndev
->device
->node_guid
== cm_id
->device
->node_guid
&&
844 kref_get_unless_zero(&ndev
->ref
))
848 ndev
= kzalloc(sizeof(*ndev
), GFP_KERNEL
);
852 ndev
->device
= cm_id
->device
;
853 kref_init(&ndev
->ref
);
855 ndev
->pd
= ib_alloc_pd(ndev
->device
);
856 if (IS_ERR(ndev
->pd
))
859 if (nvmet_rdma_use_srq
) {
860 ret
= nvmet_rdma_init_srq(ndev
);
865 list_add(&ndev
->entry
, &device_list
);
867 mutex_unlock(&device_list_mutex
);
868 pr_debug("added %s.\n", ndev
->device
->name
);
872 ib_dealloc_pd(ndev
->pd
);
876 mutex_unlock(&device_list_mutex
);
880 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue
*queue
)
882 struct ib_qp_init_attr qp_attr
;
883 struct nvmet_rdma_device
*ndev
= queue
->dev
;
884 int comp_vector
, nr_cqe
, ret
, i
;
887 * Spread the io queues across completion vectors,
888 * but still keep all admin queues on vector 0.
890 comp_vector
= !queue
->host_qid
? 0 :
891 queue
->idx
% ndev
->device
->num_comp_vectors
;
894 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
896 nr_cqe
= queue
->recv_queue_size
+ 2 * queue
->send_queue_size
;
898 queue
->cq
= ib_alloc_cq(ndev
->device
, queue
,
899 nr_cqe
+ 1, comp_vector
,
901 if (IS_ERR(queue
->cq
)) {
902 ret
= PTR_ERR(queue
->cq
);
903 pr_err("failed to create CQ cqe= %d ret= %d\n",
908 memset(&qp_attr
, 0, sizeof(qp_attr
));
909 qp_attr
.qp_context
= queue
;
910 qp_attr
.event_handler
= nvmet_rdma_qp_event
;
911 qp_attr
.send_cq
= queue
->cq
;
912 qp_attr
.recv_cq
= queue
->cq
;
913 qp_attr
.sq_sig_type
= IB_SIGNAL_REQ_WR
;
914 qp_attr
.qp_type
= IB_QPT_RC
;
916 qp_attr
.cap
.max_send_wr
= queue
->send_queue_size
+ 1;
917 qp_attr
.cap
.max_rdma_ctxs
= queue
->send_queue_size
;
918 qp_attr
.cap
.max_send_sge
= max(ndev
->device
->attrs
.max_sge_rd
,
919 ndev
->device
->attrs
.max_sge
);
922 qp_attr
.srq
= ndev
->srq
;
925 qp_attr
.cap
.max_recv_wr
= 1 + queue
->recv_queue_size
;
926 qp_attr
.cap
.max_recv_sge
= 2;
929 ret
= rdma_create_qp(queue
->cm_id
, ndev
->pd
, &qp_attr
);
931 pr_err("failed to create_qp ret= %d\n", ret
);
935 atomic_set(&queue
->sq_wr_avail
, qp_attr
.cap
.max_send_wr
);
937 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
938 __func__
, queue
->cq
->cqe
, qp_attr
.cap
.max_send_sge
,
939 qp_attr
.cap
.max_send_wr
, queue
->cm_id
);
942 for (i
= 0; i
< queue
->recv_queue_size
; i
++) {
943 queue
->cmds
[i
].queue
= queue
;
944 nvmet_rdma_post_recv(ndev
, &queue
->cmds
[i
]);
952 ib_free_cq(queue
->cq
);
956 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue
*queue
)
958 rdma_destroy_qp(queue
->cm_id
);
959 ib_free_cq(queue
->cq
);
962 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue
*queue
)
964 pr_info("freeing queue %d\n", queue
->idx
);
966 nvmet_sq_destroy(&queue
->nvme_sq
);
968 nvmet_rdma_destroy_queue_ib(queue
);
969 if (!queue
->dev
->srq
) {
970 nvmet_rdma_free_cmds(queue
->dev
, queue
->cmds
,
971 queue
->recv_queue_size
,
974 nvmet_rdma_free_rsps(queue
);
975 ida_simple_remove(&nvmet_rdma_queue_ida
, queue
->idx
);
979 static void nvmet_rdma_release_queue_work(struct work_struct
*w
)
981 struct nvmet_rdma_queue
*queue
=
982 container_of(w
, struct nvmet_rdma_queue
, release_work
);
983 struct rdma_cm_id
*cm_id
= queue
->cm_id
;
984 struct nvmet_rdma_device
*dev
= queue
->dev
;
986 nvmet_rdma_free_queue(queue
);
987 rdma_destroy_id(cm_id
);
988 kref_put(&dev
->ref
, nvmet_rdma_free_dev
);
992 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param
*conn
,
993 struct nvmet_rdma_queue
*queue
)
995 struct nvme_rdma_cm_req
*req
;
997 req
= (struct nvme_rdma_cm_req
*)conn
->private_data
;
998 if (!req
|| conn
->private_data_len
== 0)
999 return NVME_RDMA_CM_INVALID_LEN
;
1001 if (le16_to_cpu(req
->recfmt
) != NVME_RDMA_CM_FMT_1_0
)
1002 return NVME_RDMA_CM_INVALID_RECFMT
;
1004 queue
->host_qid
= le16_to_cpu(req
->qid
);
1007 * req->hsqsize corresponds to our recv queue size
1008 * req->hrqsize corresponds to our send queue size
1010 queue
->recv_queue_size
= le16_to_cpu(req
->hsqsize
);
1011 queue
->send_queue_size
= le16_to_cpu(req
->hrqsize
);
1013 if (!queue
->host_qid
&& queue
->recv_queue_size
> NVMF_AQ_DEPTH
)
1014 return NVME_RDMA_CM_INVALID_HSQSIZE
;
1016 /* XXX: Should we enforce some kind of max for IO queues? */
1021 static int nvmet_rdma_cm_reject(struct rdma_cm_id
*cm_id
,
1022 enum nvme_rdma_cm_status status
)
1024 struct nvme_rdma_cm_rej rej
;
1026 rej
.recfmt
= cpu_to_le16(NVME_RDMA_CM_FMT_1_0
);
1027 rej
.sts
= cpu_to_le16(status
);
1029 return rdma_reject(cm_id
, (void *)&rej
, sizeof(rej
));
1032 static struct nvmet_rdma_queue
*
1033 nvmet_rdma_alloc_queue(struct nvmet_rdma_device
*ndev
,
1034 struct rdma_cm_id
*cm_id
,
1035 struct rdma_cm_event
*event
)
1037 struct nvmet_rdma_queue
*queue
;
1040 queue
= kzalloc(sizeof(*queue
), GFP_KERNEL
);
1042 ret
= NVME_RDMA_CM_NO_RSC
;
1046 ret
= nvmet_sq_init(&queue
->nvme_sq
);
1048 goto out_free_queue
;
1050 ret
= nvmet_rdma_parse_cm_connect_req(&event
->param
.conn
, queue
);
1052 goto out_destroy_sq
;
1055 * Schedules the actual release because calling rdma_destroy_id from
1056 * inside a CM callback would trigger a deadlock. (great API design..)
1058 INIT_WORK(&queue
->release_work
, nvmet_rdma_release_queue_work
);
1060 queue
->cm_id
= cm_id
;
1062 spin_lock_init(&queue
->state_lock
);
1063 queue
->state
= NVMET_RDMA_Q_CONNECTING
;
1064 INIT_LIST_HEAD(&queue
->rsp_wait_list
);
1065 INIT_LIST_HEAD(&queue
->rsp_wr_wait_list
);
1066 spin_lock_init(&queue
->rsp_wr_wait_lock
);
1067 INIT_LIST_HEAD(&queue
->free_rsps
);
1068 spin_lock_init(&queue
->rsps_lock
);
1070 queue
->idx
= ida_simple_get(&nvmet_rdma_queue_ida
, 0, 0, GFP_KERNEL
);
1071 if (queue
->idx
< 0) {
1072 ret
= NVME_RDMA_CM_NO_RSC
;
1073 goto out_free_queue
;
1076 ret
= nvmet_rdma_alloc_rsps(queue
);
1078 ret
= NVME_RDMA_CM_NO_RSC
;
1079 goto out_ida_remove
;
1083 queue
->cmds
= nvmet_rdma_alloc_cmds(ndev
,
1084 queue
->recv_queue_size
,
1086 if (IS_ERR(queue
->cmds
)) {
1087 ret
= NVME_RDMA_CM_NO_RSC
;
1088 goto out_free_responses
;
1092 ret
= nvmet_rdma_create_queue_ib(queue
);
1094 pr_err("%s: creating RDMA queue failed (%d).\n",
1096 ret
= NVME_RDMA_CM_NO_RSC
;
1104 nvmet_rdma_free_cmds(queue
->dev
, queue
->cmds
,
1105 queue
->recv_queue_size
,
1109 nvmet_rdma_free_rsps(queue
);
1111 ida_simple_remove(&nvmet_rdma_queue_ida
, queue
->idx
);
1113 nvmet_sq_destroy(&queue
->nvme_sq
);
1117 nvmet_rdma_cm_reject(cm_id
, ret
);
1121 static void nvmet_rdma_qp_event(struct ib_event
*event
, void *priv
)
1123 struct nvmet_rdma_queue
*queue
= priv
;
1125 switch (event
->event
) {
1126 case IB_EVENT_COMM_EST
:
1127 rdma_notify(queue
->cm_id
, event
->event
);
1130 pr_err("received unrecognized IB QP event %d\n", event
->event
);
1135 static int nvmet_rdma_cm_accept(struct rdma_cm_id
*cm_id
,
1136 struct nvmet_rdma_queue
*queue
,
1137 struct rdma_conn_param
*p
)
1139 struct rdma_conn_param param
= { };
1140 struct nvme_rdma_cm_rep priv
= { };
1143 param
.rnr_retry_count
= 7;
1144 param
.flow_control
= 1;
1145 param
.initiator_depth
= min_t(u8
, p
->initiator_depth
,
1146 queue
->dev
->device
->attrs
.max_qp_init_rd_atom
);
1147 param
.private_data
= &priv
;
1148 param
.private_data_len
= sizeof(priv
);
1149 priv
.recfmt
= cpu_to_le16(NVME_RDMA_CM_FMT_1_0
);
1150 priv
.crqsize
= cpu_to_le16(queue
->recv_queue_size
);
1152 ret
= rdma_accept(cm_id
, ¶m
);
1154 pr_err("rdma_accept failed (error code = %d)\n", ret
);
1159 static int nvmet_rdma_queue_connect(struct rdma_cm_id
*cm_id
,
1160 struct rdma_cm_event
*event
)
1162 struct nvmet_rdma_device
*ndev
;
1163 struct nvmet_rdma_queue
*queue
;
1166 ndev
= nvmet_rdma_find_get_device(cm_id
);
1168 pr_err("no client data!\n");
1169 nvmet_rdma_cm_reject(cm_id
, NVME_RDMA_CM_NO_RSC
);
1170 return -ECONNREFUSED
;
1173 queue
= nvmet_rdma_alloc_queue(ndev
, cm_id
, event
);
1178 queue
->port
= cm_id
->context
;
1180 ret
= nvmet_rdma_cm_accept(cm_id
, queue
, &event
->param
.conn
);
1184 mutex_lock(&nvmet_rdma_queue_mutex
);
1185 list_add_tail(&queue
->queue_list
, &nvmet_rdma_queue_list
);
1186 mutex_unlock(&nvmet_rdma_queue_mutex
);
1191 nvmet_rdma_free_queue(queue
);
1193 kref_put(&ndev
->ref
, nvmet_rdma_free_dev
);
1198 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue
*queue
)
1200 unsigned long flags
;
1202 spin_lock_irqsave(&queue
->state_lock
, flags
);
1203 if (queue
->state
!= NVMET_RDMA_Q_CONNECTING
) {
1204 pr_warn("trying to establish a connected queue\n");
1207 queue
->state
= NVMET_RDMA_Q_LIVE
;
1209 while (!list_empty(&queue
->rsp_wait_list
)) {
1210 struct nvmet_rdma_rsp
*cmd
;
1212 cmd
= list_first_entry(&queue
->rsp_wait_list
,
1213 struct nvmet_rdma_rsp
, wait_list
);
1214 list_del(&cmd
->wait_list
);
1216 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
1217 nvmet_rdma_handle_command(queue
, cmd
);
1218 spin_lock_irqsave(&queue
->state_lock
, flags
);
1222 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
1225 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue
*queue
)
1227 bool disconnect
= false;
1228 unsigned long flags
;
1230 pr_debug("cm_id= %p queue->state= %d\n", queue
->cm_id
, queue
->state
);
1232 spin_lock_irqsave(&queue
->state_lock
, flags
);
1233 switch (queue
->state
) {
1234 case NVMET_RDMA_Q_CONNECTING
:
1235 case NVMET_RDMA_Q_LIVE
:
1237 queue
->state
= NVMET_RDMA_Q_DISCONNECTING
;
1239 case NVMET_RDMA_Q_DISCONNECTING
:
1242 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
1245 rdma_disconnect(queue
->cm_id
);
1246 ib_drain_qp(queue
->cm_id
->qp
);
1247 schedule_work(&queue
->release_work
);
1251 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue
*queue
)
1253 bool disconnect
= false;
1255 mutex_lock(&nvmet_rdma_queue_mutex
);
1256 if (!list_empty(&queue
->queue_list
)) {
1257 list_del_init(&queue
->queue_list
);
1260 mutex_unlock(&nvmet_rdma_queue_mutex
);
1263 __nvmet_rdma_queue_disconnect(queue
);
1266 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id
*cm_id
,
1267 struct nvmet_rdma_queue
*queue
)
1269 WARN_ON_ONCE(queue
->state
!= NVMET_RDMA_Q_CONNECTING
);
1271 pr_err("failed to connect queue\n");
1272 schedule_work(&queue
->release_work
);
1275 static int nvmet_rdma_cm_handler(struct rdma_cm_id
*cm_id
,
1276 struct rdma_cm_event
*event
)
1278 struct nvmet_rdma_queue
*queue
= NULL
;
1282 queue
= cm_id
->qp
->qp_context
;
1284 pr_debug("%s (%d): status %d id %p\n",
1285 rdma_event_msg(event
->event
), event
->event
,
1286 event
->status
, cm_id
);
1288 switch (event
->event
) {
1289 case RDMA_CM_EVENT_CONNECT_REQUEST
:
1290 ret
= nvmet_rdma_queue_connect(cm_id
, event
);
1292 case RDMA_CM_EVENT_ESTABLISHED
:
1293 nvmet_rdma_queue_established(queue
);
1295 case RDMA_CM_EVENT_ADDR_CHANGE
:
1296 case RDMA_CM_EVENT_DISCONNECTED
:
1297 case RDMA_CM_EVENT_DEVICE_REMOVAL
:
1298 case RDMA_CM_EVENT_TIMEWAIT_EXIT
:
1300 * We can get the device removal callback even for a
1301 * CM ID that we aren't actually using. In that case
1302 * the context pointer is NULL, so we shouldn't try
1303 * to disconnect a non-existing queue. But we also
1304 * need to return 1 so that the core will destroy
1305 * it's own ID. What a great API design..
1308 nvmet_rdma_queue_disconnect(queue
);
1312 case RDMA_CM_EVENT_REJECTED
:
1313 case RDMA_CM_EVENT_UNREACHABLE
:
1314 case RDMA_CM_EVENT_CONNECT_ERROR
:
1315 nvmet_rdma_queue_connect_fail(cm_id
, queue
);
1318 pr_err("received unrecognized RDMA CM event %d\n",
1326 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl
*ctrl
)
1328 struct nvmet_rdma_queue
*queue
;
1331 mutex_lock(&nvmet_rdma_queue_mutex
);
1332 list_for_each_entry(queue
, &nvmet_rdma_queue_list
, queue_list
) {
1333 if (queue
->nvme_sq
.ctrl
== ctrl
) {
1334 list_del_init(&queue
->queue_list
);
1335 mutex_unlock(&nvmet_rdma_queue_mutex
);
1337 __nvmet_rdma_queue_disconnect(queue
);
1341 mutex_unlock(&nvmet_rdma_queue_mutex
);
1344 static int nvmet_rdma_add_port(struct nvmet_port
*port
)
1346 struct rdma_cm_id
*cm_id
;
1347 struct sockaddr_in addr_in
;
1351 switch (port
->disc_addr
.adrfam
) {
1352 case NVMF_ADDR_FAMILY_IP4
:
1355 pr_err("address family %d not supported\n",
1356 port
->disc_addr
.adrfam
);
1360 ret
= kstrtou16(port
->disc_addr
.trsvcid
, 0, &port_in
);
1364 addr_in
.sin_family
= AF_INET
;
1365 addr_in
.sin_addr
.s_addr
= in_aton(port
->disc_addr
.traddr
);
1366 addr_in
.sin_port
= htons(port_in
);
1368 cm_id
= rdma_create_id(&init_net
, nvmet_rdma_cm_handler
, port
,
1369 RDMA_PS_TCP
, IB_QPT_RC
);
1370 if (IS_ERR(cm_id
)) {
1371 pr_err("CM ID creation failed\n");
1372 return PTR_ERR(cm_id
);
1375 ret
= rdma_bind_addr(cm_id
, (struct sockaddr
*)&addr_in
);
1377 pr_err("binding CM ID to %pISpc failed (%d)\n", &addr_in
, ret
);
1378 goto out_destroy_id
;
1381 ret
= rdma_listen(cm_id
, 128);
1383 pr_err("listening to %pISpc failed (%d)\n", &addr_in
, ret
);
1384 goto out_destroy_id
;
1387 pr_info("enabling port %d (%pISpc)\n",
1388 le16_to_cpu(port
->disc_addr
.portid
), &addr_in
);
1393 rdma_destroy_id(cm_id
);
1397 static void nvmet_rdma_remove_port(struct nvmet_port
*port
)
1399 struct rdma_cm_id
*cm_id
= port
->priv
;
1401 rdma_destroy_id(cm_id
);
1404 static struct nvmet_fabrics_ops nvmet_rdma_ops
= {
1405 .owner
= THIS_MODULE
,
1406 .type
= NVMF_TRTYPE_RDMA
,
1407 .sqe_inline_size
= NVMET_RDMA_INLINE_DATA_SIZE
,
1409 .has_keyed_sgls
= 1,
1410 .add_port
= nvmet_rdma_add_port
,
1411 .remove_port
= nvmet_rdma_remove_port
,
1412 .queue_response
= nvmet_rdma_queue_response
,
1413 .delete_ctrl
= nvmet_rdma_delete_ctrl
,
1416 static int __init
nvmet_rdma_init(void)
1418 return nvmet_register_transport(&nvmet_rdma_ops
);
1421 static void __exit
nvmet_rdma_exit(void)
1423 struct nvmet_rdma_queue
*queue
;
1425 nvmet_unregister_transport(&nvmet_rdma_ops
);
1427 flush_scheduled_work();
1429 mutex_lock(&nvmet_rdma_queue_mutex
);
1430 while ((queue
= list_first_entry_or_null(&nvmet_rdma_queue_list
,
1431 struct nvmet_rdma_queue
, queue_list
))) {
1432 list_del_init(&queue
->queue_list
);
1434 mutex_unlock(&nvmet_rdma_queue_mutex
);
1435 __nvmet_rdma_queue_disconnect(queue
);
1436 mutex_lock(&nvmet_rdma_queue_mutex
);
1438 mutex_unlock(&nvmet_rdma_queue_mutex
);
1440 flush_scheduled_work();
1441 ida_destroy(&nvmet_rdma_queue_ida
);
1444 module_init(nvmet_rdma_init
);
1445 module_exit(nvmet_rdma_exit
);
1447 MODULE_LICENSE("GPL v2");
1448 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */