drm_modes: videomode: add doubleclk flag
[linux/fpc-iii.git] / fs / inode.c
blob00d5fc3b86e12419d2d350032b173009bddcd2cd
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include "internal.h"
23 * Inode locking rules:
25 * inode->i_lock protects:
26 * inode->i_state, inode->i_hash, __iget()
27 * inode->i_sb->s_inode_lru_lock protects:
28 * inode->i_sb->s_inode_lru, inode->i_lru
29 * inode_sb_list_lock protects:
30 * sb->s_inodes, inode->i_sb_list
31 * bdi->wb.list_lock protects:
32 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
33 * inode_hash_lock protects:
34 * inode_hashtable, inode->i_hash
36 * Lock ordering:
38 * inode_sb_list_lock
39 * inode->i_lock
40 * inode->i_sb->s_inode_lru_lock
42 * bdi->wb.list_lock
43 * inode->i_lock
45 * inode_hash_lock
46 * inode_sb_list_lock
47 * inode->i_lock
49 * iunique_lock
50 * inode_hash_lock
53 static unsigned int i_hash_mask __read_mostly;
54 static unsigned int i_hash_shift __read_mostly;
55 static struct hlist_head *inode_hashtable __read_mostly;
56 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
58 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
64 const struct address_space_operations empty_aops = {
66 EXPORT_SYMBOL(empty_aops);
69 * Statistics gathering..
71 struct inodes_stat_t inodes_stat;
73 static DEFINE_PER_CPU(unsigned int, nr_inodes);
74 static DEFINE_PER_CPU(unsigned int, nr_unused);
76 static struct kmem_cache *inode_cachep __read_mostly;
78 static int get_nr_inodes(void)
80 int i;
81 int sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
87 static inline int get_nr_inodes_unused(void)
89 int i;
90 int sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
96 int get_nr_dirty_inodes(void)
98 /* not actually dirty inodes, but a wild approximation */
99 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
104 * Handle nr_inode sysctl
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_dointvec(table, write, buffer, lenp, ppos);
114 #endif
117 * inode_init_always - perform inode structure intialisation
118 * @sb: superblock inode belongs to
119 * @inode: inode to initialise
121 * These are initializations that need to be done on every inode
122 * allocation as the fields are not initialised by slab allocation.
124 int inode_init_always(struct super_block *sb, struct inode *inode)
126 static const struct inode_operations empty_iops;
127 static const struct file_operations empty_fops;
128 struct address_space *const mapping = &inode->i_data;
130 inode->i_sb = sb;
131 inode->i_blkbits = sb->s_blocksize_bits;
132 inode->i_flags = 0;
133 atomic_set(&inode->i_count, 1);
134 inode->i_op = &empty_iops;
135 inode->i_fop = &empty_fops;
136 inode->__i_nlink = 1;
137 inode->i_opflags = 0;
138 i_uid_write(inode, 0);
139 i_gid_write(inode, 0);
140 atomic_set(&inode->i_writecount, 0);
141 inode->i_size = 0;
142 inode->i_blocks = 0;
143 inode->i_bytes = 0;
144 inode->i_generation = 0;
145 #ifdef CONFIG_QUOTA
146 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
147 #endif
148 inode->i_pipe = NULL;
149 inode->i_bdev = NULL;
150 inode->i_cdev = NULL;
151 inode->i_rdev = 0;
152 inode->dirtied_when = 0;
154 if (security_inode_alloc(inode))
155 goto out;
156 spin_lock_init(&inode->i_lock);
157 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
159 mutex_init(&inode->i_mutex);
160 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
162 atomic_set(&inode->i_dio_count, 0);
164 mapping->a_ops = &empty_aops;
165 mapping->host = inode;
166 mapping->flags = 0;
167 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
168 mapping->private_data = NULL;
169 mapping->backing_dev_info = &default_backing_dev_info;
170 mapping->writeback_index = 0;
173 * If the block_device provides a backing_dev_info for client
174 * inodes then use that. Otherwise the inode share the bdev's
175 * backing_dev_info.
177 if (sb->s_bdev) {
178 struct backing_dev_info *bdi;
180 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
181 mapping->backing_dev_info = bdi;
183 inode->i_private = NULL;
184 inode->i_mapping = mapping;
185 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188 #endif
190 #ifdef CONFIG_FSNOTIFY
191 inode->i_fsnotify_mask = 0;
192 #endif
194 this_cpu_inc(nr_inodes);
196 return 0;
197 out:
198 return -ENOMEM;
200 EXPORT_SYMBOL(inode_init_always);
202 static struct inode *alloc_inode(struct super_block *sb)
204 struct inode *inode;
206 if (sb->s_op->alloc_inode)
207 inode = sb->s_op->alloc_inode(sb);
208 else
209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
211 if (!inode)
212 return NULL;
214 if (unlikely(inode_init_always(sb, inode))) {
215 if (inode->i_sb->s_op->destroy_inode)
216 inode->i_sb->s_op->destroy_inode(inode);
217 else
218 kmem_cache_free(inode_cachep, inode);
219 return NULL;
222 return inode;
225 void free_inode_nonrcu(struct inode *inode)
227 kmem_cache_free(inode_cachep, inode);
229 EXPORT_SYMBOL(free_inode_nonrcu);
231 void __destroy_inode(struct inode *inode)
233 BUG_ON(inode_has_buffers(inode));
234 security_inode_free(inode);
235 fsnotify_inode_delete(inode);
236 if (!inode->i_nlink) {
237 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
238 atomic_long_dec(&inode->i_sb->s_remove_count);
241 #ifdef CONFIG_FS_POSIX_ACL
242 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
243 posix_acl_release(inode->i_acl);
244 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
245 posix_acl_release(inode->i_default_acl);
246 #endif
247 this_cpu_dec(nr_inodes);
249 EXPORT_SYMBOL(__destroy_inode);
251 static void i_callback(struct rcu_head *head)
253 struct inode *inode = container_of(head, struct inode, i_rcu);
254 kmem_cache_free(inode_cachep, inode);
257 static void destroy_inode(struct inode *inode)
259 BUG_ON(!list_empty(&inode->i_lru));
260 __destroy_inode(inode);
261 if (inode->i_sb->s_op->destroy_inode)
262 inode->i_sb->s_op->destroy_inode(inode);
263 else
264 call_rcu(&inode->i_rcu, i_callback);
268 * drop_nlink - directly drop an inode's link count
269 * @inode: inode
271 * This is a low-level filesystem helper to replace any
272 * direct filesystem manipulation of i_nlink. In cases
273 * where we are attempting to track writes to the
274 * filesystem, a decrement to zero means an imminent
275 * write when the file is truncated and actually unlinked
276 * on the filesystem.
278 void drop_nlink(struct inode *inode)
280 WARN_ON(inode->i_nlink == 0);
281 inode->__i_nlink--;
282 if (!inode->i_nlink)
283 atomic_long_inc(&inode->i_sb->s_remove_count);
285 EXPORT_SYMBOL(drop_nlink);
288 * clear_nlink - directly zero an inode's link count
289 * @inode: inode
291 * This is a low-level filesystem helper to replace any
292 * direct filesystem manipulation of i_nlink. See
293 * drop_nlink() for why we care about i_nlink hitting zero.
295 void clear_nlink(struct inode *inode)
297 if (inode->i_nlink) {
298 inode->__i_nlink = 0;
299 atomic_long_inc(&inode->i_sb->s_remove_count);
302 EXPORT_SYMBOL(clear_nlink);
305 * set_nlink - directly set an inode's link count
306 * @inode: inode
307 * @nlink: new nlink (should be non-zero)
309 * This is a low-level filesystem helper to replace any
310 * direct filesystem manipulation of i_nlink.
312 void set_nlink(struct inode *inode, unsigned int nlink)
314 if (!nlink) {
315 clear_nlink(inode);
316 } else {
317 /* Yes, some filesystems do change nlink from zero to one */
318 if (inode->i_nlink == 0)
319 atomic_long_dec(&inode->i_sb->s_remove_count);
321 inode->__i_nlink = nlink;
324 EXPORT_SYMBOL(set_nlink);
327 * inc_nlink - directly increment an inode's link count
328 * @inode: inode
330 * This is a low-level filesystem helper to replace any
331 * direct filesystem manipulation of i_nlink. Currently,
332 * it is only here for parity with dec_nlink().
334 void inc_nlink(struct inode *inode)
336 if (WARN_ON(inode->i_nlink == 0))
337 atomic_long_dec(&inode->i_sb->s_remove_count);
339 inode->__i_nlink++;
341 EXPORT_SYMBOL(inc_nlink);
343 void address_space_init_once(struct address_space *mapping)
345 memset(mapping, 0, sizeof(*mapping));
346 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
347 spin_lock_init(&mapping->tree_lock);
348 mutex_init(&mapping->i_mmap_mutex);
349 INIT_LIST_HEAD(&mapping->private_list);
350 spin_lock_init(&mapping->private_lock);
351 mapping->i_mmap = RB_ROOT;
352 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
354 EXPORT_SYMBOL(address_space_init_once);
357 * These are initializations that only need to be done
358 * once, because the fields are idempotent across use
359 * of the inode, so let the slab aware of that.
361 void inode_init_once(struct inode *inode)
363 memset(inode, 0, sizeof(*inode));
364 INIT_HLIST_NODE(&inode->i_hash);
365 INIT_LIST_HEAD(&inode->i_devices);
366 INIT_LIST_HEAD(&inode->i_wb_list);
367 INIT_LIST_HEAD(&inode->i_lru);
368 address_space_init_once(&inode->i_data);
369 i_size_ordered_init(inode);
370 #ifdef CONFIG_FSNOTIFY
371 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
372 #endif
374 EXPORT_SYMBOL(inode_init_once);
376 static void init_once(void *foo)
378 struct inode *inode = (struct inode *) foo;
380 inode_init_once(inode);
384 * inode->i_lock must be held
386 void __iget(struct inode *inode)
388 atomic_inc(&inode->i_count);
392 * get additional reference to inode; caller must already hold one.
394 void ihold(struct inode *inode)
396 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
398 EXPORT_SYMBOL(ihold);
400 static void inode_lru_list_add(struct inode *inode)
402 spin_lock(&inode->i_sb->s_inode_lru_lock);
403 if (list_empty(&inode->i_lru)) {
404 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
405 inode->i_sb->s_nr_inodes_unused++;
406 this_cpu_inc(nr_unused);
408 spin_unlock(&inode->i_sb->s_inode_lru_lock);
412 * Add inode to LRU if needed (inode is unused and clean).
414 * Needs inode->i_lock held.
416 void inode_add_lru(struct inode *inode)
418 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
419 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
420 inode_lru_list_add(inode);
424 static void inode_lru_list_del(struct inode *inode)
426 spin_lock(&inode->i_sb->s_inode_lru_lock);
427 if (!list_empty(&inode->i_lru)) {
428 list_del_init(&inode->i_lru);
429 inode->i_sb->s_nr_inodes_unused--;
430 this_cpu_dec(nr_unused);
432 spin_unlock(&inode->i_sb->s_inode_lru_lock);
436 * inode_sb_list_add - add inode to the superblock list of inodes
437 * @inode: inode to add
439 void inode_sb_list_add(struct inode *inode)
441 spin_lock(&inode_sb_list_lock);
442 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
443 spin_unlock(&inode_sb_list_lock);
445 EXPORT_SYMBOL_GPL(inode_sb_list_add);
447 static inline void inode_sb_list_del(struct inode *inode)
449 if (!list_empty(&inode->i_sb_list)) {
450 spin_lock(&inode_sb_list_lock);
451 list_del_init(&inode->i_sb_list);
452 spin_unlock(&inode_sb_list_lock);
456 static unsigned long hash(struct super_block *sb, unsigned long hashval)
458 unsigned long tmp;
460 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
461 L1_CACHE_BYTES;
462 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
463 return tmp & i_hash_mask;
467 * __insert_inode_hash - hash an inode
468 * @inode: unhashed inode
469 * @hashval: unsigned long value used to locate this object in the
470 * inode_hashtable.
472 * Add an inode to the inode hash for this superblock.
474 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
476 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
478 spin_lock(&inode_hash_lock);
479 spin_lock(&inode->i_lock);
480 hlist_add_head(&inode->i_hash, b);
481 spin_unlock(&inode->i_lock);
482 spin_unlock(&inode_hash_lock);
484 EXPORT_SYMBOL(__insert_inode_hash);
487 * __remove_inode_hash - remove an inode from the hash
488 * @inode: inode to unhash
490 * Remove an inode from the superblock.
492 void __remove_inode_hash(struct inode *inode)
494 spin_lock(&inode_hash_lock);
495 spin_lock(&inode->i_lock);
496 hlist_del_init(&inode->i_hash);
497 spin_unlock(&inode->i_lock);
498 spin_unlock(&inode_hash_lock);
500 EXPORT_SYMBOL(__remove_inode_hash);
502 void clear_inode(struct inode *inode)
504 might_sleep();
506 * We have to cycle tree_lock here because reclaim can be still in the
507 * process of removing the last page (in __delete_from_page_cache())
508 * and we must not free mapping under it.
510 spin_lock_irq(&inode->i_data.tree_lock);
511 BUG_ON(inode->i_data.nrpages);
512 spin_unlock_irq(&inode->i_data.tree_lock);
513 BUG_ON(!list_empty(&inode->i_data.private_list));
514 BUG_ON(!(inode->i_state & I_FREEING));
515 BUG_ON(inode->i_state & I_CLEAR);
516 /* don't need i_lock here, no concurrent mods to i_state */
517 inode->i_state = I_FREEING | I_CLEAR;
519 EXPORT_SYMBOL(clear_inode);
522 * Free the inode passed in, removing it from the lists it is still connected
523 * to. We remove any pages still attached to the inode and wait for any IO that
524 * is still in progress before finally destroying the inode.
526 * An inode must already be marked I_FREEING so that we avoid the inode being
527 * moved back onto lists if we race with other code that manipulates the lists
528 * (e.g. writeback_single_inode). The caller is responsible for setting this.
530 * An inode must already be removed from the LRU list before being evicted from
531 * the cache. This should occur atomically with setting the I_FREEING state
532 * flag, so no inodes here should ever be on the LRU when being evicted.
534 static void evict(struct inode *inode)
536 const struct super_operations *op = inode->i_sb->s_op;
538 BUG_ON(!(inode->i_state & I_FREEING));
539 BUG_ON(!list_empty(&inode->i_lru));
541 if (!list_empty(&inode->i_wb_list))
542 inode_wb_list_del(inode);
544 inode_sb_list_del(inode);
547 * Wait for flusher thread to be done with the inode so that filesystem
548 * does not start destroying it while writeback is still running. Since
549 * the inode has I_FREEING set, flusher thread won't start new work on
550 * the inode. We just have to wait for running writeback to finish.
552 inode_wait_for_writeback(inode);
554 if (op->evict_inode) {
555 op->evict_inode(inode);
556 } else {
557 if (inode->i_data.nrpages)
558 truncate_inode_pages(&inode->i_data, 0);
559 clear_inode(inode);
561 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
562 bd_forget(inode);
563 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
564 cd_forget(inode);
566 remove_inode_hash(inode);
568 spin_lock(&inode->i_lock);
569 wake_up_bit(&inode->i_state, __I_NEW);
570 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
571 spin_unlock(&inode->i_lock);
573 destroy_inode(inode);
577 * dispose_list - dispose of the contents of a local list
578 * @head: the head of the list to free
580 * Dispose-list gets a local list with local inodes in it, so it doesn't
581 * need to worry about list corruption and SMP locks.
583 static void dispose_list(struct list_head *head)
585 while (!list_empty(head)) {
586 struct inode *inode;
588 inode = list_first_entry(head, struct inode, i_lru);
589 list_del_init(&inode->i_lru);
591 evict(inode);
596 * evict_inodes - evict all evictable inodes for a superblock
597 * @sb: superblock to operate on
599 * Make sure that no inodes with zero refcount are retained. This is
600 * called by superblock shutdown after having MS_ACTIVE flag removed,
601 * so any inode reaching zero refcount during or after that call will
602 * be immediately evicted.
604 void evict_inodes(struct super_block *sb)
606 struct inode *inode, *next;
607 LIST_HEAD(dispose);
609 spin_lock(&inode_sb_list_lock);
610 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
611 if (atomic_read(&inode->i_count))
612 continue;
614 spin_lock(&inode->i_lock);
615 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
616 spin_unlock(&inode->i_lock);
617 continue;
620 inode->i_state |= I_FREEING;
621 inode_lru_list_del(inode);
622 spin_unlock(&inode->i_lock);
623 list_add(&inode->i_lru, &dispose);
625 spin_unlock(&inode_sb_list_lock);
627 dispose_list(&dispose);
631 * invalidate_inodes - attempt to free all inodes on a superblock
632 * @sb: superblock to operate on
633 * @kill_dirty: flag to guide handling of dirty inodes
635 * Attempts to free all inodes for a given superblock. If there were any
636 * busy inodes return a non-zero value, else zero.
637 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
638 * them as busy.
640 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
642 int busy = 0;
643 struct inode *inode, *next;
644 LIST_HEAD(dispose);
646 spin_lock(&inode_sb_list_lock);
647 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
648 spin_lock(&inode->i_lock);
649 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
650 spin_unlock(&inode->i_lock);
651 continue;
653 if (inode->i_state & I_DIRTY && !kill_dirty) {
654 spin_unlock(&inode->i_lock);
655 busy = 1;
656 continue;
658 if (atomic_read(&inode->i_count)) {
659 spin_unlock(&inode->i_lock);
660 busy = 1;
661 continue;
664 inode->i_state |= I_FREEING;
665 inode_lru_list_del(inode);
666 spin_unlock(&inode->i_lock);
667 list_add(&inode->i_lru, &dispose);
669 spin_unlock(&inode_sb_list_lock);
671 dispose_list(&dispose);
673 return busy;
676 static int can_unuse(struct inode *inode)
678 if (inode->i_state & ~I_REFERENCED)
679 return 0;
680 if (inode_has_buffers(inode))
681 return 0;
682 if (atomic_read(&inode->i_count))
683 return 0;
684 if (inode->i_data.nrpages)
685 return 0;
686 return 1;
690 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
691 * This is called from the superblock shrinker function with a number of inodes
692 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
693 * then are freed outside inode_lock by dispose_list().
695 * Any inodes which are pinned purely because of attached pagecache have their
696 * pagecache removed. If the inode has metadata buffers attached to
697 * mapping->private_list then try to remove them.
699 * If the inode has the I_REFERENCED flag set, then it means that it has been
700 * used recently - the flag is set in iput_final(). When we encounter such an
701 * inode, clear the flag and move it to the back of the LRU so it gets another
702 * pass through the LRU before it gets reclaimed. This is necessary because of
703 * the fact we are doing lazy LRU updates to minimise lock contention so the
704 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
705 * with this flag set because they are the inodes that are out of order.
707 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
709 LIST_HEAD(freeable);
710 int nr_scanned;
711 unsigned long reap = 0;
713 spin_lock(&sb->s_inode_lru_lock);
714 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
715 struct inode *inode;
717 if (list_empty(&sb->s_inode_lru))
718 break;
720 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
723 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
724 * so use a trylock. If we fail to get the lock, just move the
725 * inode to the back of the list so we don't spin on it.
727 if (!spin_trylock(&inode->i_lock)) {
728 list_move(&inode->i_lru, &sb->s_inode_lru);
729 continue;
733 * Referenced or dirty inodes are still in use. Give them
734 * another pass through the LRU as we canot reclaim them now.
736 if (atomic_read(&inode->i_count) ||
737 (inode->i_state & ~I_REFERENCED)) {
738 list_del_init(&inode->i_lru);
739 spin_unlock(&inode->i_lock);
740 sb->s_nr_inodes_unused--;
741 this_cpu_dec(nr_unused);
742 continue;
745 /* recently referenced inodes get one more pass */
746 if (inode->i_state & I_REFERENCED) {
747 inode->i_state &= ~I_REFERENCED;
748 list_move(&inode->i_lru, &sb->s_inode_lru);
749 spin_unlock(&inode->i_lock);
750 continue;
752 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
753 __iget(inode);
754 spin_unlock(&inode->i_lock);
755 spin_unlock(&sb->s_inode_lru_lock);
756 if (remove_inode_buffers(inode))
757 reap += invalidate_mapping_pages(&inode->i_data,
758 0, -1);
759 iput(inode);
760 spin_lock(&sb->s_inode_lru_lock);
762 if (inode != list_entry(sb->s_inode_lru.next,
763 struct inode, i_lru))
764 continue; /* wrong inode or list_empty */
765 /* avoid lock inversions with trylock */
766 if (!spin_trylock(&inode->i_lock))
767 continue;
768 if (!can_unuse(inode)) {
769 spin_unlock(&inode->i_lock);
770 continue;
773 WARN_ON(inode->i_state & I_NEW);
774 inode->i_state |= I_FREEING;
775 spin_unlock(&inode->i_lock);
777 list_move(&inode->i_lru, &freeable);
778 sb->s_nr_inodes_unused--;
779 this_cpu_dec(nr_unused);
781 if (current_is_kswapd())
782 __count_vm_events(KSWAPD_INODESTEAL, reap);
783 else
784 __count_vm_events(PGINODESTEAL, reap);
785 spin_unlock(&sb->s_inode_lru_lock);
786 if (current->reclaim_state)
787 current->reclaim_state->reclaimed_slab += reap;
789 dispose_list(&freeable);
792 static void __wait_on_freeing_inode(struct inode *inode);
794 * Called with the inode lock held.
796 static struct inode *find_inode(struct super_block *sb,
797 struct hlist_head *head,
798 int (*test)(struct inode *, void *),
799 void *data)
801 struct inode *inode = NULL;
803 repeat:
804 hlist_for_each_entry(inode, head, i_hash) {
805 spin_lock(&inode->i_lock);
806 if (inode->i_sb != sb) {
807 spin_unlock(&inode->i_lock);
808 continue;
810 if (!test(inode, data)) {
811 spin_unlock(&inode->i_lock);
812 continue;
814 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
815 __wait_on_freeing_inode(inode);
816 goto repeat;
818 __iget(inode);
819 spin_unlock(&inode->i_lock);
820 return inode;
822 return NULL;
826 * find_inode_fast is the fast path version of find_inode, see the comment at
827 * iget_locked for details.
829 static struct inode *find_inode_fast(struct super_block *sb,
830 struct hlist_head *head, unsigned long ino)
832 struct inode *inode = NULL;
834 repeat:
835 hlist_for_each_entry(inode, head, i_hash) {
836 spin_lock(&inode->i_lock);
837 if (inode->i_ino != ino) {
838 spin_unlock(&inode->i_lock);
839 continue;
841 if (inode->i_sb != sb) {
842 spin_unlock(&inode->i_lock);
843 continue;
845 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
846 __wait_on_freeing_inode(inode);
847 goto repeat;
849 __iget(inode);
850 spin_unlock(&inode->i_lock);
851 return inode;
853 return NULL;
857 * Each cpu owns a range of LAST_INO_BATCH numbers.
858 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
859 * to renew the exhausted range.
861 * This does not significantly increase overflow rate because every CPU can
862 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
863 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
864 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
865 * overflow rate by 2x, which does not seem too significant.
867 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
868 * error if st_ino won't fit in target struct field. Use 32bit counter
869 * here to attempt to avoid that.
871 #define LAST_INO_BATCH 1024
872 static DEFINE_PER_CPU(unsigned int, last_ino);
874 unsigned int get_next_ino(void)
876 unsigned int *p = &get_cpu_var(last_ino);
877 unsigned int res = *p;
879 #ifdef CONFIG_SMP
880 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
881 static atomic_t shared_last_ino;
882 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
884 res = next - LAST_INO_BATCH;
886 #endif
888 *p = ++res;
889 put_cpu_var(last_ino);
890 return res;
892 EXPORT_SYMBOL(get_next_ino);
895 * new_inode_pseudo - obtain an inode
896 * @sb: superblock
898 * Allocates a new inode for given superblock.
899 * Inode wont be chained in superblock s_inodes list
900 * This means :
901 * - fs can't be unmount
902 * - quotas, fsnotify, writeback can't work
904 struct inode *new_inode_pseudo(struct super_block *sb)
906 struct inode *inode = alloc_inode(sb);
908 if (inode) {
909 spin_lock(&inode->i_lock);
910 inode->i_state = 0;
911 spin_unlock(&inode->i_lock);
912 INIT_LIST_HEAD(&inode->i_sb_list);
914 return inode;
918 * new_inode - obtain an inode
919 * @sb: superblock
921 * Allocates a new inode for given superblock. The default gfp_mask
922 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
923 * If HIGHMEM pages are unsuitable or it is known that pages allocated
924 * for the page cache are not reclaimable or migratable,
925 * mapping_set_gfp_mask() must be called with suitable flags on the
926 * newly created inode's mapping
929 struct inode *new_inode(struct super_block *sb)
931 struct inode *inode;
933 spin_lock_prefetch(&inode_sb_list_lock);
935 inode = new_inode_pseudo(sb);
936 if (inode)
937 inode_sb_list_add(inode);
938 return inode;
940 EXPORT_SYMBOL(new_inode);
942 #ifdef CONFIG_DEBUG_LOCK_ALLOC
943 void lockdep_annotate_inode_mutex_key(struct inode *inode)
945 if (S_ISDIR(inode->i_mode)) {
946 struct file_system_type *type = inode->i_sb->s_type;
948 /* Set new key only if filesystem hasn't already changed it */
949 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
951 * ensure nobody is actually holding i_mutex
953 mutex_destroy(&inode->i_mutex);
954 mutex_init(&inode->i_mutex);
955 lockdep_set_class(&inode->i_mutex,
956 &type->i_mutex_dir_key);
960 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
961 #endif
964 * unlock_new_inode - clear the I_NEW state and wake up any waiters
965 * @inode: new inode to unlock
967 * Called when the inode is fully initialised to clear the new state of the
968 * inode and wake up anyone waiting for the inode to finish initialisation.
970 void unlock_new_inode(struct inode *inode)
972 lockdep_annotate_inode_mutex_key(inode);
973 spin_lock(&inode->i_lock);
974 WARN_ON(!(inode->i_state & I_NEW));
975 inode->i_state &= ~I_NEW;
976 smp_mb();
977 wake_up_bit(&inode->i_state, __I_NEW);
978 spin_unlock(&inode->i_lock);
980 EXPORT_SYMBOL(unlock_new_inode);
983 * iget5_locked - obtain an inode from a mounted file system
984 * @sb: super block of file system
985 * @hashval: hash value (usually inode number) to get
986 * @test: callback used for comparisons between inodes
987 * @set: callback used to initialize a new struct inode
988 * @data: opaque data pointer to pass to @test and @set
990 * Search for the inode specified by @hashval and @data in the inode cache,
991 * and if present it is return it with an increased reference count. This is
992 * a generalized version of iget_locked() for file systems where the inode
993 * number is not sufficient for unique identification of an inode.
995 * If the inode is not in cache, allocate a new inode and return it locked,
996 * hashed, and with the I_NEW flag set. The file system gets to fill it in
997 * before unlocking it via unlock_new_inode().
999 * Note both @test and @set are called with the inode_hash_lock held, so can't
1000 * sleep.
1002 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1003 int (*test)(struct inode *, void *),
1004 int (*set)(struct inode *, void *), void *data)
1006 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1007 struct inode *inode;
1009 spin_lock(&inode_hash_lock);
1010 inode = find_inode(sb, head, test, data);
1011 spin_unlock(&inode_hash_lock);
1013 if (inode) {
1014 wait_on_inode(inode);
1015 return inode;
1018 inode = alloc_inode(sb);
1019 if (inode) {
1020 struct inode *old;
1022 spin_lock(&inode_hash_lock);
1023 /* We released the lock, so.. */
1024 old = find_inode(sb, head, test, data);
1025 if (!old) {
1026 if (set(inode, data))
1027 goto set_failed;
1029 spin_lock(&inode->i_lock);
1030 inode->i_state = I_NEW;
1031 hlist_add_head(&inode->i_hash, head);
1032 spin_unlock(&inode->i_lock);
1033 inode_sb_list_add(inode);
1034 spin_unlock(&inode_hash_lock);
1036 /* Return the locked inode with I_NEW set, the
1037 * caller is responsible for filling in the contents
1039 return inode;
1043 * Uhhuh, somebody else created the same inode under
1044 * us. Use the old inode instead of the one we just
1045 * allocated.
1047 spin_unlock(&inode_hash_lock);
1048 destroy_inode(inode);
1049 inode = old;
1050 wait_on_inode(inode);
1052 return inode;
1054 set_failed:
1055 spin_unlock(&inode_hash_lock);
1056 destroy_inode(inode);
1057 return NULL;
1059 EXPORT_SYMBOL(iget5_locked);
1062 * iget_locked - obtain an inode from a mounted file system
1063 * @sb: super block of file system
1064 * @ino: inode number to get
1066 * Search for the inode specified by @ino in the inode cache and if present
1067 * return it with an increased reference count. This is for file systems
1068 * where the inode number is sufficient for unique identification of an inode.
1070 * If the inode is not in cache, allocate a new inode and return it locked,
1071 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1072 * before unlocking it via unlock_new_inode().
1074 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1076 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1077 struct inode *inode;
1079 spin_lock(&inode_hash_lock);
1080 inode = find_inode_fast(sb, head, ino);
1081 spin_unlock(&inode_hash_lock);
1082 if (inode) {
1083 wait_on_inode(inode);
1084 return inode;
1087 inode = alloc_inode(sb);
1088 if (inode) {
1089 struct inode *old;
1091 spin_lock(&inode_hash_lock);
1092 /* We released the lock, so.. */
1093 old = find_inode_fast(sb, head, ino);
1094 if (!old) {
1095 inode->i_ino = ino;
1096 spin_lock(&inode->i_lock);
1097 inode->i_state = I_NEW;
1098 hlist_add_head(&inode->i_hash, head);
1099 spin_unlock(&inode->i_lock);
1100 inode_sb_list_add(inode);
1101 spin_unlock(&inode_hash_lock);
1103 /* Return the locked inode with I_NEW set, the
1104 * caller is responsible for filling in the contents
1106 return inode;
1110 * Uhhuh, somebody else created the same inode under
1111 * us. Use the old inode instead of the one we just
1112 * allocated.
1114 spin_unlock(&inode_hash_lock);
1115 destroy_inode(inode);
1116 inode = old;
1117 wait_on_inode(inode);
1119 return inode;
1121 EXPORT_SYMBOL(iget_locked);
1124 * search the inode cache for a matching inode number.
1125 * If we find one, then the inode number we are trying to
1126 * allocate is not unique and so we should not use it.
1128 * Returns 1 if the inode number is unique, 0 if it is not.
1130 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1132 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1133 struct inode *inode;
1135 spin_lock(&inode_hash_lock);
1136 hlist_for_each_entry(inode, b, i_hash) {
1137 if (inode->i_ino == ino && inode->i_sb == sb) {
1138 spin_unlock(&inode_hash_lock);
1139 return 0;
1142 spin_unlock(&inode_hash_lock);
1144 return 1;
1148 * iunique - get a unique inode number
1149 * @sb: superblock
1150 * @max_reserved: highest reserved inode number
1152 * Obtain an inode number that is unique on the system for a given
1153 * superblock. This is used by file systems that have no natural
1154 * permanent inode numbering system. An inode number is returned that
1155 * is higher than the reserved limit but unique.
1157 * BUGS:
1158 * With a large number of inodes live on the file system this function
1159 * currently becomes quite slow.
1161 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1164 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1165 * error if st_ino won't fit in target struct field. Use 32bit counter
1166 * here to attempt to avoid that.
1168 static DEFINE_SPINLOCK(iunique_lock);
1169 static unsigned int counter;
1170 ino_t res;
1172 spin_lock(&iunique_lock);
1173 do {
1174 if (counter <= max_reserved)
1175 counter = max_reserved + 1;
1176 res = counter++;
1177 } while (!test_inode_iunique(sb, res));
1178 spin_unlock(&iunique_lock);
1180 return res;
1182 EXPORT_SYMBOL(iunique);
1184 struct inode *igrab(struct inode *inode)
1186 spin_lock(&inode->i_lock);
1187 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1188 __iget(inode);
1189 spin_unlock(&inode->i_lock);
1190 } else {
1191 spin_unlock(&inode->i_lock);
1193 * Handle the case where s_op->clear_inode is not been
1194 * called yet, and somebody is calling igrab
1195 * while the inode is getting freed.
1197 inode = NULL;
1199 return inode;
1201 EXPORT_SYMBOL(igrab);
1204 * ilookup5_nowait - search for an inode in the inode cache
1205 * @sb: super block of file system to search
1206 * @hashval: hash value (usually inode number) to search for
1207 * @test: callback used for comparisons between inodes
1208 * @data: opaque data pointer to pass to @test
1210 * Search for the inode specified by @hashval and @data in the inode cache.
1211 * If the inode is in the cache, the inode is returned with an incremented
1212 * reference count.
1214 * Note: I_NEW is not waited upon so you have to be very careful what you do
1215 * with the returned inode. You probably should be using ilookup5() instead.
1217 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1219 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1220 int (*test)(struct inode *, void *), void *data)
1222 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1223 struct inode *inode;
1225 spin_lock(&inode_hash_lock);
1226 inode = find_inode(sb, head, test, data);
1227 spin_unlock(&inode_hash_lock);
1229 return inode;
1231 EXPORT_SYMBOL(ilookup5_nowait);
1234 * ilookup5 - search for an inode in the inode cache
1235 * @sb: super block of file system to search
1236 * @hashval: hash value (usually inode number) to search for
1237 * @test: callback used for comparisons between inodes
1238 * @data: opaque data pointer to pass to @test
1240 * Search for the inode specified by @hashval and @data in the inode cache,
1241 * and if the inode is in the cache, return the inode with an incremented
1242 * reference count. Waits on I_NEW before returning the inode.
1243 * returned with an incremented reference count.
1245 * This is a generalized version of ilookup() for file systems where the
1246 * inode number is not sufficient for unique identification of an inode.
1248 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1250 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1251 int (*test)(struct inode *, void *), void *data)
1253 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1255 if (inode)
1256 wait_on_inode(inode);
1257 return inode;
1259 EXPORT_SYMBOL(ilookup5);
1262 * ilookup - search for an inode in the inode cache
1263 * @sb: super block of file system to search
1264 * @ino: inode number to search for
1266 * Search for the inode @ino in the inode cache, and if the inode is in the
1267 * cache, the inode is returned with an incremented reference count.
1269 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1271 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1272 struct inode *inode;
1274 spin_lock(&inode_hash_lock);
1275 inode = find_inode_fast(sb, head, ino);
1276 spin_unlock(&inode_hash_lock);
1278 if (inode)
1279 wait_on_inode(inode);
1280 return inode;
1282 EXPORT_SYMBOL(ilookup);
1284 int insert_inode_locked(struct inode *inode)
1286 struct super_block *sb = inode->i_sb;
1287 ino_t ino = inode->i_ino;
1288 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1290 while (1) {
1291 struct inode *old = NULL;
1292 spin_lock(&inode_hash_lock);
1293 hlist_for_each_entry(old, head, i_hash) {
1294 if (old->i_ino != ino)
1295 continue;
1296 if (old->i_sb != sb)
1297 continue;
1298 spin_lock(&old->i_lock);
1299 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1300 spin_unlock(&old->i_lock);
1301 continue;
1303 break;
1305 if (likely(!old)) {
1306 spin_lock(&inode->i_lock);
1307 inode->i_state |= I_NEW;
1308 hlist_add_head(&inode->i_hash, head);
1309 spin_unlock(&inode->i_lock);
1310 spin_unlock(&inode_hash_lock);
1311 return 0;
1313 __iget(old);
1314 spin_unlock(&old->i_lock);
1315 spin_unlock(&inode_hash_lock);
1316 wait_on_inode(old);
1317 if (unlikely(!inode_unhashed(old))) {
1318 iput(old);
1319 return -EBUSY;
1321 iput(old);
1324 EXPORT_SYMBOL(insert_inode_locked);
1326 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1327 int (*test)(struct inode *, void *), void *data)
1329 struct super_block *sb = inode->i_sb;
1330 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1332 while (1) {
1333 struct inode *old = NULL;
1335 spin_lock(&inode_hash_lock);
1336 hlist_for_each_entry(old, head, i_hash) {
1337 if (old->i_sb != sb)
1338 continue;
1339 if (!test(old, data))
1340 continue;
1341 spin_lock(&old->i_lock);
1342 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1343 spin_unlock(&old->i_lock);
1344 continue;
1346 break;
1348 if (likely(!old)) {
1349 spin_lock(&inode->i_lock);
1350 inode->i_state |= I_NEW;
1351 hlist_add_head(&inode->i_hash, head);
1352 spin_unlock(&inode->i_lock);
1353 spin_unlock(&inode_hash_lock);
1354 return 0;
1356 __iget(old);
1357 spin_unlock(&old->i_lock);
1358 spin_unlock(&inode_hash_lock);
1359 wait_on_inode(old);
1360 if (unlikely(!inode_unhashed(old))) {
1361 iput(old);
1362 return -EBUSY;
1364 iput(old);
1367 EXPORT_SYMBOL(insert_inode_locked4);
1370 int generic_delete_inode(struct inode *inode)
1372 return 1;
1374 EXPORT_SYMBOL(generic_delete_inode);
1377 * Called when we're dropping the last reference
1378 * to an inode.
1380 * Call the FS "drop_inode()" function, defaulting to
1381 * the legacy UNIX filesystem behaviour. If it tells
1382 * us to evict inode, do so. Otherwise, retain inode
1383 * in cache if fs is alive, sync and evict if fs is
1384 * shutting down.
1386 static void iput_final(struct inode *inode)
1388 struct super_block *sb = inode->i_sb;
1389 const struct super_operations *op = inode->i_sb->s_op;
1390 int drop;
1392 WARN_ON(inode->i_state & I_NEW);
1394 if (op->drop_inode)
1395 drop = op->drop_inode(inode);
1396 else
1397 drop = generic_drop_inode(inode);
1399 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1400 inode->i_state |= I_REFERENCED;
1401 inode_add_lru(inode);
1402 spin_unlock(&inode->i_lock);
1403 return;
1406 if (!drop) {
1407 inode->i_state |= I_WILL_FREE;
1408 spin_unlock(&inode->i_lock);
1409 write_inode_now(inode, 1);
1410 spin_lock(&inode->i_lock);
1411 WARN_ON(inode->i_state & I_NEW);
1412 inode->i_state &= ~I_WILL_FREE;
1415 inode->i_state |= I_FREEING;
1416 if (!list_empty(&inode->i_lru))
1417 inode_lru_list_del(inode);
1418 spin_unlock(&inode->i_lock);
1420 evict(inode);
1424 * iput - put an inode
1425 * @inode: inode to put
1427 * Puts an inode, dropping its usage count. If the inode use count hits
1428 * zero, the inode is then freed and may also be destroyed.
1430 * Consequently, iput() can sleep.
1432 void iput(struct inode *inode)
1434 if (inode) {
1435 BUG_ON(inode->i_state & I_CLEAR);
1437 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1438 iput_final(inode);
1441 EXPORT_SYMBOL(iput);
1444 * bmap - find a block number in a file
1445 * @inode: inode of file
1446 * @block: block to find
1448 * Returns the block number on the device holding the inode that
1449 * is the disk block number for the block of the file requested.
1450 * That is, asked for block 4 of inode 1 the function will return the
1451 * disk block relative to the disk start that holds that block of the
1452 * file.
1454 sector_t bmap(struct inode *inode, sector_t block)
1456 sector_t res = 0;
1457 if (inode->i_mapping->a_ops->bmap)
1458 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1459 return res;
1461 EXPORT_SYMBOL(bmap);
1464 * With relative atime, only update atime if the previous atime is
1465 * earlier than either the ctime or mtime or if at least a day has
1466 * passed since the last atime update.
1468 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1469 struct timespec now)
1472 if (!(mnt->mnt_flags & MNT_RELATIME))
1473 return 1;
1475 * Is mtime younger than atime? If yes, update atime:
1477 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1478 return 1;
1480 * Is ctime younger than atime? If yes, update atime:
1482 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1483 return 1;
1486 * Is the previous atime value older than a day? If yes,
1487 * update atime:
1489 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1490 return 1;
1492 * Good, we can skip the atime update:
1494 return 0;
1498 * This does the actual work of updating an inodes time or version. Must have
1499 * had called mnt_want_write() before calling this.
1501 static int update_time(struct inode *inode, struct timespec *time, int flags)
1503 if (inode->i_op->update_time)
1504 return inode->i_op->update_time(inode, time, flags);
1506 if (flags & S_ATIME)
1507 inode->i_atime = *time;
1508 if (flags & S_VERSION)
1509 inode_inc_iversion(inode);
1510 if (flags & S_CTIME)
1511 inode->i_ctime = *time;
1512 if (flags & S_MTIME)
1513 inode->i_mtime = *time;
1514 mark_inode_dirty_sync(inode);
1515 return 0;
1519 * touch_atime - update the access time
1520 * @path: the &struct path to update
1522 * Update the accessed time on an inode and mark it for writeback.
1523 * This function automatically handles read only file systems and media,
1524 * as well as the "noatime" flag and inode specific "noatime" markers.
1526 void touch_atime(struct path *path)
1528 struct vfsmount *mnt = path->mnt;
1529 struct inode *inode = path->dentry->d_inode;
1530 struct timespec now;
1532 if (inode->i_flags & S_NOATIME)
1533 return;
1534 if (IS_NOATIME(inode))
1535 return;
1536 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1537 return;
1539 if (mnt->mnt_flags & MNT_NOATIME)
1540 return;
1541 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1542 return;
1544 now = current_fs_time(inode->i_sb);
1546 if (!relatime_need_update(mnt, inode, now))
1547 return;
1549 if (timespec_equal(&inode->i_atime, &now))
1550 return;
1552 if (!sb_start_write_trylock(inode->i_sb))
1553 return;
1555 if (__mnt_want_write(mnt))
1556 goto skip_update;
1558 * File systems can error out when updating inodes if they need to
1559 * allocate new space to modify an inode (such is the case for
1560 * Btrfs), but since we touch atime while walking down the path we
1561 * really don't care if we failed to update the atime of the file,
1562 * so just ignore the return value.
1563 * We may also fail on filesystems that have the ability to make parts
1564 * of the fs read only, e.g. subvolumes in Btrfs.
1566 update_time(inode, &now, S_ATIME);
1567 __mnt_drop_write(mnt);
1568 skip_update:
1569 sb_end_write(inode->i_sb);
1571 EXPORT_SYMBOL(touch_atime);
1574 * The logic we want is
1576 * if suid or (sgid and xgrp)
1577 * remove privs
1579 int should_remove_suid(struct dentry *dentry)
1581 umode_t mode = dentry->d_inode->i_mode;
1582 int kill = 0;
1584 /* suid always must be killed */
1585 if (unlikely(mode & S_ISUID))
1586 kill = ATTR_KILL_SUID;
1589 * sgid without any exec bits is just a mandatory locking mark; leave
1590 * it alone. If some exec bits are set, it's a real sgid; kill it.
1592 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1593 kill |= ATTR_KILL_SGID;
1595 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1596 return kill;
1598 return 0;
1600 EXPORT_SYMBOL(should_remove_suid);
1602 static int __remove_suid(struct dentry *dentry, int kill)
1604 struct iattr newattrs;
1606 newattrs.ia_valid = ATTR_FORCE | kill;
1607 return notify_change(dentry, &newattrs);
1610 int file_remove_suid(struct file *file)
1612 struct dentry *dentry = file->f_path.dentry;
1613 struct inode *inode = dentry->d_inode;
1614 int killsuid;
1615 int killpriv;
1616 int error = 0;
1618 /* Fast path for nothing security related */
1619 if (IS_NOSEC(inode))
1620 return 0;
1622 killsuid = should_remove_suid(dentry);
1623 killpriv = security_inode_need_killpriv(dentry);
1625 if (killpriv < 0)
1626 return killpriv;
1627 if (killpriv)
1628 error = security_inode_killpriv(dentry);
1629 if (!error && killsuid)
1630 error = __remove_suid(dentry, killsuid);
1631 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1632 inode->i_flags |= S_NOSEC;
1634 return error;
1636 EXPORT_SYMBOL(file_remove_suid);
1639 * file_update_time - update mtime and ctime time
1640 * @file: file accessed
1642 * Update the mtime and ctime members of an inode and mark the inode
1643 * for writeback. Note that this function is meant exclusively for
1644 * usage in the file write path of filesystems, and filesystems may
1645 * choose to explicitly ignore update via this function with the
1646 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1647 * timestamps are handled by the server. This can return an error for
1648 * file systems who need to allocate space in order to update an inode.
1651 int file_update_time(struct file *file)
1653 struct inode *inode = file_inode(file);
1654 struct timespec now;
1655 int sync_it = 0;
1656 int ret;
1658 /* First try to exhaust all avenues to not sync */
1659 if (IS_NOCMTIME(inode))
1660 return 0;
1662 now = current_fs_time(inode->i_sb);
1663 if (!timespec_equal(&inode->i_mtime, &now))
1664 sync_it = S_MTIME;
1666 if (!timespec_equal(&inode->i_ctime, &now))
1667 sync_it |= S_CTIME;
1669 if (IS_I_VERSION(inode))
1670 sync_it |= S_VERSION;
1672 if (!sync_it)
1673 return 0;
1675 /* Finally allowed to write? Takes lock. */
1676 if (__mnt_want_write_file(file))
1677 return 0;
1679 ret = update_time(inode, &now, sync_it);
1680 __mnt_drop_write_file(file);
1682 return ret;
1684 EXPORT_SYMBOL(file_update_time);
1686 int inode_needs_sync(struct inode *inode)
1688 if (IS_SYNC(inode))
1689 return 1;
1690 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1691 return 1;
1692 return 0;
1694 EXPORT_SYMBOL(inode_needs_sync);
1696 int inode_wait(void *word)
1698 schedule();
1699 return 0;
1701 EXPORT_SYMBOL(inode_wait);
1704 * If we try to find an inode in the inode hash while it is being
1705 * deleted, we have to wait until the filesystem completes its
1706 * deletion before reporting that it isn't found. This function waits
1707 * until the deletion _might_ have completed. Callers are responsible
1708 * to recheck inode state.
1710 * It doesn't matter if I_NEW is not set initially, a call to
1711 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1712 * will DTRT.
1714 static void __wait_on_freeing_inode(struct inode *inode)
1716 wait_queue_head_t *wq;
1717 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1718 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1719 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1720 spin_unlock(&inode->i_lock);
1721 spin_unlock(&inode_hash_lock);
1722 schedule();
1723 finish_wait(wq, &wait.wait);
1724 spin_lock(&inode_hash_lock);
1727 static __initdata unsigned long ihash_entries;
1728 static int __init set_ihash_entries(char *str)
1730 if (!str)
1731 return 0;
1732 ihash_entries = simple_strtoul(str, &str, 0);
1733 return 1;
1735 __setup("ihash_entries=", set_ihash_entries);
1738 * Initialize the waitqueues and inode hash table.
1740 void __init inode_init_early(void)
1742 unsigned int loop;
1744 /* If hashes are distributed across NUMA nodes, defer
1745 * hash allocation until vmalloc space is available.
1747 if (hashdist)
1748 return;
1750 inode_hashtable =
1751 alloc_large_system_hash("Inode-cache",
1752 sizeof(struct hlist_head),
1753 ihash_entries,
1755 HASH_EARLY,
1756 &i_hash_shift,
1757 &i_hash_mask,
1761 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1762 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1765 void __init inode_init(void)
1767 unsigned int loop;
1769 /* inode slab cache */
1770 inode_cachep = kmem_cache_create("inode_cache",
1771 sizeof(struct inode),
1773 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1774 SLAB_MEM_SPREAD),
1775 init_once);
1777 /* Hash may have been set up in inode_init_early */
1778 if (!hashdist)
1779 return;
1781 inode_hashtable =
1782 alloc_large_system_hash("Inode-cache",
1783 sizeof(struct hlist_head),
1784 ihash_entries,
1787 &i_hash_shift,
1788 &i_hash_mask,
1792 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1793 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1796 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1798 inode->i_mode = mode;
1799 if (S_ISCHR(mode)) {
1800 inode->i_fop = &def_chr_fops;
1801 inode->i_rdev = rdev;
1802 } else if (S_ISBLK(mode)) {
1803 inode->i_fop = &def_blk_fops;
1804 inode->i_rdev = rdev;
1805 } else if (S_ISFIFO(mode))
1806 inode->i_fop = &pipefifo_fops;
1807 else if (S_ISSOCK(mode))
1808 inode->i_fop = &bad_sock_fops;
1809 else
1810 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1811 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1812 inode->i_ino);
1814 EXPORT_SYMBOL(init_special_inode);
1817 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1818 * @inode: New inode
1819 * @dir: Directory inode
1820 * @mode: mode of the new inode
1822 void inode_init_owner(struct inode *inode, const struct inode *dir,
1823 umode_t mode)
1825 inode->i_uid = current_fsuid();
1826 if (dir && dir->i_mode & S_ISGID) {
1827 inode->i_gid = dir->i_gid;
1828 if (S_ISDIR(mode))
1829 mode |= S_ISGID;
1830 } else
1831 inode->i_gid = current_fsgid();
1832 inode->i_mode = mode;
1834 EXPORT_SYMBOL(inode_init_owner);
1837 * inode_owner_or_capable - check current task permissions to inode
1838 * @inode: inode being checked
1840 * Return true if current either has CAP_FOWNER to the inode, or
1841 * owns the file.
1843 bool inode_owner_or_capable(const struct inode *inode)
1845 if (uid_eq(current_fsuid(), inode->i_uid))
1846 return true;
1847 if (inode_capable(inode, CAP_FOWNER))
1848 return true;
1849 return false;
1851 EXPORT_SYMBOL(inode_owner_or_capable);
1854 * Direct i/o helper functions
1856 static void __inode_dio_wait(struct inode *inode)
1858 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1859 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1861 do {
1862 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1863 if (atomic_read(&inode->i_dio_count))
1864 schedule();
1865 } while (atomic_read(&inode->i_dio_count));
1866 finish_wait(wq, &q.wait);
1870 * inode_dio_wait - wait for outstanding DIO requests to finish
1871 * @inode: inode to wait for
1873 * Waits for all pending direct I/O requests to finish so that we can
1874 * proceed with a truncate or equivalent operation.
1876 * Must be called under a lock that serializes taking new references
1877 * to i_dio_count, usually by inode->i_mutex.
1879 void inode_dio_wait(struct inode *inode)
1881 if (atomic_read(&inode->i_dio_count))
1882 __inode_dio_wait(inode);
1884 EXPORT_SYMBOL(inode_dio_wait);
1887 * inode_dio_done - signal finish of a direct I/O requests
1888 * @inode: inode the direct I/O happens on
1890 * This is called once we've finished processing a direct I/O request,
1891 * and is used to wake up callers waiting for direct I/O to be quiesced.
1893 void inode_dio_done(struct inode *inode)
1895 if (atomic_dec_and_test(&inode->i_dio_count))
1896 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1898 EXPORT_SYMBOL(inode_dio_done);