drm/exynos: Stop using drm_framebuffer_unregister_private
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_gem.c
bloba07b627329234a18c443011000dbac06c0de242d
1 /*
2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/stop_machine.h>
42 #include <linux/swap.h>
43 #include <linux/pci.h>
44 #include <linux/dma-buf.h>
46 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
53 return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
58 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
59 return false;
61 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
62 return true;
64 return obj->pin_display;
67 static int
68 insert_mappable_node(struct i915_ggtt *ggtt,
69 struct drm_mm_node *node, u32 size)
71 memset(node, 0, sizeof(*node));
72 return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
73 size, 0,
74 I915_COLOR_UNEVICTABLE,
75 0, ggtt->mappable_end,
76 DRM_MM_SEARCH_DEFAULT,
77 DRM_MM_CREATE_DEFAULT);
80 static void
81 remove_mappable_node(struct drm_mm_node *node)
83 drm_mm_remove_node(node);
86 /* some bookkeeping */
87 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
88 u64 size)
90 spin_lock(&dev_priv->mm.object_stat_lock);
91 dev_priv->mm.object_count++;
92 dev_priv->mm.object_memory += size;
93 spin_unlock(&dev_priv->mm.object_stat_lock);
96 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
97 u64 size)
99 spin_lock(&dev_priv->mm.object_stat_lock);
100 dev_priv->mm.object_count--;
101 dev_priv->mm.object_memory -= size;
102 spin_unlock(&dev_priv->mm.object_stat_lock);
105 static int
106 i915_gem_wait_for_error(struct i915_gpu_error *error)
108 int ret;
110 might_sleep();
112 if (!i915_reset_in_progress(error))
113 return 0;
116 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
117 * userspace. If it takes that long something really bad is going on and
118 * we should simply try to bail out and fail as gracefully as possible.
120 ret = wait_event_interruptible_timeout(error->reset_queue,
121 !i915_reset_in_progress(error),
122 I915_RESET_TIMEOUT);
123 if (ret == 0) {
124 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
125 return -EIO;
126 } else if (ret < 0) {
127 return ret;
128 } else {
129 return 0;
133 int i915_mutex_lock_interruptible(struct drm_device *dev)
135 struct drm_i915_private *dev_priv = to_i915(dev);
136 int ret;
138 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
139 if (ret)
140 return ret;
142 ret = mutex_lock_interruptible(&dev->struct_mutex);
143 if (ret)
144 return ret;
146 return 0;
150 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
151 struct drm_file *file)
153 struct drm_i915_private *dev_priv = to_i915(dev);
154 struct i915_ggtt *ggtt = &dev_priv->ggtt;
155 struct drm_i915_gem_get_aperture *args = data;
156 struct i915_vma *vma;
157 size_t pinned;
159 pinned = 0;
160 mutex_lock(&dev->struct_mutex);
161 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
162 if (i915_vma_is_pinned(vma))
163 pinned += vma->node.size;
164 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
165 if (i915_vma_is_pinned(vma))
166 pinned += vma->node.size;
167 mutex_unlock(&dev->struct_mutex);
169 args->aper_size = ggtt->base.total;
170 args->aper_available_size = args->aper_size - pinned;
172 return 0;
175 static struct sg_table *
176 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
178 struct address_space *mapping = obj->base.filp->f_mapping;
179 drm_dma_handle_t *phys;
180 struct sg_table *st;
181 struct scatterlist *sg;
182 char *vaddr;
183 int i;
185 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
186 return ERR_PTR(-EINVAL);
188 /* Always aligning to the object size, allows a single allocation
189 * to handle all possible callers, and given typical object sizes,
190 * the alignment of the buddy allocation will naturally match.
192 phys = drm_pci_alloc(obj->base.dev,
193 obj->base.size,
194 roundup_pow_of_two(obj->base.size));
195 if (!phys)
196 return ERR_PTR(-ENOMEM);
198 vaddr = phys->vaddr;
199 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
200 struct page *page;
201 char *src;
203 page = shmem_read_mapping_page(mapping, i);
204 if (IS_ERR(page)) {
205 st = ERR_CAST(page);
206 goto err_phys;
209 src = kmap_atomic(page);
210 memcpy(vaddr, src, PAGE_SIZE);
211 drm_clflush_virt_range(vaddr, PAGE_SIZE);
212 kunmap_atomic(src);
214 put_page(page);
215 vaddr += PAGE_SIZE;
218 i915_gem_chipset_flush(to_i915(obj->base.dev));
220 st = kmalloc(sizeof(*st), GFP_KERNEL);
221 if (!st) {
222 st = ERR_PTR(-ENOMEM);
223 goto err_phys;
226 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
227 kfree(st);
228 st = ERR_PTR(-ENOMEM);
229 goto err_phys;
232 sg = st->sgl;
233 sg->offset = 0;
234 sg->length = obj->base.size;
236 sg_dma_address(sg) = phys->busaddr;
237 sg_dma_len(sg) = obj->base.size;
239 obj->phys_handle = phys;
240 return st;
242 err_phys:
243 drm_pci_free(obj->base.dev, phys);
244 return st;
247 static void
248 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
249 struct sg_table *pages,
250 bool needs_clflush)
252 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
254 if (obj->mm.madv == I915_MADV_DONTNEED)
255 obj->mm.dirty = false;
257 if (needs_clflush &&
258 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
259 !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
260 drm_clflush_sg(pages);
262 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
263 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
266 static void
267 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
268 struct sg_table *pages)
270 __i915_gem_object_release_shmem(obj, pages, false);
272 if (obj->mm.dirty) {
273 struct address_space *mapping = obj->base.filp->f_mapping;
274 char *vaddr = obj->phys_handle->vaddr;
275 int i;
277 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
278 struct page *page;
279 char *dst;
281 page = shmem_read_mapping_page(mapping, i);
282 if (IS_ERR(page))
283 continue;
285 dst = kmap_atomic(page);
286 drm_clflush_virt_range(vaddr, PAGE_SIZE);
287 memcpy(dst, vaddr, PAGE_SIZE);
288 kunmap_atomic(dst);
290 set_page_dirty(page);
291 if (obj->mm.madv == I915_MADV_WILLNEED)
292 mark_page_accessed(page);
293 put_page(page);
294 vaddr += PAGE_SIZE;
296 obj->mm.dirty = false;
299 sg_free_table(pages);
300 kfree(pages);
302 drm_pci_free(obj->base.dev, obj->phys_handle);
305 static void
306 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
308 i915_gem_object_unpin_pages(obj);
311 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
312 .get_pages = i915_gem_object_get_pages_phys,
313 .put_pages = i915_gem_object_put_pages_phys,
314 .release = i915_gem_object_release_phys,
317 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
319 struct i915_vma *vma;
320 LIST_HEAD(still_in_list);
321 int ret;
323 lockdep_assert_held(&obj->base.dev->struct_mutex);
325 /* Closed vma are removed from the obj->vma_list - but they may
326 * still have an active binding on the object. To remove those we
327 * must wait for all rendering to complete to the object (as unbinding
328 * must anyway), and retire the requests.
330 ret = i915_gem_object_wait(obj,
331 I915_WAIT_INTERRUPTIBLE |
332 I915_WAIT_LOCKED |
333 I915_WAIT_ALL,
334 MAX_SCHEDULE_TIMEOUT,
335 NULL);
336 if (ret)
337 return ret;
339 i915_gem_retire_requests(to_i915(obj->base.dev));
341 while ((vma = list_first_entry_or_null(&obj->vma_list,
342 struct i915_vma,
343 obj_link))) {
344 list_move_tail(&vma->obj_link, &still_in_list);
345 ret = i915_vma_unbind(vma);
346 if (ret)
347 break;
349 list_splice(&still_in_list, &obj->vma_list);
351 return ret;
354 static long
355 i915_gem_object_wait_fence(struct dma_fence *fence,
356 unsigned int flags,
357 long timeout,
358 struct intel_rps_client *rps)
360 struct drm_i915_gem_request *rq;
362 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
364 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
365 return timeout;
367 if (!dma_fence_is_i915(fence))
368 return dma_fence_wait_timeout(fence,
369 flags & I915_WAIT_INTERRUPTIBLE,
370 timeout);
372 rq = to_request(fence);
373 if (i915_gem_request_completed(rq))
374 goto out;
376 /* This client is about to stall waiting for the GPU. In many cases
377 * this is undesirable and limits the throughput of the system, as
378 * many clients cannot continue processing user input/output whilst
379 * blocked. RPS autotuning may take tens of milliseconds to respond
380 * to the GPU load and thus incurs additional latency for the client.
381 * We can circumvent that by promoting the GPU frequency to maximum
382 * before we wait. This makes the GPU throttle up much more quickly
383 * (good for benchmarks and user experience, e.g. window animations),
384 * but at a cost of spending more power processing the workload
385 * (bad for battery). Not all clients even want their results
386 * immediately and for them we should just let the GPU select its own
387 * frequency to maximise efficiency. To prevent a single client from
388 * forcing the clocks too high for the whole system, we only allow
389 * each client to waitboost once in a busy period.
391 if (rps) {
392 if (INTEL_GEN(rq->i915) >= 6)
393 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
394 else
395 rps = NULL;
398 timeout = i915_wait_request(rq, flags, timeout);
400 out:
401 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
402 i915_gem_request_retire_upto(rq);
404 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
405 /* The GPU is now idle and this client has stalled.
406 * Since no other client has submitted a request in the
407 * meantime, assume that this client is the only one
408 * supplying work to the GPU but is unable to keep that
409 * work supplied because it is waiting. Since the GPU is
410 * then never kept fully busy, RPS autoclocking will
411 * keep the clocks relatively low, causing further delays.
412 * Compensate by giving the synchronous client credit for
413 * a waitboost next time.
415 spin_lock(&rq->i915->rps.client_lock);
416 list_del_init(&rps->link);
417 spin_unlock(&rq->i915->rps.client_lock);
420 return timeout;
423 static long
424 i915_gem_object_wait_reservation(struct reservation_object *resv,
425 unsigned int flags,
426 long timeout,
427 struct intel_rps_client *rps)
429 struct dma_fence *excl;
431 if (flags & I915_WAIT_ALL) {
432 struct dma_fence **shared;
433 unsigned int count, i;
434 int ret;
436 ret = reservation_object_get_fences_rcu(resv,
437 &excl, &count, &shared);
438 if (ret)
439 return ret;
441 for (i = 0; i < count; i++) {
442 timeout = i915_gem_object_wait_fence(shared[i],
443 flags, timeout,
444 rps);
445 if (timeout <= 0)
446 break;
448 dma_fence_put(shared[i]);
451 for (; i < count; i++)
452 dma_fence_put(shared[i]);
453 kfree(shared);
454 } else {
455 excl = reservation_object_get_excl_rcu(resv);
458 if (excl && timeout > 0)
459 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
461 dma_fence_put(excl);
463 return timeout;
466 static void __fence_set_priority(struct dma_fence *fence, int prio)
468 struct drm_i915_gem_request *rq;
469 struct intel_engine_cs *engine;
471 if (!dma_fence_is_i915(fence))
472 return;
474 rq = to_request(fence);
475 engine = rq->engine;
476 if (!engine->schedule)
477 return;
479 engine->schedule(rq, prio);
482 static void fence_set_priority(struct dma_fence *fence, int prio)
484 /* Recurse once into a fence-array */
485 if (dma_fence_is_array(fence)) {
486 struct dma_fence_array *array = to_dma_fence_array(fence);
487 int i;
489 for (i = 0; i < array->num_fences; i++)
490 __fence_set_priority(array->fences[i], prio);
491 } else {
492 __fence_set_priority(fence, prio);
497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498 unsigned int flags,
499 int prio)
501 struct dma_fence *excl;
503 if (flags & I915_WAIT_ALL) {
504 struct dma_fence **shared;
505 unsigned int count, i;
506 int ret;
508 ret = reservation_object_get_fences_rcu(obj->resv,
509 &excl, &count, &shared);
510 if (ret)
511 return ret;
513 for (i = 0; i < count; i++) {
514 fence_set_priority(shared[i], prio);
515 dma_fence_put(shared[i]);
518 kfree(shared);
519 } else {
520 excl = reservation_object_get_excl_rcu(obj->resv);
523 if (excl) {
524 fence_set_priority(excl, prio);
525 dma_fence_put(excl);
527 return 0;
531 * Waits for rendering to the object to be completed
532 * @obj: i915 gem object
533 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534 * @timeout: how long to wait
535 * @rps: client (user process) to charge for any waitboosting
538 i915_gem_object_wait(struct drm_i915_gem_object *obj,
539 unsigned int flags,
540 long timeout,
541 struct intel_rps_client *rps)
543 might_sleep();
544 #if IS_ENABLED(CONFIG_LOCKDEP)
545 GEM_BUG_ON(debug_locks &&
546 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547 !!(flags & I915_WAIT_LOCKED));
548 #endif
549 GEM_BUG_ON(timeout < 0);
551 timeout = i915_gem_object_wait_reservation(obj->resv,
552 flags, timeout,
553 rps);
554 return timeout < 0 ? timeout : 0;
557 static struct intel_rps_client *to_rps_client(struct drm_file *file)
559 struct drm_i915_file_private *fpriv = file->driver_priv;
561 return &fpriv->rps;
565 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
566 int align)
568 int ret;
570 if (align > obj->base.size)
571 return -EINVAL;
573 if (obj->ops == &i915_gem_phys_ops)
574 return 0;
576 if (obj->mm.madv != I915_MADV_WILLNEED)
577 return -EFAULT;
579 if (obj->base.filp == NULL)
580 return -EINVAL;
582 ret = i915_gem_object_unbind(obj);
583 if (ret)
584 return ret;
586 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
587 if (obj->mm.pages)
588 return -EBUSY;
590 obj->ops = &i915_gem_phys_ops;
592 return i915_gem_object_pin_pages(obj);
595 static int
596 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
597 struct drm_i915_gem_pwrite *args,
598 struct drm_file *file)
600 void *vaddr = obj->phys_handle->vaddr + args->offset;
601 char __user *user_data = u64_to_user_ptr(args->data_ptr);
603 /* We manually control the domain here and pretend that it
604 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
606 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
607 if (copy_from_user(vaddr, user_data, args->size))
608 return -EFAULT;
610 drm_clflush_virt_range(vaddr, args->size);
611 i915_gem_chipset_flush(to_i915(obj->base.dev));
613 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
614 return 0;
617 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
619 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
622 void i915_gem_object_free(struct drm_i915_gem_object *obj)
624 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
625 kmem_cache_free(dev_priv->objects, obj);
628 static int
629 i915_gem_create(struct drm_file *file,
630 struct drm_i915_private *dev_priv,
631 uint64_t size,
632 uint32_t *handle_p)
634 struct drm_i915_gem_object *obj;
635 int ret;
636 u32 handle;
638 size = roundup(size, PAGE_SIZE);
639 if (size == 0)
640 return -EINVAL;
642 /* Allocate the new object */
643 obj = i915_gem_object_create(dev_priv, size);
644 if (IS_ERR(obj))
645 return PTR_ERR(obj);
647 ret = drm_gem_handle_create(file, &obj->base, &handle);
648 /* drop reference from allocate - handle holds it now */
649 i915_gem_object_put(obj);
650 if (ret)
651 return ret;
653 *handle_p = handle;
654 return 0;
658 i915_gem_dumb_create(struct drm_file *file,
659 struct drm_device *dev,
660 struct drm_mode_create_dumb *args)
662 /* have to work out size/pitch and return them */
663 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
664 args->size = args->pitch * args->height;
665 return i915_gem_create(file, to_i915(dev),
666 args->size, &args->handle);
670 * Creates a new mm object and returns a handle to it.
671 * @dev: drm device pointer
672 * @data: ioctl data blob
673 * @file: drm file pointer
676 i915_gem_create_ioctl(struct drm_device *dev, void *data,
677 struct drm_file *file)
679 struct drm_i915_private *dev_priv = to_i915(dev);
680 struct drm_i915_gem_create *args = data;
682 i915_gem_flush_free_objects(dev_priv);
684 return i915_gem_create(file, dev_priv,
685 args->size, &args->handle);
688 static inline int
689 __copy_to_user_swizzled(char __user *cpu_vaddr,
690 const char *gpu_vaddr, int gpu_offset,
691 int length)
693 int ret, cpu_offset = 0;
695 while (length > 0) {
696 int cacheline_end = ALIGN(gpu_offset + 1, 64);
697 int this_length = min(cacheline_end - gpu_offset, length);
698 int swizzled_gpu_offset = gpu_offset ^ 64;
700 ret = __copy_to_user(cpu_vaddr + cpu_offset,
701 gpu_vaddr + swizzled_gpu_offset,
702 this_length);
703 if (ret)
704 return ret + length;
706 cpu_offset += this_length;
707 gpu_offset += this_length;
708 length -= this_length;
711 return 0;
714 static inline int
715 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
716 const char __user *cpu_vaddr,
717 int length)
719 int ret, cpu_offset = 0;
721 while (length > 0) {
722 int cacheline_end = ALIGN(gpu_offset + 1, 64);
723 int this_length = min(cacheline_end - gpu_offset, length);
724 int swizzled_gpu_offset = gpu_offset ^ 64;
726 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
727 cpu_vaddr + cpu_offset,
728 this_length);
729 if (ret)
730 return ret + length;
732 cpu_offset += this_length;
733 gpu_offset += this_length;
734 length -= this_length;
737 return 0;
741 * Pins the specified object's pages and synchronizes the object with
742 * GPU accesses. Sets needs_clflush to non-zero if the caller should
743 * flush the object from the CPU cache.
745 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
746 unsigned int *needs_clflush)
748 int ret;
750 lockdep_assert_held(&obj->base.dev->struct_mutex);
752 *needs_clflush = 0;
753 if (!i915_gem_object_has_struct_page(obj))
754 return -ENODEV;
756 ret = i915_gem_object_wait(obj,
757 I915_WAIT_INTERRUPTIBLE |
758 I915_WAIT_LOCKED,
759 MAX_SCHEDULE_TIMEOUT,
760 NULL);
761 if (ret)
762 return ret;
764 ret = i915_gem_object_pin_pages(obj);
765 if (ret)
766 return ret;
768 i915_gem_object_flush_gtt_write_domain(obj);
770 /* If we're not in the cpu read domain, set ourself into the gtt
771 * read domain and manually flush cachelines (if required). This
772 * optimizes for the case when the gpu will dirty the data
773 * anyway again before the next pread happens.
775 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
776 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
777 obj->cache_level);
779 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
780 ret = i915_gem_object_set_to_cpu_domain(obj, false);
781 if (ret)
782 goto err_unpin;
784 *needs_clflush = 0;
787 /* return with the pages pinned */
788 return 0;
790 err_unpin:
791 i915_gem_object_unpin_pages(obj);
792 return ret;
795 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
796 unsigned int *needs_clflush)
798 int ret;
800 lockdep_assert_held(&obj->base.dev->struct_mutex);
802 *needs_clflush = 0;
803 if (!i915_gem_object_has_struct_page(obj))
804 return -ENODEV;
806 ret = i915_gem_object_wait(obj,
807 I915_WAIT_INTERRUPTIBLE |
808 I915_WAIT_LOCKED |
809 I915_WAIT_ALL,
810 MAX_SCHEDULE_TIMEOUT,
811 NULL);
812 if (ret)
813 return ret;
815 ret = i915_gem_object_pin_pages(obj);
816 if (ret)
817 return ret;
819 i915_gem_object_flush_gtt_write_domain(obj);
821 /* If we're not in the cpu write domain, set ourself into the
822 * gtt write domain and manually flush cachelines (as required).
823 * This optimizes for the case when the gpu will use the data
824 * right away and we therefore have to clflush anyway.
826 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
827 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
829 /* Same trick applies to invalidate partially written cachelines read
830 * before writing.
832 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
833 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
834 obj->cache_level);
836 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
837 ret = i915_gem_object_set_to_cpu_domain(obj, true);
838 if (ret)
839 goto err_unpin;
841 *needs_clflush = 0;
844 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
845 obj->cache_dirty = true;
847 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
848 obj->mm.dirty = true;
849 /* return with the pages pinned */
850 return 0;
852 err_unpin:
853 i915_gem_object_unpin_pages(obj);
854 return ret;
857 static void
858 shmem_clflush_swizzled_range(char *addr, unsigned long length,
859 bool swizzled)
861 if (unlikely(swizzled)) {
862 unsigned long start = (unsigned long) addr;
863 unsigned long end = (unsigned long) addr + length;
865 /* For swizzling simply ensure that we always flush both
866 * channels. Lame, but simple and it works. Swizzled
867 * pwrite/pread is far from a hotpath - current userspace
868 * doesn't use it at all. */
869 start = round_down(start, 128);
870 end = round_up(end, 128);
872 drm_clflush_virt_range((void *)start, end - start);
873 } else {
874 drm_clflush_virt_range(addr, length);
879 /* Only difference to the fast-path function is that this can handle bit17
880 * and uses non-atomic copy and kmap functions. */
881 static int
882 shmem_pread_slow(struct page *page, int offset, int length,
883 char __user *user_data,
884 bool page_do_bit17_swizzling, bool needs_clflush)
886 char *vaddr;
887 int ret;
889 vaddr = kmap(page);
890 if (needs_clflush)
891 shmem_clflush_swizzled_range(vaddr + offset, length,
892 page_do_bit17_swizzling);
894 if (page_do_bit17_swizzling)
895 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
896 else
897 ret = __copy_to_user(user_data, vaddr + offset, length);
898 kunmap(page);
900 return ret ? - EFAULT : 0;
903 static int
904 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
905 bool page_do_bit17_swizzling, bool needs_clflush)
907 int ret;
909 ret = -ENODEV;
910 if (!page_do_bit17_swizzling) {
911 char *vaddr = kmap_atomic(page);
913 if (needs_clflush)
914 drm_clflush_virt_range(vaddr + offset, length);
915 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
916 kunmap_atomic(vaddr);
918 if (ret == 0)
919 return 0;
921 return shmem_pread_slow(page, offset, length, user_data,
922 page_do_bit17_swizzling, needs_clflush);
925 static int
926 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
927 struct drm_i915_gem_pread *args)
929 char __user *user_data;
930 u64 remain;
931 unsigned int obj_do_bit17_swizzling;
932 unsigned int needs_clflush;
933 unsigned int idx, offset;
934 int ret;
936 obj_do_bit17_swizzling = 0;
937 if (i915_gem_object_needs_bit17_swizzle(obj))
938 obj_do_bit17_swizzling = BIT(17);
940 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
941 if (ret)
942 return ret;
944 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
945 mutex_unlock(&obj->base.dev->struct_mutex);
946 if (ret)
947 return ret;
949 remain = args->size;
950 user_data = u64_to_user_ptr(args->data_ptr);
951 offset = offset_in_page(args->offset);
952 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
953 struct page *page = i915_gem_object_get_page(obj, idx);
954 int length;
956 length = remain;
957 if (offset + length > PAGE_SIZE)
958 length = PAGE_SIZE - offset;
960 ret = shmem_pread(page, offset, length, user_data,
961 page_to_phys(page) & obj_do_bit17_swizzling,
962 needs_clflush);
963 if (ret)
964 break;
966 remain -= length;
967 user_data += length;
968 offset = 0;
971 i915_gem_obj_finish_shmem_access(obj);
972 return ret;
975 static inline bool
976 gtt_user_read(struct io_mapping *mapping,
977 loff_t base, int offset,
978 char __user *user_data, int length)
980 void *vaddr;
981 unsigned long unwritten;
983 /* We can use the cpu mem copy function because this is X86. */
984 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
985 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
986 io_mapping_unmap_atomic(vaddr);
987 if (unwritten) {
988 vaddr = (void __force *)
989 io_mapping_map_wc(mapping, base, PAGE_SIZE);
990 unwritten = copy_to_user(user_data, vaddr + offset, length);
991 io_mapping_unmap(vaddr);
993 return unwritten;
996 static int
997 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
998 const struct drm_i915_gem_pread *args)
1000 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1001 struct i915_ggtt *ggtt = &i915->ggtt;
1002 struct drm_mm_node node;
1003 struct i915_vma *vma;
1004 void __user *user_data;
1005 u64 remain, offset;
1006 int ret;
1008 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1009 if (ret)
1010 return ret;
1012 intel_runtime_pm_get(i915);
1013 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1014 PIN_MAPPABLE | PIN_NONBLOCK);
1015 if (!IS_ERR(vma)) {
1016 node.start = i915_ggtt_offset(vma);
1017 node.allocated = false;
1018 ret = i915_vma_put_fence(vma);
1019 if (ret) {
1020 i915_vma_unpin(vma);
1021 vma = ERR_PTR(ret);
1024 if (IS_ERR(vma)) {
1025 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1026 if (ret)
1027 goto out_unlock;
1028 GEM_BUG_ON(!node.allocated);
1031 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1032 if (ret)
1033 goto out_unpin;
1035 mutex_unlock(&i915->drm.struct_mutex);
1037 user_data = u64_to_user_ptr(args->data_ptr);
1038 remain = args->size;
1039 offset = args->offset;
1041 while (remain > 0) {
1042 /* Operation in this page
1044 * page_base = page offset within aperture
1045 * page_offset = offset within page
1046 * page_length = bytes to copy for this page
1048 u32 page_base = node.start;
1049 unsigned page_offset = offset_in_page(offset);
1050 unsigned page_length = PAGE_SIZE - page_offset;
1051 page_length = remain < page_length ? remain : page_length;
1052 if (node.allocated) {
1053 wmb();
1054 ggtt->base.insert_page(&ggtt->base,
1055 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1056 node.start, I915_CACHE_NONE, 0);
1057 wmb();
1058 } else {
1059 page_base += offset & PAGE_MASK;
1062 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1063 user_data, page_length)) {
1064 ret = -EFAULT;
1065 break;
1068 remain -= page_length;
1069 user_data += page_length;
1070 offset += page_length;
1073 mutex_lock(&i915->drm.struct_mutex);
1074 out_unpin:
1075 if (node.allocated) {
1076 wmb();
1077 ggtt->base.clear_range(&ggtt->base,
1078 node.start, node.size);
1079 remove_mappable_node(&node);
1080 } else {
1081 i915_vma_unpin(vma);
1083 out_unlock:
1084 intel_runtime_pm_put(i915);
1085 mutex_unlock(&i915->drm.struct_mutex);
1087 return ret;
1091 * Reads data from the object referenced by handle.
1092 * @dev: drm device pointer
1093 * @data: ioctl data blob
1094 * @file: drm file pointer
1096 * On error, the contents of *data are undefined.
1099 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1100 struct drm_file *file)
1102 struct drm_i915_gem_pread *args = data;
1103 struct drm_i915_gem_object *obj;
1104 int ret;
1106 if (args->size == 0)
1107 return 0;
1109 if (!access_ok(VERIFY_WRITE,
1110 u64_to_user_ptr(args->data_ptr),
1111 args->size))
1112 return -EFAULT;
1114 obj = i915_gem_object_lookup(file, args->handle);
1115 if (!obj)
1116 return -ENOENT;
1118 /* Bounds check source. */
1119 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1120 ret = -EINVAL;
1121 goto out;
1124 trace_i915_gem_object_pread(obj, args->offset, args->size);
1126 ret = i915_gem_object_wait(obj,
1127 I915_WAIT_INTERRUPTIBLE,
1128 MAX_SCHEDULE_TIMEOUT,
1129 to_rps_client(file));
1130 if (ret)
1131 goto out;
1133 ret = i915_gem_object_pin_pages(obj);
1134 if (ret)
1135 goto out;
1137 ret = i915_gem_shmem_pread(obj, args);
1138 if (ret == -EFAULT || ret == -ENODEV)
1139 ret = i915_gem_gtt_pread(obj, args);
1141 i915_gem_object_unpin_pages(obj);
1142 out:
1143 i915_gem_object_put(obj);
1144 return ret;
1147 /* This is the fast write path which cannot handle
1148 * page faults in the source data
1151 static inline bool
1152 ggtt_write(struct io_mapping *mapping,
1153 loff_t base, int offset,
1154 char __user *user_data, int length)
1156 void *vaddr;
1157 unsigned long unwritten;
1159 /* We can use the cpu mem copy function because this is X86. */
1160 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1161 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1162 user_data, length);
1163 io_mapping_unmap_atomic(vaddr);
1164 if (unwritten) {
1165 vaddr = (void __force *)
1166 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1167 unwritten = copy_from_user(vaddr + offset, user_data, length);
1168 io_mapping_unmap(vaddr);
1171 return unwritten;
1175 * This is the fast pwrite path, where we copy the data directly from the
1176 * user into the GTT, uncached.
1177 * @obj: i915 GEM object
1178 * @args: pwrite arguments structure
1180 static int
1181 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1182 const struct drm_i915_gem_pwrite *args)
1184 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1185 struct i915_ggtt *ggtt = &i915->ggtt;
1186 struct drm_mm_node node;
1187 struct i915_vma *vma;
1188 u64 remain, offset;
1189 void __user *user_data;
1190 int ret;
1192 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1193 if (ret)
1194 return ret;
1196 intel_runtime_pm_get(i915);
1197 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1198 PIN_MAPPABLE | PIN_NONBLOCK);
1199 if (!IS_ERR(vma)) {
1200 node.start = i915_ggtt_offset(vma);
1201 node.allocated = false;
1202 ret = i915_vma_put_fence(vma);
1203 if (ret) {
1204 i915_vma_unpin(vma);
1205 vma = ERR_PTR(ret);
1208 if (IS_ERR(vma)) {
1209 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1210 if (ret)
1211 goto out_unlock;
1212 GEM_BUG_ON(!node.allocated);
1215 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1216 if (ret)
1217 goto out_unpin;
1219 mutex_unlock(&i915->drm.struct_mutex);
1221 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1223 user_data = u64_to_user_ptr(args->data_ptr);
1224 offset = args->offset;
1225 remain = args->size;
1226 while (remain) {
1227 /* Operation in this page
1229 * page_base = page offset within aperture
1230 * page_offset = offset within page
1231 * page_length = bytes to copy for this page
1233 u32 page_base = node.start;
1234 unsigned int page_offset = offset_in_page(offset);
1235 unsigned int page_length = PAGE_SIZE - page_offset;
1236 page_length = remain < page_length ? remain : page_length;
1237 if (node.allocated) {
1238 wmb(); /* flush the write before we modify the GGTT */
1239 ggtt->base.insert_page(&ggtt->base,
1240 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1241 node.start, I915_CACHE_NONE, 0);
1242 wmb(); /* flush modifications to the GGTT (insert_page) */
1243 } else {
1244 page_base += offset & PAGE_MASK;
1246 /* If we get a fault while copying data, then (presumably) our
1247 * source page isn't available. Return the error and we'll
1248 * retry in the slow path.
1249 * If the object is non-shmem backed, we retry again with the
1250 * path that handles page fault.
1252 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1253 user_data, page_length)) {
1254 ret = -EFAULT;
1255 break;
1258 remain -= page_length;
1259 user_data += page_length;
1260 offset += page_length;
1262 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1264 mutex_lock(&i915->drm.struct_mutex);
1265 out_unpin:
1266 if (node.allocated) {
1267 wmb();
1268 ggtt->base.clear_range(&ggtt->base,
1269 node.start, node.size);
1270 remove_mappable_node(&node);
1271 } else {
1272 i915_vma_unpin(vma);
1274 out_unlock:
1275 intel_runtime_pm_put(i915);
1276 mutex_unlock(&i915->drm.struct_mutex);
1277 return ret;
1280 static int
1281 shmem_pwrite_slow(struct page *page, int offset, int length,
1282 char __user *user_data,
1283 bool page_do_bit17_swizzling,
1284 bool needs_clflush_before,
1285 bool needs_clflush_after)
1287 char *vaddr;
1288 int ret;
1290 vaddr = kmap(page);
1291 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1292 shmem_clflush_swizzled_range(vaddr + offset, length,
1293 page_do_bit17_swizzling);
1294 if (page_do_bit17_swizzling)
1295 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1296 length);
1297 else
1298 ret = __copy_from_user(vaddr + offset, user_data, length);
1299 if (needs_clflush_after)
1300 shmem_clflush_swizzled_range(vaddr + offset, length,
1301 page_do_bit17_swizzling);
1302 kunmap(page);
1304 return ret ? -EFAULT : 0;
1307 /* Per-page copy function for the shmem pwrite fastpath.
1308 * Flushes invalid cachelines before writing to the target if
1309 * needs_clflush_before is set and flushes out any written cachelines after
1310 * writing if needs_clflush is set.
1312 static int
1313 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1314 bool page_do_bit17_swizzling,
1315 bool needs_clflush_before,
1316 bool needs_clflush_after)
1318 int ret;
1320 ret = -ENODEV;
1321 if (!page_do_bit17_swizzling) {
1322 char *vaddr = kmap_atomic(page);
1324 if (needs_clflush_before)
1325 drm_clflush_virt_range(vaddr + offset, len);
1326 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1327 if (needs_clflush_after)
1328 drm_clflush_virt_range(vaddr + offset, len);
1330 kunmap_atomic(vaddr);
1332 if (ret == 0)
1333 return ret;
1335 return shmem_pwrite_slow(page, offset, len, user_data,
1336 page_do_bit17_swizzling,
1337 needs_clflush_before,
1338 needs_clflush_after);
1341 static int
1342 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1343 const struct drm_i915_gem_pwrite *args)
1345 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1346 void __user *user_data;
1347 u64 remain;
1348 unsigned int obj_do_bit17_swizzling;
1349 unsigned int partial_cacheline_write;
1350 unsigned int needs_clflush;
1351 unsigned int offset, idx;
1352 int ret;
1354 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1355 if (ret)
1356 return ret;
1358 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1359 mutex_unlock(&i915->drm.struct_mutex);
1360 if (ret)
1361 return ret;
1363 obj_do_bit17_swizzling = 0;
1364 if (i915_gem_object_needs_bit17_swizzle(obj))
1365 obj_do_bit17_swizzling = BIT(17);
1367 /* If we don't overwrite a cacheline completely we need to be
1368 * careful to have up-to-date data by first clflushing. Don't
1369 * overcomplicate things and flush the entire patch.
1371 partial_cacheline_write = 0;
1372 if (needs_clflush & CLFLUSH_BEFORE)
1373 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1375 user_data = u64_to_user_ptr(args->data_ptr);
1376 remain = args->size;
1377 offset = offset_in_page(args->offset);
1378 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1379 struct page *page = i915_gem_object_get_page(obj, idx);
1380 int length;
1382 length = remain;
1383 if (offset + length > PAGE_SIZE)
1384 length = PAGE_SIZE - offset;
1386 ret = shmem_pwrite(page, offset, length, user_data,
1387 page_to_phys(page) & obj_do_bit17_swizzling,
1388 (offset | length) & partial_cacheline_write,
1389 needs_clflush & CLFLUSH_AFTER);
1390 if (ret)
1391 break;
1393 remain -= length;
1394 user_data += length;
1395 offset = 0;
1398 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1399 i915_gem_obj_finish_shmem_access(obj);
1400 return ret;
1404 * Writes data to the object referenced by handle.
1405 * @dev: drm device
1406 * @data: ioctl data blob
1407 * @file: drm file
1409 * On error, the contents of the buffer that were to be modified are undefined.
1412 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1413 struct drm_file *file)
1415 struct drm_i915_gem_pwrite *args = data;
1416 struct drm_i915_gem_object *obj;
1417 int ret;
1419 if (args->size == 0)
1420 return 0;
1422 if (!access_ok(VERIFY_READ,
1423 u64_to_user_ptr(args->data_ptr),
1424 args->size))
1425 return -EFAULT;
1427 obj = i915_gem_object_lookup(file, args->handle);
1428 if (!obj)
1429 return -ENOENT;
1431 /* Bounds check destination. */
1432 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1433 ret = -EINVAL;
1434 goto err;
1437 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1439 ret = i915_gem_object_wait(obj,
1440 I915_WAIT_INTERRUPTIBLE |
1441 I915_WAIT_ALL,
1442 MAX_SCHEDULE_TIMEOUT,
1443 to_rps_client(file));
1444 if (ret)
1445 goto err;
1447 ret = i915_gem_object_pin_pages(obj);
1448 if (ret)
1449 goto err;
1451 ret = -EFAULT;
1452 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1453 * it would end up going through the fenced access, and we'll get
1454 * different detiling behavior between reading and writing.
1455 * pread/pwrite currently are reading and writing from the CPU
1456 * perspective, requiring manual detiling by the client.
1458 if (!i915_gem_object_has_struct_page(obj) ||
1459 cpu_write_needs_clflush(obj))
1460 /* Note that the gtt paths might fail with non-page-backed user
1461 * pointers (e.g. gtt mappings when moving data between
1462 * textures). Fallback to the shmem path in that case.
1464 ret = i915_gem_gtt_pwrite_fast(obj, args);
1466 if (ret == -EFAULT || ret == -ENOSPC) {
1467 if (obj->phys_handle)
1468 ret = i915_gem_phys_pwrite(obj, args, file);
1469 else
1470 ret = i915_gem_shmem_pwrite(obj, args);
1473 i915_gem_object_unpin_pages(obj);
1474 err:
1475 i915_gem_object_put(obj);
1476 return ret;
1479 static inline enum fb_op_origin
1480 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1482 return (domain == I915_GEM_DOMAIN_GTT ?
1483 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1486 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1488 struct drm_i915_private *i915;
1489 struct list_head *list;
1490 struct i915_vma *vma;
1492 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1493 if (!i915_vma_is_ggtt(vma))
1494 break;
1496 if (i915_vma_is_active(vma))
1497 continue;
1499 if (!drm_mm_node_allocated(&vma->node))
1500 continue;
1502 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1505 i915 = to_i915(obj->base.dev);
1506 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1507 list_move_tail(&obj->global_link, list);
1511 * Called when user space prepares to use an object with the CPU, either
1512 * through the mmap ioctl's mapping or a GTT mapping.
1513 * @dev: drm device
1514 * @data: ioctl data blob
1515 * @file: drm file
1518 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1519 struct drm_file *file)
1521 struct drm_i915_gem_set_domain *args = data;
1522 struct drm_i915_gem_object *obj;
1523 uint32_t read_domains = args->read_domains;
1524 uint32_t write_domain = args->write_domain;
1525 int err;
1527 /* Only handle setting domains to types used by the CPU. */
1528 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1529 return -EINVAL;
1531 /* Having something in the write domain implies it's in the read
1532 * domain, and only that read domain. Enforce that in the request.
1534 if (write_domain != 0 && read_domains != write_domain)
1535 return -EINVAL;
1537 obj = i915_gem_object_lookup(file, args->handle);
1538 if (!obj)
1539 return -ENOENT;
1541 /* Try to flush the object off the GPU without holding the lock.
1542 * We will repeat the flush holding the lock in the normal manner
1543 * to catch cases where we are gazumped.
1545 err = i915_gem_object_wait(obj,
1546 I915_WAIT_INTERRUPTIBLE |
1547 (write_domain ? I915_WAIT_ALL : 0),
1548 MAX_SCHEDULE_TIMEOUT,
1549 to_rps_client(file));
1550 if (err)
1551 goto out;
1553 /* Flush and acquire obj->pages so that we are coherent through
1554 * direct access in memory with previous cached writes through
1555 * shmemfs and that our cache domain tracking remains valid.
1556 * For example, if the obj->filp was moved to swap without us
1557 * being notified and releasing the pages, we would mistakenly
1558 * continue to assume that the obj remained out of the CPU cached
1559 * domain.
1561 err = i915_gem_object_pin_pages(obj);
1562 if (err)
1563 goto out;
1565 err = i915_mutex_lock_interruptible(dev);
1566 if (err)
1567 goto out_unpin;
1569 if (read_domains & I915_GEM_DOMAIN_GTT)
1570 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1571 else
1572 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1574 /* And bump the LRU for this access */
1575 i915_gem_object_bump_inactive_ggtt(obj);
1577 mutex_unlock(&dev->struct_mutex);
1579 if (write_domain != 0)
1580 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1582 out_unpin:
1583 i915_gem_object_unpin_pages(obj);
1584 out:
1585 i915_gem_object_put(obj);
1586 return err;
1590 * Called when user space has done writes to this buffer
1591 * @dev: drm device
1592 * @data: ioctl data blob
1593 * @file: drm file
1596 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1597 struct drm_file *file)
1599 struct drm_i915_gem_sw_finish *args = data;
1600 struct drm_i915_gem_object *obj;
1601 int err = 0;
1603 obj = i915_gem_object_lookup(file, args->handle);
1604 if (!obj)
1605 return -ENOENT;
1607 /* Pinned buffers may be scanout, so flush the cache */
1608 if (READ_ONCE(obj->pin_display)) {
1609 err = i915_mutex_lock_interruptible(dev);
1610 if (!err) {
1611 i915_gem_object_flush_cpu_write_domain(obj);
1612 mutex_unlock(&dev->struct_mutex);
1616 i915_gem_object_put(obj);
1617 return err;
1621 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1622 * it is mapped to.
1623 * @dev: drm device
1624 * @data: ioctl data blob
1625 * @file: drm file
1627 * While the mapping holds a reference on the contents of the object, it doesn't
1628 * imply a ref on the object itself.
1630 * IMPORTANT:
1632 * DRM driver writers who look a this function as an example for how to do GEM
1633 * mmap support, please don't implement mmap support like here. The modern way
1634 * to implement DRM mmap support is with an mmap offset ioctl (like
1635 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1636 * That way debug tooling like valgrind will understand what's going on, hiding
1637 * the mmap call in a driver private ioctl will break that. The i915 driver only
1638 * does cpu mmaps this way because we didn't know better.
1641 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1642 struct drm_file *file)
1644 struct drm_i915_gem_mmap *args = data;
1645 struct drm_i915_gem_object *obj;
1646 unsigned long addr;
1648 if (args->flags & ~(I915_MMAP_WC))
1649 return -EINVAL;
1651 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1652 return -ENODEV;
1654 obj = i915_gem_object_lookup(file, args->handle);
1655 if (!obj)
1656 return -ENOENT;
1658 /* prime objects have no backing filp to GEM mmap
1659 * pages from.
1661 if (!obj->base.filp) {
1662 i915_gem_object_put(obj);
1663 return -EINVAL;
1666 addr = vm_mmap(obj->base.filp, 0, args->size,
1667 PROT_READ | PROT_WRITE, MAP_SHARED,
1668 args->offset);
1669 if (args->flags & I915_MMAP_WC) {
1670 struct mm_struct *mm = current->mm;
1671 struct vm_area_struct *vma;
1673 if (down_write_killable(&mm->mmap_sem)) {
1674 i915_gem_object_put(obj);
1675 return -EINTR;
1677 vma = find_vma(mm, addr);
1678 if (vma)
1679 vma->vm_page_prot =
1680 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1681 else
1682 addr = -ENOMEM;
1683 up_write(&mm->mmap_sem);
1685 /* This may race, but that's ok, it only gets set */
1686 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1688 i915_gem_object_put(obj);
1689 if (IS_ERR((void *)addr))
1690 return addr;
1692 args->addr_ptr = (uint64_t) addr;
1694 return 0;
1697 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1699 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1703 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1705 * A history of the GTT mmap interface:
1707 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1708 * aligned and suitable for fencing, and still fit into the available
1709 * mappable space left by the pinned display objects. A classic problem
1710 * we called the page-fault-of-doom where we would ping-pong between
1711 * two objects that could not fit inside the GTT and so the memcpy
1712 * would page one object in at the expense of the other between every
1713 * single byte.
1715 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1716 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1717 * object is too large for the available space (or simply too large
1718 * for the mappable aperture!), a view is created instead and faulted
1719 * into userspace. (This view is aligned and sized appropriately for
1720 * fenced access.)
1722 * Restrictions:
1724 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1725 * hangs on some architectures, corruption on others. An attempt to service
1726 * a GTT page fault from a snoopable object will generate a SIGBUS.
1728 * * the object must be able to fit into RAM (physical memory, though no
1729 * limited to the mappable aperture).
1732 * Caveats:
1734 * * a new GTT page fault will synchronize rendering from the GPU and flush
1735 * all data to system memory. Subsequent access will not be synchronized.
1737 * * all mappings are revoked on runtime device suspend.
1739 * * there are only 8, 16 or 32 fence registers to share between all users
1740 * (older machines require fence register for display and blitter access
1741 * as well). Contention of the fence registers will cause the previous users
1742 * to be unmapped and any new access will generate new page faults.
1744 * * running out of memory while servicing a fault may generate a SIGBUS,
1745 * rather than the expected SIGSEGV.
1747 int i915_gem_mmap_gtt_version(void)
1749 return 1;
1752 static inline struct i915_ggtt_view
1753 compute_partial_view(struct drm_i915_gem_object *obj,
1754 pgoff_t page_offset,
1755 unsigned int chunk)
1757 struct i915_ggtt_view view;
1759 if (i915_gem_object_is_tiled(obj))
1760 chunk = roundup(chunk, tile_row_pages(obj));
1762 view.type = I915_GGTT_VIEW_PARTIAL;
1763 view.partial.offset = rounddown(page_offset, chunk);
1764 view.partial.size =
1765 min_t(unsigned int, chunk,
1766 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1768 /* If the partial covers the entire object, just create a normal VMA. */
1769 if (chunk >= obj->base.size >> PAGE_SHIFT)
1770 view.type = I915_GGTT_VIEW_NORMAL;
1772 return view;
1776 * i915_gem_fault - fault a page into the GTT
1777 * @area: CPU VMA in question
1778 * @vmf: fault info
1780 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1781 * from userspace. The fault handler takes care of binding the object to
1782 * the GTT (if needed), allocating and programming a fence register (again,
1783 * only if needed based on whether the old reg is still valid or the object
1784 * is tiled) and inserting a new PTE into the faulting process.
1786 * Note that the faulting process may involve evicting existing objects
1787 * from the GTT and/or fence registers to make room. So performance may
1788 * suffer if the GTT working set is large or there are few fence registers
1789 * left.
1791 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1792 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1794 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1796 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1797 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1798 struct drm_device *dev = obj->base.dev;
1799 struct drm_i915_private *dev_priv = to_i915(dev);
1800 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1801 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1802 struct i915_vma *vma;
1803 pgoff_t page_offset;
1804 unsigned int flags;
1805 int ret;
1807 /* We don't use vmf->pgoff since that has the fake offset */
1808 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1810 trace_i915_gem_object_fault(obj, page_offset, true, write);
1812 /* Try to flush the object off the GPU first without holding the lock.
1813 * Upon acquiring the lock, we will perform our sanity checks and then
1814 * repeat the flush holding the lock in the normal manner to catch cases
1815 * where we are gazumped.
1817 ret = i915_gem_object_wait(obj,
1818 I915_WAIT_INTERRUPTIBLE,
1819 MAX_SCHEDULE_TIMEOUT,
1820 NULL);
1821 if (ret)
1822 goto err;
1824 ret = i915_gem_object_pin_pages(obj);
1825 if (ret)
1826 goto err;
1828 intel_runtime_pm_get(dev_priv);
1830 ret = i915_mutex_lock_interruptible(dev);
1831 if (ret)
1832 goto err_rpm;
1834 /* Access to snoopable pages through the GTT is incoherent. */
1835 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1836 ret = -EFAULT;
1837 goto err_unlock;
1840 /* If the object is smaller than a couple of partial vma, it is
1841 * not worth only creating a single partial vma - we may as well
1842 * clear enough space for the full object.
1844 flags = PIN_MAPPABLE;
1845 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1846 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1848 /* Now pin it into the GTT as needed */
1849 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1850 if (IS_ERR(vma)) {
1851 /* Use a partial view if it is bigger than available space */
1852 struct i915_ggtt_view view =
1853 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1855 /* Userspace is now writing through an untracked VMA, abandon
1856 * all hope that the hardware is able to track future writes.
1858 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1860 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1862 if (IS_ERR(vma)) {
1863 ret = PTR_ERR(vma);
1864 goto err_unlock;
1867 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1868 if (ret)
1869 goto err_unpin;
1871 ret = i915_vma_get_fence(vma);
1872 if (ret)
1873 goto err_unpin;
1875 /* Mark as being mmapped into userspace for later revocation */
1876 assert_rpm_wakelock_held(dev_priv);
1877 if (list_empty(&obj->userfault_link))
1878 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1880 /* Finally, remap it using the new GTT offset */
1881 ret = remap_io_mapping(area,
1882 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1883 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1884 min_t(u64, vma->size, area->vm_end - area->vm_start),
1885 &ggtt->mappable);
1887 err_unpin:
1888 __i915_vma_unpin(vma);
1889 err_unlock:
1890 mutex_unlock(&dev->struct_mutex);
1891 err_rpm:
1892 intel_runtime_pm_put(dev_priv);
1893 i915_gem_object_unpin_pages(obj);
1894 err:
1895 switch (ret) {
1896 case -EIO:
1898 * We eat errors when the gpu is terminally wedged to avoid
1899 * userspace unduly crashing (gl has no provisions for mmaps to
1900 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1901 * and so needs to be reported.
1903 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1904 ret = VM_FAULT_SIGBUS;
1905 break;
1907 case -EAGAIN:
1909 * EAGAIN means the gpu is hung and we'll wait for the error
1910 * handler to reset everything when re-faulting in
1911 * i915_mutex_lock_interruptible.
1913 case 0:
1914 case -ERESTARTSYS:
1915 case -EINTR:
1916 case -EBUSY:
1918 * EBUSY is ok: this just means that another thread
1919 * already did the job.
1921 ret = VM_FAULT_NOPAGE;
1922 break;
1923 case -ENOMEM:
1924 ret = VM_FAULT_OOM;
1925 break;
1926 case -ENOSPC:
1927 case -EFAULT:
1928 ret = VM_FAULT_SIGBUS;
1929 break;
1930 default:
1931 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1932 ret = VM_FAULT_SIGBUS;
1933 break;
1935 return ret;
1939 * i915_gem_release_mmap - remove physical page mappings
1940 * @obj: obj in question
1942 * Preserve the reservation of the mmapping with the DRM core code, but
1943 * relinquish ownership of the pages back to the system.
1945 * It is vital that we remove the page mapping if we have mapped a tiled
1946 * object through the GTT and then lose the fence register due to
1947 * resource pressure. Similarly if the object has been moved out of the
1948 * aperture, than pages mapped into userspace must be revoked. Removing the
1949 * mapping will then trigger a page fault on the next user access, allowing
1950 * fixup by i915_gem_fault().
1952 void
1953 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1955 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1957 /* Serialisation between user GTT access and our code depends upon
1958 * revoking the CPU's PTE whilst the mutex is held. The next user
1959 * pagefault then has to wait until we release the mutex.
1961 * Note that RPM complicates somewhat by adding an additional
1962 * requirement that operations to the GGTT be made holding the RPM
1963 * wakeref.
1965 lockdep_assert_held(&i915->drm.struct_mutex);
1966 intel_runtime_pm_get(i915);
1968 if (list_empty(&obj->userfault_link))
1969 goto out;
1971 list_del_init(&obj->userfault_link);
1972 drm_vma_node_unmap(&obj->base.vma_node,
1973 obj->base.dev->anon_inode->i_mapping);
1975 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1976 * memory transactions from userspace before we return. The TLB
1977 * flushing implied above by changing the PTE above *should* be
1978 * sufficient, an extra barrier here just provides us with a bit
1979 * of paranoid documentation about our requirement to serialise
1980 * memory writes before touching registers / GSM.
1982 wmb();
1984 out:
1985 intel_runtime_pm_put(i915);
1988 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1990 struct drm_i915_gem_object *obj, *on;
1991 int i;
1994 * Only called during RPM suspend. All users of the userfault_list
1995 * must be holding an RPM wakeref to ensure that this can not
1996 * run concurrently with themselves (and use the struct_mutex for
1997 * protection between themselves).
2000 list_for_each_entry_safe(obj, on,
2001 &dev_priv->mm.userfault_list, userfault_link) {
2002 list_del_init(&obj->userfault_link);
2003 drm_vma_node_unmap(&obj->base.vma_node,
2004 obj->base.dev->anon_inode->i_mapping);
2007 /* The fence will be lost when the device powers down. If any were
2008 * in use by hardware (i.e. they are pinned), we should not be powering
2009 * down! All other fences will be reacquired by the user upon waking.
2011 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2012 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2014 if (WARN_ON(reg->pin_count))
2015 continue;
2017 if (!reg->vma)
2018 continue;
2020 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2021 reg->dirty = true;
2025 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2027 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2028 int err;
2030 err = drm_gem_create_mmap_offset(&obj->base);
2031 if (likely(!err))
2032 return 0;
2034 /* Attempt to reap some mmap space from dead objects */
2035 do {
2036 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2037 if (err)
2038 break;
2040 i915_gem_drain_freed_objects(dev_priv);
2041 err = drm_gem_create_mmap_offset(&obj->base);
2042 if (!err)
2043 break;
2045 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2047 return err;
2050 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2052 drm_gem_free_mmap_offset(&obj->base);
2056 i915_gem_mmap_gtt(struct drm_file *file,
2057 struct drm_device *dev,
2058 uint32_t handle,
2059 uint64_t *offset)
2061 struct drm_i915_gem_object *obj;
2062 int ret;
2064 obj = i915_gem_object_lookup(file, handle);
2065 if (!obj)
2066 return -ENOENT;
2068 ret = i915_gem_object_create_mmap_offset(obj);
2069 if (ret == 0)
2070 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2072 i915_gem_object_put(obj);
2073 return ret;
2077 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2078 * @dev: DRM device
2079 * @data: GTT mapping ioctl data
2080 * @file: GEM object info
2082 * Simply returns the fake offset to userspace so it can mmap it.
2083 * The mmap call will end up in drm_gem_mmap(), which will set things
2084 * up so we can get faults in the handler above.
2086 * The fault handler will take care of binding the object into the GTT
2087 * (since it may have been evicted to make room for something), allocating
2088 * a fence register, and mapping the appropriate aperture address into
2089 * userspace.
2092 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2093 struct drm_file *file)
2095 struct drm_i915_gem_mmap_gtt *args = data;
2097 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2100 /* Immediately discard the backing storage */
2101 static void
2102 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2104 i915_gem_object_free_mmap_offset(obj);
2106 if (obj->base.filp == NULL)
2107 return;
2109 /* Our goal here is to return as much of the memory as
2110 * is possible back to the system as we are called from OOM.
2111 * To do this we must instruct the shmfs to drop all of its
2112 * backing pages, *now*.
2114 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2115 obj->mm.madv = __I915_MADV_PURGED;
2118 /* Try to discard unwanted pages */
2119 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2121 struct address_space *mapping;
2123 lockdep_assert_held(&obj->mm.lock);
2124 GEM_BUG_ON(obj->mm.pages);
2126 switch (obj->mm.madv) {
2127 case I915_MADV_DONTNEED:
2128 i915_gem_object_truncate(obj);
2129 case __I915_MADV_PURGED:
2130 return;
2133 if (obj->base.filp == NULL)
2134 return;
2136 mapping = obj->base.filp->f_mapping,
2137 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2140 static void
2141 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2142 struct sg_table *pages)
2144 struct sgt_iter sgt_iter;
2145 struct page *page;
2147 __i915_gem_object_release_shmem(obj, pages, true);
2149 i915_gem_gtt_finish_pages(obj, pages);
2151 if (i915_gem_object_needs_bit17_swizzle(obj))
2152 i915_gem_object_save_bit_17_swizzle(obj, pages);
2154 for_each_sgt_page(page, sgt_iter, pages) {
2155 if (obj->mm.dirty)
2156 set_page_dirty(page);
2158 if (obj->mm.madv == I915_MADV_WILLNEED)
2159 mark_page_accessed(page);
2161 put_page(page);
2163 obj->mm.dirty = false;
2165 sg_free_table(pages);
2166 kfree(pages);
2169 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2171 struct radix_tree_iter iter;
2172 void **slot;
2174 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2175 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2178 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2179 enum i915_mm_subclass subclass)
2181 struct sg_table *pages;
2183 if (i915_gem_object_has_pinned_pages(obj))
2184 return;
2186 GEM_BUG_ON(obj->bind_count);
2187 if (!READ_ONCE(obj->mm.pages))
2188 return;
2190 /* May be called by shrinker from within get_pages() (on another bo) */
2191 mutex_lock_nested(&obj->mm.lock, subclass);
2192 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2193 goto unlock;
2195 /* ->put_pages might need to allocate memory for the bit17 swizzle
2196 * array, hence protect them from being reaped by removing them from gtt
2197 * lists early. */
2198 pages = fetch_and_zero(&obj->mm.pages);
2199 GEM_BUG_ON(!pages);
2201 if (obj->mm.mapping) {
2202 void *ptr;
2204 ptr = ptr_mask_bits(obj->mm.mapping);
2205 if (is_vmalloc_addr(ptr))
2206 vunmap(ptr);
2207 else
2208 kunmap(kmap_to_page(ptr));
2210 obj->mm.mapping = NULL;
2213 __i915_gem_object_reset_page_iter(obj);
2215 obj->ops->put_pages(obj, pages);
2216 unlock:
2217 mutex_unlock(&obj->mm.lock);
2220 static void i915_sg_trim(struct sg_table *orig_st)
2222 struct sg_table new_st;
2223 struct scatterlist *sg, *new_sg;
2224 unsigned int i;
2226 if (orig_st->nents == orig_st->orig_nents)
2227 return;
2229 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2230 return;
2232 new_sg = new_st.sgl;
2233 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2234 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2235 /* called before being DMA mapped, no need to copy sg->dma_* */
2236 new_sg = sg_next(new_sg);
2238 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2240 sg_free_table(orig_st);
2242 *orig_st = new_st;
2245 static struct sg_table *
2246 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2248 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2249 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2250 unsigned long i;
2251 struct address_space *mapping;
2252 struct sg_table *st;
2253 struct scatterlist *sg;
2254 struct sgt_iter sgt_iter;
2255 struct page *page;
2256 unsigned long last_pfn = 0; /* suppress gcc warning */
2257 unsigned int max_segment;
2258 int ret;
2259 gfp_t gfp;
2261 /* Assert that the object is not currently in any GPU domain. As it
2262 * wasn't in the GTT, there shouldn't be any way it could have been in
2263 * a GPU cache
2265 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2266 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2268 max_segment = swiotlb_max_segment();
2269 if (!max_segment)
2270 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2272 st = kmalloc(sizeof(*st), GFP_KERNEL);
2273 if (st == NULL)
2274 return ERR_PTR(-ENOMEM);
2276 rebuild_st:
2277 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2278 kfree(st);
2279 return ERR_PTR(-ENOMEM);
2282 /* Get the list of pages out of our struct file. They'll be pinned
2283 * at this point until we release them.
2285 * Fail silently without starting the shrinker
2287 mapping = obj->base.filp->f_mapping;
2288 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2289 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2290 sg = st->sgl;
2291 st->nents = 0;
2292 for (i = 0; i < page_count; i++) {
2293 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2294 if (IS_ERR(page)) {
2295 i915_gem_shrink(dev_priv,
2296 page_count,
2297 I915_SHRINK_BOUND |
2298 I915_SHRINK_UNBOUND |
2299 I915_SHRINK_PURGEABLE);
2300 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2302 if (IS_ERR(page)) {
2303 /* We've tried hard to allocate the memory by reaping
2304 * our own buffer, now let the real VM do its job and
2305 * go down in flames if truly OOM.
2307 page = shmem_read_mapping_page(mapping, i);
2308 if (IS_ERR(page)) {
2309 ret = PTR_ERR(page);
2310 goto err_sg;
2313 if (!i ||
2314 sg->length >= max_segment ||
2315 page_to_pfn(page) != last_pfn + 1) {
2316 if (i)
2317 sg = sg_next(sg);
2318 st->nents++;
2319 sg_set_page(sg, page, PAGE_SIZE, 0);
2320 } else {
2321 sg->length += PAGE_SIZE;
2323 last_pfn = page_to_pfn(page);
2325 /* Check that the i965g/gm workaround works. */
2326 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2328 if (sg) /* loop terminated early; short sg table */
2329 sg_mark_end(sg);
2331 /* Trim unused sg entries to avoid wasting memory. */
2332 i915_sg_trim(st);
2334 ret = i915_gem_gtt_prepare_pages(obj, st);
2335 if (ret) {
2336 /* DMA remapping failed? One possible cause is that
2337 * it could not reserve enough large entries, asking
2338 * for PAGE_SIZE chunks instead may be helpful.
2340 if (max_segment > PAGE_SIZE) {
2341 for_each_sgt_page(page, sgt_iter, st)
2342 put_page(page);
2343 sg_free_table(st);
2345 max_segment = PAGE_SIZE;
2346 goto rebuild_st;
2347 } else {
2348 dev_warn(&dev_priv->drm.pdev->dev,
2349 "Failed to DMA remap %lu pages\n",
2350 page_count);
2351 goto err_pages;
2355 if (i915_gem_object_needs_bit17_swizzle(obj))
2356 i915_gem_object_do_bit_17_swizzle(obj, st);
2358 return st;
2360 err_sg:
2361 sg_mark_end(sg);
2362 err_pages:
2363 for_each_sgt_page(page, sgt_iter, st)
2364 put_page(page);
2365 sg_free_table(st);
2366 kfree(st);
2368 /* shmemfs first checks if there is enough memory to allocate the page
2369 * and reports ENOSPC should there be insufficient, along with the usual
2370 * ENOMEM for a genuine allocation failure.
2372 * We use ENOSPC in our driver to mean that we have run out of aperture
2373 * space and so want to translate the error from shmemfs back to our
2374 * usual understanding of ENOMEM.
2376 if (ret == -ENOSPC)
2377 ret = -ENOMEM;
2379 return ERR_PTR(ret);
2382 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2383 struct sg_table *pages)
2385 lockdep_assert_held(&obj->mm.lock);
2387 obj->mm.get_page.sg_pos = pages->sgl;
2388 obj->mm.get_page.sg_idx = 0;
2390 obj->mm.pages = pages;
2392 if (i915_gem_object_is_tiled(obj) &&
2393 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2394 GEM_BUG_ON(obj->mm.quirked);
2395 __i915_gem_object_pin_pages(obj);
2396 obj->mm.quirked = true;
2400 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2402 struct sg_table *pages;
2404 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2406 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2407 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2408 return -EFAULT;
2411 pages = obj->ops->get_pages(obj);
2412 if (unlikely(IS_ERR(pages)))
2413 return PTR_ERR(pages);
2415 __i915_gem_object_set_pages(obj, pages);
2416 return 0;
2419 /* Ensure that the associated pages are gathered from the backing storage
2420 * and pinned into our object. i915_gem_object_pin_pages() may be called
2421 * multiple times before they are released by a single call to
2422 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2423 * either as a result of memory pressure (reaping pages under the shrinker)
2424 * or as the object is itself released.
2426 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2428 int err;
2430 err = mutex_lock_interruptible(&obj->mm.lock);
2431 if (err)
2432 return err;
2434 if (unlikely(!obj->mm.pages)) {
2435 err = ____i915_gem_object_get_pages(obj);
2436 if (err)
2437 goto unlock;
2439 smp_mb__before_atomic();
2441 atomic_inc(&obj->mm.pages_pin_count);
2443 unlock:
2444 mutex_unlock(&obj->mm.lock);
2445 return err;
2448 /* The 'mapping' part of i915_gem_object_pin_map() below */
2449 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2450 enum i915_map_type type)
2452 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2453 struct sg_table *sgt = obj->mm.pages;
2454 struct sgt_iter sgt_iter;
2455 struct page *page;
2456 struct page *stack_pages[32];
2457 struct page **pages = stack_pages;
2458 unsigned long i = 0;
2459 pgprot_t pgprot;
2460 void *addr;
2462 /* A single page can always be kmapped */
2463 if (n_pages == 1 && type == I915_MAP_WB)
2464 return kmap(sg_page(sgt->sgl));
2466 if (n_pages > ARRAY_SIZE(stack_pages)) {
2467 /* Too big for stack -- allocate temporary array instead */
2468 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2469 if (!pages)
2470 return NULL;
2473 for_each_sgt_page(page, sgt_iter, sgt)
2474 pages[i++] = page;
2476 /* Check that we have the expected number of pages */
2477 GEM_BUG_ON(i != n_pages);
2479 switch (type) {
2480 case I915_MAP_WB:
2481 pgprot = PAGE_KERNEL;
2482 break;
2483 case I915_MAP_WC:
2484 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2485 break;
2487 addr = vmap(pages, n_pages, 0, pgprot);
2489 if (pages != stack_pages)
2490 drm_free_large(pages);
2492 return addr;
2495 /* get, pin, and map the pages of the object into kernel space */
2496 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2497 enum i915_map_type type)
2499 enum i915_map_type has_type;
2500 bool pinned;
2501 void *ptr;
2502 int ret;
2504 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2506 ret = mutex_lock_interruptible(&obj->mm.lock);
2507 if (ret)
2508 return ERR_PTR(ret);
2510 pinned = true;
2511 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2512 if (unlikely(!obj->mm.pages)) {
2513 ret = ____i915_gem_object_get_pages(obj);
2514 if (ret)
2515 goto err_unlock;
2517 smp_mb__before_atomic();
2519 atomic_inc(&obj->mm.pages_pin_count);
2520 pinned = false;
2522 GEM_BUG_ON(!obj->mm.pages);
2524 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2525 if (ptr && has_type != type) {
2526 if (pinned) {
2527 ret = -EBUSY;
2528 goto err_unpin;
2531 if (is_vmalloc_addr(ptr))
2532 vunmap(ptr);
2533 else
2534 kunmap(kmap_to_page(ptr));
2536 ptr = obj->mm.mapping = NULL;
2539 if (!ptr) {
2540 ptr = i915_gem_object_map(obj, type);
2541 if (!ptr) {
2542 ret = -ENOMEM;
2543 goto err_unpin;
2546 obj->mm.mapping = ptr_pack_bits(ptr, type);
2549 out_unlock:
2550 mutex_unlock(&obj->mm.lock);
2551 return ptr;
2553 err_unpin:
2554 atomic_dec(&obj->mm.pages_pin_count);
2555 err_unlock:
2556 ptr = ERR_PTR(ret);
2557 goto out_unlock;
2560 static bool ban_context(const struct i915_gem_context *ctx)
2562 return (i915_gem_context_is_bannable(ctx) &&
2563 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2566 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2568 ctx->guilty_count++;
2569 ctx->ban_score += CONTEXT_SCORE_GUILTY;
2570 if (ban_context(ctx))
2571 i915_gem_context_set_banned(ctx);
2573 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2574 ctx->name, ctx->ban_score,
2575 yesno(i915_gem_context_is_banned(ctx)));
2577 if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2578 return;
2580 ctx->file_priv->context_bans++;
2581 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2582 ctx->name, ctx->file_priv->context_bans);
2585 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2587 ctx->active_count++;
2590 struct drm_i915_gem_request *
2591 i915_gem_find_active_request(struct intel_engine_cs *engine)
2593 struct drm_i915_gem_request *request;
2595 /* We are called by the error capture and reset at a random
2596 * point in time. In particular, note that neither is crucially
2597 * ordered with an interrupt. After a hang, the GPU is dead and we
2598 * assume that no more writes can happen (we waited long enough for
2599 * all writes that were in transaction to be flushed) - adding an
2600 * extra delay for a recent interrupt is pointless. Hence, we do
2601 * not need an engine->irq_seqno_barrier() before the seqno reads.
2603 list_for_each_entry(request, &engine->timeline->requests, link) {
2604 if (__i915_gem_request_completed(request))
2605 continue;
2607 GEM_BUG_ON(request->engine != engine);
2608 return request;
2611 return NULL;
2614 static bool engine_stalled(struct intel_engine_cs *engine)
2616 if (!engine->hangcheck.stalled)
2617 return false;
2619 /* Check for possible seqno movement after hang declaration */
2620 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2621 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2622 return false;
2625 return true;
2628 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2630 struct intel_engine_cs *engine;
2631 enum intel_engine_id id;
2632 int err = 0;
2634 /* Ensure irq handler finishes, and not run again. */
2635 for_each_engine(engine, dev_priv, id) {
2636 struct drm_i915_gem_request *request;
2638 tasklet_kill(&engine->irq_tasklet);
2640 if (engine_stalled(engine)) {
2641 request = i915_gem_find_active_request(engine);
2642 if (request && request->fence.error == -EIO)
2643 err = -EIO; /* Previous reset failed! */
2647 i915_gem_revoke_fences(dev_priv);
2649 return err;
2652 static void skip_request(struct drm_i915_gem_request *request)
2654 void *vaddr = request->ring->vaddr;
2655 u32 head;
2657 /* As this request likely depends on state from the lost
2658 * context, clear out all the user operations leaving the
2659 * breadcrumb at the end (so we get the fence notifications).
2661 head = request->head;
2662 if (request->postfix < head) {
2663 memset(vaddr + head, 0, request->ring->size - head);
2664 head = 0;
2666 memset(vaddr + head, 0, request->postfix - head);
2668 dma_fence_set_error(&request->fence, -EIO);
2671 static void engine_skip_context(struct drm_i915_gem_request *request)
2673 struct intel_engine_cs *engine = request->engine;
2674 struct i915_gem_context *hung_ctx = request->ctx;
2675 struct intel_timeline *timeline;
2676 unsigned long flags;
2678 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2680 spin_lock_irqsave(&engine->timeline->lock, flags);
2681 spin_lock(&timeline->lock);
2683 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2684 if (request->ctx == hung_ctx)
2685 skip_request(request);
2687 list_for_each_entry(request, &timeline->requests, link)
2688 skip_request(request);
2690 spin_unlock(&timeline->lock);
2691 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2694 /* Returns true if the request was guilty of hang */
2695 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2697 /* Read once and return the resolution */
2698 const bool guilty = engine_stalled(request->engine);
2700 /* The guilty request will get skipped on a hung engine.
2702 * Users of client default contexts do not rely on logical
2703 * state preserved between batches so it is safe to execute
2704 * queued requests following the hang. Non default contexts
2705 * rely on preserved state, so skipping a batch loses the
2706 * evolution of the state and it needs to be considered corrupted.
2707 * Executing more queued batches on top of corrupted state is
2708 * risky. But we take the risk by trying to advance through
2709 * the queued requests in order to make the client behaviour
2710 * more predictable around resets, by not throwing away random
2711 * amount of batches it has prepared for execution. Sophisticated
2712 * clients can use gem_reset_stats_ioctl and dma fence status
2713 * (exported via sync_file info ioctl on explicit fences) to observe
2714 * when it loses the context state and should rebuild accordingly.
2716 * The context ban, and ultimately the client ban, mechanism are safety
2717 * valves if client submission ends up resulting in nothing more than
2718 * subsequent hangs.
2721 if (guilty) {
2722 i915_gem_context_mark_guilty(request->ctx);
2723 skip_request(request);
2724 } else {
2725 i915_gem_context_mark_innocent(request->ctx);
2726 dma_fence_set_error(&request->fence, -EAGAIN);
2729 return guilty;
2732 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2734 struct drm_i915_gem_request *request;
2736 if (engine->irq_seqno_barrier)
2737 engine->irq_seqno_barrier(engine);
2739 request = i915_gem_find_active_request(engine);
2740 if (!request)
2741 return;
2743 if (!i915_gem_reset_request(request))
2744 return;
2746 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2747 engine->name, request->global_seqno);
2749 /* Setup the CS to resume from the breadcrumb of the hung request */
2750 engine->reset_hw(engine, request);
2752 /* If this context is now banned, skip all of its pending requests. */
2753 if (i915_gem_context_is_banned(request->ctx))
2754 engine_skip_context(request);
2757 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2759 struct intel_engine_cs *engine;
2760 enum intel_engine_id id;
2762 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2764 i915_gem_retire_requests(dev_priv);
2766 for_each_engine(engine, dev_priv, id)
2767 i915_gem_reset_engine(engine);
2769 i915_gem_restore_fences(dev_priv);
2771 if (dev_priv->gt.awake) {
2772 intel_sanitize_gt_powersave(dev_priv);
2773 intel_enable_gt_powersave(dev_priv);
2774 if (INTEL_GEN(dev_priv) >= 6)
2775 gen6_rps_busy(dev_priv);
2779 static void nop_submit_request(struct drm_i915_gem_request *request)
2781 dma_fence_set_error(&request->fence, -EIO);
2782 i915_gem_request_submit(request);
2783 intel_engine_init_global_seqno(request->engine, request->global_seqno);
2786 static void engine_set_wedged(struct intel_engine_cs *engine)
2788 struct drm_i915_gem_request *request;
2789 unsigned long flags;
2791 /* We need to be sure that no thread is running the old callback as
2792 * we install the nop handler (otherwise we would submit a request
2793 * to hardware that will never complete). In order to prevent this
2794 * race, we wait until the machine is idle before making the swap
2795 * (using stop_machine()).
2797 engine->submit_request = nop_submit_request;
2799 /* Mark all executing requests as skipped */
2800 spin_lock_irqsave(&engine->timeline->lock, flags);
2801 list_for_each_entry(request, &engine->timeline->requests, link)
2802 dma_fence_set_error(&request->fence, -EIO);
2803 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2805 /* Mark all pending requests as complete so that any concurrent
2806 * (lockless) lookup doesn't try and wait upon the request as we
2807 * reset it.
2809 intel_engine_init_global_seqno(engine,
2810 intel_engine_last_submit(engine));
2813 * Clear the execlists queue up before freeing the requests, as those
2814 * are the ones that keep the context and ringbuffer backing objects
2815 * pinned in place.
2818 if (i915.enable_execlists) {
2819 unsigned long flags;
2821 spin_lock_irqsave(&engine->timeline->lock, flags);
2823 i915_gem_request_put(engine->execlist_port[0].request);
2824 i915_gem_request_put(engine->execlist_port[1].request);
2825 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2826 engine->execlist_queue = RB_ROOT;
2827 engine->execlist_first = NULL;
2829 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2833 static int __i915_gem_set_wedged_BKL(void *data)
2835 struct drm_i915_private *i915 = data;
2836 struct intel_engine_cs *engine;
2837 enum intel_engine_id id;
2839 for_each_engine(engine, i915, id)
2840 engine_set_wedged(engine);
2842 return 0;
2845 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2847 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2848 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2850 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2852 i915_gem_context_lost(dev_priv);
2853 i915_gem_retire_requests(dev_priv);
2855 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2858 static void
2859 i915_gem_retire_work_handler(struct work_struct *work)
2861 struct drm_i915_private *dev_priv =
2862 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2863 struct drm_device *dev = &dev_priv->drm;
2865 /* Come back later if the device is busy... */
2866 if (mutex_trylock(&dev->struct_mutex)) {
2867 i915_gem_retire_requests(dev_priv);
2868 mutex_unlock(&dev->struct_mutex);
2871 /* Keep the retire handler running until we are finally idle.
2872 * We do not need to do this test under locking as in the worst-case
2873 * we queue the retire worker once too often.
2875 if (READ_ONCE(dev_priv->gt.awake)) {
2876 i915_queue_hangcheck(dev_priv);
2877 queue_delayed_work(dev_priv->wq,
2878 &dev_priv->gt.retire_work,
2879 round_jiffies_up_relative(HZ));
2883 static void
2884 i915_gem_idle_work_handler(struct work_struct *work)
2886 struct drm_i915_private *dev_priv =
2887 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2888 struct drm_device *dev = &dev_priv->drm;
2889 struct intel_engine_cs *engine;
2890 enum intel_engine_id id;
2891 bool rearm_hangcheck;
2893 if (!READ_ONCE(dev_priv->gt.awake))
2894 return;
2897 * Wait for last execlists context complete, but bail out in case a
2898 * new request is submitted.
2900 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2901 intel_execlists_idle(dev_priv), 10);
2903 if (READ_ONCE(dev_priv->gt.active_requests))
2904 return;
2906 rearm_hangcheck =
2907 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2909 if (!mutex_trylock(&dev->struct_mutex)) {
2910 /* Currently busy, come back later */
2911 mod_delayed_work(dev_priv->wq,
2912 &dev_priv->gt.idle_work,
2913 msecs_to_jiffies(50));
2914 goto out_rearm;
2918 * New request retired after this work handler started, extend active
2919 * period until next instance of the work.
2921 if (work_pending(work))
2922 goto out_unlock;
2924 if (dev_priv->gt.active_requests)
2925 goto out_unlock;
2927 if (wait_for(intel_execlists_idle(dev_priv), 10))
2928 DRM_ERROR("Timeout waiting for engines to idle\n");
2930 for_each_engine(engine, dev_priv, id)
2931 i915_gem_batch_pool_fini(&engine->batch_pool);
2933 GEM_BUG_ON(!dev_priv->gt.awake);
2934 dev_priv->gt.awake = false;
2935 rearm_hangcheck = false;
2937 if (INTEL_GEN(dev_priv) >= 6)
2938 gen6_rps_idle(dev_priv);
2939 intel_runtime_pm_put(dev_priv);
2940 out_unlock:
2941 mutex_unlock(&dev->struct_mutex);
2943 out_rearm:
2944 if (rearm_hangcheck) {
2945 GEM_BUG_ON(!dev_priv->gt.awake);
2946 i915_queue_hangcheck(dev_priv);
2950 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2952 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2953 struct drm_i915_file_private *fpriv = file->driver_priv;
2954 struct i915_vma *vma, *vn;
2956 mutex_lock(&obj->base.dev->struct_mutex);
2957 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2958 if (vma->vm->file == fpriv)
2959 i915_vma_close(vma);
2961 if (i915_gem_object_is_active(obj) &&
2962 !i915_gem_object_has_active_reference(obj)) {
2963 i915_gem_object_set_active_reference(obj);
2964 i915_gem_object_get(obj);
2966 mutex_unlock(&obj->base.dev->struct_mutex);
2969 static unsigned long to_wait_timeout(s64 timeout_ns)
2971 if (timeout_ns < 0)
2972 return MAX_SCHEDULE_TIMEOUT;
2974 if (timeout_ns == 0)
2975 return 0;
2977 return nsecs_to_jiffies_timeout(timeout_ns);
2981 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2982 * @dev: drm device pointer
2983 * @data: ioctl data blob
2984 * @file: drm file pointer
2986 * Returns 0 if successful, else an error is returned with the remaining time in
2987 * the timeout parameter.
2988 * -ETIME: object is still busy after timeout
2989 * -ERESTARTSYS: signal interrupted the wait
2990 * -ENONENT: object doesn't exist
2991 * Also possible, but rare:
2992 * -EAGAIN: GPU wedged
2993 * -ENOMEM: damn
2994 * -ENODEV: Internal IRQ fail
2995 * -E?: The add request failed
2997 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2998 * non-zero timeout parameter the wait ioctl will wait for the given number of
2999 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3000 * without holding struct_mutex the object may become re-busied before this
3001 * function completes. A similar but shorter * race condition exists in the busy
3002 * ioctl
3005 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3007 struct drm_i915_gem_wait *args = data;
3008 struct drm_i915_gem_object *obj;
3009 ktime_t start;
3010 long ret;
3012 if (args->flags != 0)
3013 return -EINVAL;
3015 obj = i915_gem_object_lookup(file, args->bo_handle);
3016 if (!obj)
3017 return -ENOENT;
3019 start = ktime_get();
3021 ret = i915_gem_object_wait(obj,
3022 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3023 to_wait_timeout(args->timeout_ns),
3024 to_rps_client(file));
3026 if (args->timeout_ns > 0) {
3027 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3028 if (args->timeout_ns < 0)
3029 args->timeout_ns = 0;
3032 i915_gem_object_put(obj);
3033 return ret;
3036 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3038 int ret, i;
3040 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3041 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3042 if (ret)
3043 return ret;
3046 return 0;
3049 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3051 int ret;
3053 if (flags & I915_WAIT_LOCKED) {
3054 struct i915_gem_timeline *tl;
3056 lockdep_assert_held(&i915->drm.struct_mutex);
3058 list_for_each_entry(tl, &i915->gt.timelines, link) {
3059 ret = wait_for_timeline(tl, flags);
3060 if (ret)
3061 return ret;
3063 } else {
3064 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3065 if (ret)
3066 return ret;
3069 return 0;
3072 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3073 bool force)
3075 /* If we don't have a page list set up, then we're not pinned
3076 * to GPU, and we can ignore the cache flush because it'll happen
3077 * again at bind time.
3079 if (!obj->mm.pages)
3080 return;
3083 * Stolen memory is always coherent with the GPU as it is explicitly
3084 * marked as wc by the system, or the system is cache-coherent.
3086 if (obj->stolen || obj->phys_handle)
3087 return;
3089 /* If the GPU is snooping the contents of the CPU cache,
3090 * we do not need to manually clear the CPU cache lines. However,
3091 * the caches are only snooped when the render cache is
3092 * flushed/invalidated. As we always have to emit invalidations
3093 * and flushes when moving into and out of the RENDER domain, correct
3094 * snooping behaviour occurs naturally as the result of our domain
3095 * tracking.
3097 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3098 obj->cache_dirty = true;
3099 return;
3102 trace_i915_gem_object_clflush(obj);
3103 drm_clflush_sg(obj->mm.pages);
3104 obj->cache_dirty = false;
3107 /** Flushes the GTT write domain for the object if it's dirty. */
3108 static void
3109 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3111 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3113 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3114 return;
3116 /* No actual flushing is required for the GTT write domain. Writes
3117 * to it "immediately" go to main memory as far as we know, so there's
3118 * no chipset flush. It also doesn't land in render cache.
3120 * However, we do have to enforce the order so that all writes through
3121 * the GTT land before any writes to the device, such as updates to
3122 * the GATT itself.
3124 * We also have to wait a bit for the writes to land from the GTT.
3125 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3126 * timing. This issue has only been observed when switching quickly
3127 * between GTT writes and CPU reads from inside the kernel on recent hw,
3128 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3129 * system agents we cannot reproduce this behaviour).
3131 wmb();
3132 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3133 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3135 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3137 obj->base.write_domain = 0;
3138 trace_i915_gem_object_change_domain(obj,
3139 obj->base.read_domains,
3140 I915_GEM_DOMAIN_GTT);
3143 /** Flushes the CPU write domain for the object if it's dirty. */
3144 static void
3145 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3147 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3148 return;
3150 i915_gem_clflush_object(obj, obj->pin_display);
3151 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3153 obj->base.write_domain = 0;
3154 trace_i915_gem_object_change_domain(obj,
3155 obj->base.read_domains,
3156 I915_GEM_DOMAIN_CPU);
3160 * Moves a single object to the GTT read, and possibly write domain.
3161 * @obj: object to act on
3162 * @write: ask for write access or read only
3164 * This function returns when the move is complete, including waiting on
3165 * flushes to occur.
3168 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3170 uint32_t old_write_domain, old_read_domains;
3171 int ret;
3173 lockdep_assert_held(&obj->base.dev->struct_mutex);
3175 ret = i915_gem_object_wait(obj,
3176 I915_WAIT_INTERRUPTIBLE |
3177 I915_WAIT_LOCKED |
3178 (write ? I915_WAIT_ALL : 0),
3179 MAX_SCHEDULE_TIMEOUT,
3180 NULL);
3181 if (ret)
3182 return ret;
3184 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3185 return 0;
3187 /* Flush and acquire obj->pages so that we are coherent through
3188 * direct access in memory with previous cached writes through
3189 * shmemfs and that our cache domain tracking remains valid.
3190 * For example, if the obj->filp was moved to swap without us
3191 * being notified and releasing the pages, we would mistakenly
3192 * continue to assume that the obj remained out of the CPU cached
3193 * domain.
3195 ret = i915_gem_object_pin_pages(obj);
3196 if (ret)
3197 return ret;
3199 i915_gem_object_flush_cpu_write_domain(obj);
3201 /* Serialise direct access to this object with the barriers for
3202 * coherent writes from the GPU, by effectively invalidating the
3203 * GTT domain upon first access.
3205 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3206 mb();
3208 old_write_domain = obj->base.write_domain;
3209 old_read_domains = obj->base.read_domains;
3211 /* It should now be out of any other write domains, and we can update
3212 * the domain values for our changes.
3214 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3215 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3216 if (write) {
3217 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3218 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3219 obj->mm.dirty = true;
3222 trace_i915_gem_object_change_domain(obj,
3223 old_read_domains,
3224 old_write_domain);
3226 i915_gem_object_unpin_pages(obj);
3227 return 0;
3231 * Changes the cache-level of an object across all VMA.
3232 * @obj: object to act on
3233 * @cache_level: new cache level to set for the object
3235 * After this function returns, the object will be in the new cache-level
3236 * across all GTT and the contents of the backing storage will be coherent,
3237 * with respect to the new cache-level. In order to keep the backing storage
3238 * coherent for all users, we only allow a single cache level to be set
3239 * globally on the object and prevent it from being changed whilst the
3240 * hardware is reading from the object. That is if the object is currently
3241 * on the scanout it will be set to uncached (or equivalent display
3242 * cache coherency) and all non-MOCS GPU access will also be uncached so
3243 * that all direct access to the scanout remains coherent.
3245 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3246 enum i915_cache_level cache_level)
3248 struct i915_vma *vma;
3249 int ret;
3251 lockdep_assert_held(&obj->base.dev->struct_mutex);
3253 if (obj->cache_level == cache_level)
3254 return 0;
3256 /* Inspect the list of currently bound VMA and unbind any that would
3257 * be invalid given the new cache-level. This is principally to
3258 * catch the issue of the CS prefetch crossing page boundaries and
3259 * reading an invalid PTE on older architectures.
3261 restart:
3262 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3263 if (!drm_mm_node_allocated(&vma->node))
3264 continue;
3266 if (i915_vma_is_pinned(vma)) {
3267 DRM_DEBUG("can not change the cache level of pinned objects\n");
3268 return -EBUSY;
3271 if (i915_gem_valid_gtt_space(vma, cache_level))
3272 continue;
3274 ret = i915_vma_unbind(vma);
3275 if (ret)
3276 return ret;
3278 /* As unbinding may affect other elements in the
3279 * obj->vma_list (due to side-effects from retiring
3280 * an active vma), play safe and restart the iterator.
3282 goto restart;
3285 /* We can reuse the existing drm_mm nodes but need to change the
3286 * cache-level on the PTE. We could simply unbind them all and
3287 * rebind with the correct cache-level on next use. However since
3288 * we already have a valid slot, dma mapping, pages etc, we may as
3289 * rewrite the PTE in the belief that doing so tramples upon less
3290 * state and so involves less work.
3292 if (obj->bind_count) {
3293 /* Before we change the PTE, the GPU must not be accessing it.
3294 * If we wait upon the object, we know that all the bound
3295 * VMA are no longer active.
3297 ret = i915_gem_object_wait(obj,
3298 I915_WAIT_INTERRUPTIBLE |
3299 I915_WAIT_LOCKED |
3300 I915_WAIT_ALL,
3301 MAX_SCHEDULE_TIMEOUT,
3302 NULL);
3303 if (ret)
3304 return ret;
3306 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3307 cache_level != I915_CACHE_NONE) {
3308 /* Access to snoopable pages through the GTT is
3309 * incoherent and on some machines causes a hard
3310 * lockup. Relinquish the CPU mmaping to force
3311 * userspace to refault in the pages and we can
3312 * then double check if the GTT mapping is still
3313 * valid for that pointer access.
3315 i915_gem_release_mmap(obj);
3317 /* As we no longer need a fence for GTT access,
3318 * we can relinquish it now (and so prevent having
3319 * to steal a fence from someone else on the next
3320 * fence request). Note GPU activity would have
3321 * dropped the fence as all snoopable access is
3322 * supposed to be linear.
3324 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3325 ret = i915_vma_put_fence(vma);
3326 if (ret)
3327 return ret;
3329 } else {
3330 /* We either have incoherent backing store and
3331 * so no GTT access or the architecture is fully
3332 * coherent. In such cases, existing GTT mmaps
3333 * ignore the cache bit in the PTE and we can
3334 * rewrite it without confusing the GPU or having
3335 * to force userspace to fault back in its mmaps.
3339 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3340 if (!drm_mm_node_allocated(&vma->node))
3341 continue;
3343 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3344 if (ret)
3345 return ret;
3349 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3350 cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3351 obj->cache_dirty = true;
3353 list_for_each_entry(vma, &obj->vma_list, obj_link)
3354 vma->node.color = cache_level;
3355 obj->cache_level = cache_level;
3357 return 0;
3360 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3361 struct drm_file *file)
3363 struct drm_i915_gem_caching *args = data;
3364 struct drm_i915_gem_object *obj;
3365 int err = 0;
3367 rcu_read_lock();
3368 obj = i915_gem_object_lookup_rcu(file, args->handle);
3369 if (!obj) {
3370 err = -ENOENT;
3371 goto out;
3374 switch (obj->cache_level) {
3375 case I915_CACHE_LLC:
3376 case I915_CACHE_L3_LLC:
3377 args->caching = I915_CACHING_CACHED;
3378 break;
3380 case I915_CACHE_WT:
3381 args->caching = I915_CACHING_DISPLAY;
3382 break;
3384 default:
3385 args->caching = I915_CACHING_NONE;
3386 break;
3388 out:
3389 rcu_read_unlock();
3390 return err;
3393 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3394 struct drm_file *file)
3396 struct drm_i915_private *i915 = to_i915(dev);
3397 struct drm_i915_gem_caching *args = data;
3398 struct drm_i915_gem_object *obj;
3399 enum i915_cache_level level;
3400 int ret = 0;
3402 switch (args->caching) {
3403 case I915_CACHING_NONE:
3404 level = I915_CACHE_NONE;
3405 break;
3406 case I915_CACHING_CACHED:
3408 * Due to a HW issue on BXT A stepping, GPU stores via a
3409 * snooped mapping may leave stale data in a corresponding CPU
3410 * cacheline, whereas normally such cachelines would get
3411 * invalidated.
3413 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3414 return -ENODEV;
3416 level = I915_CACHE_LLC;
3417 break;
3418 case I915_CACHING_DISPLAY:
3419 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3420 break;
3421 default:
3422 return -EINVAL;
3425 obj = i915_gem_object_lookup(file, args->handle);
3426 if (!obj)
3427 return -ENOENT;
3429 if (obj->cache_level == level)
3430 goto out;
3432 ret = i915_gem_object_wait(obj,
3433 I915_WAIT_INTERRUPTIBLE,
3434 MAX_SCHEDULE_TIMEOUT,
3435 to_rps_client(file));
3436 if (ret)
3437 goto out;
3439 ret = i915_mutex_lock_interruptible(dev);
3440 if (ret)
3441 goto out;
3443 ret = i915_gem_object_set_cache_level(obj, level);
3444 mutex_unlock(&dev->struct_mutex);
3446 out:
3447 i915_gem_object_put(obj);
3448 return ret;
3452 * Prepare buffer for display plane (scanout, cursors, etc).
3453 * Can be called from an uninterruptible phase (modesetting) and allows
3454 * any flushes to be pipelined (for pageflips).
3456 struct i915_vma *
3457 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3458 u32 alignment,
3459 const struct i915_ggtt_view *view)
3461 struct i915_vma *vma;
3462 u32 old_read_domains, old_write_domain;
3463 int ret;
3465 lockdep_assert_held(&obj->base.dev->struct_mutex);
3467 /* Mark the pin_display early so that we account for the
3468 * display coherency whilst setting up the cache domains.
3470 obj->pin_display++;
3472 /* The display engine is not coherent with the LLC cache on gen6. As
3473 * a result, we make sure that the pinning that is about to occur is
3474 * done with uncached PTEs. This is lowest common denominator for all
3475 * chipsets.
3477 * However for gen6+, we could do better by using the GFDT bit instead
3478 * of uncaching, which would allow us to flush all the LLC-cached data
3479 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3481 ret = i915_gem_object_set_cache_level(obj,
3482 HAS_WT(to_i915(obj->base.dev)) ?
3483 I915_CACHE_WT : I915_CACHE_NONE);
3484 if (ret) {
3485 vma = ERR_PTR(ret);
3486 goto err_unpin_display;
3489 /* As the user may map the buffer once pinned in the display plane
3490 * (e.g. libkms for the bootup splash), we have to ensure that we
3491 * always use map_and_fenceable for all scanout buffers. However,
3492 * it may simply be too big to fit into mappable, in which case
3493 * put it anyway and hope that userspace can cope (but always first
3494 * try to preserve the existing ABI).
3496 vma = ERR_PTR(-ENOSPC);
3497 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3498 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3499 PIN_MAPPABLE | PIN_NONBLOCK);
3500 if (IS_ERR(vma)) {
3501 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3502 unsigned int flags;
3504 /* Valleyview is definitely limited to scanning out the first
3505 * 512MiB. Lets presume this behaviour was inherited from the
3506 * g4x display engine and that all earlier gen are similarly
3507 * limited. Testing suggests that it is a little more
3508 * complicated than this. For example, Cherryview appears quite
3509 * happy to scanout from anywhere within its global aperture.
3511 flags = 0;
3512 if (HAS_GMCH_DISPLAY(i915))
3513 flags = PIN_MAPPABLE;
3514 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3516 if (IS_ERR(vma))
3517 goto err_unpin_display;
3519 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3521 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3522 if (obj->cache_dirty) {
3523 i915_gem_clflush_object(obj, true);
3524 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3527 old_write_domain = obj->base.write_domain;
3528 old_read_domains = obj->base.read_domains;
3530 /* It should now be out of any other write domains, and we can update
3531 * the domain values for our changes.
3533 obj->base.write_domain = 0;
3534 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3536 trace_i915_gem_object_change_domain(obj,
3537 old_read_domains,
3538 old_write_domain);
3540 return vma;
3542 err_unpin_display:
3543 obj->pin_display--;
3544 return vma;
3547 void
3548 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3550 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3552 if (WARN_ON(vma->obj->pin_display == 0))
3553 return;
3555 if (--vma->obj->pin_display == 0)
3556 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3558 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3559 i915_gem_object_bump_inactive_ggtt(vma->obj);
3561 i915_vma_unpin(vma);
3565 * Moves a single object to the CPU read, and possibly write domain.
3566 * @obj: object to act on
3567 * @write: requesting write or read-only access
3569 * This function returns when the move is complete, including waiting on
3570 * flushes to occur.
3573 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3575 uint32_t old_write_domain, old_read_domains;
3576 int ret;
3578 lockdep_assert_held(&obj->base.dev->struct_mutex);
3580 ret = i915_gem_object_wait(obj,
3581 I915_WAIT_INTERRUPTIBLE |
3582 I915_WAIT_LOCKED |
3583 (write ? I915_WAIT_ALL : 0),
3584 MAX_SCHEDULE_TIMEOUT,
3585 NULL);
3586 if (ret)
3587 return ret;
3589 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3590 return 0;
3592 i915_gem_object_flush_gtt_write_domain(obj);
3594 old_write_domain = obj->base.write_domain;
3595 old_read_domains = obj->base.read_domains;
3597 /* Flush the CPU cache if it's still invalid. */
3598 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3599 i915_gem_clflush_object(obj, false);
3601 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3604 /* It should now be out of any other write domains, and we can update
3605 * the domain values for our changes.
3607 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3609 /* If we're writing through the CPU, then the GPU read domains will
3610 * need to be invalidated at next use.
3612 if (write) {
3613 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3614 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3617 trace_i915_gem_object_change_domain(obj,
3618 old_read_domains,
3619 old_write_domain);
3621 return 0;
3624 /* Throttle our rendering by waiting until the ring has completed our requests
3625 * emitted over 20 msec ago.
3627 * Note that if we were to use the current jiffies each time around the loop,
3628 * we wouldn't escape the function with any frames outstanding if the time to
3629 * render a frame was over 20ms.
3631 * This should get us reasonable parallelism between CPU and GPU but also
3632 * relatively low latency when blocking on a particular request to finish.
3634 static int
3635 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3637 struct drm_i915_private *dev_priv = to_i915(dev);
3638 struct drm_i915_file_private *file_priv = file->driver_priv;
3639 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3640 struct drm_i915_gem_request *request, *target = NULL;
3641 long ret;
3643 /* ABI: return -EIO if already wedged */
3644 if (i915_terminally_wedged(&dev_priv->gpu_error))
3645 return -EIO;
3647 spin_lock(&file_priv->mm.lock);
3648 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3649 if (time_after_eq(request->emitted_jiffies, recent_enough))
3650 break;
3653 * Note that the request might not have been submitted yet.
3654 * In which case emitted_jiffies will be zero.
3656 if (!request->emitted_jiffies)
3657 continue;
3659 target = request;
3661 if (target)
3662 i915_gem_request_get(target);
3663 spin_unlock(&file_priv->mm.lock);
3665 if (target == NULL)
3666 return 0;
3668 ret = i915_wait_request(target,
3669 I915_WAIT_INTERRUPTIBLE,
3670 MAX_SCHEDULE_TIMEOUT);
3671 i915_gem_request_put(target);
3673 return ret < 0 ? ret : 0;
3676 struct i915_vma *
3677 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3678 const struct i915_ggtt_view *view,
3679 u64 size,
3680 u64 alignment,
3681 u64 flags)
3683 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3684 struct i915_address_space *vm = &dev_priv->ggtt.base;
3685 struct i915_vma *vma;
3686 int ret;
3688 lockdep_assert_held(&obj->base.dev->struct_mutex);
3690 vma = i915_vma_instance(obj, vm, view);
3691 if (unlikely(IS_ERR(vma)))
3692 return vma;
3694 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3695 if (flags & PIN_NONBLOCK &&
3696 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3697 return ERR_PTR(-ENOSPC);
3699 if (flags & PIN_MAPPABLE) {
3700 /* If the required space is larger than the available
3701 * aperture, we will not able to find a slot for the
3702 * object and unbinding the object now will be in
3703 * vain. Worse, doing so may cause us to ping-pong
3704 * the object in and out of the Global GTT and
3705 * waste a lot of cycles under the mutex.
3707 if (vma->fence_size > dev_priv->ggtt.mappable_end)
3708 return ERR_PTR(-E2BIG);
3710 /* If NONBLOCK is set the caller is optimistically
3711 * trying to cache the full object within the mappable
3712 * aperture, and *must* have a fallback in place for
3713 * situations where we cannot bind the object. We
3714 * can be a little more lax here and use the fallback
3715 * more often to avoid costly migrations of ourselves
3716 * and other objects within the aperture.
3718 * Half-the-aperture is used as a simple heuristic.
3719 * More interesting would to do search for a free
3720 * block prior to making the commitment to unbind.
3721 * That caters for the self-harm case, and with a
3722 * little more heuristics (e.g. NOFAULT, NOEVICT)
3723 * we could try to minimise harm to others.
3725 if (flags & PIN_NONBLOCK &&
3726 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3727 return ERR_PTR(-ENOSPC);
3730 WARN(i915_vma_is_pinned(vma),
3731 "bo is already pinned in ggtt with incorrect alignment:"
3732 " offset=%08x, req.alignment=%llx,"
3733 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3734 i915_ggtt_offset(vma), alignment,
3735 !!(flags & PIN_MAPPABLE),
3736 i915_vma_is_map_and_fenceable(vma));
3737 ret = i915_vma_unbind(vma);
3738 if (ret)
3739 return ERR_PTR(ret);
3742 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3743 if (ret)
3744 return ERR_PTR(ret);
3746 return vma;
3749 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3751 /* Note that we could alias engines in the execbuf API, but
3752 * that would be very unwise as it prevents userspace from
3753 * fine control over engine selection. Ahem.
3755 * This should be something like EXEC_MAX_ENGINE instead of
3756 * I915_NUM_ENGINES.
3758 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3759 return 0x10000 << id;
3762 static __always_inline unsigned int __busy_write_id(unsigned int id)
3764 /* The uABI guarantees an active writer is also amongst the read
3765 * engines. This would be true if we accessed the activity tracking
3766 * under the lock, but as we perform the lookup of the object and
3767 * its activity locklessly we can not guarantee that the last_write
3768 * being active implies that we have set the same engine flag from
3769 * last_read - hence we always set both read and write busy for
3770 * last_write.
3772 return id | __busy_read_flag(id);
3775 static __always_inline unsigned int
3776 __busy_set_if_active(const struct dma_fence *fence,
3777 unsigned int (*flag)(unsigned int id))
3779 struct drm_i915_gem_request *rq;
3781 /* We have to check the current hw status of the fence as the uABI
3782 * guarantees forward progress. We could rely on the idle worker
3783 * to eventually flush us, but to minimise latency just ask the
3784 * hardware.
3786 * Note we only report on the status of native fences.
3788 if (!dma_fence_is_i915(fence))
3789 return 0;
3791 /* opencode to_request() in order to avoid const warnings */
3792 rq = container_of(fence, struct drm_i915_gem_request, fence);
3793 if (i915_gem_request_completed(rq))
3794 return 0;
3796 return flag(rq->engine->exec_id);
3799 static __always_inline unsigned int
3800 busy_check_reader(const struct dma_fence *fence)
3802 return __busy_set_if_active(fence, __busy_read_flag);
3805 static __always_inline unsigned int
3806 busy_check_writer(const struct dma_fence *fence)
3808 if (!fence)
3809 return 0;
3811 return __busy_set_if_active(fence, __busy_write_id);
3815 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3816 struct drm_file *file)
3818 struct drm_i915_gem_busy *args = data;
3819 struct drm_i915_gem_object *obj;
3820 struct reservation_object_list *list;
3821 unsigned int seq;
3822 int err;
3824 err = -ENOENT;
3825 rcu_read_lock();
3826 obj = i915_gem_object_lookup_rcu(file, args->handle);
3827 if (!obj)
3828 goto out;
3830 /* A discrepancy here is that we do not report the status of
3831 * non-i915 fences, i.e. even though we may report the object as idle,
3832 * a call to set-domain may still stall waiting for foreign rendering.
3833 * This also means that wait-ioctl may report an object as busy,
3834 * where busy-ioctl considers it idle.
3836 * We trade the ability to warn of foreign fences to report on which
3837 * i915 engines are active for the object.
3839 * Alternatively, we can trade that extra information on read/write
3840 * activity with
3841 * args->busy =
3842 * !reservation_object_test_signaled_rcu(obj->resv, true);
3843 * to report the overall busyness. This is what the wait-ioctl does.
3846 retry:
3847 seq = raw_read_seqcount(&obj->resv->seq);
3849 /* Translate the exclusive fence to the READ *and* WRITE engine */
3850 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3852 /* Translate shared fences to READ set of engines */
3853 list = rcu_dereference(obj->resv->fence);
3854 if (list) {
3855 unsigned int shared_count = list->shared_count, i;
3857 for (i = 0; i < shared_count; ++i) {
3858 struct dma_fence *fence =
3859 rcu_dereference(list->shared[i]);
3861 args->busy |= busy_check_reader(fence);
3865 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3866 goto retry;
3868 err = 0;
3869 out:
3870 rcu_read_unlock();
3871 return err;
3875 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3876 struct drm_file *file_priv)
3878 return i915_gem_ring_throttle(dev, file_priv);
3882 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3883 struct drm_file *file_priv)
3885 struct drm_i915_private *dev_priv = to_i915(dev);
3886 struct drm_i915_gem_madvise *args = data;
3887 struct drm_i915_gem_object *obj;
3888 int err;
3890 switch (args->madv) {
3891 case I915_MADV_DONTNEED:
3892 case I915_MADV_WILLNEED:
3893 break;
3894 default:
3895 return -EINVAL;
3898 obj = i915_gem_object_lookup(file_priv, args->handle);
3899 if (!obj)
3900 return -ENOENT;
3902 err = mutex_lock_interruptible(&obj->mm.lock);
3903 if (err)
3904 goto out;
3906 if (obj->mm.pages &&
3907 i915_gem_object_is_tiled(obj) &&
3908 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3909 if (obj->mm.madv == I915_MADV_WILLNEED) {
3910 GEM_BUG_ON(!obj->mm.quirked);
3911 __i915_gem_object_unpin_pages(obj);
3912 obj->mm.quirked = false;
3914 if (args->madv == I915_MADV_WILLNEED) {
3915 GEM_BUG_ON(obj->mm.quirked);
3916 __i915_gem_object_pin_pages(obj);
3917 obj->mm.quirked = true;
3921 if (obj->mm.madv != __I915_MADV_PURGED)
3922 obj->mm.madv = args->madv;
3924 /* if the object is no longer attached, discard its backing storage */
3925 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3926 i915_gem_object_truncate(obj);
3928 args->retained = obj->mm.madv != __I915_MADV_PURGED;
3929 mutex_unlock(&obj->mm.lock);
3931 out:
3932 i915_gem_object_put(obj);
3933 return err;
3936 static void
3937 frontbuffer_retire(struct i915_gem_active *active,
3938 struct drm_i915_gem_request *request)
3940 struct drm_i915_gem_object *obj =
3941 container_of(active, typeof(*obj), frontbuffer_write);
3943 intel_fb_obj_flush(obj, true, ORIGIN_CS);
3946 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3947 const struct drm_i915_gem_object_ops *ops)
3949 mutex_init(&obj->mm.lock);
3951 INIT_LIST_HEAD(&obj->global_link);
3952 INIT_LIST_HEAD(&obj->userfault_link);
3953 INIT_LIST_HEAD(&obj->obj_exec_link);
3954 INIT_LIST_HEAD(&obj->vma_list);
3955 INIT_LIST_HEAD(&obj->batch_pool_link);
3957 obj->ops = ops;
3959 reservation_object_init(&obj->__builtin_resv);
3960 obj->resv = &obj->__builtin_resv;
3962 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3963 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3965 obj->mm.madv = I915_MADV_WILLNEED;
3966 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3967 mutex_init(&obj->mm.get_page.lock);
3969 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3972 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3973 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3974 I915_GEM_OBJECT_IS_SHRINKABLE,
3975 .get_pages = i915_gem_object_get_pages_gtt,
3976 .put_pages = i915_gem_object_put_pages_gtt,
3979 struct drm_i915_gem_object *
3980 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3982 struct drm_i915_gem_object *obj;
3983 struct address_space *mapping;
3984 gfp_t mask;
3985 int ret;
3987 /* There is a prevalence of the assumption that we fit the object's
3988 * page count inside a 32bit _signed_ variable. Let's document this and
3989 * catch if we ever need to fix it. In the meantime, if you do spot
3990 * such a local variable, please consider fixing!
3992 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3993 return ERR_PTR(-E2BIG);
3995 if (overflows_type(size, obj->base.size))
3996 return ERR_PTR(-E2BIG);
3998 obj = i915_gem_object_alloc(dev_priv);
3999 if (obj == NULL)
4000 return ERR_PTR(-ENOMEM);
4002 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4003 if (ret)
4004 goto fail;
4006 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4007 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4008 /* 965gm cannot relocate objects above 4GiB. */
4009 mask &= ~__GFP_HIGHMEM;
4010 mask |= __GFP_DMA32;
4013 mapping = obj->base.filp->f_mapping;
4014 mapping_set_gfp_mask(mapping, mask);
4016 i915_gem_object_init(obj, &i915_gem_object_ops);
4018 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4019 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4021 if (HAS_LLC(dev_priv)) {
4022 /* On some devices, we can have the GPU use the LLC (the CPU
4023 * cache) for about a 10% performance improvement
4024 * compared to uncached. Graphics requests other than
4025 * display scanout are coherent with the CPU in
4026 * accessing this cache. This means in this mode we
4027 * don't need to clflush on the CPU side, and on the
4028 * GPU side we only need to flush internal caches to
4029 * get data visible to the CPU.
4031 * However, we maintain the display planes as UC, and so
4032 * need to rebind when first used as such.
4034 obj->cache_level = I915_CACHE_LLC;
4035 } else
4036 obj->cache_level = I915_CACHE_NONE;
4038 trace_i915_gem_object_create(obj);
4040 return obj;
4042 fail:
4043 i915_gem_object_free(obj);
4044 return ERR_PTR(ret);
4047 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4049 /* If we are the last user of the backing storage (be it shmemfs
4050 * pages or stolen etc), we know that the pages are going to be
4051 * immediately released. In this case, we can then skip copying
4052 * back the contents from the GPU.
4055 if (obj->mm.madv != I915_MADV_WILLNEED)
4056 return false;
4058 if (obj->base.filp == NULL)
4059 return true;
4061 /* At first glance, this looks racy, but then again so would be
4062 * userspace racing mmap against close. However, the first external
4063 * reference to the filp can only be obtained through the
4064 * i915_gem_mmap_ioctl() which safeguards us against the user
4065 * acquiring such a reference whilst we are in the middle of
4066 * freeing the object.
4068 return atomic_long_read(&obj->base.filp->f_count) == 1;
4071 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4072 struct llist_node *freed)
4074 struct drm_i915_gem_object *obj, *on;
4076 mutex_lock(&i915->drm.struct_mutex);
4077 intel_runtime_pm_get(i915);
4078 llist_for_each_entry(obj, freed, freed) {
4079 struct i915_vma *vma, *vn;
4081 trace_i915_gem_object_destroy(obj);
4083 GEM_BUG_ON(i915_gem_object_is_active(obj));
4084 list_for_each_entry_safe(vma, vn,
4085 &obj->vma_list, obj_link) {
4086 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4087 GEM_BUG_ON(i915_vma_is_active(vma));
4088 vma->flags &= ~I915_VMA_PIN_MASK;
4089 i915_vma_close(vma);
4091 GEM_BUG_ON(!list_empty(&obj->vma_list));
4092 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4094 list_del(&obj->global_link);
4096 intel_runtime_pm_put(i915);
4097 mutex_unlock(&i915->drm.struct_mutex);
4099 llist_for_each_entry_safe(obj, on, freed, freed) {
4100 GEM_BUG_ON(obj->bind_count);
4101 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4103 if (obj->ops->release)
4104 obj->ops->release(obj);
4106 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4107 atomic_set(&obj->mm.pages_pin_count, 0);
4108 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4109 GEM_BUG_ON(obj->mm.pages);
4111 if (obj->base.import_attach)
4112 drm_prime_gem_destroy(&obj->base, NULL);
4114 reservation_object_fini(&obj->__builtin_resv);
4115 drm_gem_object_release(&obj->base);
4116 i915_gem_info_remove_obj(i915, obj->base.size);
4118 kfree(obj->bit_17);
4119 i915_gem_object_free(obj);
4123 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4125 struct llist_node *freed;
4127 freed = llist_del_all(&i915->mm.free_list);
4128 if (unlikely(freed))
4129 __i915_gem_free_objects(i915, freed);
4132 static void __i915_gem_free_work(struct work_struct *work)
4134 struct drm_i915_private *i915 =
4135 container_of(work, struct drm_i915_private, mm.free_work);
4136 struct llist_node *freed;
4138 /* All file-owned VMA should have been released by this point through
4139 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4140 * However, the object may also be bound into the global GTT (e.g.
4141 * older GPUs without per-process support, or for direct access through
4142 * the GTT either for the user or for scanout). Those VMA still need to
4143 * unbound now.
4146 while ((freed = llist_del_all(&i915->mm.free_list)))
4147 __i915_gem_free_objects(i915, freed);
4150 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4152 struct drm_i915_gem_object *obj =
4153 container_of(head, typeof(*obj), rcu);
4154 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4156 /* We can't simply use call_rcu() from i915_gem_free_object()
4157 * as we need to block whilst unbinding, and the call_rcu
4158 * task may be called from softirq context. So we take a
4159 * detour through a worker.
4161 if (llist_add(&obj->freed, &i915->mm.free_list))
4162 schedule_work(&i915->mm.free_work);
4165 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4167 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4169 if (obj->mm.quirked)
4170 __i915_gem_object_unpin_pages(obj);
4172 if (discard_backing_storage(obj))
4173 obj->mm.madv = I915_MADV_DONTNEED;
4175 /* Before we free the object, make sure any pure RCU-only
4176 * read-side critical sections are complete, e.g.
4177 * i915_gem_busy_ioctl(). For the corresponding synchronized
4178 * lookup see i915_gem_object_lookup_rcu().
4180 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4183 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4185 lockdep_assert_held(&obj->base.dev->struct_mutex);
4187 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4188 if (i915_gem_object_is_active(obj))
4189 i915_gem_object_set_active_reference(obj);
4190 else
4191 i915_gem_object_put(obj);
4194 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4196 struct intel_engine_cs *engine;
4197 enum intel_engine_id id;
4199 for_each_engine(engine, dev_priv, id)
4200 GEM_BUG_ON(engine->last_retired_context &&
4201 !i915_gem_context_is_kernel(engine->last_retired_context));
4204 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4206 struct drm_device *dev = &dev_priv->drm;
4207 int ret;
4209 intel_suspend_gt_powersave(dev_priv);
4211 mutex_lock(&dev->struct_mutex);
4213 /* We have to flush all the executing contexts to main memory so
4214 * that they can saved in the hibernation image. To ensure the last
4215 * context image is coherent, we have to switch away from it. That
4216 * leaves the dev_priv->kernel_context still active when
4217 * we actually suspend, and its image in memory may not match the GPU
4218 * state. Fortunately, the kernel_context is disposable and we do
4219 * not rely on its state.
4221 ret = i915_gem_switch_to_kernel_context(dev_priv);
4222 if (ret)
4223 goto err;
4225 ret = i915_gem_wait_for_idle(dev_priv,
4226 I915_WAIT_INTERRUPTIBLE |
4227 I915_WAIT_LOCKED);
4228 if (ret)
4229 goto err;
4231 i915_gem_retire_requests(dev_priv);
4232 GEM_BUG_ON(dev_priv->gt.active_requests);
4234 assert_kernel_context_is_current(dev_priv);
4235 i915_gem_context_lost(dev_priv);
4236 mutex_unlock(&dev->struct_mutex);
4238 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4239 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4241 /* As the idle_work is rearming if it detects a race, play safe and
4242 * repeat the flush until it is definitely idle.
4244 while (flush_delayed_work(&dev_priv->gt.idle_work))
4247 i915_gem_drain_freed_objects(dev_priv);
4249 /* Assert that we sucessfully flushed all the work and
4250 * reset the GPU back to its idle, low power state.
4252 WARN_ON(dev_priv->gt.awake);
4253 WARN_ON(!intel_execlists_idle(dev_priv));
4256 * Neither the BIOS, ourselves or any other kernel
4257 * expects the system to be in execlists mode on startup,
4258 * so we need to reset the GPU back to legacy mode. And the only
4259 * known way to disable logical contexts is through a GPU reset.
4261 * So in order to leave the system in a known default configuration,
4262 * always reset the GPU upon unload and suspend. Afterwards we then
4263 * clean up the GEM state tracking, flushing off the requests and
4264 * leaving the system in a known idle state.
4266 * Note that is of the upmost importance that the GPU is idle and
4267 * all stray writes are flushed *before* we dismantle the backing
4268 * storage for the pinned objects.
4270 * However, since we are uncertain that resetting the GPU on older
4271 * machines is a good idea, we don't - just in case it leaves the
4272 * machine in an unusable condition.
4274 if (HAS_HW_CONTEXTS(dev_priv)) {
4275 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4276 WARN_ON(reset && reset != -ENODEV);
4279 return 0;
4281 err:
4282 mutex_unlock(&dev->struct_mutex);
4283 return ret;
4286 void i915_gem_resume(struct drm_i915_private *dev_priv)
4288 struct drm_device *dev = &dev_priv->drm;
4290 WARN_ON(dev_priv->gt.awake);
4292 mutex_lock(&dev->struct_mutex);
4293 i915_gem_restore_gtt_mappings(dev_priv);
4295 /* As we didn't flush the kernel context before suspend, we cannot
4296 * guarantee that the context image is complete. So let's just reset
4297 * it and start again.
4299 dev_priv->gt.resume(dev_priv);
4301 mutex_unlock(&dev->struct_mutex);
4304 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4306 if (INTEL_GEN(dev_priv) < 5 ||
4307 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4308 return;
4310 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4311 DISP_TILE_SURFACE_SWIZZLING);
4313 if (IS_GEN5(dev_priv))
4314 return;
4316 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4317 if (IS_GEN6(dev_priv))
4318 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4319 else if (IS_GEN7(dev_priv))
4320 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4321 else if (IS_GEN8(dev_priv))
4322 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4323 else
4324 BUG();
4327 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4329 I915_WRITE(RING_CTL(base), 0);
4330 I915_WRITE(RING_HEAD(base), 0);
4331 I915_WRITE(RING_TAIL(base), 0);
4332 I915_WRITE(RING_START(base), 0);
4335 static void init_unused_rings(struct drm_i915_private *dev_priv)
4337 if (IS_I830(dev_priv)) {
4338 init_unused_ring(dev_priv, PRB1_BASE);
4339 init_unused_ring(dev_priv, SRB0_BASE);
4340 init_unused_ring(dev_priv, SRB1_BASE);
4341 init_unused_ring(dev_priv, SRB2_BASE);
4342 init_unused_ring(dev_priv, SRB3_BASE);
4343 } else if (IS_GEN2(dev_priv)) {
4344 init_unused_ring(dev_priv, SRB0_BASE);
4345 init_unused_ring(dev_priv, SRB1_BASE);
4346 } else if (IS_GEN3(dev_priv)) {
4347 init_unused_ring(dev_priv, PRB1_BASE);
4348 init_unused_ring(dev_priv, PRB2_BASE);
4353 i915_gem_init_hw(struct drm_i915_private *dev_priv)
4355 struct intel_engine_cs *engine;
4356 enum intel_engine_id id;
4357 int ret;
4359 dev_priv->gt.last_init_time = ktime_get();
4361 /* Double layer security blanket, see i915_gem_init() */
4362 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4364 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4365 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4367 if (IS_HASWELL(dev_priv))
4368 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4369 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4371 if (HAS_PCH_NOP(dev_priv)) {
4372 if (IS_IVYBRIDGE(dev_priv)) {
4373 u32 temp = I915_READ(GEN7_MSG_CTL);
4374 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4375 I915_WRITE(GEN7_MSG_CTL, temp);
4376 } else if (INTEL_GEN(dev_priv) >= 7) {
4377 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4378 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4379 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4383 i915_gem_init_swizzling(dev_priv);
4386 * At least 830 can leave some of the unused rings
4387 * "active" (ie. head != tail) after resume which
4388 * will prevent c3 entry. Makes sure all unused rings
4389 * are totally idle.
4391 init_unused_rings(dev_priv);
4393 BUG_ON(!dev_priv->kernel_context);
4395 ret = i915_ppgtt_init_hw(dev_priv);
4396 if (ret) {
4397 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4398 goto out;
4401 /* Need to do basic initialisation of all rings first: */
4402 for_each_engine(engine, dev_priv, id) {
4403 ret = engine->init_hw(engine);
4404 if (ret)
4405 goto out;
4408 intel_mocs_init_l3cc_table(dev_priv);
4410 /* We can't enable contexts until all firmware is loaded */
4411 ret = intel_guc_setup(dev_priv);
4412 if (ret)
4413 goto out;
4415 out:
4416 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4417 return ret;
4420 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4422 if (INTEL_INFO(dev_priv)->gen < 6)
4423 return false;
4425 /* TODO: make semaphores and Execlists play nicely together */
4426 if (i915.enable_execlists)
4427 return false;
4429 if (value >= 0)
4430 return value;
4432 #ifdef CONFIG_INTEL_IOMMU
4433 /* Enable semaphores on SNB when IO remapping is off */
4434 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4435 return false;
4436 #endif
4438 return true;
4441 int i915_gem_init(struct drm_i915_private *dev_priv)
4443 int ret;
4445 mutex_lock(&dev_priv->drm.struct_mutex);
4447 if (!i915.enable_execlists) {
4448 dev_priv->gt.resume = intel_legacy_submission_resume;
4449 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4450 } else {
4451 dev_priv->gt.resume = intel_lr_context_resume;
4452 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4455 /* This is just a security blanket to placate dragons.
4456 * On some systems, we very sporadically observe that the first TLBs
4457 * used by the CS may be stale, despite us poking the TLB reset. If
4458 * we hold the forcewake during initialisation these problems
4459 * just magically go away.
4461 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4463 i915_gem_init_userptr(dev_priv);
4465 ret = i915_gem_init_ggtt(dev_priv);
4466 if (ret)
4467 goto out_unlock;
4469 ret = i915_gem_context_init(dev_priv);
4470 if (ret)
4471 goto out_unlock;
4473 ret = intel_engines_init(dev_priv);
4474 if (ret)
4475 goto out_unlock;
4477 ret = i915_gem_init_hw(dev_priv);
4478 if (ret == -EIO) {
4479 /* Allow engine initialisation to fail by marking the GPU as
4480 * wedged. But we only want to do this where the GPU is angry,
4481 * for all other failure, such as an allocation failure, bail.
4483 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4484 i915_gem_set_wedged(dev_priv);
4485 ret = 0;
4488 out_unlock:
4489 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4490 mutex_unlock(&dev_priv->drm.struct_mutex);
4492 return ret;
4495 void
4496 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4498 struct intel_engine_cs *engine;
4499 enum intel_engine_id id;
4501 for_each_engine(engine, dev_priv, id)
4502 dev_priv->gt.cleanup_engine(engine);
4505 void
4506 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4508 int i;
4510 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4511 !IS_CHERRYVIEW(dev_priv))
4512 dev_priv->num_fence_regs = 32;
4513 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4514 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4515 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4516 dev_priv->num_fence_regs = 16;
4517 else
4518 dev_priv->num_fence_regs = 8;
4520 if (intel_vgpu_active(dev_priv))
4521 dev_priv->num_fence_regs =
4522 I915_READ(vgtif_reg(avail_rs.fence_num));
4524 /* Initialize fence registers to zero */
4525 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4526 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4528 fence->i915 = dev_priv;
4529 fence->id = i;
4530 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4532 i915_gem_restore_fences(dev_priv);
4534 i915_gem_detect_bit_6_swizzle(dev_priv);
4538 i915_gem_load_init(struct drm_i915_private *dev_priv)
4540 int err = -ENOMEM;
4542 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4543 if (!dev_priv->objects)
4544 goto err_out;
4546 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4547 if (!dev_priv->vmas)
4548 goto err_objects;
4550 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4551 SLAB_HWCACHE_ALIGN |
4552 SLAB_RECLAIM_ACCOUNT |
4553 SLAB_DESTROY_BY_RCU);
4554 if (!dev_priv->requests)
4555 goto err_vmas;
4557 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4558 SLAB_HWCACHE_ALIGN |
4559 SLAB_RECLAIM_ACCOUNT);
4560 if (!dev_priv->dependencies)
4561 goto err_requests;
4563 mutex_lock(&dev_priv->drm.struct_mutex);
4564 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4565 err = i915_gem_timeline_init__global(dev_priv);
4566 mutex_unlock(&dev_priv->drm.struct_mutex);
4567 if (err)
4568 goto err_dependencies;
4570 INIT_LIST_HEAD(&dev_priv->context_list);
4571 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4572 init_llist_head(&dev_priv->mm.free_list);
4573 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4574 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4575 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4576 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4577 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4578 i915_gem_retire_work_handler);
4579 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4580 i915_gem_idle_work_handler);
4581 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4582 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4584 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4586 init_waitqueue_head(&dev_priv->pending_flip_queue);
4588 dev_priv->mm.interruptible = true;
4590 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4592 spin_lock_init(&dev_priv->fb_tracking.lock);
4594 return 0;
4596 err_dependencies:
4597 kmem_cache_destroy(dev_priv->dependencies);
4598 err_requests:
4599 kmem_cache_destroy(dev_priv->requests);
4600 err_vmas:
4601 kmem_cache_destroy(dev_priv->vmas);
4602 err_objects:
4603 kmem_cache_destroy(dev_priv->objects);
4604 err_out:
4605 return err;
4608 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4610 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4612 mutex_lock(&dev_priv->drm.struct_mutex);
4613 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4614 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4615 mutex_unlock(&dev_priv->drm.struct_mutex);
4617 kmem_cache_destroy(dev_priv->dependencies);
4618 kmem_cache_destroy(dev_priv->requests);
4619 kmem_cache_destroy(dev_priv->vmas);
4620 kmem_cache_destroy(dev_priv->objects);
4622 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4623 rcu_barrier();
4626 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4628 intel_runtime_pm_get(dev_priv);
4630 mutex_lock(&dev_priv->drm.struct_mutex);
4631 i915_gem_shrink_all(dev_priv);
4632 mutex_unlock(&dev_priv->drm.struct_mutex);
4634 intel_runtime_pm_put(dev_priv);
4636 return 0;
4639 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4641 struct drm_i915_gem_object *obj;
4642 struct list_head *phases[] = {
4643 &dev_priv->mm.unbound_list,
4644 &dev_priv->mm.bound_list,
4645 NULL
4646 }, **p;
4648 /* Called just before we write the hibernation image.
4650 * We need to update the domain tracking to reflect that the CPU
4651 * will be accessing all the pages to create and restore from the
4652 * hibernation, and so upon restoration those pages will be in the
4653 * CPU domain.
4655 * To make sure the hibernation image contains the latest state,
4656 * we update that state just before writing out the image.
4658 * To try and reduce the hibernation image, we manually shrink
4659 * the objects as well.
4662 mutex_lock(&dev_priv->drm.struct_mutex);
4663 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4665 for (p = phases; *p; p++) {
4666 list_for_each_entry(obj, *p, global_link) {
4667 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4668 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4671 mutex_unlock(&dev_priv->drm.struct_mutex);
4673 return 0;
4676 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4678 struct drm_i915_file_private *file_priv = file->driver_priv;
4679 struct drm_i915_gem_request *request;
4681 /* Clean up our request list when the client is going away, so that
4682 * later retire_requests won't dereference our soon-to-be-gone
4683 * file_priv.
4685 spin_lock(&file_priv->mm.lock);
4686 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4687 request->file_priv = NULL;
4688 spin_unlock(&file_priv->mm.lock);
4690 if (!list_empty(&file_priv->rps.link)) {
4691 spin_lock(&to_i915(dev)->rps.client_lock);
4692 list_del(&file_priv->rps.link);
4693 spin_unlock(&to_i915(dev)->rps.client_lock);
4697 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4699 struct drm_i915_file_private *file_priv;
4700 int ret;
4702 DRM_DEBUG("\n");
4704 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4705 if (!file_priv)
4706 return -ENOMEM;
4708 file->driver_priv = file_priv;
4709 file_priv->dev_priv = to_i915(dev);
4710 file_priv->file = file;
4711 INIT_LIST_HEAD(&file_priv->rps.link);
4713 spin_lock_init(&file_priv->mm.lock);
4714 INIT_LIST_HEAD(&file_priv->mm.request_list);
4716 file_priv->bsd_engine = -1;
4718 ret = i915_gem_context_open(dev, file);
4719 if (ret)
4720 kfree(file_priv);
4722 return ret;
4726 * i915_gem_track_fb - update frontbuffer tracking
4727 * @old: current GEM buffer for the frontbuffer slots
4728 * @new: new GEM buffer for the frontbuffer slots
4729 * @frontbuffer_bits: bitmask of frontbuffer slots
4731 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4732 * from @old and setting them in @new. Both @old and @new can be NULL.
4734 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4735 struct drm_i915_gem_object *new,
4736 unsigned frontbuffer_bits)
4738 /* Control of individual bits within the mask are guarded by
4739 * the owning plane->mutex, i.e. we can never see concurrent
4740 * manipulation of individual bits. But since the bitfield as a whole
4741 * is updated using RMW, we need to use atomics in order to update
4742 * the bits.
4744 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4745 sizeof(atomic_t) * BITS_PER_BYTE);
4747 if (old) {
4748 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4749 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4752 if (new) {
4753 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4754 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4758 /* Allocate a new GEM object and fill it with the supplied data */
4759 struct drm_i915_gem_object *
4760 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4761 const void *data, size_t size)
4763 struct drm_i915_gem_object *obj;
4764 struct sg_table *sg;
4765 size_t bytes;
4766 int ret;
4768 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4769 if (IS_ERR(obj))
4770 return obj;
4772 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4773 if (ret)
4774 goto fail;
4776 ret = i915_gem_object_pin_pages(obj);
4777 if (ret)
4778 goto fail;
4780 sg = obj->mm.pages;
4781 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4782 obj->mm.dirty = true; /* Backing store is now out of date */
4783 i915_gem_object_unpin_pages(obj);
4785 if (WARN_ON(bytes != size)) {
4786 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4787 ret = -EFAULT;
4788 goto fail;
4791 return obj;
4793 fail:
4794 i915_gem_object_put(obj);
4795 return ERR_PTR(ret);
4798 struct scatterlist *
4799 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4800 unsigned int n,
4801 unsigned int *offset)
4803 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4804 struct scatterlist *sg;
4805 unsigned int idx, count;
4807 might_sleep();
4808 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4809 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4811 /* As we iterate forward through the sg, we record each entry in a
4812 * radixtree for quick repeated (backwards) lookups. If we have seen
4813 * this index previously, we will have an entry for it.
4815 * Initial lookup is O(N), but this is amortized to O(1) for
4816 * sequential page access (where each new request is consecutive
4817 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4818 * i.e. O(1) with a large constant!
4820 if (n < READ_ONCE(iter->sg_idx))
4821 goto lookup;
4823 mutex_lock(&iter->lock);
4825 /* We prefer to reuse the last sg so that repeated lookup of this
4826 * (or the subsequent) sg are fast - comparing against the last
4827 * sg is faster than going through the radixtree.
4830 sg = iter->sg_pos;
4831 idx = iter->sg_idx;
4832 count = __sg_page_count(sg);
4834 while (idx + count <= n) {
4835 unsigned long exception, i;
4836 int ret;
4838 /* If we cannot allocate and insert this entry, or the
4839 * individual pages from this range, cancel updating the
4840 * sg_idx so that on this lookup we are forced to linearly
4841 * scan onwards, but on future lookups we will try the
4842 * insertion again (in which case we need to be careful of
4843 * the error return reporting that we have already inserted
4844 * this index).
4846 ret = radix_tree_insert(&iter->radix, idx, sg);
4847 if (ret && ret != -EEXIST)
4848 goto scan;
4850 exception =
4851 RADIX_TREE_EXCEPTIONAL_ENTRY |
4852 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4853 for (i = 1; i < count; i++) {
4854 ret = radix_tree_insert(&iter->radix, idx + i,
4855 (void *)exception);
4856 if (ret && ret != -EEXIST)
4857 goto scan;
4860 idx += count;
4861 sg = ____sg_next(sg);
4862 count = __sg_page_count(sg);
4865 scan:
4866 iter->sg_pos = sg;
4867 iter->sg_idx = idx;
4869 mutex_unlock(&iter->lock);
4871 if (unlikely(n < idx)) /* insertion completed by another thread */
4872 goto lookup;
4874 /* In case we failed to insert the entry into the radixtree, we need
4875 * to look beyond the current sg.
4877 while (idx + count <= n) {
4878 idx += count;
4879 sg = ____sg_next(sg);
4880 count = __sg_page_count(sg);
4883 *offset = n - idx;
4884 return sg;
4886 lookup:
4887 rcu_read_lock();
4889 sg = radix_tree_lookup(&iter->radix, n);
4890 GEM_BUG_ON(!sg);
4892 /* If this index is in the middle of multi-page sg entry,
4893 * the radixtree will contain an exceptional entry that points
4894 * to the start of that range. We will return the pointer to
4895 * the base page and the offset of this page within the
4896 * sg entry's range.
4898 *offset = 0;
4899 if (unlikely(radix_tree_exception(sg))) {
4900 unsigned long base =
4901 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4903 sg = radix_tree_lookup(&iter->radix, base);
4904 GEM_BUG_ON(!sg);
4906 *offset = n - base;
4909 rcu_read_unlock();
4911 return sg;
4914 struct page *
4915 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4917 struct scatterlist *sg;
4918 unsigned int offset;
4920 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4922 sg = i915_gem_object_get_sg(obj, n, &offset);
4923 return nth_page(sg_page(sg), offset);
4926 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4927 struct page *
4928 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4929 unsigned int n)
4931 struct page *page;
4933 page = i915_gem_object_get_page(obj, n);
4934 if (!obj->mm.dirty)
4935 set_page_dirty(page);
4937 return page;
4940 dma_addr_t
4941 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4942 unsigned long n)
4944 struct scatterlist *sg;
4945 unsigned int offset;
4947 sg = i915_gem_object_get_sg(obj, n, &offset);
4948 return sg_dma_address(sg) + (offset << PAGE_SHIFT);