2 * Copyright © 2012-2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
26 #include <drm/i915_drm.h>
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/mempolicy.h>
33 #include <linux/swap.h>
35 struct i915_mm_struct
{
37 struct drm_i915_private
*i915
;
38 struct i915_mmu_notifier
*mn
;
39 struct hlist_node node
;
41 struct work_struct work
;
44 #if defined(CONFIG_MMU_NOTIFIER)
45 #include <linux/interval_tree.h>
47 struct i915_mmu_notifier
{
49 struct hlist_node node
;
50 struct mmu_notifier mn
;
51 struct rb_root objects
;
52 struct workqueue_struct
*wq
;
55 struct i915_mmu_object
{
56 struct i915_mmu_notifier
*mn
;
57 struct drm_i915_gem_object
*obj
;
58 struct interval_tree_node it
;
59 struct list_head link
;
60 struct work_struct work
;
64 static void cancel_userptr(struct work_struct
*work
)
66 struct i915_mmu_object
*mo
= container_of(work
, typeof(*mo
), work
);
67 struct drm_i915_gem_object
*obj
= mo
->obj
;
68 struct drm_device
*dev
= obj
->base
.dev
;
70 i915_gem_object_wait(obj
, I915_WAIT_ALL
, MAX_SCHEDULE_TIMEOUT
, NULL
);
72 mutex_lock(&dev
->struct_mutex
);
73 /* Cancel any active worker and force us to re-evaluate gup */
74 obj
->userptr
.work
= NULL
;
76 /* We are inside a kthread context and can't be interrupted */
77 if (i915_gem_object_unbind(obj
) == 0)
78 __i915_gem_object_put_pages(obj
, I915_MM_NORMAL
);
79 WARN_ONCE(obj
->mm
.pages
,
80 "Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_display=%d\n",
82 atomic_read(&obj
->mm
.pages_pin_count
),
85 i915_gem_object_put(obj
);
86 mutex_unlock(&dev
->struct_mutex
);
89 static void add_object(struct i915_mmu_object
*mo
)
94 interval_tree_insert(&mo
->it
, &mo
->mn
->objects
);
98 static void del_object(struct i915_mmu_object
*mo
)
103 interval_tree_remove(&mo
->it
, &mo
->mn
->objects
);
104 mo
->attached
= false;
107 static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier
*_mn
,
108 struct mm_struct
*mm
,
112 struct i915_mmu_notifier
*mn
=
113 container_of(_mn
, struct i915_mmu_notifier
, mn
);
114 struct i915_mmu_object
*mo
;
115 struct interval_tree_node
*it
;
116 LIST_HEAD(cancelled
);
118 if (RB_EMPTY_ROOT(&mn
->objects
))
121 /* interval ranges are inclusive, but invalidate range is exclusive */
124 spin_lock(&mn
->lock
);
125 it
= interval_tree_iter_first(&mn
->objects
, start
, end
);
127 /* The mmu_object is released late when destroying the
128 * GEM object so it is entirely possible to gain a
129 * reference on an object in the process of being freed
130 * since our serialisation is via the spinlock and not
131 * the struct_mutex - and consequently use it after it
132 * is freed and then double free it. To prevent that
133 * use-after-free we only acquire a reference on the
134 * object if it is not in the process of being destroyed.
136 mo
= container_of(it
, struct i915_mmu_object
, it
);
137 if (kref_get_unless_zero(&mo
->obj
->base
.refcount
))
138 queue_work(mn
->wq
, &mo
->work
);
140 list_add(&mo
->link
, &cancelled
);
141 it
= interval_tree_iter_next(it
, start
, end
);
143 list_for_each_entry(mo
, &cancelled
, link
)
145 spin_unlock(&mn
->lock
);
147 flush_workqueue(mn
->wq
);
150 static const struct mmu_notifier_ops i915_gem_userptr_notifier
= {
151 .invalidate_range_start
= i915_gem_userptr_mn_invalidate_range_start
,
154 static struct i915_mmu_notifier
*
155 i915_mmu_notifier_create(struct mm_struct
*mm
)
157 struct i915_mmu_notifier
*mn
;
160 mn
= kmalloc(sizeof(*mn
), GFP_KERNEL
);
162 return ERR_PTR(-ENOMEM
);
164 spin_lock_init(&mn
->lock
);
165 mn
->mn
.ops
= &i915_gem_userptr_notifier
;
166 mn
->objects
= RB_ROOT
;
167 mn
->wq
= alloc_workqueue("i915-userptr-release", WQ_UNBOUND
, 0);
168 if (mn
->wq
== NULL
) {
170 return ERR_PTR(-ENOMEM
);
173 /* Protected by mmap_sem (write-lock) */
174 ret
= __mmu_notifier_register(&mn
->mn
, mm
);
176 destroy_workqueue(mn
->wq
);
185 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object
*obj
)
187 struct i915_mmu_object
*mo
;
189 mo
= obj
->userptr
.mmu_object
;
193 spin_lock(&mo
->mn
->lock
);
195 spin_unlock(&mo
->mn
->lock
);
198 obj
->userptr
.mmu_object
= NULL
;
201 static struct i915_mmu_notifier
*
202 i915_mmu_notifier_find(struct i915_mm_struct
*mm
)
204 struct i915_mmu_notifier
*mn
= mm
->mn
;
210 down_write(&mm
->mm
->mmap_sem
);
211 mutex_lock(&mm
->i915
->mm_lock
);
212 if ((mn
= mm
->mn
) == NULL
) {
213 mn
= i915_mmu_notifier_create(mm
->mm
);
217 mutex_unlock(&mm
->i915
->mm_lock
);
218 up_write(&mm
->mm
->mmap_sem
);
224 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object
*obj
,
227 struct i915_mmu_notifier
*mn
;
228 struct i915_mmu_object
*mo
;
230 if (flags
& I915_USERPTR_UNSYNCHRONIZED
)
231 return capable(CAP_SYS_ADMIN
) ? 0 : -EPERM
;
233 if (WARN_ON(obj
->userptr
.mm
== NULL
))
236 mn
= i915_mmu_notifier_find(obj
->userptr
.mm
);
240 mo
= kzalloc(sizeof(*mo
), GFP_KERNEL
);
246 mo
->it
.start
= obj
->userptr
.ptr
;
247 mo
->it
.last
= obj
->userptr
.ptr
+ obj
->base
.size
- 1;
248 INIT_WORK(&mo
->work
, cancel_userptr
);
250 obj
->userptr
.mmu_object
= mo
;
255 i915_mmu_notifier_free(struct i915_mmu_notifier
*mn
,
256 struct mm_struct
*mm
)
261 mmu_notifier_unregister(&mn
->mn
, mm
);
262 destroy_workqueue(mn
->wq
);
269 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object
*obj
)
274 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object
*obj
,
277 if ((flags
& I915_USERPTR_UNSYNCHRONIZED
) == 0)
280 if (!capable(CAP_SYS_ADMIN
))
287 i915_mmu_notifier_free(struct i915_mmu_notifier
*mn
,
288 struct mm_struct
*mm
)
294 static struct i915_mm_struct
*
295 __i915_mm_struct_find(struct drm_i915_private
*dev_priv
, struct mm_struct
*real
)
297 struct i915_mm_struct
*mm
;
299 /* Protected by dev_priv->mm_lock */
300 hash_for_each_possible(dev_priv
->mm_structs
, mm
, node
, (unsigned long)real
)
308 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object
*obj
)
310 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
311 struct i915_mm_struct
*mm
;
314 /* During release of the GEM object we hold the struct_mutex. This
315 * precludes us from calling mmput() at that time as that may be
316 * the last reference and so call exit_mmap(). exit_mmap() will
317 * attempt to reap the vma, and if we were holding a GTT mmap
318 * would then call drm_gem_vm_close() and attempt to reacquire
319 * the struct mutex. So in order to avoid that recursion, we have
320 * to defer releasing the mm reference until after we drop the
321 * struct_mutex, i.e. we need to schedule a worker to do the clean
324 mutex_lock(&dev_priv
->mm_lock
);
325 mm
= __i915_mm_struct_find(dev_priv
, current
->mm
);
327 mm
= kmalloc(sizeof(*mm
), GFP_KERNEL
);
333 kref_init(&mm
->kref
);
334 mm
->i915
= to_i915(obj
->base
.dev
);
336 mm
->mm
= current
->mm
;
337 atomic_inc(¤t
->mm
->mm_count
);
341 /* Protected by dev_priv->mm_lock */
342 hash_add(dev_priv
->mm_structs
,
343 &mm
->node
, (unsigned long)mm
->mm
);
347 obj
->userptr
.mm
= mm
;
349 mutex_unlock(&dev_priv
->mm_lock
);
354 __i915_mm_struct_free__worker(struct work_struct
*work
)
356 struct i915_mm_struct
*mm
= container_of(work
, typeof(*mm
), work
);
357 i915_mmu_notifier_free(mm
->mn
, mm
->mm
);
363 __i915_mm_struct_free(struct kref
*kref
)
365 struct i915_mm_struct
*mm
= container_of(kref
, typeof(*mm
), kref
);
367 /* Protected by dev_priv->mm_lock */
369 mutex_unlock(&mm
->i915
->mm_lock
);
371 INIT_WORK(&mm
->work
, __i915_mm_struct_free__worker
);
372 schedule_work(&mm
->work
);
376 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object
*obj
)
378 if (obj
->userptr
.mm
== NULL
)
381 kref_put_mutex(&obj
->userptr
.mm
->kref
,
382 __i915_mm_struct_free
,
383 &to_i915(obj
->base
.dev
)->mm_lock
);
384 obj
->userptr
.mm
= NULL
;
387 struct get_pages_work
{
388 struct work_struct work
;
389 struct drm_i915_gem_object
*obj
;
390 struct task_struct
*task
;
393 #if IS_ENABLED(CONFIG_SWIOTLB)
394 #define swiotlb_active() swiotlb_nr_tbl()
396 #define swiotlb_active() 0
400 st_set_pages(struct sg_table
**st
, struct page
**pvec
, int num_pages
)
402 struct scatterlist
*sg
;
405 *st
= kmalloc(sizeof(**st
), GFP_KERNEL
);
409 if (swiotlb_active()) {
410 ret
= sg_alloc_table(*st
, num_pages
, GFP_KERNEL
);
414 for_each_sg((*st
)->sgl
, sg
, num_pages
, n
)
415 sg_set_page(sg
, pvec
[n
], PAGE_SIZE
, 0);
417 ret
= sg_alloc_table_from_pages(*st
, pvec
, num_pages
,
418 0, num_pages
<< PAGE_SHIFT
,
432 static struct sg_table
*
433 __i915_gem_userptr_set_pages(struct drm_i915_gem_object
*obj
,
434 struct page
**pvec
, int num_pages
)
436 struct sg_table
*pages
;
439 ret
= st_set_pages(&pages
, pvec
, num_pages
);
443 ret
= i915_gem_gtt_prepare_pages(obj
, pages
);
445 sg_free_table(pages
);
454 __i915_gem_userptr_set_active(struct drm_i915_gem_object
*obj
,
459 /* During mm_invalidate_range we need to cancel any userptr that
460 * overlaps the range being invalidated. Doing so requires the
461 * struct_mutex, and that risks recursion. In order to cause
462 * recursion, the user must alias the userptr address space with
463 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
464 * to invalidate that mmaping, mm_invalidate_range is called with
465 * the userptr address *and* the struct_mutex held. To prevent that
466 * we set a flag under the i915_mmu_notifier spinlock to indicate
467 * whether this object is valid.
469 #if defined(CONFIG_MMU_NOTIFIER)
470 if (obj
->userptr
.mmu_object
== NULL
)
473 spin_lock(&obj
->userptr
.mmu_object
->mn
->lock
);
474 /* In order to serialise get_pages with an outstanding
475 * cancel_userptr, we must drop the struct_mutex and try again.
478 del_object(obj
->userptr
.mmu_object
);
479 else if (!work_pending(&obj
->userptr
.mmu_object
->work
))
480 add_object(obj
->userptr
.mmu_object
);
483 spin_unlock(&obj
->userptr
.mmu_object
->mn
->lock
);
490 __i915_gem_userptr_get_pages_worker(struct work_struct
*_work
)
492 struct get_pages_work
*work
= container_of(_work
, typeof(*work
), work
);
493 struct drm_i915_gem_object
*obj
= work
->obj
;
494 const int npages
= obj
->base
.size
>> PAGE_SHIFT
;
501 pvec
= drm_malloc_gfp(npages
, sizeof(struct page
*), GFP_TEMPORARY
);
503 struct mm_struct
*mm
= obj
->userptr
.mm
->mm
;
504 unsigned int flags
= 0;
506 if (!obj
->userptr
.read_only
)
510 if (atomic_inc_not_zero(&mm
->mm_users
)) {
511 down_read(&mm
->mmap_sem
);
512 while (pinned
< npages
) {
513 ret
= get_user_pages_remote
515 obj
->userptr
.ptr
+ pinned
* PAGE_SIZE
,
518 pvec
+ pinned
, NULL
, NULL
);
524 up_read(&mm
->mmap_sem
);
529 mutex_lock(&obj
->mm
.lock
);
530 if (obj
->userptr
.work
== &work
->work
) {
531 struct sg_table
*pages
= ERR_PTR(ret
);
533 if (pinned
== npages
) {
534 pages
= __i915_gem_userptr_set_pages(obj
, pvec
, npages
);
535 if (!IS_ERR(pages
)) {
536 __i915_gem_object_set_pages(obj
, pages
);
542 obj
->userptr
.work
= ERR_CAST(pages
);
544 mutex_unlock(&obj
->mm
.lock
);
546 release_pages(pvec
, pinned
, 0);
547 drm_free_large(pvec
);
549 i915_gem_object_put(obj
);
550 put_task_struct(work
->task
);
554 static struct sg_table
*
555 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object
*obj
,
558 struct get_pages_work
*work
;
560 /* Spawn a worker so that we can acquire the
561 * user pages without holding our mutex. Access
562 * to the user pages requires mmap_sem, and we have
563 * a strict lock ordering of mmap_sem, struct_mutex -
564 * we already hold struct_mutex here and so cannot
565 * call gup without encountering a lock inversion.
567 * Userspace will keep on repeating the operation
568 * (thanks to EAGAIN) until either we hit the fast
569 * path or the worker completes. If the worker is
570 * cancelled or superseded, the task is still run
571 * but the results ignored. (This leads to
572 * complications that we may have a stray object
573 * refcount that we need to be wary of when
574 * checking for existing objects during creation.)
575 * If the worker encounters an error, it reports
576 * that error back to this function through
577 * obj->userptr.work = ERR_PTR.
579 work
= kmalloc(sizeof(*work
), GFP_KERNEL
);
581 return ERR_PTR(-ENOMEM
);
583 obj
->userptr
.work
= &work
->work
;
585 work
->obj
= i915_gem_object_get(obj
);
587 work
->task
= current
;
588 get_task_struct(work
->task
);
590 INIT_WORK(&work
->work
, __i915_gem_userptr_get_pages_worker
);
591 schedule_work(&work
->work
);
594 return ERR_PTR(-EAGAIN
);
597 static struct sg_table
*
598 i915_gem_userptr_get_pages(struct drm_i915_gem_object
*obj
)
600 const int num_pages
= obj
->base
.size
>> PAGE_SHIFT
;
602 struct sg_table
*pages
;
606 /* If userspace should engineer that these pages are replaced in
607 * the vma between us binding this page into the GTT and completion
608 * of rendering... Their loss. If they change the mapping of their
609 * pages they need to create a new bo to point to the new vma.
611 * However, that still leaves open the possibility of the vma
612 * being copied upon fork. Which falls under the same userspace
613 * synchronisation issue as a regular bo, except that this time
614 * the process may not be expecting that a particular piece of
615 * memory is tied to the GPU.
617 * Fortunately, we can hook into the mmu_notifier in order to
618 * discard the page references prior to anything nasty happening
619 * to the vma (discard or cloning) which should prevent the more
620 * egregious cases from causing harm.
623 if (obj
->userptr
.work
) {
624 /* active flag should still be held for the pending work */
625 if (IS_ERR(obj
->userptr
.work
))
626 return ERR_CAST(obj
->userptr
.work
);
628 return ERR_PTR(-EAGAIN
);
631 /* Let the mmu-notifier know that we have begun and need cancellation */
632 ret
= __i915_gem_userptr_set_active(obj
, true);
638 if (obj
->userptr
.mm
->mm
== current
->mm
) {
639 pvec
= drm_malloc_gfp(num_pages
, sizeof(struct page
*),
642 __i915_gem_userptr_set_active(obj
, false);
643 return ERR_PTR(-ENOMEM
);
646 pinned
= __get_user_pages_fast(obj
->userptr
.ptr
, num_pages
,
647 !obj
->userptr
.read_only
, pvec
);
652 pages
= ERR_PTR(pinned
), pinned
= 0;
653 else if (pinned
< num_pages
)
654 pages
= __i915_gem_userptr_get_pages_schedule(obj
, &active
);
656 pages
= __i915_gem_userptr_set_pages(obj
, pvec
, num_pages
);
658 __i915_gem_userptr_set_active(obj
, active
);
659 release_pages(pvec
, pinned
, 0);
661 drm_free_large(pvec
);
666 i915_gem_userptr_put_pages(struct drm_i915_gem_object
*obj
,
667 struct sg_table
*pages
)
669 struct sgt_iter sgt_iter
;
672 BUG_ON(obj
->userptr
.work
!= NULL
);
673 __i915_gem_userptr_set_active(obj
, false);
675 if (obj
->mm
.madv
!= I915_MADV_WILLNEED
)
676 obj
->mm
.dirty
= false;
678 i915_gem_gtt_finish_pages(obj
, pages
);
680 for_each_sgt_page(page
, sgt_iter
, pages
) {
682 set_page_dirty(page
);
684 mark_page_accessed(page
);
687 obj
->mm
.dirty
= false;
689 sg_free_table(pages
);
694 i915_gem_userptr_release(struct drm_i915_gem_object
*obj
)
696 i915_gem_userptr_release__mmu_notifier(obj
);
697 i915_gem_userptr_release__mm_struct(obj
);
701 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object
*obj
)
703 if (obj
->userptr
.mmu_object
)
706 return i915_gem_userptr_init__mmu_notifier(obj
, 0);
709 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops
= {
710 .flags
= I915_GEM_OBJECT_HAS_STRUCT_PAGE
|
711 I915_GEM_OBJECT_IS_SHRINKABLE
,
712 .get_pages
= i915_gem_userptr_get_pages
,
713 .put_pages
= i915_gem_userptr_put_pages
,
714 .dmabuf_export
= i915_gem_userptr_dmabuf_export
,
715 .release
= i915_gem_userptr_release
,
719 * Creates a new mm object that wraps some normal memory from the process
720 * context - user memory.
722 * We impose several restrictions upon the memory being mapped
724 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
725 * 2. It must be normal system memory, not a pointer into another map of IO
726 * space (e.g. it must not be a GTT mmapping of another object).
727 * 3. We only allow a bo as large as we could in theory map into the GTT,
728 * that is we limit the size to the total size of the GTT.
729 * 4. The bo is marked as being snoopable. The backing pages are left
730 * accessible directly by the CPU, but reads and writes by the GPU may
731 * incur the cost of a snoop (unless you have an LLC architecture).
733 * Synchronisation between multiple users and the GPU is left to userspace
734 * through the normal set-domain-ioctl. The kernel will enforce that the
735 * GPU relinquishes the VMA before it is returned back to the system
736 * i.e. upon free(), munmap() or process termination. However, the userspace
737 * malloc() library may not immediately relinquish the VMA after free() and
738 * instead reuse it whilst the GPU is still reading and writing to the VMA.
741 * Also note, that the object created here is not currently a "first class"
742 * object, in that several ioctls are banned. These are the CPU access
743 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
744 * direct access via your pointer rather than use those ioctls. Another
745 * restriction is that we do not allow userptr surfaces to be pinned to the
746 * hardware and so we reject any attempt to create a framebuffer out of a
749 * If you think this is a good interface to use to pass GPU memory between
750 * drivers, please use dma-buf instead. In fact, wherever possible use
754 i915_gem_userptr_ioctl(struct drm_device
*dev
, void *data
, struct drm_file
*file
)
756 struct drm_i915_private
*dev_priv
= to_i915(dev
);
757 struct drm_i915_gem_userptr
*args
= data
;
758 struct drm_i915_gem_object
*obj
;
762 if (!HAS_LLC(dev_priv
) && !HAS_SNOOP(dev_priv
)) {
763 /* We cannot support coherent userptr objects on hw without
764 * LLC and broken snooping.
769 if (args
->flags
& ~(I915_USERPTR_READ_ONLY
|
770 I915_USERPTR_UNSYNCHRONIZED
))
773 if (offset_in_page(args
->user_ptr
| args
->user_size
))
776 if (!access_ok(args
->flags
& I915_USERPTR_READ_ONLY
? VERIFY_READ
: VERIFY_WRITE
,
777 (char __user
*)(unsigned long)args
->user_ptr
, args
->user_size
))
780 if (args
->flags
& I915_USERPTR_READ_ONLY
) {
781 /* On almost all of the current hw, we cannot tell the GPU that a
782 * page is readonly, so this is just a placeholder in the uAPI.
787 obj
= i915_gem_object_alloc(dev_priv
);
791 drm_gem_private_object_init(dev
, &obj
->base
, args
->user_size
);
792 i915_gem_object_init(obj
, &i915_gem_userptr_ops
);
793 obj
->cache_level
= I915_CACHE_LLC
;
794 obj
->base
.write_domain
= I915_GEM_DOMAIN_CPU
;
795 obj
->base
.read_domains
= I915_GEM_DOMAIN_CPU
;
797 obj
->userptr
.ptr
= args
->user_ptr
;
798 obj
->userptr
.read_only
= !!(args
->flags
& I915_USERPTR_READ_ONLY
);
800 /* And keep a pointer to the current->mm for resolving the user pages
801 * at binding. This means that we need to hook into the mmu_notifier
802 * in order to detect if the mmu is destroyed.
804 ret
= i915_gem_userptr_init__mm_struct(obj
);
806 ret
= i915_gem_userptr_init__mmu_notifier(obj
, args
->flags
);
808 ret
= drm_gem_handle_create(file
, &obj
->base
, &handle
);
810 /* drop reference from allocate - handle holds it now */
811 i915_gem_object_put(obj
);
815 args
->handle
= handle
;
819 void i915_gem_init_userptr(struct drm_i915_private
*dev_priv
)
821 mutex_init(&dev_priv
->mm_lock
);
822 hash_init(dev_priv
->mm_structs
);