2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
60 * Regarding the creation of contexts, we have:
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
134 #include <linux/interrupt.h>
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
164 #define CTX_LRI_HEADER_0 0x01
165 #define CTX_CONTEXT_CONTROL 0x02
166 #define CTX_RING_HEAD 0x04
167 #define CTX_RING_TAIL 0x06
168 #define CTX_RING_BUFFER_START 0x08
169 #define CTX_RING_BUFFER_CONTROL 0x0a
170 #define CTX_BB_HEAD_U 0x0c
171 #define CTX_BB_HEAD_L 0x0e
172 #define CTX_BB_STATE 0x10
173 #define CTX_SECOND_BB_HEAD_U 0x12
174 #define CTX_SECOND_BB_HEAD_L 0x14
175 #define CTX_SECOND_BB_STATE 0x16
176 #define CTX_BB_PER_CTX_PTR 0x18
177 #define CTX_RCS_INDIRECT_CTX 0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179 #define CTX_LRI_HEADER_1 0x21
180 #define CTX_CTX_TIMESTAMP 0x22
181 #define CTX_PDP3_UDW 0x24
182 #define CTX_PDP3_LDW 0x26
183 #define CTX_PDP2_UDW 0x28
184 #define CTX_PDP2_LDW 0x2a
185 #define CTX_PDP1_UDW 0x2c
186 #define CTX_PDP1_LDW 0x2e
187 #define CTX_PDP0_UDW 0x30
188 #define CTX_PDP0_LDW 0x32
189 #define CTX_LRI_HEADER_2 0x41
190 #define CTX_R_PWR_CLK_STATE 0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 (reg_state)[(pos)+1] = (val); \
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
217 FAULT_AND_HALT
, /* Debug only */
219 FAULT_AND_CONTINUE
/* Unsupported */
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
229 #define WA_TAIL_DWORDS 2
231 static int execlists_context_deferred_alloc(struct i915_gem_context
*ctx
,
232 struct intel_engine_cs
*engine
);
233 static void execlists_init_reg_state(u32
*reg_state
,
234 struct i915_gem_context
*ctx
,
235 struct intel_engine_cs
*engine
,
236 struct intel_ring
*ring
);
239 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
240 * @dev_priv: i915 device private
241 * @enable_execlists: value of i915.enable_execlists module parameter.
243 * Only certain platforms support Execlists (the prerequisites being
244 * support for Logical Ring Contexts and Aliasing PPGTT or better).
246 * Return: 1 if Execlists is supported and has to be enabled.
248 int intel_sanitize_enable_execlists(struct drm_i915_private
*dev_priv
, int enable_execlists
)
250 /* On platforms with execlist available, vGPU will only
251 * support execlist mode, no ring buffer mode.
253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv
) && intel_vgpu_active(dev_priv
))
256 if (INTEL_GEN(dev_priv
) >= 9)
259 if (enable_execlists
== 0)
262 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv
) &&
263 USES_PPGTT(dev_priv
) &&
264 i915
.use_mmio_flip
>= 0)
271 logical_ring_init_platform_invariants(struct intel_engine_cs
*engine
)
273 struct drm_i915_private
*dev_priv
= engine
->i915
;
275 engine
->disable_lite_restore_wa
=
276 IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
) &&
277 (engine
->id
== VCS
|| engine
->id
== VCS2
);
279 engine
->ctx_desc_template
= GEN8_CTX_VALID
;
280 if (IS_GEN8(dev_priv
))
281 engine
->ctx_desc_template
|= GEN8_CTX_L3LLC_COHERENT
;
282 engine
->ctx_desc_template
|= GEN8_CTX_PRIVILEGE
;
284 /* TODO: WaDisableLiteRestore when we start using semaphore
285 * signalling between Command Streamers */
286 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
290 if (engine
->disable_lite_restore_wa
)
291 engine
->ctx_desc_template
|= GEN8_CTX_FORCE_RESTORE
;
295 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
296 * descriptor for a pinned context
297 * @ctx: Context to work on
298 * @engine: Engine the descriptor will be used with
300 * The context descriptor encodes various attributes of a context,
301 * including its GTT address and some flags. Because it's fairly
302 * expensive to calculate, we'll just do it once and cache the result,
303 * which remains valid until the context is unpinned.
305 * This is what a descriptor looks like, from LSB to MSB::
307 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
308 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
309 * bits 32-52: ctx ID, a globally unique tag
310 * bits 53-54: mbz, reserved for use by hardware
311 * bits 55-63: group ID, currently unused and set to 0
314 intel_lr_context_descriptor_update(struct i915_gem_context
*ctx
,
315 struct intel_engine_cs
*engine
)
317 struct intel_context
*ce
= &ctx
->engine
[engine
->id
];
320 BUILD_BUG_ON(MAX_CONTEXT_HW_ID
> (1<<GEN8_CTX_ID_WIDTH
));
322 desc
= ctx
->desc_template
; /* bits 3-4 */
323 desc
|= engine
->ctx_desc_template
; /* bits 0-11 */
324 desc
|= i915_ggtt_offset(ce
->state
) + LRC_PPHWSP_PN
* PAGE_SIZE
;
326 desc
|= (u64
)ctx
->hw_id
<< GEN8_CTX_ID_SHIFT
; /* bits 32-52 */
331 uint64_t intel_lr_context_descriptor(struct i915_gem_context
*ctx
,
332 struct intel_engine_cs
*engine
)
334 return ctx
->engine
[engine
->id
].lrc_desc
;
338 execlists_context_status_change(struct drm_i915_gem_request
*rq
,
339 unsigned long status
)
342 * Only used when GVT-g is enabled now. When GVT-g is disabled,
343 * The compiler should eliminate this function as dead-code.
345 if (!IS_ENABLED(CONFIG_DRM_I915_GVT
))
348 atomic_notifier_call_chain(&rq
->ctx
->status_notifier
, status
, rq
);
352 execlists_update_context_pdps(struct i915_hw_ppgtt
*ppgtt
, u32
*reg_state
)
354 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 3);
355 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 2);
356 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 1);
357 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 0);
360 static u64
execlists_update_context(struct drm_i915_gem_request
*rq
)
362 struct intel_context
*ce
= &rq
->ctx
->engine
[rq
->engine
->id
];
363 struct i915_hw_ppgtt
*ppgtt
= rq
->ctx
->ppgtt
;
364 u32
*reg_state
= ce
->lrc_reg_state
;
366 reg_state
[CTX_RING_TAIL
+1] = rq
->tail
;
368 /* True 32b PPGTT with dynamic page allocation: update PDP
369 * registers and point the unallocated PDPs to scratch page.
370 * PML4 is allocated during ppgtt init, so this is not needed
373 if (ppgtt
&& !USES_FULL_48BIT_PPGTT(ppgtt
->base
.dev
))
374 execlists_update_context_pdps(ppgtt
, reg_state
);
379 static void execlists_submit_ports(struct intel_engine_cs
*engine
)
381 struct drm_i915_private
*dev_priv
= engine
->i915
;
382 struct execlist_port
*port
= engine
->execlist_port
;
384 dev_priv
->regs
+ i915_mmio_reg_offset(RING_ELSP(engine
));
388 execlists_context_status_change(port
[0].request
,
389 INTEL_CONTEXT_SCHEDULE_IN
);
390 desc
[0] = execlists_update_context(port
[0].request
);
391 engine
->preempt_wa
= port
[0].count
++; /* bdw only? fixed on skl? */
393 if (port
[1].request
) {
394 GEM_BUG_ON(port
[1].count
);
395 execlists_context_status_change(port
[1].request
,
396 INTEL_CONTEXT_SCHEDULE_IN
);
397 desc
[1] = execlists_update_context(port
[1].request
);
402 GEM_BUG_ON(desc
[0] == desc
[1]);
404 /* You must always write both descriptors in the order below. */
405 writel(upper_32_bits(desc
[1]), elsp
);
406 writel(lower_32_bits(desc
[1]), elsp
);
408 writel(upper_32_bits(desc
[0]), elsp
);
409 /* The context is automatically loaded after the following */
410 writel(lower_32_bits(desc
[0]), elsp
);
413 static bool ctx_single_port_submission(const struct i915_gem_context
*ctx
)
415 return (IS_ENABLED(CONFIG_DRM_I915_GVT
) &&
416 i915_gem_context_force_single_submission(ctx
));
419 static bool can_merge_ctx(const struct i915_gem_context
*prev
,
420 const struct i915_gem_context
*next
)
425 if (ctx_single_port_submission(prev
))
431 static void execlists_dequeue(struct intel_engine_cs
*engine
)
433 struct drm_i915_gem_request
*last
;
434 struct execlist_port
*port
= engine
->execlist_port
;
439 last
= port
->request
;
441 /* WaIdleLiteRestore:bdw,skl
442 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
443 * as we resubmit the request. See gen8_emit_breadcrumb()
444 * for where we prepare the padding after the end of the
447 last
->tail
= last
->wa_tail
;
449 GEM_BUG_ON(port
[1].request
);
451 /* Hardware submission is through 2 ports. Conceptually each port
452 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
453 * static for a context, and unique to each, so we only execute
454 * requests belonging to a single context from each ring. RING_HEAD
455 * is maintained by the CS in the context image, it marks the place
456 * where it got up to last time, and through RING_TAIL we tell the CS
457 * where we want to execute up to this time.
459 * In this list the requests are in order of execution. Consecutive
460 * requests from the same context are adjacent in the ringbuffer. We
461 * can combine these requests into a single RING_TAIL update:
463 * RING_HEAD...req1...req2
465 * since to execute req2 the CS must first execute req1.
467 * Our goal then is to point each port to the end of a consecutive
468 * sequence of requests as being the most optimal (fewest wake ups
469 * and context switches) submission.
472 spin_lock_irqsave(&engine
->timeline
->lock
, flags
);
473 rb
= engine
->execlist_first
;
475 struct drm_i915_gem_request
*cursor
=
476 rb_entry(rb
, typeof(*cursor
), priotree
.node
);
478 /* Can we combine this request with the current port? It has to
479 * be the same context/ringbuffer and not have any exceptions
480 * (e.g. GVT saying never to combine contexts).
482 * If we can combine the requests, we can execute both by
483 * updating the RING_TAIL to point to the end of the second
484 * request, and so we never need to tell the hardware about
487 if (last
&& !can_merge_ctx(cursor
->ctx
, last
->ctx
)) {
488 /* If we are on the second port and cannot combine
489 * this request with the last, then we are done.
491 if (port
!= engine
->execlist_port
)
494 /* If GVT overrides us we only ever submit port[0],
495 * leaving port[1] empty. Note that we also have
496 * to be careful that we don't queue the same
497 * context (even though a different request) to
500 if (ctx_single_port_submission(last
->ctx
) ||
501 ctx_single_port_submission(cursor
->ctx
))
504 GEM_BUG_ON(last
->ctx
== cursor
->ctx
);
506 i915_gem_request_assign(&port
->request
, last
);
511 rb_erase(&cursor
->priotree
.node
, &engine
->execlist_queue
);
512 RB_CLEAR_NODE(&cursor
->priotree
.node
);
513 cursor
->priotree
.priority
= INT_MAX
;
515 __i915_gem_request_submit(cursor
);
520 i915_gem_request_assign(&port
->request
, last
);
521 engine
->execlist_first
= rb
;
523 spin_unlock_irqrestore(&engine
->timeline
->lock
, flags
);
526 execlists_submit_ports(engine
);
529 static bool execlists_elsp_idle(struct intel_engine_cs
*engine
)
531 return !engine
->execlist_port
[0].request
;
535 * intel_execlists_idle() - Determine if all engine submission ports are idle
536 * @dev_priv: i915 device private
538 * Return true if there are no requests pending on any of the submission ports
541 bool intel_execlists_idle(struct drm_i915_private
*dev_priv
)
543 struct intel_engine_cs
*engine
;
544 enum intel_engine_id id
;
546 if (!i915
.enable_execlists
)
549 for_each_engine(engine
, dev_priv
, id
)
550 if (!execlists_elsp_idle(engine
))
556 static bool execlists_elsp_ready(struct intel_engine_cs
*engine
)
560 port
= 1; /* wait for a free slot */
561 if (engine
->disable_lite_restore_wa
|| engine
->preempt_wa
)
562 port
= 0; /* wait for GPU to be idle before continuing */
564 return !engine
->execlist_port
[port
].request
;
568 * Check the unread Context Status Buffers and manage the submission of new
569 * contexts to the ELSP accordingly.
571 static void intel_lrc_irq_handler(unsigned long data
)
573 struct intel_engine_cs
*engine
= (struct intel_engine_cs
*)data
;
574 struct execlist_port
*port
= engine
->execlist_port
;
575 struct drm_i915_private
*dev_priv
= engine
->i915
;
577 intel_uncore_forcewake_get(dev_priv
, engine
->fw_domains
);
579 if (!execlists_elsp_idle(engine
)) {
580 u32 __iomem
*csb_mmio
=
581 dev_priv
->regs
+ i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine
));
583 dev_priv
->regs
+ i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine
, 0));
584 unsigned int csb
, head
, tail
;
586 csb
= readl(csb_mmio
);
587 head
= GEN8_CSB_READ_PTR(csb
);
588 tail
= GEN8_CSB_WRITE_PTR(csb
);
590 tail
+= GEN8_CSB_ENTRIES
;
591 while (head
< tail
) {
592 unsigned int idx
= ++head
% GEN8_CSB_ENTRIES
;
593 unsigned int status
= readl(buf
+ 2 * idx
);
595 if (!(status
& GEN8_CTX_STATUS_COMPLETED_MASK
))
598 GEM_BUG_ON(port
[0].count
== 0);
599 if (--port
[0].count
== 0) {
600 GEM_BUG_ON(status
& GEN8_CTX_STATUS_PREEMPTED
);
601 execlists_context_status_change(port
[0].request
,
602 INTEL_CONTEXT_SCHEDULE_OUT
);
604 i915_gem_request_put(port
[0].request
);
606 memset(&port
[1], 0, sizeof(port
[1]));
608 engine
->preempt_wa
= false;
611 GEM_BUG_ON(port
[0].count
== 0 &&
612 !(status
& GEN8_CTX_STATUS_ACTIVE_IDLE
));
615 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK
,
616 GEN8_CSB_WRITE_PTR(csb
) << 8),
620 if (execlists_elsp_ready(engine
))
621 execlists_dequeue(engine
);
623 intel_uncore_forcewake_put(dev_priv
, engine
->fw_domains
);
626 static bool insert_request(struct i915_priotree
*pt
, struct rb_root
*root
)
628 struct rb_node
**p
, *rb
;
631 /* most positive priority is scheduled first, equal priorities fifo */
635 struct i915_priotree
*pos
;
638 pos
= rb_entry(rb
, typeof(*pos
), node
);
639 if (pt
->priority
> pos
->priority
) {
646 rb_link_node(&pt
->node
, rb
, p
);
647 rb_insert_color(&pt
->node
, root
);
652 static void execlists_submit_request(struct drm_i915_gem_request
*request
)
654 struct intel_engine_cs
*engine
= request
->engine
;
657 /* Will be called from irq-context when using foreign fences. */
658 spin_lock_irqsave(&engine
->timeline
->lock
, flags
);
660 if (insert_request(&request
->priotree
, &engine
->execlist_queue
))
661 engine
->execlist_first
= &request
->priotree
.node
;
662 if (execlists_elsp_idle(engine
))
663 tasklet_hi_schedule(&engine
->irq_tasklet
);
665 spin_unlock_irqrestore(&engine
->timeline
->lock
, flags
);
668 static struct intel_engine_cs
*
669 pt_lock_engine(struct i915_priotree
*pt
, struct intel_engine_cs
*locked
)
671 struct intel_engine_cs
*engine
;
673 engine
= container_of(pt
,
674 struct drm_i915_gem_request
,
676 if (engine
!= locked
) {
678 spin_unlock_irq(&locked
->timeline
->lock
);
679 spin_lock_irq(&engine
->timeline
->lock
);
685 static void execlists_schedule(struct drm_i915_gem_request
*request
, int prio
)
687 struct intel_engine_cs
*engine
= NULL
;
688 struct i915_dependency
*dep
, *p
;
689 struct i915_dependency stack
;
692 if (prio
<= READ_ONCE(request
->priotree
.priority
))
695 /* Need BKL in order to use the temporary link inside i915_dependency */
696 lockdep_assert_held(&request
->i915
->drm
.struct_mutex
);
698 stack
.signaler
= &request
->priotree
;
699 list_add(&stack
.dfs_link
, &dfs
);
701 /* Recursively bump all dependent priorities to match the new request.
703 * A naive approach would be to use recursion:
704 * static void update_priorities(struct i915_priotree *pt, prio) {
705 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
706 * update_priorities(dep->signal, prio)
707 * insert_request(pt);
709 * but that may have unlimited recursion depth and so runs a very
710 * real risk of overunning the kernel stack. Instead, we build
711 * a flat list of all dependencies starting with the current request.
712 * As we walk the list of dependencies, we add all of its dependencies
713 * to the end of the list (this may include an already visited
714 * request) and continue to walk onwards onto the new dependencies. The
715 * end result is a topological list of requests in reverse order, the
716 * last element in the list is the request we must execute first.
718 list_for_each_entry_safe(dep
, p
, &dfs
, dfs_link
) {
719 struct i915_priotree
*pt
= dep
->signaler
;
721 list_for_each_entry(p
, &pt
->signalers_list
, signal_link
)
722 if (prio
> READ_ONCE(p
->signaler
->priority
))
723 list_move_tail(&p
->dfs_link
, &dfs
);
725 list_safe_reset_next(dep
, p
, dfs_link
);
726 if (!RB_EMPTY_NODE(&pt
->node
))
729 engine
= pt_lock_engine(pt
, engine
);
731 /* If it is not already in the rbtree, we can update the
732 * priority inplace and skip over it (and its dependencies)
733 * if it is referenced *again* as we descend the dfs.
735 if (prio
> pt
->priority
&& RB_EMPTY_NODE(&pt
->node
)) {
737 list_del_init(&dep
->dfs_link
);
741 /* Fifo and depth-first replacement ensure our deps execute before us */
742 list_for_each_entry_safe_reverse(dep
, p
, &dfs
, dfs_link
) {
743 struct i915_priotree
*pt
= dep
->signaler
;
745 INIT_LIST_HEAD(&dep
->dfs_link
);
747 engine
= pt_lock_engine(pt
, engine
);
749 if (prio
<= pt
->priority
)
752 GEM_BUG_ON(RB_EMPTY_NODE(&pt
->node
));
755 rb_erase(&pt
->node
, &engine
->execlist_queue
);
756 if (insert_request(pt
, &engine
->execlist_queue
))
757 engine
->execlist_first
= &pt
->node
;
761 spin_unlock_irq(&engine
->timeline
->lock
);
763 /* XXX Do we need to preempt to make room for us and our deps? */
766 static int execlists_context_pin(struct intel_engine_cs
*engine
,
767 struct i915_gem_context
*ctx
)
769 struct intel_context
*ce
= &ctx
->engine
[engine
->id
];
774 lockdep_assert_held(&ctx
->i915
->drm
.struct_mutex
);
780 ret
= execlists_context_deferred_alloc(ctx
, engine
);
784 GEM_BUG_ON(!ce
->state
);
787 if (ctx
->ggtt_offset_bias
)
788 flags
|= PIN_OFFSET_BIAS
| ctx
->ggtt_offset_bias
;
789 if (i915_gem_context_is_kernel(ctx
))
792 ret
= i915_vma_pin(ce
->state
, 0, GEN8_LR_CONTEXT_ALIGN
, flags
);
796 vaddr
= i915_gem_object_pin_map(ce
->state
->obj
, I915_MAP_WB
);
798 ret
= PTR_ERR(vaddr
);
802 ret
= intel_ring_pin(ce
->ring
, ctx
->ggtt_offset_bias
);
806 intel_lr_context_descriptor_update(ctx
, engine
);
808 ce
->lrc_reg_state
= vaddr
+ LRC_STATE_PN
* PAGE_SIZE
;
809 ce
->lrc_reg_state
[CTX_RING_BUFFER_START
+1] =
810 i915_ggtt_offset(ce
->ring
->vma
);
812 ce
->state
->obj
->mm
.dirty
= true;
814 i915_gem_context_get(ctx
);
818 i915_gem_object_unpin_map(ce
->state
->obj
);
820 __i915_vma_unpin(ce
->state
);
826 static void execlists_context_unpin(struct intel_engine_cs
*engine
,
827 struct i915_gem_context
*ctx
)
829 struct intel_context
*ce
= &ctx
->engine
[engine
->id
];
831 lockdep_assert_held(&ctx
->i915
->drm
.struct_mutex
);
832 GEM_BUG_ON(ce
->pin_count
== 0);
837 intel_ring_unpin(ce
->ring
);
839 i915_gem_object_unpin_map(ce
->state
->obj
);
840 i915_vma_unpin(ce
->state
);
842 i915_gem_context_put(ctx
);
845 static int execlists_request_alloc(struct drm_i915_gem_request
*request
)
847 struct intel_engine_cs
*engine
= request
->engine
;
848 struct intel_context
*ce
= &request
->ctx
->engine
[engine
->id
];
851 GEM_BUG_ON(!ce
->pin_count
);
853 /* Flush enough space to reduce the likelihood of waiting after
854 * we start building the request - in which case we will just
855 * have to repeat work.
857 request
->reserved_space
+= EXECLISTS_REQUEST_SIZE
;
859 GEM_BUG_ON(!ce
->ring
);
860 request
->ring
= ce
->ring
;
862 if (i915
.enable_guc_submission
) {
864 * Check that the GuC has space for the request before
865 * going any further, as the i915_add_request() call
866 * later on mustn't fail ...
868 ret
= i915_guc_wq_reserve(request
);
873 ret
= intel_ring_begin(request
, 0);
877 if (!ce
->initialised
) {
878 ret
= engine
->init_context(request
);
882 ce
->initialised
= true;
885 /* Note that after this point, we have committed to using
886 * this request as it is being used to both track the
887 * state of engine initialisation and liveness of the
888 * golden renderstate above. Think twice before you try
889 * to cancel/unwind this request now.
892 request
->reserved_space
-= EXECLISTS_REQUEST_SIZE
;
896 if (i915
.enable_guc_submission
)
897 i915_guc_wq_unreserve(request
);
902 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request
*req
)
905 struct intel_ring
*ring
= req
->ring
;
906 struct i915_workarounds
*w
= &req
->i915
->workarounds
;
911 ret
= req
->engine
->emit_flush(req
, EMIT_BARRIER
);
915 ret
= intel_ring_begin(req
, w
->count
* 2 + 2);
919 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(w
->count
));
920 for (i
= 0; i
< w
->count
; i
++) {
921 intel_ring_emit_reg(ring
, w
->reg
[i
].addr
);
922 intel_ring_emit(ring
, w
->reg
[i
].value
);
924 intel_ring_emit(ring
, MI_NOOP
);
926 intel_ring_advance(ring
);
928 ret
= req
->engine
->emit_flush(req
, EMIT_BARRIER
);
935 #define wa_ctx_emit(batch, index, cmd) \
937 int __index = (index)++; \
938 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
941 batch[__index] = (cmd); \
944 #define wa_ctx_emit_reg(batch, index, reg) \
945 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
948 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
949 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
950 * but there is a slight complication as this is applied in WA batch where the
951 * values are only initialized once so we cannot take register value at the
952 * beginning and reuse it further; hence we save its value to memory, upload a
953 * constant value with bit21 set and then we restore it back with the saved value.
954 * To simplify the WA, a constant value is formed by using the default value
955 * of this register. This shouldn't be a problem because we are only modifying
956 * it for a short period and this batch in non-premptible. We can ofcourse
957 * use additional instructions that read the actual value of the register
958 * at that time and set our bit of interest but it makes the WA complicated.
960 * This WA is also required for Gen9 so extracting as a function avoids
963 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs
*engine
,
967 uint32_t l3sqc4_flush
= (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES
);
969 wa_ctx_emit(batch
, index
, (MI_STORE_REGISTER_MEM_GEN8
|
970 MI_SRM_LRM_GLOBAL_GTT
));
971 wa_ctx_emit_reg(batch
, index
, GEN8_L3SQCREG4
);
972 wa_ctx_emit(batch
, index
, i915_ggtt_offset(engine
->scratch
) + 256);
973 wa_ctx_emit(batch
, index
, 0);
975 wa_ctx_emit(batch
, index
, MI_LOAD_REGISTER_IMM(1));
976 wa_ctx_emit_reg(batch
, index
, GEN8_L3SQCREG4
);
977 wa_ctx_emit(batch
, index
, l3sqc4_flush
);
979 wa_ctx_emit(batch
, index
, GFX_OP_PIPE_CONTROL(6));
980 wa_ctx_emit(batch
, index
, (PIPE_CONTROL_CS_STALL
|
981 PIPE_CONTROL_DC_FLUSH_ENABLE
));
982 wa_ctx_emit(batch
, index
, 0);
983 wa_ctx_emit(batch
, index
, 0);
984 wa_ctx_emit(batch
, index
, 0);
985 wa_ctx_emit(batch
, index
, 0);
987 wa_ctx_emit(batch
, index
, (MI_LOAD_REGISTER_MEM_GEN8
|
988 MI_SRM_LRM_GLOBAL_GTT
));
989 wa_ctx_emit_reg(batch
, index
, GEN8_L3SQCREG4
);
990 wa_ctx_emit(batch
, index
, i915_ggtt_offset(engine
->scratch
) + 256);
991 wa_ctx_emit(batch
, index
, 0);
996 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb
*wa_ctx
,
998 uint32_t start_alignment
)
1000 return wa_ctx
->offset
= ALIGN(offset
, start_alignment
);
1003 static inline int wa_ctx_end(struct i915_wa_ctx_bb
*wa_ctx
,
1005 uint32_t size_alignment
)
1007 wa_ctx
->size
= offset
- wa_ctx
->offset
;
1009 WARN(wa_ctx
->size
% size_alignment
,
1010 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1011 wa_ctx
->size
, size_alignment
);
1016 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1017 * initialized at the beginning and shared across all contexts but this field
1018 * helps us to have multiple batches at different offsets and select them based
1019 * on a criteria. At the moment this batch always start at the beginning of the page
1020 * and at this point we don't have multiple wa_ctx batch buffers.
1022 * The number of WA applied are not known at the beginning; we use this field
1023 * to return the no of DWORDS written.
1025 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1026 * so it adds NOOPs as padding to make it cacheline aligned.
1027 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1028 * makes a complete batch buffer.
1030 static int gen8_init_indirectctx_bb(struct intel_engine_cs
*engine
,
1031 struct i915_wa_ctx_bb
*wa_ctx
,
1035 uint32_t scratch_addr
;
1036 uint32_t index
= wa_ctx_start(wa_ctx
, *offset
, CACHELINE_DWORDS
);
1038 /* WaDisableCtxRestoreArbitration:bdw,chv */
1039 wa_ctx_emit(batch
, index
, MI_ARB_ON_OFF
| MI_ARB_DISABLE
);
1041 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1042 if (IS_BROADWELL(engine
->i915
)) {
1043 int rc
= gen8_emit_flush_coherentl3_wa(engine
, batch
, index
);
1049 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1050 /* Actual scratch location is at 128 bytes offset */
1051 scratch_addr
= i915_ggtt_offset(engine
->scratch
) + 2 * CACHELINE_BYTES
;
1053 wa_ctx_emit(batch
, index
, GFX_OP_PIPE_CONTROL(6));
1054 wa_ctx_emit(batch
, index
, (PIPE_CONTROL_FLUSH_L3
|
1055 PIPE_CONTROL_GLOBAL_GTT_IVB
|
1056 PIPE_CONTROL_CS_STALL
|
1057 PIPE_CONTROL_QW_WRITE
));
1058 wa_ctx_emit(batch
, index
, scratch_addr
);
1059 wa_ctx_emit(batch
, index
, 0);
1060 wa_ctx_emit(batch
, index
, 0);
1061 wa_ctx_emit(batch
, index
, 0);
1063 /* Pad to end of cacheline */
1064 while (index
% CACHELINE_DWORDS
)
1065 wa_ctx_emit(batch
, index
, MI_NOOP
);
1068 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1069 * execution depends on the length specified in terms of cache lines
1070 * in the register CTX_RCS_INDIRECT_CTX
1073 return wa_ctx_end(wa_ctx
, *offset
= index
, CACHELINE_DWORDS
);
1077 * This batch is started immediately after indirect_ctx batch. Since we ensure
1078 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1080 * The number of DWORDS written are returned using this field.
1082 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1083 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1085 static int gen8_init_perctx_bb(struct intel_engine_cs
*engine
,
1086 struct i915_wa_ctx_bb
*wa_ctx
,
1090 uint32_t index
= wa_ctx_start(wa_ctx
, *offset
, CACHELINE_DWORDS
);
1092 /* WaDisableCtxRestoreArbitration:bdw,chv */
1093 wa_ctx_emit(batch
, index
, MI_ARB_ON_OFF
| MI_ARB_ENABLE
);
1095 wa_ctx_emit(batch
, index
, MI_BATCH_BUFFER_END
);
1097 return wa_ctx_end(wa_ctx
, *offset
= index
, 1);
1100 static int gen9_init_indirectctx_bb(struct intel_engine_cs
*engine
,
1101 struct i915_wa_ctx_bb
*wa_ctx
,
1106 struct drm_i915_private
*dev_priv
= engine
->i915
;
1107 uint32_t index
= wa_ctx_start(wa_ctx
, *offset
, CACHELINE_DWORDS
);
1109 /* WaDisableCtxRestoreArbitration:bxt */
1110 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
))
1111 wa_ctx_emit(batch
, index
, MI_ARB_ON_OFF
| MI_ARB_DISABLE
);
1113 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1114 ret
= gen8_emit_flush_coherentl3_wa(engine
, batch
, index
);
1119 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1120 wa_ctx_emit(batch
, index
, MI_LOAD_REGISTER_IMM(1));
1121 wa_ctx_emit_reg(batch
, index
, COMMON_SLICE_CHICKEN2
);
1122 wa_ctx_emit(batch
, index
, _MASKED_BIT_DISABLE(
1123 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE
));
1124 wa_ctx_emit(batch
, index
, MI_NOOP
);
1126 /* WaClearSlmSpaceAtContextSwitch:kbl */
1127 /* Actual scratch location is at 128 bytes offset */
1128 if (IS_KBL_REVID(dev_priv
, 0, KBL_REVID_A0
)) {
1130 i915_ggtt_offset(engine
->scratch
) + 2 * CACHELINE_BYTES
;
1132 wa_ctx_emit(batch
, index
, GFX_OP_PIPE_CONTROL(6));
1133 wa_ctx_emit(batch
, index
, (PIPE_CONTROL_FLUSH_L3
|
1134 PIPE_CONTROL_GLOBAL_GTT_IVB
|
1135 PIPE_CONTROL_CS_STALL
|
1136 PIPE_CONTROL_QW_WRITE
));
1137 wa_ctx_emit(batch
, index
, scratch_addr
);
1138 wa_ctx_emit(batch
, index
, 0);
1139 wa_ctx_emit(batch
, index
, 0);
1140 wa_ctx_emit(batch
, index
, 0);
1143 /* WaMediaPoolStateCmdInWABB:bxt */
1144 if (HAS_POOLED_EU(engine
->i915
)) {
1146 * EU pool configuration is setup along with golden context
1147 * during context initialization. This value depends on
1148 * device type (2x6 or 3x6) and needs to be updated based
1149 * on which subslice is disabled especially for 2x6
1150 * devices, however it is safe to load default
1151 * configuration of 3x6 device instead of masking off
1152 * corresponding bits because HW ignores bits of a disabled
1153 * subslice and drops down to appropriate config. Please
1154 * see render_state_setup() in i915_gem_render_state.c for
1155 * possible configurations, to avoid duplication they are
1156 * not shown here again.
1158 u32 eu_pool_config
= 0x00777000;
1159 wa_ctx_emit(batch
, index
, GEN9_MEDIA_POOL_STATE
);
1160 wa_ctx_emit(batch
, index
, GEN9_MEDIA_POOL_ENABLE
);
1161 wa_ctx_emit(batch
, index
, eu_pool_config
);
1162 wa_ctx_emit(batch
, index
, 0);
1163 wa_ctx_emit(batch
, index
, 0);
1164 wa_ctx_emit(batch
, index
, 0);
1167 /* Pad to end of cacheline */
1168 while (index
% CACHELINE_DWORDS
)
1169 wa_ctx_emit(batch
, index
, MI_NOOP
);
1171 return wa_ctx_end(wa_ctx
, *offset
= index
, CACHELINE_DWORDS
);
1174 static int gen9_init_perctx_bb(struct intel_engine_cs
*engine
,
1175 struct i915_wa_ctx_bb
*wa_ctx
,
1179 uint32_t index
= wa_ctx_start(wa_ctx
, *offset
, CACHELINE_DWORDS
);
1181 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1182 if (IS_BXT_REVID(engine
->i915
, 0, BXT_REVID_A1
)) {
1183 wa_ctx_emit(batch
, index
, MI_LOAD_REGISTER_IMM(1));
1184 wa_ctx_emit_reg(batch
, index
, GEN9_SLICE_COMMON_ECO_CHICKEN0
);
1185 wa_ctx_emit(batch
, index
,
1186 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING
));
1187 wa_ctx_emit(batch
, index
, MI_NOOP
);
1190 /* WaClearTdlStateAckDirtyBits:bxt */
1191 if (IS_BXT_REVID(engine
->i915
, 0, BXT_REVID_B0
)) {
1192 wa_ctx_emit(batch
, index
, MI_LOAD_REGISTER_IMM(4));
1194 wa_ctx_emit_reg(batch
, index
, GEN8_STATE_ACK
);
1195 wa_ctx_emit(batch
, index
, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS
));
1197 wa_ctx_emit_reg(batch
, index
, GEN9_STATE_ACK_SLICE1
);
1198 wa_ctx_emit(batch
, index
, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS
));
1200 wa_ctx_emit_reg(batch
, index
, GEN9_STATE_ACK_SLICE2
);
1201 wa_ctx_emit(batch
, index
, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS
));
1203 wa_ctx_emit_reg(batch
, index
, GEN7_ROW_CHICKEN2
);
1204 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1205 wa_ctx_emit(batch
, index
, 0x0);
1206 wa_ctx_emit(batch
, index
, MI_NOOP
);
1209 /* WaDisableCtxRestoreArbitration:bxt */
1210 if (IS_BXT_REVID(engine
->i915
, 0, BXT_REVID_A1
))
1211 wa_ctx_emit(batch
, index
, MI_ARB_ON_OFF
| MI_ARB_ENABLE
);
1213 wa_ctx_emit(batch
, index
, MI_BATCH_BUFFER_END
);
1215 return wa_ctx_end(wa_ctx
, *offset
= index
, 1);
1218 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs
*engine
, u32 size
)
1220 struct drm_i915_gem_object
*obj
;
1221 struct i915_vma
*vma
;
1224 obj
= i915_gem_object_create(engine
->i915
, PAGE_ALIGN(size
));
1226 return PTR_ERR(obj
);
1228 vma
= i915_vma_instance(obj
, &engine
->i915
->ggtt
.base
, NULL
);
1234 err
= i915_vma_pin(vma
, 0, PAGE_SIZE
, PIN_GLOBAL
| PIN_HIGH
);
1238 engine
->wa_ctx
.vma
= vma
;
1242 i915_gem_object_put(obj
);
1246 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs
*engine
)
1248 i915_vma_unpin_and_release(&engine
->wa_ctx
.vma
);
1251 static int intel_init_workaround_bb(struct intel_engine_cs
*engine
)
1253 struct i915_ctx_workarounds
*wa_ctx
= &engine
->wa_ctx
;
1259 WARN_ON(engine
->id
!= RCS
);
1261 /* update this when WA for higher Gen are added */
1262 if (INTEL_GEN(engine
->i915
) > 9) {
1263 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1264 INTEL_GEN(engine
->i915
));
1268 /* some WA perform writes to scratch page, ensure it is valid */
1269 if (!engine
->scratch
) {
1270 DRM_ERROR("scratch page not allocated for %s\n", engine
->name
);
1274 ret
= lrc_setup_wa_ctx_obj(engine
, PAGE_SIZE
);
1276 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret
);
1280 page
= i915_gem_object_get_dirty_page(wa_ctx
->vma
->obj
, 0);
1281 batch
= kmap_atomic(page
);
1284 if (IS_GEN8(engine
->i915
)) {
1285 ret
= gen8_init_indirectctx_bb(engine
,
1286 &wa_ctx
->indirect_ctx
,
1292 ret
= gen8_init_perctx_bb(engine
,
1298 } else if (IS_GEN9(engine
->i915
)) {
1299 ret
= gen9_init_indirectctx_bb(engine
,
1300 &wa_ctx
->indirect_ctx
,
1306 ret
= gen9_init_perctx_bb(engine
,
1315 kunmap_atomic(batch
);
1317 lrc_destroy_wa_ctx_obj(engine
);
1322 static int gen8_init_common_ring(struct intel_engine_cs
*engine
)
1324 struct drm_i915_private
*dev_priv
= engine
->i915
;
1327 ret
= intel_mocs_init_engine(engine
);
1331 intel_engine_reset_breadcrumbs(engine
);
1332 intel_engine_init_hangcheck(engine
);
1334 I915_WRITE(RING_HWSTAM(engine
->mmio_base
), 0xffffffff);
1335 I915_WRITE(RING_MODE_GEN7(engine
),
1336 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE
) |
1337 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE
));
1338 I915_WRITE(RING_HWS_PGA(engine
->mmio_base
),
1339 engine
->status_page
.ggtt_offset
);
1340 POSTING_READ(RING_HWS_PGA(engine
->mmio_base
));
1342 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine
->name
);
1344 /* After a GPU reset, we may have requests to replay */
1345 if (!execlists_elsp_idle(engine
)) {
1346 engine
->execlist_port
[0].count
= 0;
1347 engine
->execlist_port
[1].count
= 0;
1348 execlists_submit_ports(engine
);
1354 static int gen8_init_render_ring(struct intel_engine_cs
*engine
)
1356 struct drm_i915_private
*dev_priv
= engine
->i915
;
1359 ret
= gen8_init_common_ring(engine
);
1363 /* We need to disable the AsyncFlip performance optimisations in order
1364 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1365 * programmed to '1' on all products.
1367 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1369 I915_WRITE(MI_MODE
, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE
));
1371 I915_WRITE(INSTPM
, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING
));
1373 return init_workarounds_ring(engine
);
1376 static int gen9_init_render_ring(struct intel_engine_cs
*engine
)
1380 ret
= gen8_init_common_ring(engine
);
1384 return init_workarounds_ring(engine
);
1387 static void reset_common_ring(struct intel_engine_cs
*engine
,
1388 struct drm_i915_gem_request
*request
)
1390 struct drm_i915_private
*dev_priv
= engine
->i915
;
1391 struct execlist_port
*port
= engine
->execlist_port
;
1392 struct intel_context
*ce
= &request
->ctx
->engine
[engine
->id
];
1394 /* We want a simple context + ring to execute the breadcrumb update.
1395 * We cannot rely on the context being intact across the GPU hang,
1396 * so clear it and rebuild just what we need for the breadcrumb.
1397 * All pending requests for this context will be zapped, and any
1398 * future request will be after userspace has had the opportunity
1399 * to recreate its own state.
1401 execlists_init_reg_state(ce
->lrc_reg_state
,
1402 request
->ctx
, engine
, ce
->ring
);
1404 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1405 ce
->lrc_reg_state
[CTX_RING_BUFFER_START
+1] =
1406 i915_ggtt_offset(ce
->ring
->vma
);
1407 ce
->lrc_reg_state
[CTX_RING_HEAD
+1] = request
->postfix
;
1409 request
->ring
->head
= request
->postfix
;
1410 request
->ring
->last_retired_head
= -1;
1411 intel_ring_update_space(request
->ring
);
1413 if (i915
.enable_guc_submission
)
1416 /* Catch up with any missed context-switch interrupts */
1417 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine
), _MASKED_FIELD(0xffff, 0));
1418 if (request
->ctx
!= port
[0].request
->ctx
) {
1419 i915_gem_request_put(port
[0].request
);
1421 memset(&port
[1], 0, sizeof(port
[1]));
1424 GEM_BUG_ON(request
->ctx
!= port
[0].request
->ctx
);
1426 /* Reset WaIdleLiteRestore:bdw,skl as well */
1427 request
->tail
= request
->wa_tail
- WA_TAIL_DWORDS
* sizeof(u32
);
1430 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request
*req
)
1432 struct i915_hw_ppgtt
*ppgtt
= req
->ctx
->ppgtt
;
1433 struct intel_ring
*ring
= req
->ring
;
1434 struct intel_engine_cs
*engine
= req
->engine
;
1435 const int num_lri_cmds
= GEN8_LEGACY_PDPES
* 2;
1438 ret
= intel_ring_begin(req
, num_lri_cmds
* 2 + 2);
1442 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(num_lri_cmds
));
1443 for (i
= GEN8_LEGACY_PDPES
- 1; i
>= 0; i
--) {
1444 const dma_addr_t pd_daddr
= i915_page_dir_dma_addr(ppgtt
, i
);
1446 intel_ring_emit_reg(ring
, GEN8_RING_PDP_UDW(engine
, i
));
1447 intel_ring_emit(ring
, upper_32_bits(pd_daddr
));
1448 intel_ring_emit_reg(ring
, GEN8_RING_PDP_LDW(engine
, i
));
1449 intel_ring_emit(ring
, lower_32_bits(pd_daddr
));
1452 intel_ring_emit(ring
, MI_NOOP
);
1453 intel_ring_advance(ring
);
1458 static int gen8_emit_bb_start(struct drm_i915_gem_request
*req
,
1459 u64 offset
, u32 len
,
1460 unsigned int dispatch_flags
)
1462 struct intel_ring
*ring
= req
->ring
;
1463 bool ppgtt
= !(dispatch_flags
& I915_DISPATCH_SECURE
);
1466 /* Don't rely in hw updating PDPs, specially in lite-restore.
1467 * Ideally, we should set Force PD Restore in ctx descriptor,
1468 * but we can't. Force Restore would be a second option, but
1469 * it is unsafe in case of lite-restore (because the ctx is
1470 * not idle). PML4 is allocated during ppgtt init so this is
1471 * not needed in 48-bit.*/
1472 if (req
->ctx
->ppgtt
&&
1473 (intel_engine_flag(req
->engine
) & req
->ctx
->ppgtt
->pd_dirty_rings
)) {
1474 if (!USES_FULL_48BIT_PPGTT(req
->i915
) &&
1475 !intel_vgpu_active(req
->i915
)) {
1476 ret
= intel_logical_ring_emit_pdps(req
);
1481 req
->ctx
->ppgtt
->pd_dirty_rings
&= ~intel_engine_flag(req
->engine
);
1484 ret
= intel_ring_begin(req
, 4);
1488 /* FIXME(BDW): Address space and security selectors. */
1489 intel_ring_emit(ring
, MI_BATCH_BUFFER_START_GEN8
|
1491 (dispatch_flags
& I915_DISPATCH_RS
?
1492 MI_BATCH_RESOURCE_STREAMER
: 0));
1493 intel_ring_emit(ring
, lower_32_bits(offset
));
1494 intel_ring_emit(ring
, upper_32_bits(offset
));
1495 intel_ring_emit(ring
, MI_NOOP
);
1496 intel_ring_advance(ring
);
1501 static void gen8_logical_ring_enable_irq(struct intel_engine_cs
*engine
)
1503 struct drm_i915_private
*dev_priv
= engine
->i915
;
1504 I915_WRITE_IMR(engine
,
1505 ~(engine
->irq_enable_mask
| engine
->irq_keep_mask
));
1506 POSTING_READ_FW(RING_IMR(engine
->mmio_base
));
1509 static void gen8_logical_ring_disable_irq(struct intel_engine_cs
*engine
)
1511 struct drm_i915_private
*dev_priv
= engine
->i915
;
1512 I915_WRITE_IMR(engine
, ~engine
->irq_keep_mask
);
1515 static int gen8_emit_flush(struct drm_i915_gem_request
*request
, u32 mode
)
1517 struct intel_ring
*ring
= request
->ring
;
1521 ret
= intel_ring_begin(request
, 4);
1525 cmd
= MI_FLUSH_DW
+ 1;
1527 /* We always require a command barrier so that subsequent
1528 * commands, such as breadcrumb interrupts, are strictly ordered
1529 * wrt the contents of the write cache being flushed to memory
1530 * (and thus being coherent from the CPU).
1532 cmd
|= MI_FLUSH_DW_STORE_INDEX
| MI_FLUSH_DW_OP_STOREDW
;
1534 if (mode
& EMIT_INVALIDATE
) {
1535 cmd
|= MI_INVALIDATE_TLB
;
1536 if (request
->engine
->id
== VCS
)
1537 cmd
|= MI_INVALIDATE_BSD
;
1540 intel_ring_emit(ring
, cmd
);
1541 intel_ring_emit(ring
,
1542 I915_GEM_HWS_SCRATCH_ADDR
|
1543 MI_FLUSH_DW_USE_GTT
);
1544 intel_ring_emit(ring
, 0); /* upper addr */
1545 intel_ring_emit(ring
, 0); /* value */
1546 intel_ring_advance(ring
);
1551 static int gen8_emit_flush_render(struct drm_i915_gem_request
*request
,
1554 struct intel_ring
*ring
= request
->ring
;
1555 struct intel_engine_cs
*engine
= request
->engine
;
1557 i915_ggtt_offset(engine
->scratch
) + 2 * CACHELINE_BYTES
;
1558 bool vf_flush_wa
= false, dc_flush_wa
= false;
1563 flags
|= PIPE_CONTROL_CS_STALL
;
1565 if (mode
& EMIT_FLUSH
) {
1566 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
1567 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
1568 flags
|= PIPE_CONTROL_DC_FLUSH_ENABLE
;
1569 flags
|= PIPE_CONTROL_FLUSH_ENABLE
;
1572 if (mode
& EMIT_INVALIDATE
) {
1573 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
1574 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
1575 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
1576 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
1577 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
1578 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
1579 flags
|= PIPE_CONTROL_QW_WRITE
;
1580 flags
|= PIPE_CONTROL_GLOBAL_GTT_IVB
;
1583 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1586 if (IS_GEN9(request
->i915
))
1589 /* WaForGAMHang:kbl */
1590 if (IS_KBL_REVID(request
->i915
, 0, KBL_REVID_B0
))
1602 ret
= intel_ring_begin(request
, len
);
1607 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(6));
1608 intel_ring_emit(ring
, 0);
1609 intel_ring_emit(ring
, 0);
1610 intel_ring_emit(ring
, 0);
1611 intel_ring_emit(ring
, 0);
1612 intel_ring_emit(ring
, 0);
1616 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(6));
1617 intel_ring_emit(ring
, PIPE_CONTROL_DC_FLUSH_ENABLE
);
1618 intel_ring_emit(ring
, 0);
1619 intel_ring_emit(ring
, 0);
1620 intel_ring_emit(ring
, 0);
1621 intel_ring_emit(ring
, 0);
1624 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(6));
1625 intel_ring_emit(ring
, flags
);
1626 intel_ring_emit(ring
, scratch_addr
);
1627 intel_ring_emit(ring
, 0);
1628 intel_ring_emit(ring
, 0);
1629 intel_ring_emit(ring
, 0);
1632 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(6));
1633 intel_ring_emit(ring
, PIPE_CONTROL_CS_STALL
);
1634 intel_ring_emit(ring
, 0);
1635 intel_ring_emit(ring
, 0);
1636 intel_ring_emit(ring
, 0);
1637 intel_ring_emit(ring
, 0);
1640 intel_ring_advance(ring
);
1645 static void bxt_a_seqno_barrier(struct intel_engine_cs
*engine
)
1648 * On BXT A steppings there is a HW coherency issue whereby the
1649 * MI_STORE_DATA_IMM storing the completed request's seqno
1650 * occasionally doesn't invalidate the CPU cache. Work around this by
1651 * clflushing the corresponding cacheline whenever the caller wants
1652 * the coherency to be guaranteed. Note that this cacheline is known
1653 * to be clean at this point, since we only write it in
1654 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1655 * this clflush in practice becomes an invalidate operation.
1657 intel_flush_status_page(engine
, I915_GEM_HWS_INDEX
);
1661 * Reserve space for 2 NOOPs at the end of each request to be
1662 * used as a workaround for not being allowed to do lite
1663 * restore with HEAD==TAIL (WaIdleLiteRestore).
1665 static void gen8_emit_wa_tail(struct drm_i915_gem_request
*request
, u32
*out
)
1669 request
->wa_tail
= intel_ring_offset(request
->ring
, out
);
1672 static void gen8_emit_breadcrumb(struct drm_i915_gem_request
*request
,
1675 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1676 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR
& (1 << 5));
1678 *out
++ = (MI_FLUSH_DW
+ 1) | MI_FLUSH_DW_OP_STOREDW
;
1679 *out
++ = intel_hws_seqno_address(request
->engine
) | MI_FLUSH_DW_USE_GTT
;
1681 *out
++ = request
->global_seqno
;
1682 *out
++ = MI_USER_INTERRUPT
;
1684 request
->tail
= intel_ring_offset(request
->ring
, out
);
1686 gen8_emit_wa_tail(request
, out
);
1689 static const int gen8_emit_breadcrumb_sz
= 6 + WA_TAIL_DWORDS
;
1691 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request
*request
,
1694 /* We're using qword write, seqno should be aligned to 8 bytes. */
1695 BUILD_BUG_ON(I915_GEM_HWS_INDEX
& 1);
1697 /* w/a for post sync ops following a GPGPU operation we
1698 * need a prior CS_STALL, which is emitted by the flush
1699 * following the batch.
1701 *out
++ = GFX_OP_PIPE_CONTROL(6);
1702 *out
++ = (PIPE_CONTROL_GLOBAL_GTT_IVB
|
1703 PIPE_CONTROL_CS_STALL
|
1704 PIPE_CONTROL_QW_WRITE
);
1705 *out
++ = intel_hws_seqno_address(request
->engine
);
1707 *out
++ = request
->global_seqno
;
1708 /* We're thrashing one dword of HWS. */
1710 *out
++ = MI_USER_INTERRUPT
;
1712 request
->tail
= intel_ring_offset(request
->ring
, out
);
1714 gen8_emit_wa_tail(request
, out
);
1717 static const int gen8_emit_breadcrumb_render_sz
= 8 + WA_TAIL_DWORDS
;
1719 static int gen8_init_rcs_context(struct drm_i915_gem_request
*req
)
1723 ret
= intel_logical_ring_workarounds_emit(req
);
1727 ret
= intel_rcs_context_init_mocs(req
);
1729 * Failing to program the MOCS is non-fatal.The system will not
1730 * run at peak performance. So generate an error and carry on.
1733 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1735 return i915_gem_render_state_emit(req
);
1739 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1740 * @engine: Engine Command Streamer.
1742 void intel_logical_ring_cleanup(struct intel_engine_cs
*engine
)
1744 struct drm_i915_private
*dev_priv
;
1747 * Tasklet cannot be active at this point due intel_mark_active/idle
1748 * so this is just for documentation.
1750 if (WARN_ON(test_bit(TASKLET_STATE_SCHED
, &engine
->irq_tasklet
.state
)))
1751 tasklet_kill(&engine
->irq_tasklet
);
1753 dev_priv
= engine
->i915
;
1755 if (engine
->buffer
) {
1756 WARN_ON((I915_READ_MODE(engine
) & MODE_IDLE
) == 0);
1759 if (engine
->cleanup
)
1760 engine
->cleanup(engine
);
1762 if (engine
->status_page
.vma
) {
1763 i915_gem_object_unpin_map(engine
->status_page
.vma
->obj
);
1764 engine
->status_page
.vma
= NULL
;
1767 intel_engine_cleanup_common(engine
);
1769 lrc_destroy_wa_ctx_obj(engine
);
1770 engine
->i915
= NULL
;
1771 dev_priv
->engine
[engine
->id
] = NULL
;
1775 void intel_execlists_enable_submission(struct drm_i915_private
*dev_priv
)
1777 struct intel_engine_cs
*engine
;
1778 enum intel_engine_id id
;
1780 for_each_engine(engine
, dev_priv
, id
) {
1781 engine
->submit_request
= execlists_submit_request
;
1782 engine
->schedule
= execlists_schedule
;
1787 logical_ring_default_vfuncs(struct intel_engine_cs
*engine
)
1789 /* Default vfuncs which can be overriden by each engine. */
1790 engine
->init_hw
= gen8_init_common_ring
;
1791 engine
->reset_hw
= reset_common_ring
;
1793 engine
->context_pin
= execlists_context_pin
;
1794 engine
->context_unpin
= execlists_context_unpin
;
1796 engine
->request_alloc
= execlists_request_alloc
;
1798 engine
->emit_flush
= gen8_emit_flush
;
1799 engine
->emit_breadcrumb
= gen8_emit_breadcrumb
;
1800 engine
->emit_breadcrumb_sz
= gen8_emit_breadcrumb_sz
;
1801 engine
->submit_request
= execlists_submit_request
;
1802 engine
->schedule
= execlists_schedule
;
1804 engine
->irq_enable
= gen8_logical_ring_enable_irq
;
1805 engine
->irq_disable
= gen8_logical_ring_disable_irq
;
1806 engine
->emit_bb_start
= gen8_emit_bb_start
;
1807 if (IS_BXT_REVID(engine
->i915
, 0, BXT_REVID_A1
))
1808 engine
->irq_seqno_barrier
= bxt_a_seqno_barrier
;
1812 logical_ring_default_irqs(struct intel_engine_cs
*engine
)
1814 unsigned shift
= engine
->irq_shift
;
1815 engine
->irq_enable_mask
= GT_RENDER_USER_INTERRUPT
<< shift
;
1816 engine
->irq_keep_mask
= GT_CONTEXT_SWITCH_INTERRUPT
<< shift
;
1820 lrc_setup_hws(struct intel_engine_cs
*engine
, struct i915_vma
*vma
)
1822 const int hws_offset
= LRC_PPHWSP_PN
* PAGE_SIZE
;
1825 /* The HWSP is part of the default context object in LRC mode. */
1826 hws
= i915_gem_object_pin_map(vma
->obj
, I915_MAP_WB
);
1828 return PTR_ERR(hws
);
1830 engine
->status_page
.page_addr
= hws
+ hws_offset
;
1831 engine
->status_page
.ggtt_offset
= i915_ggtt_offset(vma
) + hws_offset
;
1832 engine
->status_page
.vma
= vma
;
1838 logical_ring_setup(struct intel_engine_cs
*engine
)
1840 struct drm_i915_private
*dev_priv
= engine
->i915
;
1841 enum forcewake_domains fw_domains
;
1843 intel_engine_setup_common(engine
);
1845 /* Intentionally left blank. */
1846 engine
->buffer
= NULL
;
1848 fw_domains
= intel_uncore_forcewake_for_reg(dev_priv
,
1852 fw_domains
|= intel_uncore_forcewake_for_reg(dev_priv
,
1853 RING_CONTEXT_STATUS_PTR(engine
),
1854 FW_REG_READ
| FW_REG_WRITE
);
1856 fw_domains
|= intel_uncore_forcewake_for_reg(dev_priv
,
1857 RING_CONTEXT_STATUS_BUF_BASE(engine
),
1860 engine
->fw_domains
= fw_domains
;
1862 tasklet_init(&engine
->irq_tasklet
,
1863 intel_lrc_irq_handler
, (unsigned long)engine
);
1865 logical_ring_init_platform_invariants(engine
);
1866 logical_ring_default_vfuncs(engine
);
1867 logical_ring_default_irqs(engine
);
1871 logical_ring_init(struct intel_engine_cs
*engine
)
1873 struct i915_gem_context
*dctx
= engine
->i915
->kernel_context
;
1876 ret
= intel_engine_init_common(engine
);
1880 /* And setup the hardware status page. */
1881 ret
= lrc_setup_hws(engine
, dctx
->engine
[engine
->id
].state
);
1883 DRM_ERROR("Failed to set up hws %s: %d\n", engine
->name
, ret
);
1890 intel_logical_ring_cleanup(engine
);
1894 int logical_render_ring_init(struct intel_engine_cs
*engine
)
1896 struct drm_i915_private
*dev_priv
= engine
->i915
;
1899 logical_ring_setup(engine
);
1901 if (HAS_L3_DPF(dev_priv
))
1902 engine
->irq_keep_mask
|= GT_RENDER_L3_PARITY_ERROR_INTERRUPT
;
1904 /* Override some for render ring. */
1905 if (INTEL_GEN(dev_priv
) >= 9)
1906 engine
->init_hw
= gen9_init_render_ring
;
1908 engine
->init_hw
= gen8_init_render_ring
;
1909 engine
->init_context
= gen8_init_rcs_context
;
1910 engine
->emit_flush
= gen8_emit_flush_render
;
1911 engine
->emit_breadcrumb
= gen8_emit_breadcrumb_render
;
1912 engine
->emit_breadcrumb_sz
= gen8_emit_breadcrumb_render_sz
;
1914 ret
= intel_engine_create_scratch(engine
, PAGE_SIZE
);
1918 ret
= intel_init_workaround_bb(engine
);
1921 * We continue even if we fail to initialize WA batch
1922 * because we only expect rare glitches but nothing
1923 * critical to prevent us from using GPU
1925 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1929 return logical_ring_init(engine
);
1932 int logical_xcs_ring_init(struct intel_engine_cs
*engine
)
1934 logical_ring_setup(engine
);
1936 return logical_ring_init(engine
);
1940 make_rpcs(struct drm_i915_private
*dev_priv
)
1945 * No explicit RPCS request is needed to ensure full
1946 * slice/subslice/EU enablement prior to Gen9.
1948 if (INTEL_GEN(dev_priv
) < 9)
1952 * Starting in Gen9, render power gating can leave
1953 * slice/subslice/EU in a partially enabled state. We
1954 * must make an explicit request through RPCS for full
1957 if (INTEL_INFO(dev_priv
)->sseu
.has_slice_pg
) {
1958 rpcs
|= GEN8_RPCS_S_CNT_ENABLE
;
1959 rpcs
|= hweight8(INTEL_INFO(dev_priv
)->sseu
.slice_mask
) <<
1960 GEN8_RPCS_S_CNT_SHIFT
;
1961 rpcs
|= GEN8_RPCS_ENABLE
;
1964 if (INTEL_INFO(dev_priv
)->sseu
.has_subslice_pg
) {
1965 rpcs
|= GEN8_RPCS_SS_CNT_ENABLE
;
1966 rpcs
|= hweight8(INTEL_INFO(dev_priv
)->sseu
.subslice_mask
) <<
1967 GEN8_RPCS_SS_CNT_SHIFT
;
1968 rpcs
|= GEN8_RPCS_ENABLE
;
1971 if (INTEL_INFO(dev_priv
)->sseu
.has_eu_pg
) {
1972 rpcs
|= INTEL_INFO(dev_priv
)->sseu
.eu_per_subslice
<<
1973 GEN8_RPCS_EU_MIN_SHIFT
;
1974 rpcs
|= INTEL_INFO(dev_priv
)->sseu
.eu_per_subslice
<<
1975 GEN8_RPCS_EU_MAX_SHIFT
;
1976 rpcs
|= GEN8_RPCS_ENABLE
;
1982 static u32
intel_lr_indirect_ctx_offset(struct intel_engine_cs
*engine
)
1984 u32 indirect_ctx_offset
;
1986 switch (INTEL_GEN(engine
->i915
)) {
1988 MISSING_CASE(INTEL_GEN(engine
->i915
));
1991 indirect_ctx_offset
=
1992 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT
;
1995 indirect_ctx_offset
=
1996 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT
;
2000 return indirect_ctx_offset
;
2003 static void execlists_init_reg_state(u32
*reg_state
,
2004 struct i915_gem_context
*ctx
,
2005 struct intel_engine_cs
*engine
,
2006 struct intel_ring
*ring
)
2008 struct drm_i915_private
*dev_priv
= engine
->i915
;
2009 struct i915_hw_ppgtt
*ppgtt
= ctx
->ppgtt
?: dev_priv
->mm
.aliasing_ppgtt
;
2011 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2012 * commands followed by (reg, value) pairs. The values we are setting here are
2013 * only for the first context restore: on a subsequent save, the GPU will
2014 * recreate this batchbuffer with new values (including all the missing
2015 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2016 reg_state
[CTX_LRI_HEADER_0
] =
2017 MI_LOAD_REGISTER_IMM(engine
->id
== RCS
? 14 : 11) | MI_LRI_FORCE_POSTED
;
2018 ASSIGN_CTX_REG(reg_state
, CTX_CONTEXT_CONTROL
,
2019 RING_CONTEXT_CONTROL(engine
),
2020 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH
|
2021 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT
|
2022 (HAS_RESOURCE_STREAMER(dev_priv
) ?
2023 CTX_CTRL_RS_CTX_ENABLE
: 0)));
2024 ASSIGN_CTX_REG(reg_state
, CTX_RING_HEAD
, RING_HEAD(engine
->mmio_base
),
2026 ASSIGN_CTX_REG(reg_state
, CTX_RING_TAIL
, RING_TAIL(engine
->mmio_base
),
2028 ASSIGN_CTX_REG(reg_state
, CTX_RING_BUFFER_START
,
2029 RING_START(engine
->mmio_base
), 0);
2030 ASSIGN_CTX_REG(reg_state
, CTX_RING_BUFFER_CONTROL
,
2031 RING_CTL(engine
->mmio_base
),
2032 RING_CTL_SIZE(ring
->size
) | RING_VALID
);
2033 ASSIGN_CTX_REG(reg_state
, CTX_BB_HEAD_U
,
2034 RING_BBADDR_UDW(engine
->mmio_base
), 0);
2035 ASSIGN_CTX_REG(reg_state
, CTX_BB_HEAD_L
,
2036 RING_BBADDR(engine
->mmio_base
), 0);
2037 ASSIGN_CTX_REG(reg_state
, CTX_BB_STATE
,
2038 RING_BBSTATE(engine
->mmio_base
),
2040 ASSIGN_CTX_REG(reg_state
, CTX_SECOND_BB_HEAD_U
,
2041 RING_SBBADDR_UDW(engine
->mmio_base
), 0);
2042 ASSIGN_CTX_REG(reg_state
, CTX_SECOND_BB_HEAD_L
,
2043 RING_SBBADDR(engine
->mmio_base
), 0);
2044 ASSIGN_CTX_REG(reg_state
, CTX_SECOND_BB_STATE
,
2045 RING_SBBSTATE(engine
->mmio_base
), 0);
2046 if (engine
->id
== RCS
) {
2047 ASSIGN_CTX_REG(reg_state
, CTX_BB_PER_CTX_PTR
,
2048 RING_BB_PER_CTX_PTR(engine
->mmio_base
), 0);
2049 ASSIGN_CTX_REG(reg_state
, CTX_RCS_INDIRECT_CTX
,
2050 RING_INDIRECT_CTX(engine
->mmio_base
), 0);
2051 ASSIGN_CTX_REG(reg_state
, CTX_RCS_INDIRECT_CTX_OFFSET
,
2052 RING_INDIRECT_CTX_OFFSET(engine
->mmio_base
), 0);
2053 if (engine
->wa_ctx
.vma
) {
2054 struct i915_ctx_workarounds
*wa_ctx
= &engine
->wa_ctx
;
2055 u32 ggtt_offset
= i915_ggtt_offset(wa_ctx
->vma
);
2057 reg_state
[CTX_RCS_INDIRECT_CTX
+1] =
2058 (ggtt_offset
+ wa_ctx
->indirect_ctx
.offset
* sizeof(uint32_t)) |
2059 (wa_ctx
->indirect_ctx
.size
/ CACHELINE_DWORDS
);
2061 reg_state
[CTX_RCS_INDIRECT_CTX_OFFSET
+1] =
2062 intel_lr_indirect_ctx_offset(engine
) << 6;
2064 reg_state
[CTX_BB_PER_CTX_PTR
+1] =
2065 (ggtt_offset
+ wa_ctx
->per_ctx
.offset
* sizeof(uint32_t)) |
2069 reg_state
[CTX_LRI_HEADER_1
] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED
;
2070 ASSIGN_CTX_REG(reg_state
, CTX_CTX_TIMESTAMP
,
2071 RING_CTX_TIMESTAMP(engine
->mmio_base
), 0);
2072 /* PDP values well be assigned later if needed */
2073 ASSIGN_CTX_REG(reg_state
, CTX_PDP3_UDW
, GEN8_RING_PDP_UDW(engine
, 3),
2075 ASSIGN_CTX_REG(reg_state
, CTX_PDP3_LDW
, GEN8_RING_PDP_LDW(engine
, 3),
2077 ASSIGN_CTX_REG(reg_state
, CTX_PDP2_UDW
, GEN8_RING_PDP_UDW(engine
, 2),
2079 ASSIGN_CTX_REG(reg_state
, CTX_PDP2_LDW
, GEN8_RING_PDP_LDW(engine
, 2),
2081 ASSIGN_CTX_REG(reg_state
, CTX_PDP1_UDW
, GEN8_RING_PDP_UDW(engine
, 1),
2083 ASSIGN_CTX_REG(reg_state
, CTX_PDP1_LDW
, GEN8_RING_PDP_LDW(engine
, 1),
2085 ASSIGN_CTX_REG(reg_state
, CTX_PDP0_UDW
, GEN8_RING_PDP_UDW(engine
, 0),
2087 ASSIGN_CTX_REG(reg_state
, CTX_PDP0_LDW
, GEN8_RING_PDP_LDW(engine
, 0),
2090 if (ppgtt
&& USES_FULL_48BIT_PPGTT(ppgtt
->base
.dev
)) {
2091 /* 64b PPGTT (48bit canonical)
2092 * PDP0_DESCRIPTOR contains the base address to PML4 and
2093 * other PDP Descriptors are ignored.
2095 ASSIGN_CTX_PML4(ppgtt
, reg_state
);
2098 if (engine
->id
== RCS
) {
2099 reg_state
[CTX_LRI_HEADER_2
] = MI_LOAD_REGISTER_IMM(1);
2100 ASSIGN_CTX_REG(reg_state
, CTX_R_PWR_CLK_STATE
, GEN8_R_PWR_CLK_STATE
,
2101 make_rpcs(dev_priv
));
2106 populate_lr_context(struct i915_gem_context
*ctx
,
2107 struct drm_i915_gem_object
*ctx_obj
,
2108 struct intel_engine_cs
*engine
,
2109 struct intel_ring
*ring
)
2114 ret
= i915_gem_object_set_to_cpu_domain(ctx_obj
, true);
2116 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2120 vaddr
= i915_gem_object_pin_map(ctx_obj
, I915_MAP_WB
);
2121 if (IS_ERR(vaddr
)) {
2122 ret
= PTR_ERR(vaddr
);
2123 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret
);
2126 ctx_obj
->mm
.dirty
= true;
2128 /* The second page of the context object contains some fields which must
2129 * be set up prior to the first execution. */
2131 execlists_init_reg_state(vaddr
+ LRC_STATE_PN
* PAGE_SIZE
,
2134 i915_gem_object_unpin_map(ctx_obj
);
2140 * intel_lr_context_size() - return the size of the context for an engine
2141 * @engine: which engine to find the context size for
2143 * Each engine may require a different amount of space for a context image,
2144 * so when allocating (or copying) an image, this function can be used to
2145 * find the right size for the specific engine.
2147 * Return: size (in bytes) of an engine-specific context image
2149 * Note: this size includes the HWSP, which is part of the context image
2150 * in LRC mode, but does not include the "shared data page" used with
2151 * GuC submission. The caller should account for this if using the GuC.
2153 uint32_t intel_lr_context_size(struct intel_engine_cs
*engine
)
2157 WARN_ON(INTEL_GEN(engine
->i915
) < 8);
2159 switch (engine
->id
) {
2161 if (INTEL_GEN(engine
->i915
) >= 9)
2162 ret
= GEN9_LR_CONTEXT_RENDER_SIZE
;
2164 ret
= GEN8_LR_CONTEXT_RENDER_SIZE
;
2170 ret
= GEN8_LR_CONTEXT_OTHER_SIZE
;
2177 static int execlists_context_deferred_alloc(struct i915_gem_context
*ctx
,
2178 struct intel_engine_cs
*engine
)
2180 struct drm_i915_gem_object
*ctx_obj
;
2181 struct intel_context
*ce
= &ctx
->engine
[engine
->id
];
2182 struct i915_vma
*vma
;
2183 uint32_t context_size
;
2184 struct intel_ring
*ring
;
2189 context_size
= round_up(intel_lr_context_size(engine
),
2190 I915_GTT_PAGE_SIZE
);
2192 /* One extra page as the sharing data between driver and GuC */
2193 context_size
+= PAGE_SIZE
* LRC_PPHWSP_PN
;
2195 ctx_obj
= i915_gem_object_create(ctx
->i915
, context_size
);
2196 if (IS_ERR(ctx_obj
)) {
2197 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2198 return PTR_ERR(ctx_obj
);
2201 vma
= i915_vma_instance(ctx_obj
, &ctx
->i915
->ggtt
.base
, NULL
);
2204 goto error_deref_obj
;
2207 ring
= intel_engine_create_ring(engine
, ctx
->ring_size
);
2209 ret
= PTR_ERR(ring
);
2210 goto error_deref_obj
;
2213 ret
= populate_lr_context(ctx
, ctx_obj
, engine
, ring
);
2215 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret
);
2216 goto error_ring_free
;
2221 ce
->initialised
= engine
->init_context
== NULL
;
2226 intel_ring_free(ring
);
2228 i915_gem_object_put(ctx_obj
);
2232 void intel_lr_context_resume(struct drm_i915_private
*dev_priv
)
2234 struct intel_engine_cs
*engine
;
2235 struct i915_gem_context
*ctx
;
2236 enum intel_engine_id id
;
2238 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2239 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2240 * that stored in context. As we only write new commands from
2241 * ce->ring->tail onwards, everything before that is junk. If the GPU
2242 * starts reading from its RING_HEAD from the context, it may try to
2243 * execute that junk and die.
2245 * So to avoid that we reset the context images upon resume. For
2246 * simplicity, we just zero everything out.
2248 list_for_each_entry(ctx
, &dev_priv
->context_list
, link
) {
2249 for_each_engine(engine
, dev_priv
, id
) {
2250 struct intel_context
*ce
= &ctx
->engine
[engine
->id
];
2256 reg
= i915_gem_object_pin_map(ce
->state
->obj
,
2258 if (WARN_ON(IS_ERR(reg
)))
2261 reg
+= LRC_STATE_PN
* PAGE_SIZE
/ sizeof(*reg
);
2262 reg
[CTX_RING_HEAD
+1] = 0;
2263 reg
[CTX_RING_TAIL
+1] = 0;
2265 ce
->state
->obj
->mm
.dirty
= true;
2266 i915_gem_object_unpin_map(ce
->state
->obj
);
2268 ce
->ring
->head
= ce
->ring
->tail
= 0;
2269 ce
->ring
->last_retired_head
= -1;
2270 intel_ring_update_space(ce
->ring
);