drm/exynos: Stop using drm_framebuffer_unregister_private
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / intel_lrc.c
blob432ee495dec2288a33e47b893476fbaaf3d76a28
1 /*
2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
134 #include <linux/interrupt.h>
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
164 #define CTX_LRI_HEADER_0 0x01
165 #define CTX_CONTEXT_CONTROL 0x02
166 #define CTX_RING_HEAD 0x04
167 #define CTX_RING_TAIL 0x06
168 #define CTX_RING_BUFFER_START 0x08
169 #define CTX_RING_BUFFER_CONTROL 0x0a
170 #define CTX_BB_HEAD_U 0x0c
171 #define CTX_BB_HEAD_L 0x0e
172 #define CTX_BB_STATE 0x10
173 #define CTX_SECOND_BB_HEAD_U 0x12
174 #define CTX_SECOND_BB_HEAD_L 0x14
175 #define CTX_SECOND_BB_STATE 0x16
176 #define CTX_BB_PER_CTX_PTR 0x18
177 #define CTX_RCS_INDIRECT_CTX 0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179 #define CTX_LRI_HEADER_1 0x21
180 #define CTX_CTX_TIMESTAMP 0x22
181 #define CTX_PDP3_UDW 0x24
182 #define CTX_PDP3_LDW 0x26
183 #define CTX_PDP2_UDW 0x28
184 #define CTX_PDP2_LDW 0x2a
185 #define CTX_PDP1_UDW 0x2c
186 #define CTX_PDP1_LDW 0x2e
187 #define CTX_PDP0_UDW 0x30
188 #define CTX_PDP0_LDW 0x32
189 #define CTX_LRI_HEADER_2 0x41
190 #define CTX_R_PWR_CLK_STATE 0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 (reg_state)[(pos)+1] = (val); \
202 } while (0)
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208 } while (0)
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213 } while (0)
215 enum {
216 FAULT_AND_HANG = 0,
217 FAULT_AND_HALT, /* Debug only */
218 FAULT_AND_STREAM,
219 FAULT_AND_CONTINUE /* Unsupported */
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
229 #define WA_TAIL_DWORDS 2
231 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232 struct intel_engine_cs *engine);
233 static void execlists_init_reg_state(u32 *reg_state,
234 struct i915_gem_context *ctx,
235 struct intel_engine_cs *engine,
236 struct intel_ring *ring);
239 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
240 * @dev_priv: i915 device private
241 * @enable_execlists: value of i915.enable_execlists module parameter.
243 * Only certain platforms support Execlists (the prerequisites being
244 * support for Logical Ring Contexts and Aliasing PPGTT or better).
246 * Return: 1 if Execlists is supported and has to be enabled.
248 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
250 /* On platforms with execlist available, vGPU will only
251 * support execlist mode, no ring buffer mode.
253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
254 return 1;
256 if (INTEL_GEN(dev_priv) >= 9)
257 return 1;
259 if (enable_execlists == 0)
260 return 0;
262 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
263 USES_PPGTT(dev_priv) &&
264 i915.use_mmio_flip >= 0)
265 return 1;
267 return 0;
270 static void
271 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
273 struct drm_i915_private *dev_priv = engine->i915;
275 engine->disable_lite_restore_wa =
276 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
277 (engine->id == VCS || engine->id == VCS2);
279 engine->ctx_desc_template = GEN8_CTX_VALID;
280 if (IS_GEN8(dev_priv))
281 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
282 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
284 /* TODO: WaDisableLiteRestore when we start using semaphore
285 * signalling between Command Streamers */
286 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
290 if (engine->disable_lite_restore_wa)
291 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
295 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
296 * descriptor for a pinned context
297 * @ctx: Context to work on
298 * @engine: Engine the descriptor will be used with
300 * The context descriptor encodes various attributes of a context,
301 * including its GTT address and some flags. Because it's fairly
302 * expensive to calculate, we'll just do it once and cache the result,
303 * which remains valid until the context is unpinned.
305 * This is what a descriptor looks like, from LSB to MSB::
307 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
308 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
309 * bits 32-52: ctx ID, a globally unique tag
310 * bits 53-54: mbz, reserved for use by hardware
311 * bits 55-63: group ID, currently unused and set to 0
313 static void
314 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
315 struct intel_engine_cs *engine)
317 struct intel_context *ce = &ctx->engine[engine->id];
318 u64 desc;
320 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
322 desc = ctx->desc_template; /* bits 3-4 */
323 desc |= engine->ctx_desc_template; /* bits 0-11 */
324 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
325 /* bits 12-31 */
326 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
328 ce->lrc_desc = desc;
331 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
332 struct intel_engine_cs *engine)
334 return ctx->engine[engine->id].lrc_desc;
337 static inline void
338 execlists_context_status_change(struct drm_i915_gem_request *rq,
339 unsigned long status)
342 * Only used when GVT-g is enabled now. When GVT-g is disabled,
343 * The compiler should eliminate this function as dead-code.
345 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
346 return;
348 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
351 static void
352 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
355 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
356 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
357 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
360 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
362 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
363 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
364 u32 *reg_state = ce->lrc_reg_state;
366 reg_state[CTX_RING_TAIL+1] = rq->tail;
368 /* True 32b PPGTT with dynamic page allocation: update PDP
369 * registers and point the unallocated PDPs to scratch page.
370 * PML4 is allocated during ppgtt init, so this is not needed
371 * in 48-bit mode.
373 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
374 execlists_update_context_pdps(ppgtt, reg_state);
376 return ce->lrc_desc;
379 static void execlists_submit_ports(struct intel_engine_cs *engine)
381 struct drm_i915_private *dev_priv = engine->i915;
382 struct execlist_port *port = engine->execlist_port;
383 u32 __iomem *elsp =
384 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
385 u64 desc[2];
387 if (!port[0].count)
388 execlists_context_status_change(port[0].request,
389 INTEL_CONTEXT_SCHEDULE_IN);
390 desc[0] = execlists_update_context(port[0].request);
391 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
393 if (port[1].request) {
394 GEM_BUG_ON(port[1].count);
395 execlists_context_status_change(port[1].request,
396 INTEL_CONTEXT_SCHEDULE_IN);
397 desc[1] = execlists_update_context(port[1].request);
398 port[1].count = 1;
399 } else {
400 desc[1] = 0;
402 GEM_BUG_ON(desc[0] == desc[1]);
404 /* You must always write both descriptors in the order below. */
405 writel(upper_32_bits(desc[1]), elsp);
406 writel(lower_32_bits(desc[1]), elsp);
408 writel(upper_32_bits(desc[0]), elsp);
409 /* The context is automatically loaded after the following */
410 writel(lower_32_bits(desc[0]), elsp);
413 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
415 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
416 i915_gem_context_force_single_submission(ctx));
419 static bool can_merge_ctx(const struct i915_gem_context *prev,
420 const struct i915_gem_context *next)
422 if (prev != next)
423 return false;
425 if (ctx_single_port_submission(prev))
426 return false;
428 return true;
431 static void execlists_dequeue(struct intel_engine_cs *engine)
433 struct drm_i915_gem_request *last;
434 struct execlist_port *port = engine->execlist_port;
435 unsigned long flags;
436 struct rb_node *rb;
437 bool submit = false;
439 last = port->request;
440 if (last)
441 /* WaIdleLiteRestore:bdw,skl
442 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
443 * as we resubmit the request. See gen8_emit_breadcrumb()
444 * for where we prepare the padding after the end of the
445 * request.
447 last->tail = last->wa_tail;
449 GEM_BUG_ON(port[1].request);
451 /* Hardware submission is through 2 ports. Conceptually each port
452 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
453 * static for a context, and unique to each, so we only execute
454 * requests belonging to a single context from each ring. RING_HEAD
455 * is maintained by the CS in the context image, it marks the place
456 * where it got up to last time, and through RING_TAIL we tell the CS
457 * where we want to execute up to this time.
459 * In this list the requests are in order of execution. Consecutive
460 * requests from the same context are adjacent in the ringbuffer. We
461 * can combine these requests into a single RING_TAIL update:
463 * RING_HEAD...req1...req2
464 * ^- RING_TAIL
465 * since to execute req2 the CS must first execute req1.
467 * Our goal then is to point each port to the end of a consecutive
468 * sequence of requests as being the most optimal (fewest wake ups
469 * and context switches) submission.
472 spin_lock_irqsave(&engine->timeline->lock, flags);
473 rb = engine->execlist_first;
474 while (rb) {
475 struct drm_i915_gem_request *cursor =
476 rb_entry(rb, typeof(*cursor), priotree.node);
478 /* Can we combine this request with the current port? It has to
479 * be the same context/ringbuffer and not have any exceptions
480 * (e.g. GVT saying never to combine contexts).
482 * If we can combine the requests, we can execute both by
483 * updating the RING_TAIL to point to the end of the second
484 * request, and so we never need to tell the hardware about
485 * the first.
487 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
488 /* If we are on the second port and cannot combine
489 * this request with the last, then we are done.
491 if (port != engine->execlist_port)
492 break;
494 /* If GVT overrides us we only ever submit port[0],
495 * leaving port[1] empty. Note that we also have
496 * to be careful that we don't queue the same
497 * context (even though a different request) to
498 * the second port.
500 if (ctx_single_port_submission(last->ctx) ||
501 ctx_single_port_submission(cursor->ctx))
502 break;
504 GEM_BUG_ON(last->ctx == cursor->ctx);
506 i915_gem_request_assign(&port->request, last);
507 port++;
510 rb = rb_next(rb);
511 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
512 RB_CLEAR_NODE(&cursor->priotree.node);
513 cursor->priotree.priority = INT_MAX;
515 __i915_gem_request_submit(cursor);
516 last = cursor;
517 submit = true;
519 if (submit) {
520 i915_gem_request_assign(&port->request, last);
521 engine->execlist_first = rb;
523 spin_unlock_irqrestore(&engine->timeline->lock, flags);
525 if (submit)
526 execlists_submit_ports(engine);
529 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
531 return !engine->execlist_port[0].request;
535 * intel_execlists_idle() - Determine if all engine submission ports are idle
536 * @dev_priv: i915 device private
538 * Return true if there are no requests pending on any of the submission ports
539 * of any engines.
541 bool intel_execlists_idle(struct drm_i915_private *dev_priv)
543 struct intel_engine_cs *engine;
544 enum intel_engine_id id;
546 if (!i915.enable_execlists)
547 return true;
549 for_each_engine(engine, dev_priv, id)
550 if (!execlists_elsp_idle(engine))
551 return false;
553 return true;
556 static bool execlists_elsp_ready(struct intel_engine_cs *engine)
558 int port;
560 port = 1; /* wait for a free slot */
561 if (engine->disable_lite_restore_wa || engine->preempt_wa)
562 port = 0; /* wait for GPU to be idle before continuing */
564 return !engine->execlist_port[port].request;
568 * Check the unread Context Status Buffers and manage the submission of new
569 * contexts to the ELSP accordingly.
571 static void intel_lrc_irq_handler(unsigned long data)
573 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
574 struct execlist_port *port = engine->execlist_port;
575 struct drm_i915_private *dev_priv = engine->i915;
577 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
579 if (!execlists_elsp_idle(engine)) {
580 u32 __iomem *csb_mmio =
581 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
582 u32 __iomem *buf =
583 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
584 unsigned int csb, head, tail;
586 csb = readl(csb_mmio);
587 head = GEN8_CSB_READ_PTR(csb);
588 tail = GEN8_CSB_WRITE_PTR(csb);
589 if (tail < head)
590 tail += GEN8_CSB_ENTRIES;
591 while (head < tail) {
592 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
593 unsigned int status = readl(buf + 2 * idx);
595 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
596 continue;
598 GEM_BUG_ON(port[0].count == 0);
599 if (--port[0].count == 0) {
600 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
601 execlists_context_status_change(port[0].request,
602 INTEL_CONTEXT_SCHEDULE_OUT);
604 i915_gem_request_put(port[0].request);
605 port[0] = port[1];
606 memset(&port[1], 0, sizeof(port[1]));
608 engine->preempt_wa = false;
611 GEM_BUG_ON(port[0].count == 0 &&
612 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
615 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
616 GEN8_CSB_WRITE_PTR(csb) << 8),
617 csb_mmio);
620 if (execlists_elsp_ready(engine))
621 execlists_dequeue(engine);
623 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
626 static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
628 struct rb_node **p, *rb;
629 bool first = true;
631 /* most positive priority is scheduled first, equal priorities fifo */
632 rb = NULL;
633 p = &root->rb_node;
634 while (*p) {
635 struct i915_priotree *pos;
637 rb = *p;
638 pos = rb_entry(rb, typeof(*pos), node);
639 if (pt->priority > pos->priority) {
640 p = &rb->rb_left;
641 } else {
642 p = &rb->rb_right;
643 first = false;
646 rb_link_node(&pt->node, rb, p);
647 rb_insert_color(&pt->node, root);
649 return first;
652 static void execlists_submit_request(struct drm_i915_gem_request *request)
654 struct intel_engine_cs *engine = request->engine;
655 unsigned long flags;
657 /* Will be called from irq-context when using foreign fences. */
658 spin_lock_irqsave(&engine->timeline->lock, flags);
660 if (insert_request(&request->priotree, &engine->execlist_queue))
661 engine->execlist_first = &request->priotree.node;
662 if (execlists_elsp_idle(engine))
663 tasklet_hi_schedule(&engine->irq_tasklet);
665 spin_unlock_irqrestore(&engine->timeline->lock, flags);
668 static struct intel_engine_cs *
669 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
671 struct intel_engine_cs *engine;
673 engine = container_of(pt,
674 struct drm_i915_gem_request,
675 priotree)->engine;
676 if (engine != locked) {
677 if (locked)
678 spin_unlock_irq(&locked->timeline->lock);
679 spin_lock_irq(&engine->timeline->lock);
682 return engine;
685 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
687 struct intel_engine_cs *engine = NULL;
688 struct i915_dependency *dep, *p;
689 struct i915_dependency stack;
690 LIST_HEAD(dfs);
692 if (prio <= READ_ONCE(request->priotree.priority))
693 return;
695 /* Need BKL in order to use the temporary link inside i915_dependency */
696 lockdep_assert_held(&request->i915->drm.struct_mutex);
698 stack.signaler = &request->priotree;
699 list_add(&stack.dfs_link, &dfs);
701 /* Recursively bump all dependent priorities to match the new request.
703 * A naive approach would be to use recursion:
704 * static void update_priorities(struct i915_priotree *pt, prio) {
705 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
706 * update_priorities(dep->signal, prio)
707 * insert_request(pt);
709 * but that may have unlimited recursion depth and so runs a very
710 * real risk of overunning the kernel stack. Instead, we build
711 * a flat list of all dependencies starting with the current request.
712 * As we walk the list of dependencies, we add all of its dependencies
713 * to the end of the list (this may include an already visited
714 * request) and continue to walk onwards onto the new dependencies. The
715 * end result is a topological list of requests in reverse order, the
716 * last element in the list is the request we must execute first.
718 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
719 struct i915_priotree *pt = dep->signaler;
721 list_for_each_entry(p, &pt->signalers_list, signal_link)
722 if (prio > READ_ONCE(p->signaler->priority))
723 list_move_tail(&p->dfs_link, &dfs);
725 list_safe_reset_next(dep, p, dfs_link);
726 if (!RB_EMPTY_NODE(&pt->node))
727 continue;
729 engine = pt_lock_engine(pt, engine);
731 /* If it is not already in the rbtree, we can update the
732 * priority inplace and skip over it (and its dependencies)
733 * if it is referenced *again* as we descend the dfs.
735 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
736 pt->priority = prio;
737 list_del_init(&dep->dfs_link);
741 /* Fifo and depth-first replacement ensure our deps execute before us */
742 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
743 struct i915_priotree *pt = dep->signaler;
745 INIT_LIST_HEAD(&dep->dfs_link);
747 engine = pt_lock_engine(pt, engine);
749 if (prio <= pt->priority)
750 continue;
752 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
754 pt->priority = prio;
755 rb_erase(&pt->node, &engine->execlist_queue);
756 if (insert_request(pt, &engine->execlist_queue))
757 engine->execlist_first = &pt->node;
760 if (engine)
761 spin_unlock_irq(&engine->timeline->lock);
763 /* XXX Do we need to preempt to make room for us and our deps? */
766 static int execlists_context_pin(struct intel_engine_cs *engine,
767 struct i915_gem_context *ctx)
769 struct intel_context *ce = &ctx->engine[engine->id];
770 unsigned int flags;
771 void *vaddr;
772 int ret;
774 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
776 if (ce->pin_count++)
777 return 0;
779 if (!ce->state) {
780 ret = execlists_context_deferred_alloc(ctx, engine);
781 if (ret)
782 goto err;
784 GEM_BUG_ON(!ce->state);
786 flags = PIN_GLOBAL;
787 if (ctx->ggtt_offset_bias)
788 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
789 if (i915_gem_context_is_kernel(ctx))
790 flags |= PIN_HIGH;
792 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
793 if (ret)
794 goto err;
796 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
797 if (IS_ERR(vaddr)) {
798 ret = PTR_ERR(vaddr);
799 goto unpin_vma;
802 ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
803 if (ret)
804 goto unpin_map;
806 intel_lr_context_descriptor_update(ctx, engine);
808 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
809 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
810 i915_ggtt_offset(ce->ring->vma);
812 ce->state->obj->mm.dirty = true;
814 i915_gem_context_get(ctx);
815 return 0;
817 unpin_map:
818 i915_gem_object_unpin_map(ce->state->obj);
819 unpin_vma:
820 __i915_vma_unpin(ce->state);
821 err:
822 ce->pin_count = 0;
823 return ret;
826 static void execlists_context_unpin(struct intel_engine_cs *engine,
827 struct i915_gem_context *ctx)
829 struct intel_context *ce = &ctx->engine[engine->id];
831 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
832 GEM_BUG_ON(ce->pin_count == 0);
834 if (--ce->pin_count)
835 return;
837 intel_ring_unpin(ce->ring);
839 i915_gem_object_unpin_map(ce->state->obj);
840 i915_vma_unpin(ce->state);
842 i915_gem_context_put(ctx);
845 static int execlists_request_alloc(struct drm_i915_gem_request *request)
847 struct intel_engine_cs *engine = request->engine;
848 struct intel_context *ce = &request->ctx->engine[engine->id];
849 int ret;
851 GEM_BUG_ON(!ce->pin_count);
853 /* Flush enough space to reduce the likelihood of waiting after
854 * we start building the request - in which case we will just
855 * have to repeat work.
857 request->reserved_space += EXECLISTS_REQUEST_SIZE;
859 GEM_BUG_ON(!ce->ring);
860 request->ring = ce->ring;
862 if (i915.enable_guc_submission) {
864 * Check that the GuC has space for the request before
865 * going any further, as the i915_add_request() call
866 * later on mustn't fail ...
868 ret = i915_guc_wq_reserve(request);
869 if (ret)
870 goto err;
873 ret = intel_ring_begin(request, 0);
874 if (ret)
875 goto err_unreserve;
877 if (!ce->initialised) {
878 ret = engine->init_context(request);
879 if (ret)
880 goto err_unreserve;
882 ce->initialised = true;
885 /* Note that after this point, we have committed to using
886 * this request as it is being used to both track the
887 * state of engine initialisation and liveness of the
888 * golden renderstate above. Think twice before you try
889 * to cancel/unwind this request now.
892 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
893 return 0;
895 err_unreserve:
896 if (i915.enable_guc_submission)
897 i915_guc_wq_unreserve(request);
898 err:
899 return ret;
902 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
904 int ret, i;
905 struct intel_ring *ring = req->ring;
906 struct i915_workarounds *w = &req->i915->workarounds;
908 if (w->count == 0)
909 return 0;
911 ret = req->engine->emit_flush(req, EMIT_BARRIER);
912 if (ret)
913 return ret;
915 ret = intel_ring_begin(req, w->count * 2 + 2);
916 if (ret)
917 return ret;
919 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
920 for (i = 0; i < w->count; i++) {
921 intel_ring_emit_reg(ring, w->reg[i].addr);
922 intel_ring_emit(ring, w->reg[i].value);
924 intel_ring_emit(ring, MI_NOOP);
926 intel_ring_advance(ring);
928 ret = req->engine->emit_flush(req, EMIT_BARRIER);
929 if (ret)
930 return ret;
932 return 0;
935 #define wa_ctx_emit(batch, index, cmd) \
936 do { \
937 int __index = (index)++; \
938 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
939 return -ENOSPC; \
941 batch[__index] = (cmd); \
942 } while (0)
944 #define wa_ctx_emit_reg(batch, index, reg) \
945 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
948 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
949 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
950 * but there is a slight complication as this is applied in WA batch where the
951 * values are only initialized once so we cannot take register value at the
952 * beginning and reuse it further; hence we save its value to memory, upload a
953 * constant value with bit21 set and then we restore it back with the saved value.
954 * To simplify the WA, a constant value is formed by using the default value
955 * of this register. This shouldn't be a problem because we are only modifying
956 * it for a short period and this batch in non-premptible. We can ofcourse
957 * use additional instructions that read the actual value of the register
958 * at that time and set our bit of interest but it makes the WA complicated.
960 * This WA is also required for Gen9 so extracting as a function avoids
961 * code duplication.
963 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
964 uint32_t *batch,
965 uint32_t index)
967 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
969 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
970 MI_SRM_LRM_GLOBAL_GTT));
971 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
972 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
973 wa_ctx_emit(batch, index, 0);
975 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
976 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
977 wa_ctx_emit(batch, index, l3sqc4_flush);
979 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
980 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
981 PIPE_CONTROL_DC_FLUSH_ENABLE));
982 wa_ctx_emit(batch, index, 0);
983 wa_ctx_emit(batch, index, 0);
984 wa_ctx_emit(batch, index, 0);
985 wa_ctx_emit(batch, index, 0);
987 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
988 MI_SRM_LRM_GLOBAL_GTT));
989 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
990 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
991 wa_ctx_emit(batch, index, 0);
993 return index;
996 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
997 uint32_t offset,
998 uint32_t start_alignment)
1000 return wa_ctx->offset = ALIGN(offset, start_alignment);
1003 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1004 uint32_t offset,
1005 uint32_t size_alignment)
1007 wa_ctx->size = offset - wa_ctx->offset;
1009 WARN(wa_ctx->size % size_alignment,
1010 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1011 wa_ctx->size, size_alignment);
1012 return 0;
1016 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1017 * initialized at the beginning and shared across all contexts but this field
1018 * helps us to have multiple batches at different offsets and select them based
1019 * on a criteria. At the moment this batch always start at the beginning of the page
1020 * and at this point we don't have multiple wa_ctx batch buffers.
1022 * The number of WA applied are not known at the beginning; we use this field
1023 * to return the no of DWORDS written.
1025 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1026 * so it adds NOOPs as padding to make it cacheline aligned.
1027 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1028 * makes a complete batch buffer.
1030 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1031 struct i915_wa_ctx_bb *wa_ctx,
1032 uint32_t *batch,
1033 uint32_t *offset)
1035 uint32_t scratch_addr;
1036 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1038 /* WaDisableCtxRestoreArbitration:bdw,chv */
1039 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1041 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1042 if (IS_BROADWELL(engine->i915)) {
1043 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1044 if (rc < 0)
1045 return rc;
1046 index = rc;
1049 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1050 /* Actual scratch location is at 128 bytes offset */
1051 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1053 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1054 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1055 PIPE_CONTROL_GLOBAL_GTT_IVB |
1056 PIPE_CONTROL_CS_STALL |
1057 PIPE_CONTROL_QW_WRITE));
1058 wa_ctx_emit(batch, index, scratch_addr);
1059 wa_ctx_emit(batch, index, 0);
1060 wa_ctx_emit(batch, index, 0);
1061 wa_ctx_emit(batch, index, 0);
1063 /* Pad to end of cacheline */
1064 while (index % CACHELINE_DWORDS)
1065 wa_ctx_emit(batch, index, MI_NOOP);
1068 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1069 * execution depends on the length specified in terms of cache lines
1070 * in the register CTX_RCS_INDIRECT_CTX
1073 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1077 * This batch is started immediately after indirect_ctx batch. Since we ensure
1078 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1080 * The number of DWORDS written are returned using this field.
1082 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1083 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1085 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1086 struct i915_wa_ctx_bb *wa_ctx,
1087 uint32_t *batch,
1088 uint32_t *offset)
1090 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1092 /* WaDisableCtxRestoreArbitration:bdw,chv */
1093 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1095 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1097 return wa_ctx_end(wa_ctx, *offset = index, 1);
1100 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1101 struct i915_wa_ctx_bb *wa_ctx,
1102 uint32_t *batch,
1103 uint32_t *offset)
1105 int ret;
1106 struct drm_i915_private *dev_priv = engine->i915;
1107 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1109 /* WaDisableCtxRestoreArbitration:bxt */
1110 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1111 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1113 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1114 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1115 if (ret < 0)
1116 return ret;
1117 index = ret;
1119 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1120 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1121 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1122 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1123 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1124 wa_ctx_emit(batch, index, MI_NOOP);
1126 /* WaClearSlmSpaceAtContextSwitch:kbl */
1127 /* Actual scratch location is at 128 bytes offset */
1128 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1129 u32 scratch_addr =
1130 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1132 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1133 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1134 PIPE_CONTROL_GLOBAL_GTT_IVB |
1135 PIPE_CONTROL_CS_STALL |
1136 PIPE_CONTROL_QW_WRITE));
1137 wa_ctx_emit(batch, index, scratch_addr);
1138 wa_ctx_emit(batch, index, 0);
1139 wa_ctx_emit(batch, index, 0);
1140 wa_ctx_emit(batch, index, 0);
1143 /* WaMediaPoolStateCmdInWABB:bxt */
1144 if (HAS_POOLED_EU(engine->i915)) {
1146 * EU pool configuration is setup along with golden context
1147 * during context initialization. This value depends on
1148 * device type (2x6 or 3x6) and needs to be updated based
1149 * on which subslice is disabled especially for 2x6
1150 * devices, however it is safe to load default
1151 * configuration of 3x6 device instead of masking off
1152 * corresponding bits because HW ignores bits of a disabled
1153 * subslice and drops down to appropriate config. Please
1154 * see render_state_setup() in i915_gem_render_state.c for
1155 * possible configurations, to avoid duplication they are
1156 * not shown here again.
1158 u32 eu_pool_config = 0x00777000;
1159 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1160 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1161 wa_ctx_emit(batch, index, eu_pool_config);
1162 wa_ctx_emit(batch, index, 0);
1163 wa_ctx_emit(batch, index, 0);
1164 wa_ctx_emit(batch, index, 0);
1167 /* Pad to end of cacheline */
1168 while (index % CACHELINE_DWORDS)
1169 wa_ctx_emit(batch, index, MI_NOOP);
1171 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1174 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1175 struct i915_wa_ctx_bb *wa_ctx,
1176 uint32_t *batch,
1177 uint32_t *offset)
1179 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1181 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1182 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1183 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1184 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1185 wa_ctx_emit(batch, index,
1186 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1187 wa_ctx_emit(batch, index, MI_NOOP);
1190 /* WaClearTdlStateAckDirtyBits:bxt */
1191 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1192 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1194 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1195 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1197 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1198 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1200 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1201 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1203 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1204 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1205 wa_ctx_emit(batch, index, 0x0);
1206 wa_ctx_emit(batch, index, MI_NOOP);
1209 /* WaDisableCtxRestoreArbitration:bxt */
1210 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1211 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1213 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1215 return wa_ctx_end(wa_ctx, *offset = index, 1);
1218 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1220 struct drm_i915_gem_object *obj;
1221 struct i915_vma *vma;
1222 int err;
1224 obj = i915_gem_object_create(engine->i915, PAGE_ALIGN(size));
1225 if (IS_ERR(obj))
1226 return PTR_ERR(obj);
1228 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1229 if (IS_ERR(vma)) {
1230 err = PTR_ERR(vma);
1231 goto err;
1234 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1235 if (err)
1236 goto err;
1238 engine->wa_ctx.vma = vma;
1239 return 0;
1241 err:
1242 i915_gem_object_put(obj);
1243 return err;
1246 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1248 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1251 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1253 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1254 uint32_t *batch;
1255 uint32_t offset;
1256 struct page *page;
1257 int ret;
1259 WARN_ON(engine->id != RCS);
1261 /* update this when WA for higher Gen are added */
1262 if (INTEL_GEN(engine->i915) > 9) {
1263 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1264 INTEL_GEN(engine->i915));
1265 return 0;
1268 /* some WA perform writes to scratch page, ensure it is valid */
1269 if (!engine->scratch) {
1270 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1271 return -EINVAL;
1274 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1275 if (ret) {
1276 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1277 return ret;
1280 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1281 batch = kmap_atomic(page);
1282 offset = 0;
1284 if (IS_GEN8(engine->i915)) {
1285 ret = gen8_init_indirectctx_bb(engine,
1286 &wa_ctx->indirect_ctx,
1287 batch,
1288 &offset);
1289 if (ret)
1290 goto out;
1292 ret = gen8_init_perctx_bb(engine,
1293 &wa_ctx->per_ctx,
1294 batch,
1295 &offset);
1296 if (ret)
1297 goto out;
1298 } else if (IS_GEN9(engine->i915)) {
1299 ret = gen9_init_indirectctx_bb(engine,
1300 &wa_ctx->indirect_ctx,
1301 batch,
1302 &offset);
1303 if (ret)
1304 goto out;
1306 ret = gen9_init_perctx_bb(engine,
1307 &wa_ctx->per_ctx,
1308 batch,
1309 &offset);
1310 if (ret)
1311 goto out;
1314 out:
1315 kunmap_atomic(batch);
1316 if (ret)
1317 lrc_destroy_wa_ctx_obj(engine);
1319 return ret;
1322 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1324 struct drm_i915_private *dev_priv = engine->i915;
1325 int ret;
1327 ret = intel_mocs_init_engine(engine);
1328 if (ret)
1329 return ret;
1331 intel_engine_reset_breadcrumbs(engine);
1332 intel_engine_init_hangcheck(engine);
1334 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1335 I915_WRITE(RING_MODE_GEN7(engine),
1336 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1337 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1338 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1339 engine->status_page.ggtt_offset);
1340 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1342 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1344 /* After a GPU reset, we may have requests to replay */
1345 if (!execlists_elsp_idle(engine)) {
1346 engine->execlist_port[0].count = 0;
1347 engine->execlist_port[1].count = 0;
1348 execlists_submit_ports(engine);
1351 return 0;
1354 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1356 struct drm_i915_private *dev_priv = engine->i915;
1357 int ret;
1359 ret = gen8_init_common_ring(engine);
1360 if (ret)
1361 return ret;
1363 /* We need to disable the AsyncFlip performance optimisations in order
1364 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1365 * programmed to '1' on all products.
1367 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1369 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1371 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1373 return init_workarounds_ring(engine);
1376 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1378 int ret;
1380 ret = gen8_init_common_ring(engine);
1381 if (ret)
1382 return ret;
1384 return init_workarounds_ring(engine);
1387 static void reset_common_ring(struct intel_engine_cs *engine,
1388 struct drm_i915_gem_request *request)
1390 struct drm_i915_private *dev_priv = engine->i915;
1391 struct execlist_port *port = engine->execlist_port;
1392 struct intel_context *ce = &request->ctx->engine[engine->id];
1394 /* We want a simple context + ring to execute the breadcrumb update.
1395 * We cannot rely on the context being intact across the GPU hang,
1396 * so clear it and rebuild just what we need for the breadcrumb.
1397 * All pending requests for this context will be zapped, and any
1398 * future request will be after userspace has had the opportunity
1399 * to recreate its own state.
1401 execlists_init_reg_state(ce->lrc_reg_state,
1402 request->ctx, engine, ce->ring);
1404 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1405 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1406 i915_ggtt_offset(ce->ring->vma);
1407 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1409 request->ring->head = request->postfix;
1410 request->ring->last_retired_head = -1;
1411 intel_ring_update_space(request->ring);
1413 if (i915.enable_guc_submission)
1414 return;
1416 /* Catch up with any missed context-switch interrupts */
1417 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1418 if (request->ctx != port[0].request->ctx) {
1419 i915_gem_request_put(port[0].request);
1420 port[0] = port[1];
1421 memset(&port[1], 0, sizeof(port[1]));
1424 GEM_BUG_ON(request->ctx != port[0].request->ctx);
1426 /* Reset WaIdleLiteRestore:bdw,skl as well */
1427 request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1430 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1432 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1433 struct intel_ring *ring = req->ring;
1434 struct intel_engine_cs *engine = req->engine;
1435 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1436 int i, ret;
1438 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1439 if (ret)
1440 return ret;
1442 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1443 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1444 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1446 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1447 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1448 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1449 intel_ring_emit(ring, lower_32_bits(pd_daddr));
1452 intel_ring_emit(ring, MI_NOOP);
1453 intel_ring_advance(ring);
1455 return 0;
1458 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1459 u64 offset, u32 len,
1460 unsigned int dispatch_flags)
1462 struct intel_ring *ring = req->ring;
1463 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1464 int ret;
1466 /* Don't rely in hw updating PDPs, specially in lite-restore.
1467 * Ideally, we should set Force PD Restore in ctx descriptor,
1468 * but we can't. Force Restore would be a second option, but
1469 * it is unsafe in case of lite-restore (because the ctx is
1470 * not idle). PML4 is allocated during ppgtt init so this is
1471 * not needed in 48-bit.*/
1472 if (req->ctx->ppgtt &&
1473 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1474 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1475 !intel_vgpu_active(req->i915)) {
1476 ret = intel_logical_ring_emit_pdps(req);
1477 if (ret)
1478 return ret;
1481 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1484 ret = intel_ring_begin(req, 4);
1485 if (ret)
1486 return ret;
1488 /* FIXME(BDW): Address space and security selectors. */
1489 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1490 (ppgtt<<8) |
1491 (dispatch_flags & I915_DISPATCH_RS ?
1492 MI_BATCH_RESOURCE_STREAMER : 0));
1493 intel_ring_emit(ring, lower_32_bits(offset));
1494 intel_ring_emit(ring, upper_32_bits(offset));
1495 intel_ring_emit(ring, MI_NOOP);
1496 intel_ring_advance(ring);
1498 return 0;
1501 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1503 struct drm_i915_private *dev_priv = engine->i915;
1504 I915_WRITE_IMR(engine,
1505 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1506 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1509 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1511 struct drm_i915_private *dev_priv = engine->i915;
1512 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1515 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1517 struct intel_ring *ring = request->ring;
1518 u32 cmd;
1519 int ret;
1521 ret = intel_ring_begin(request, 4);
1522 if (ret)
1523 return ret;
1525 cmd = MI_FLUSH_DW + 1;
1527 /* We always require a command barrier so that subsequent
1528 * commands, such as breadcrumb interrupts, are strictly ordered
1529 * wrt the contents of the write cache being flushed to memory
1530 * (and thus being coherent from the CPU).
1532 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1534 if (mode & EMIT_INVALIDATE) {
1535 cmd |= MI_INVALIDATE_TLB;
1536 if (request->engine->id == VCS)
1537 cmd |= MI_INVALIDATE_BSD;
1540 intel_ring_emit(ring, cmd);
1541 intel_ring_emit(ring,
1542 I915_GEM_HWS_SCRATCH_ADDR |
1543 MI_FLUSH_DW_USE_GTT);
1544 intel_ring_emit(ring, 0); /* upper addr */
1545 intel_ring_emit(ring, 0); /* value */
1546 intel_ring_advance(ring);
1548 return 0;
1551 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1552 u32 mode)
1554 struct intel_ring *ring = request->ring;
1555 struct intel_engine_cs *engine = request->engine;
1556 u32 scratch_addr =
1557 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1558 bool vf_flush_wa = false, dc_flush_wa = false;
1559 u32 flags = 0;
1560 int ret;
1561 int len;
1563 flags |= PIPE_CONTROL_CS_STALL;
1565 if (mode & EMIT_FLUSH) {
1566 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1567 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1568 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1569 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1572 if (mode & EMIT_INVALIDATE) {
1573 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1574 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1575 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1576 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1577 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1578 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1579 flags |= PIPE_CONTROL_QW_WRITE;
1580 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1583 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1584 * pipe control.
1586 if (IS_GEN9(request->i915))
1587 vf_flush_wa = true;
1589 /* WaForGAMHang:kbl */
1590 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1591 dc_flush_wa = true;
1594 len = 6;
1596 if (vf_flush_wa)
1597 len += 6;
1599 if (dc_flush_wa)
1600 len += 12;
1602 ret = intel_ring_begin(request, len);
1603 if (ret)
1604 return ret;
1606 if (vf_flush_wa) {
1607 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1608 intel_ring_emit(ring, 0);
1609 intel_ring_emit(ring, 0);
1610 intel_ring_emit(ring, 0);
1611 intel_ring_emit(ring, 0);
1612 intel_ring_emit(ring, 0);
1615 if (dc_flush_wa) {
1616 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1617 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1618 intel_ring_emit(ring, 0);
1619 intel_ring_emit(ring, 0);
1620 intel_ring_emit(ring, 0);
1621 intel_ring_emit(ring, 0);
1624 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1625 intel_ring_emit(ring, flags);
1626 intel_ring_emit(ring, scratch_addr);
1627 intel_ring_emit(ring, 0);
1628 intel_ring_emit(ring, 0);
1629 intel_ring_emit(ring, 0);
1631 if (dc_flush_wa) {
1632 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1633 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1634 intel_ring_emit(ring, 0);
1635 intel_ring_emit(ring, 0);
1636 intel_ring_emit(ring, 0);
1637 intel_ring_emit(ring, 0);
1640 intel_ring_advance(ring);
1642 return 0;
1645 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1648 * On BXT A steppings there is a HW coherency issue whereby the
1649 * MI_STORE_DATA_IMM storing the completed request's seqno
1650 * occasionally doesn't invalidate the CPU cache. Work around this by
1651 * clflushing the corresponding cacheline whenever the caller wants
1652 * the coherency to be guaranteed. Note that this cacheline is known
1653 * to be clean at this point, since we only write it in
1654 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1655 * this clflush in practice becomes an invalidate operation.
1657 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1661 * Reserve space for 2 NOOPs at the end of each request to be
1662 * used as a workaround for not being allowed to do lite
1663 * restore with HEAD==TAIL (WaIdleLiteRestore).
1665 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1667 *out++ = MI_NOOP;
1668 *out++ = MI_NOOP;
1669 request->wa_tail = intel_ring_offset(request->ring, out);
1672 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
1673 u32 *out)
1675 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1676 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1678 *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1679 *out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1680 *out++ = 0;
1681 *out++ = request->global_seqno;
1682 *out++ = MI_USER_INTERRUPT;
1683 *out++ = MI_NOOP;
1684 request->tail = intel_ring_offset(request->ring, out);
1686 gen8_emit_wa_tail(request, out);
1689 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1691 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1692 u32 *out)
1694 /* We're using qword write, seqno should be aligned to 8 bytes. */
1695 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1697 /* w/a for post sync ops following a GPGPU operation we
1698 * need a prior CS_STALL, which is emitted by the flush
1699 * following the batch.
1701 *out++ = GFX_OP_PIPE_CONTROL(6);
1702 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1703 PIPE_CONTROL_CS_STALL |
1704 PIPE_CONTROL_QW_WRITE);
1705 *out++ = intel_hws_seqno_address(request->engine);
1706 *out++ = 0;
1707 *out++ = request->global_seqno;
1708 /* We're thrashing one dword of HWS. */
1709 *out++ = 0;
1710 *out++ = MI_USER_INTERRUPT;
1711 *out++ = MI_NOOP;
1712 request->tail = intel_ring_offset(request->ring, out);
1714 gen8_emit_wa_tail(request, out);
1717 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1719 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1721 int ret;
1723 ret = intel_logical_ring_workarounds_emit(req);
1724 if (ret)
1725 return ret;
1727 ret = intel_rcs_context_init_mocs(req);
1729 * Failing to program the MOCS is non-fatal.The system will not
1730 * run at peak performance. So generate an error and carry on.
1732 if (ret)
1733 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1735 return i915_gem_render_state_emit(req);
1739 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1740 * @engine: Engine Command Streamer.
1742 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1744 struct drm_i915_private *dev_priv;
1747 * Tasklet cannot be active at this point due intel_mark_active/idle
1748 * so this is just for documentation.
1750 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1751 tasklet_kill(&engine->irq_tasklet);
1753 dev_priv = engine->i915;
1755 if (engine->buffer) {
1756 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1759 if (engine->cleanup)
1760 engine->cleanup(engine);
1762 if (engine->status_page.vma) {
1763 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1764 engine->status_page.vma = NULL;
1767 intel_engine_cleanup_common(engine);
1769 lrc_destroy_wa_ctx_obj(engine);
1770 engine->i915 = NULL;
1771 dev_priv->engine[engine->id] = NULL;
1772 kfree(engine);
1775 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1777 struct intel_engine_cs *engine;
1778 enum intel_engine_id id;
1780 for_each_engine(engine, dev_priv, id) {
1781 engine->submit_request = execlists_submit_request;
1782 engine->schedule = execlists_schedule;
1786 static void
1787 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1789 /* Default vfuncs which can be overriden by each engine. */
1790 engine->init_hw = gen8_init_common_ring;
1791 engine->reset_hw = reset_common_ring;
1793 engine->context_pin = execlists_context_pin;
1794 engine->context_unpin = execlists_context_unpin;
1796 engine->request_alloc = execlists_request_alloc;
1798 engine->emit_flush = gen8_emit_flush;
1799 engine->emit_breadcrumb = gen8_emit_breadcrumb;
1800 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1801 engine->submit_request = execlists_submit_request;
1802 engine->schedule = execlists_schedule;
1804 engine->irq_enable = gen8_logical_ring_enable_irq;
1805 engine->irq_disable = gen8_logical_ring_disable_irq;
1806 engine->emit_bb_start = gen8_emit_bb_start;
1807 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1808 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1811 static inline void
1812 logical_ring_default_irqs(struct intel_engine_cs *engine)
1814 unsigned shift = engine->irq_shift;
1815 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1816 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1819 static int
1820 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1822 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1823 void *hws;
1825 /* The HWSP is part of the default context object in LRC mode. */
1826 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1827 if (IS_ERR(hws))
1828 return PTR_ERR(hws);
1830 engine->status_page.page_addr = hws + hws_offset;
1831 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1832 engine->status_page.vma = vma;
1834 return 0;
1837 static void
1838 logical_ring_setup(struct intel_engine_cs *engine)
1840 struct drm_i915_private *dev_priv = engine->i915;
1841 enum forcewake_domains fw_domains;
1843 intel_engine_setup_common(engine);
1845 /* Intentionally left blank. */
1846 engine->buffer = NULL;
1848 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1849 RING_ELSP(engine),
1850 FW_REG_WRITE);
1852 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1853 RING_CONTEXT_STATUS_PTR(engine),
1854 FW_REG_READ | FW_REG_WRITE);
1856 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1857 RING_CONTEXT_STATUS_BUF_BASE(engine),
1858 FW_REG_READ);
1860 engine->fw_domains = fw_domains;
1862 tasklet_init(&engine->irq_tasklet,
1863 intel_lrc_irq_handler, (unsigned long)engine);
1865 logical_ring_init_platform_invariants(engine);
1866 logical_ring_default_vfuncs(engine);
1867 logical_ring_default_irqs(engine);
1870 static int
1871 logical_ring_init(struct intel_engine_cs *engine)
1873 struct i915_gem_context *dctx = engine->i915->kernel_context;
1874 int ret;
1876 ret = intel_engine_init_common(engine);
1877 if (ret)
1878 goto error;
1880 /* And setup the hardware status page. */
1881 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1882 if (ret) {
1883 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1884 goto error;
1887 return 0;
1889 error:
1890 intel_logical_ring_cleanup(engine);
1891 return ret;
1894 int logical_render_ring_init(struct intel_engine_cs *engine)
1896 struct drm_i915_private *dev_priv = engine->i915;
1897 int ret;
1899 logical_ring_setup(engine);
1901 if (HAS_L3_DPF(dev_priv))
1902 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1904 /* Override some for render ring. */
1905 if (INTEL_GEN(dev_priv) >= 9)
1906 engine->init_hw = gen9_init_render_ring;
1907 else
1908 engine->init_hw = gen8_init_render_ring;
1909 engine->init_context = gen8_init_rcs_context;
1910 engine->emit_flush = gen8_emit_flush_render;
1911 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1912 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1914 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1915 if (ret)
1916 return ret;
1918 ret = intel_init_workaround_bb(engine);
1919 if (ret) {
1921 * We continue even if we fail to initialize WA batch
1922 * because we only expect rare glitches but nothing
1923 * critical to prevent us from using GPU
1925 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1926 ret);
1929 return logical_ring_init(engine);
1932 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1934 logical_ring_setup(engine);
1936 return logical_ring_init(engine);
1939 static u32
1940 make_rpcs(struct drm_i915_private *dev_priv)
1942 u32 rpcs = 0;
1945 * No explicit RPCS request is needed to ensure full
1946 * slice/subslice/EU enablement prior to Gen9.
1948 if (INTEL_GEN(dev_priv) < 9)
1949 return 0;
1952 * Starting in Gen9, render power gating can leave
1953 * slice/subslice/EU in a partially enabled state. We
1954 * must make an explicit request through RPCS for full
1955 * enablement.
1957 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1958 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1959 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1960 GEN8_RPCS_S_CNT_SHIFT;
1961 rpcs |= GEN8_RPCS_ENABLE;
1964 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1965 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1966 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1967 GEN8_RPCS_SS_CNT_SHIFT;
1968 rpcs |= GEN8_RPCS_ENABLE;
1971 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1972 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1973 GEN8_RPCS_EU_MIN_SHIFT;
1974 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1975 GEN8_RPCS_EU_MAX_SHIFT;
1976 rpcs |= GEN8_RPCS_ENABLE;
1979 return rpcs;
1982 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1984 u32 indirect_ctx_offset;
1986 switch (INTEL_GEN(engine->i915)) {
1987 default:
1988 MISSING_CASE(INTEL_GEN(engine->i915));
1989 /* fall through */
1990 case 9:
1991 indirect_ctx_offset =
1992 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1993 break;
1994 case 8:
1995 indirect_ctx_offset =
1996 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1997 break;
2000 return indirect_ctx_offset;
2003 static void execlists_init_reg_state(u32 *reg_state,
2004 struct i915_gem_context *ctx,
2005 struct intel_engine_cs *engine,
2006 struct intel_ring *ring)
2008 struct drm_i915_private *dev_priv = engine->i915;
2009 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2011 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2012 * commands followed by (reg, value) pairs. The values we are setting here are
2013 * only for the first context restore: on a subsequent save, the GPU will
2014 * recreate this batchbuffer with new values (including all the missing
2015 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2016 reg_state[CTX_LRI_HEADER_0] =
2017 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2018 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2019 RING_CONTEXT_CONTROL(engine),
2020 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2021 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2022 (HAS_RESOURCE_STREAMER(dev_priv) ?
2023 CTX_CTRL_RS_CTX_ENABLE : 0)));
2024 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2026 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2028 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2029 RING_START(engine->mmio_base), 0);
2030 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2031 RING_CTL(engine->mmio_base),
2032 RING_CTL_SIZE(ring->size) | RING_VALID);
2033 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2034 RING_BBADDR_UDW(engine->mmio_base), 0);
2035 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2036 RING_BBADDR(engine->mmio_base), 0);
2037 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2038 RING_BBSTATE(engine->mmio_base),
2039 RING_BB_PPGTT);
2040 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2041 RING_SBBADDR_UDW(engine->mmio_base), 0);
2042 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2043 RING_SBBADDR(engine->mmio_base), 0);
2044 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2045 RING_SBBSTATE(engine->mmio_base), 0);
2046 if (engine->id == RCS) {
2047 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2048 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2049 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2050 RING_INDIRECT_CTX(engine->mmio_base), 0);
2051 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2052 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2053 if (engine->wa_ctx.vma) {
2054 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2055 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2057 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2058 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2059 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2061 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2062 intel_lr_indirect_ctx_offset(engine) << 6;
2064 reg_state[CTX_BB_PER_CTX_PTR+1] =
2065 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2066 0x01;
2069 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2070 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2071 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2072 /* PDP values well be assigned later if needed */
2073 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2075 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2077 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2079 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2081 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2083 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2085 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2087 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2090 if (ppgtt && USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2091 /* 64b PPGTT (48bit canonical)
2092 * PDP0_DESCRIPTOR contains the base address to PML4 and
2093 * other PDP Descriptors are ignored.
2095 ASSIGN_CTX_PML4(ppgtt, reg_state);
2098 if (engine->id == RCS) {
2099 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2100 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2101 make_rpcs(dev_priv));
2105 static int
2106 populate_lr_context(struct i915_gem_context *ctx,
2107 struct drm_i915_gem_object *ctx_obj,
2108 struct intel_engine_cs *engine,
2109 struct intel_ring *ring)
2111 void *vaddr;
2112 int ret;
2114 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2115 if (ret) {
2116 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2117 return ret;
2120 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2121 if (IS_ERR(vaddr)) {
2122 ret = PTR_ERR(vaddr);
2123 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2124 return ret;
2126 ctx_obj->mm.dirty = true;
2128 /* The second page of the context object contains some fields which must
2129 * be set up prior to the first execution. */
2131 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2132 ctx, engine, ring);
2134 i915_gem_object_unpin_map(ctx_obj);
2136 return 0;
2140 * intel_lr_context_size() - return the size of the context for an engine
2141 * @engine: which engine to find the context size for
2143 * Each engine may require a different amount of space for a context image,
2144 * so when allocating (or copying) an image, this function can be used to
2145 * find the right size for the specific engine.
2147 * Return: size (in bytes) of an engine-specific context image
2149 * Note: this size includes the HWSP, which is part of the context image
2150 * in LRC mode, but does not include the "shared data page" used with
2151 * GuC submission. The caller should account for this if using the GuC.
2153 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2155 int ret = 0;
2157 WARN_ON(INTEL_GEN(engine->i915) < 8);
2159 switch (engine->id) {
2160 case RCS:
2161 if (INTEL_GEN(engine->i915) >= 9)
2162 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2163 else
2164 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2165 break;
2166 case VCS:
2167 case BCS:
2168 case VECS:
2169 case VCS2:
2170 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2171 break;
2174 return ret;
2177 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2178 struct intel_engine_cs *engine)
2180 struct drm_i915_gem_object *ctx_obj;
2181 struct intel_context *ce = &ctx->engine[engine->id];
2182 struct i915_vma *vma;
2183 uint32_t context_size;
2184 struct intel_ring *ring;
2185 int ret;
2187 WARN_ON(ce->state);
2189 context_size = round_up(intel_lr_context_size(engine),
2190 I915_GTT_PAGE_SIZE);
2192 /* One extra page as the sharing data between driver and GuC */
2193 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2195 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2196 if (IS_ERR(ctx_obj)) {
2197 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2198 return PTR_ERR(ctx_obj);
2201 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2202 if (IS_ERR(vma)) {
2203 ret = PTR_ERR(vma);
2204 goto error_deref_obj;
2207 ring = intel_engine_create_ring(engine, ctx->ring_size);
2208 if (IS_ERR(ring)) {
2209 ret = PTR_ERR(ring);
2210 goto error_deref_obj;
2213 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2214 if (ret) {
2215 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2216 goto error_ring_free;
2219 ce->ring = ring;
2220 ce->state = vma;
2221 ce->initialised = engine->init_context == NULL;
2223 return 0;
2225 error_ring_free:
2226 intel_ring_free(ring);
2227 error_deref_obj:
2228 i915_gem_object_put(ctx_obj);
2229 return ret;
2232 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2234 struct intel_engine_cs *engine;
2235 struct i915_gem_context *ctx;
2236 enum intel_engine_id id;
2238 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2239 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2240 * that stored in context. As we only write new commands from
2241 * ce->ring->tail onwards, everything before that is junk. If the GPU
2242 * starts reading from its RING_HEAD from the context, it may try to
2243 * execute that junk and die.
2245 * So to avoid that we reset the context images upon resume. For
2246 * simplicity, we just zero everything out.
2248 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2249 for_each_engine(engine, dev_priv, id) {
2250 struct intel_context *ce = &ctx->engine[engine->id];
2251 u32 *reg;
2253 if (!ce->state)
2254 continue;
2256 reg = i915_gem_object_pin_map(ce->state->obj,
2257 I915_MAP_WB);
2258 if (WARN_ON(IS_ERR(reg)))
2259 continue;
2261 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2262 reg[CTX_RING_HEAD+1] = 0;
2263 reg[CTX_RING_TAIL+1] = 0;
2265 ce->state->obj->mm.dirty = true;
2266 i915_gem_object_unpin_map(ce->state->obj);
2268 ce->ring->head = ce->ring->tail = 0;
2269 ce->ring->last_retired_head = -1;
2270 intel_ring_update_space(ce->ring);