2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
39 * RC6 is a special power stage which allows the GPU to enter an very
40 * low-voltage mode when idle, using down to 0V while at this stage. This
41 * stage is entered automatically when the GPU is idle when RC6 support is
42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
44 * There are different RC6 modes available in Intel GPU, which differentiate
45 * among each other with the latency required to enter and leave RC6 and
46 * voltage consumed by the GPU in different states.
48 * The combination of the following flags define which states GPU is allowed
49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50 * RC6pp is deepest RC6. Their support by hardware varies according to the
51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52 * which brings the most power savings; deeper states save more power, but
53 * require higher latency to switch to and wake up.
55 #define INTEL_RC6_ENABLE (1<<0)
56 #define INTEL_RC6p_ENABLE (1<<1)
57 #define INTEL_RC6pp_ENABLE (1<<2)
59 static void gen9_init_clock_gating(struct drm_i915_private
*dev_priv
)
61 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 I915_WRITE(CHICKEN_PAR1_1
,
63 I915_READ(CHICKEN_PAR1_1
) | SKL_EDP_PSR_FIX_RDWRAP
);
65 I915_WRITE(GEN8_CONFIG0
,
66 I915_READ(GEN8_CONFIG0
) | GEN9_DEFAULT_FIXES
);
68 /* WaEnableChickenDCPR:skl,bxt,kbl */
69 I915_WRITE(GEN8_CHICKEN_DCPR_1
,
70 I915_READ(GEN8_CHICKEN_DCPR_1
) | MASK_WAKEMEM
);
72 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 /* WaFbcWakeMemOn:skl,bxt,kbl */
74 I915_WRITE(DISP_ARB_CTL
, I915_READ(DISP_ARB_CTL
) |
76 DISP_FBC_MEMORY_WAKE
);
78 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
79 I915_WRITE(ILK_DPFC_CHICKEN
, I915_READ(ILK_DPFC_CHICKEN
) |
80 ILK_DPFC_DISABLE_DUMMY0
);
83 static void bxt_init_clock_gating(struct drm_i915_private
*dev_priv
)
85 gen9_init_clock_gating(dev_priv
);
87 /* WaDisableSDEUnitClockGating:bxt */
88 I915_WRITE(GEN8_UCGCTL6
, I915_READ(GEN8_UCGCTL6
) |
89 GEN8_SDEUNIT_CLOCK_GATE_DISABLE
);
93 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
95 I915_WRITE(GEN8_UCGCTL6
, I915_READ(GEN8_UCGCTL6
) |
96 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ
);
99 * Wa: Backlight PWM may stop in the asserted state, causing backlight
102 if (IS_BXT_REVID(dev_priv
, BXT_REVID_B0
, REVID_FOREVER
))
103 I915_WRITE(GEN9_CLKGATE_DIS_0
, I915_READ(GEN9_CLKGATE_DIS_0
) |
104 PWM1_GATING_DIS
| PWM2_GATING_DIS
);
107 static void i915_pineview_get_mem_freq(struct drm_i915_private
*dev_priv
)
111 tmp
= I915_READ(CLKCFG
);
113 switch (tmp
& CLKCFG_FSB_MASK
) {
115 dev_priv
->fsb_freq
= 533; /* 133*4 */
118 dev_priv
->fsb_freq
= 800; /* 200*4 */
121 dev_priv
->fsb_freq
= 667; /* 167*4 */
124 dev_priv
->fsb_freq
= 400; /* 100*4 */
128 switch (tmp
& CLKCFG_MEM_MASK
) {
130 dev_priv
->mem_freq
= 533;
133 dev_priv
->mem_freq
= 667;
136 dev_priv
->mem_freq
= 800;
140 /* detect pineview DDR3 setting */
141 tmp
= I915_READ(CSHRDDR3CTL
);
142 dev_priv
->is_ddr3
= (tmp
& CSHRDDR3CTL_DDR3
) ? 1 : 0;
145 static void i915_ironlake_get_mem_freq(struct drm_i915_private
*dev_priv
)
149 ddrpll
= I915_READ16(DDRMPLL1
);
150 csipll
= I915_READ16(CSIPLL0
);
152 switch (ddrpll
& 0xff) {
154 dev_priv
->mem_freq
= 800;
157 dev_priv
->mem_freq
= 1066;
160 dev_priv
->mem_freq
= 1333;
163 dev_priv
->mem_freq
= 1600;
166 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
168 dev_priv
->mem_freq
= 0;
172 dev_priv
->ips
.r_t
= dev_priv
->mem_freq
;
174 switch (csipll
& 0x3ff) {
176 dev_priv
->fsb_freq
= 3200;
179 dev_priv
->fsb_freq
= 3733;
182 dev_priv
->fsb_freq
= 4266;
185 dev_priv
->fsb_freq
= 4800;
188 dev_priv
->fsb_freq
= 5333;
191 dev_priv
->fsb_freq
= 5866;
194 dev_priv
->fsb_freq
= 6400;
197 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
199 dev_priv
->fsb_freq
= 0;
203 if (dev_priv
->fsb_freq
== 3200) {
204 dev_priv
->ips
.c_m
= 0;
205 } else if (dev_priv
->fsb_freq
> 3200 && dev_priv
->fsb_freq
<= 4800) {
206 dev_priv
->ips
.c_m
= 1;
208 dev_priv
->ips
.c_m
= 2;
212 static const struct cxsr_latency cxsr_latency_table
[] = {
213 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
214 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
215 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
216 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
217 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
219 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
220 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
221 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
222 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
223 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
225 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
226 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
227 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
228 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
229 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
231 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
232 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
233 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
234 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
235 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
237 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
238 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
239 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
240 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
241 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
243 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
244 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
245 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
246 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
247 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
250 static const struct cxsr_latency
*intel_get_cxsr_latency(bool is_desktop
,
255 const struct cxsr_latency
*latency
;
258 if (fsb
== 0 || mem
== 0)
261 for (i
= 0; i
< ARRAY_SIZE(cxsr_latency_table
); i
++) {
262 latency
= &cxsr_latency_table
[i
];
263 if (is_desktop
== latency
->is_desktop
&&
264 is_ddr3
== latency
->is_ddr3
&&
265 fsb
== latency
->fsb_freq
&& mem
== latency
->mem_freq
)
269 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
274 static void chv_set_memory_dvfs(struct drm_i915_private
*dev_priv
, bool enable
)
278 mutex_lock(&dev_priv
->rps
.hw_lock
);
280 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
);
282 val
&= ~FORCE_DDR_HIGH_FREQ
;
284 val
|= FORCE_DDR_HIGH_FREQ
;
285 val
&= ~FORCE_DDR_LOW_FREQ
;
286 val
|= FORCE_DDR_FREQ_REQ_ACK
;
287 vlv_punit_write(dev_priv
, PUNIT_REG_DDR_SETUP2
, val
);
289 if (wait_for((vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
) &
290 FORCE_DDR_FREQ_REQ_ACK
) == 0, 3))
291 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
293 mutex_unlock(&dev_priv
->rps
.hw_lock
);
296 static void chv_set_memory_pm5(struct drm_i915_private
*dev_priv
, bool enable
)
300 mutex_lock(&dev_priv
->rps
.hw_lock
);
302 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DSPFREQ
);
304 val
|= DSP_MAXFIFO_PM5_ENABLE
;
306 val
&= ~DSP_MAXFIFO_PM5_ENABLE
;
307 vlv_punit_write(dev_priv
, PUNIT_REG_DSPFREQ
, val
);
309 mutex_unlock(&dev_priv
->rps
.hw_lock
);
312 #define FW_WM(value, plane) \
313 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
315 static bool _intel_set_memory_cxsr(struct drm_i915_private
*dev_priv
, bool enable
)
320 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
321 was_enabled
= I915_READ(FW_BLC_SELF_VLV
) & FW_CSPWRDWNEN
;
322 I915_WRITE(FW_BLC_SELF_VLV
, enable
? FW_CSPWRDWNEN
: 0);
323 POSTING_READ(FW_BLC_SELF_VLV
);
324 } else if (IS_G4X(dev_priv
) || IS_I965GM(dev_priv
)) {
325 was_enabled
= I915_READ(FW_BLC_SELF
) & FW_BLC_SELF_EN
;
326 I915_WRITE(FW_BLC_SELF
, enable
? FW_BLC_SELF_EN
: 0);
327 POSTING_READ(FW_BLC_SELF
);
328 } else if (IS_PINEVIEW(dev_priv
)) {
329 val
= I915_READ(DSPFW3
);
330 was_enabled
= val
& PINEVIEW_SELF_REFRESH_EN
;
332 val
|= PINEVIEW_SELF_REFRESH_EN
;
334 val
&= ~PINEVIEW_SELF_REFRESH_EN
;
335 I915_WRITE(DSPFW3
, val
);
336 POSTING_READ(DSPFW3
);
337 } else if (IS_I945G(dev_priv
) || IS_I945GM(dev_priv
)) {
338 was_enabled
= I915_READ(FW_BLC_SELF
) & FW_BLC_SELF_EN
;
339 val
= enable
? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN
) :
340 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN
);
341 I915_WRITE(FW_BLC_SELF
, val
);
342 POSTING_READ(FW_BLC_SELF
);
343 } else if (IS_I915GM(dev_priv
)) {
345 * FIXME can't find a bit like this for 915G, and
346 * and yet it does have the related watermark in
347 * FW_BLC_SELF. What's going on?
349 was_enabled
= I915_READ(INSTPM
) & INSTPM_SELF_EN
;
350 val
= enable
? _MASKED_BIT_ENABLE(INSTPM_SELF_EN
) :
351 _MASKED_BIT_DISABLE(INSTPM_SELF_EN
);
352 I915_WRITE(INSTPM
, val
);
353 POSTING_READ(INSTPM
);
358 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
359 enableddisabled(enable
),
360 enableddisabled(was_enabled
));
365 bool intel_set_memory_cxsr(struct drm_i915_private
*dev_priv
, bool enable
)
369 mutex_lock(&dev_priv
->wm
.wm_mutex
);
370 ret
= _intel_set_memory_cxsr(dev_priv
, enable
);
371 dev_priv
->wm
.vlv
.cxsr
= enable
;
372 mutex_unlock(&dev_priv
->wm
.wm_mutex
);
378 * Latency for FIFO fetches is dependent on several factors:
379 * - memory configuration (speed, channels)
381 * - current MCH state
382 * It can be fairly high in some situations, so here we assume a fairly
383 * pessimal value. It's a tradeoff between extra memory fetches (if we
384 * set this value too high, the FIFO will fetch frequently to stay full)
385 * and power consumption (set it too low to save power and we might see
386 * FIFO underruns and display "flicker").
388 * A value of 5us seems to be a good balance; safe for very low end
389 * platforms but not overly aggressive on lower latency configs.
391 static const int pessimal_latency_ns
= 5000;
393 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
394 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
396 static int vlv_get_fifo_size(struct intel_plane
*plane
)
398 struct drm_i915_private
*dev_priv
= to_i915(plane
->base
.dev
);
399 int sprite0_start
, sprite1_start
, size
;
401 if (plane
->id
== PLANE_CURSOR
)
404 switch (plane
->pipe
) {
405 uint32_t dsparb
, dsparb2
, dsparb3
;
407 dsparb
= I915_READ(DSPARB
);
408 dsparb2
= I915_READ(DSPARB2
);
409 sprite0_start
= VLV_FIFO_START(dsparb
, dsparb2
, 0, 0);
410 sprite1_start
= VLV_FIFO_START(dsparb
, dsparb2
, 8, 4);
413 dsparb
= I915_READ(DSPARB
);
414 dsparb2
= I915_READ(DSPARB2
);
415 sprite0_start
= VLV_FIFO_START(dsparb
, dsparb2
, 16, 8);
416 sprite1_start
= VLV_FIFO_START(dsparb
, dsparb2
, 24, 12);
419 dsparb2
= I915_READ(DSPARB2
);
420 dsparb3
= I915_READ(DSPARB3
);
421 sprite0_start
= VLV_FIFO_START(dsparb3
, dsparb2
, 0, 16);
422 sprite1_start
= VLV_FIFO_START(dsparb3
, dsparb2
, 8, 20);
430 size
= sprite0_start
;
433 size
= sprite1_start
- sprite0_start
;
436 size
= 512 - 1 - sprite1_start
;
442 DRM_DEBUG_KMS("%s FIFO size: %d\n", plane
->base
.name
, size
);
447 static int i9xx_get_fifo_size(struct drm_i915_private
*dev_priv
, int plane
)
449 uint32_t dsparb
= I915_READ(DSPARB
);
452 size
= dsparb
& 0x7f;
454 size
= ((dsparb
>> DSPARB_CSTART_SHIFT
) & 0x7f) - size
;
456 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
457 plane
? "B" : "A", size
);
462 static int i830_get_fifo_size(struct drm_i915_private
*dev_priv
, int plane
)
464 uint32_t dsparb
= I915_READ(DSPARB
);
467 size
= dsparb
& 0x1ff;
469 size
= ((dsparb
>> DSPARB_BEND_SHIFT
) & 0x1ff) - size
;
470 size
>>= 1; /* Convert to cachelines */
472 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
473 plane
? "B" : "A", size
);
478 static int i845_get_fifo_size(struct drm_i915_private
*dev_priv
, int plane
)
480 uint32_t dsparb
= I915_READ(DSPARB
);
483 size
= dsparb
& 0x7f;
484 size
>>= 2; /* Convert to cachelines */
486 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
493 /* Pineview has different values for various configs */
494 static const struct intel_watermark_params pineview_display_wm
= {
495 .fifo_size
= PINEVIEW_DISPLAY_FIFO
,
496 .max_wm
= PINEVIEW_MAX_WM
,
497 .default_wm
= PINEVIEW_DFT_WM
,
498 .guard_size
= PINEVIEW_GUARD_WM
,
499 .cacheline_size
= PINEVIEW_FIFO_LINE_SIZE
,
501 static const struct intel_watermark_params pineview_display_hplloff_wm
= {
502 .fifo_size
= PINEVIEW_DISPLAY_FIFO
,
503 .max_wm
= PINEVIEW_MAX_WM
,
504 .default_wm
= PINEVIEW_DFT_HPLLOFF_WM
,
505 .guard_size
= PINEVIEW_GUARD_WM
,
506 .cacheline_size
= PINEVIEW_FIFO_LINE_SIZE
,
508 static const struct intel_watermark_params pineview_cursor_wm
= {
509 .fifo_size
= PINEVIEW_CURSOR_FIFO
,
510 .max_wm
= PINEVIEW_CURSOR_MAX_WM
,
511 .default_wm
= PINEVIEW_CURSOR_DFT_WM
,
512 .guard_size
= PINEVIEW_CURSOR_GUARD_WM
,
513 .cacheline_size
= PINEVIEW_FIFO_LINE_SIZE
,
515 static const struct intel_watermark_params pineview_cursor_hplloff_wm
= {
516 .fifo_size
= PINEVIEW_CURSOR_FIFO
,
517 .max_wm
= PINEVIEW_CURSOR_MAX_WM
,
518 .default_wm
= PINEVIEW_CURSOR_DFT_WM
,
519 .guard_size
= PINEVIEW_CURSOR_GUARD_WM
,
520 .cacheline_size
= PINEVIEW_FIFO_LINE_SIZE
,
522 static const struct intel_watermark_params g4x_wm_info
= {
523 .fifo_size
= G4X_FIFO_SIZE
,
524 .max_wm
= G4X_MAX_WM
,
525 .default_wm
= G4X_MAX_WM
,
527 .cacheline_size
= G4X_FIFO_LINE_SIZE
,
529 static const struct intel_watermark_params g4x_cursor_wm_info
= {
530 .fifo_size
= I965_CURSOR_FIFO
,
531 .max_wm
= I965_CURSOR_MAX_WM
,
532 .default_wm
= I965_CURSOR_DFT_WM
,
534 .cacheline_size
= G4X_FIFO_LINE_SIZE
,
536 static const struct intel_watermark_params i965_cursor_wm_info
= {
537 .fifo_size
= I965_CURSOR_FIFO
,
538 .max_wm
= I965_CURSOR_MAX_WM
,
539 .default_wm
= I965_CURSOR_DFT_WM
,
541 .cacheline_size
= I915_FIFO_LINE_SIZE
,
543 static const struct intel_watermark_params i945_wm_info
= {
544 .fifo_size
= I945_FIFO_SIZE
,
545 .max_wm
= I915_MAX_WM
,
548 .cacheline_size
= I915_FIFO_LINE_SIZE
,
550 static const struct intel_watermark_params i915_wm_info
= {
551 .fifo_size
= I915_FIFO_SIZE
,
552 .max_wm
= I915_MAX_WM
,
555 .cacheline_size
= I915_FIFO_LINE_SIZE
,
557 static const struct intel_watermark_params i830_a_wm_info
= {
558 .fifo_size
= I855GM_FIFO_SIZE
,
559 .max_wm
= I915_MAX_WM
,
562 .cacheline_size
= I830_FIFO_LINE_SIZE
,
564 static const struct intel_watermark_params i830_bc_wm_info
= {
565 .fifo_size
= I855GM_FIFO_SIZE
,
566 .max_wm
= I915_MAX_WM
/2,
569 .cacheline_size
= I830_FIFO_LINE_SIZE
,
571 static const struct intel_watermark_params i845_wm_info
= {
572 .fifo_size
= I830_FIFO_SIZE
,
573 .max_wm
= I915_MAX_WM
,
576 .cacheline_size
= I830_FIFO_LINE_SIZE
,
580 * intel_calculate_wm - calculate watermark level
581 * @clock_in_khz: pixel clock
582 * @wm: chip FIFO params
583 * @cpp: bytes per pixel
584 * @latency_ns: memory latency for the platform
586 * Calculate the watermark level (the level at which the display plane will
587 * start fetching from memory again). Each chip has a different display
588 * FIFO size and allocation, so the caller needs to figure that out and pass
589 * in the correct intel_watermark_params structure.
591 * As the pixel clock runs, the FIFO will be drained at a rate that depends
592 * on the pixel size. When it reaches the watermark level, it'll start
593 * fetching FIFO line sized based chunks from memory until the FIFO fills
594 * past the watermark point. If the FIFO drains completely, a FIFO underrun
595 * will occur, and a display engine hang could result.
597 static unsigned long intel_calculate_wm(unsigned long clock_in_khz
,
598 const struct intel_watermark_params
*wm
,
599 int fifo_size
, int cpp
,
600 unsigned long latency_ns
)
602 long entries_required
, wm_size
;
605 * Note: we need to make sure we don't overflow for various clock &
607 * clocks go from a few thousand to several hundred thousand.
608 * latency is usually a few thousand
610 entries_required
= ((clock_in_khz
/ 1000) * cpp
* latency_ns
) /
612 entries_required
= DIV_ROUND_UP(entries_required
, wm
->cacheline_size
);
614 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required
);
616 wm_size
= fifo_size
- (entries_required
+ wm
->guard_size
);
618 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size
);
620 /* Don't promote wm_size to unsigned... */
621 if (wm_size
> (long)wm
->max_wm
)
622 wm_size
= wm
->max_wm
;
624 wm_size
= wm
->default_wm
;
627 * Bspec seems to indicate that the value shouldn't be lower than
628 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
629 * Lets go for 8 which is the burst size since certain platforms
630 * already use a hardcoded 8 (which is what the spec says should be
639 static struct intel_crtc
*single_enabled_crtc(struct drm_i915_private
*dev_priv
)
641 struct intel_crtc
*crtc
, *enabled
= NULL
;
643 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
644 if (intel_crtc_active(crtc
)) {
654 static void pineview_update_wm(struct intel_crtc
*unused_crtc
)
656 struct drm_i915_private
*dev_priv
= to_i915(unused_crtc
->base
.dev
);
657 struct intel_crtc
*crtc
;
658 const struct cxsr_latency
*latency
;
662 latency
= intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv
),
667 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
668 intel_set_memory_cxsr(dev_priv
, false);
672 crtc
= single_enabled_crtc(dev_priv
);
674 const struct drm_display_mode
*adjusted_mode
=
675 &crtc
->config
->base
.adjusted_mode
;
676 const struct drm_framebuffer
*fb
=
677 crtc
->base
.primary
->state
->fb
;
678 int cpp
= fb
->format
->cpp
[0];
679 int clock
= adjusted_mode
->crtc_clock
;
682 wm
= intel_calculate_wm(clock
, &pineview_display_wm
,
683 pineview_display_wm
.fifo_size
,
684 cpp
, latency
->display_sr
);
685 reg
= I915_READ(DSPFW1
);
686 reg
&= ~DSPFW_SR_MASK
;
687 reg
|= FW_WM(wm
, SR
);
688 I915_WRITE(DSPFW1
, reg
);
689 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg
);
692 wm
= intel_calculate_wm(clock
, &pineview_cursor_wm
,
693 pineview_display_wm
.fifo_size
,
694 cpp
, latency
->cursor_sr
);
695 reg
= I915_READ(DSPFW3
);
696 reg
&= ~DSPFW_CURSOR_SR_MASK
;
697 reg
|= FW_WM(wm
, CURSOR_SR
);
698 I915_WRITE(DSPFW3
, reg
);
700 /* Display HPLL off SR */
701 wm
= intel_calculate_wm(clock
, &pineview_display_hplloff_wm
,
702 pineview_display_hplloff_wm
.fifo_size
,
703 cpp
, latency
->display_hpll_disable
);
704 reg
= I915_READ(DSPFW3
);
705 reg
&= ~DSPFW_HPLL_SR_MASK
;
706 reg
|= FW_WM(wm
, HPLL_SR
);
707 I915_WRITE(DSPFW3
, reg
);
709 /* cursor HPLL off SR */
710 wm
= intel_calculate_wm(clock
, &pineview_cursor_hplloff_wm
,
711 pineview_display_hplloff_wm
.fifo_size
,
712 cpp
, latency
->cursor_hpll_disable
);
713 reg
= I915_READ(DSPFW3
);
714 reg
&= ~DSPFW_HPLL_CURSOR_MASK
;
715 reg
|= FW_WM(wm
, HPLL_CURSOR
);
716 I915_WRITE(DSPFW3
, reg
);
717 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg
);
719 intel_set_memory_cxsr(dev_priv
, true);
721 intel_set_memory_cxsr(dev_priv
, false);
725 static bool g4x_compute_wm0(struct drm_i915_private
*dev_priv
,
727 const struct intel_watermark_params
*display
,
728 int display_latency_ns
,
729 const struct intel_watermark_params
*cursor
,
730 int cursor_latency_ns
,
734 struct intel_crtc
*crtc
;
735 const struct drm_display_mode
*adjusted_mode
;
736 const struct drm_framebuffer
*fb
;
737 int htotal
, hdisplay
, clock
, cpp
;
738 int line_time_us
, line_count
;
739 int entries
, tlb_miss
;
741 crtc
= intel_get_crtc_for_plane(dev_priv
, plane
);
742 if (!intel_crtc_active(crtc
)) {
743 *cursor_wm
= cursor
->guard_size
;
744 *plane_wm
= display
->guard_size
;
748 adjusted_mode
= &crtc
->config
->base
.adjusted_mode
;
749 fb
= crtc
->base
.primary
->state
->fb
;
750 clock
= adjusted_mode
->crtc_clock
;
751 htotal
= adjusted_mode
->crtc_htotal
;
752 hdisplay
= crtc
->config
->pipe_src_w
;
753 cpp
= fb
->format
->cpp
[0];
755 /* Use the small buffer method to calculate plane watermark */
756 entries
= ((clock
* cpp
/ 1000) * display_latency_ns
) / 1000;
757 tlb_miss
= display
->fifo_size
*display
->cacheline_size
- hdisplay
* 8;
760 entries
= DIV_ROUND_UP(entries
, display
->cacheline_size
);
761 *plane_wm
= entries
+ display
->guard_size
;
762 if (*plane_wm
> (int)display
->max_wm
)
763 *plane_wm
= display
->max_wm
;
765 /* Use the large buffer method to calculate cursor watermark */
766 line_time_us
= max(htotal
* 1000 / clock
, 1);
767 line_count
= (cursor_latency_ns
/ line_time_us
+ 1000) / 1000;
768 entries
= line_count
* crtc
->base
.cursor
->state
->crtc_w
* cpp
;
769 tlb_miss
= cursor
->fifo_size
*cursor
->cacheline_size
- hdisplay
* 8;
772 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
773 *cursor_wm
= entries
+ cursor
->guard_size
;
774 if (*cursor_wm
> (int)cursor
->max_wm
)
775 *cursor_wm
= (int)cursor
->max_wm
;
781 * Check the wm result.
783 * If any calculated watermark values is larger than the maximum value that
784 * can be programmed into the associated watermark register, that watermark
787 static bool g4x_check_srwm(struct drm_i915_private
*dev_priv
,
788 int display_wm
, int cursor_wm
,
789 const struct intel_watermark_params
*display
,
790 const struct intel_watermark_params
*cursor
)
792 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
793 display_wm
, cursor_wm
);
795 if (display_wm
> display
->max_wm
) {
796 DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
797 display_wm
, display
->max_wm
);
801 if (cursor_wm
> cursor
->max_wm
) {
802 DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
803 cursor_wm
, cursor
->max_wm
);
807 if (!(display_wm
|| cursor_wm
)) {
808 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
815 static bool g4x_compute_srwm(struct drm_i915_private
*dev_priv
,
818 const struct intel_watermark_params
*display
,
819 const struct intel_watermark_params
*cursor
,
820 int *display_wm
, int *cursor_wm
)
822 struct intel_crtc
*crtc
;
823 const struct drm_display_mode
*adjusted_mode
;
824 const struct drm_framebuffer
*fb
;
825 int hdisplay
, htotal
, cpp
, clock
;
826 unsigned long line_time_us
;
827 int line_count
, line_size
;
832 *display_wm
= *cursor_wm
= 0;
836 crtc
= intel_get_crtc_for_plane(dev_priv
, plane
);
837 adjusted_mode
= &crtc
->config
->base
.adjusted_mode
;
838 fb
= crtc
->base
.primary
->state
->fb
;
839 clock
= adjusted_mode
->crtc_clock
;
840 htotal
= adjusted_mode
->crtc_htotal
;
841 hdisplay
= crtc
->config
->pipe_src_w
;
842 cpp
= fb
->format
->cpp
[0];
844 line_time_us
= max(htotal
* 1000 / clock
, 1);
845 line_count
= (latency_ns
/ line_time_us
+ 1000) / 1000;
846 line_size
= hdisplay
* cpp
;
848 /* Use the minimum of the small and large buffer method for primary */
849 small
= ((clock
* cpp
/ 1000) * latency_ns
) / 1000;
850 large
= line_count
* line_size
;
852 entries
= DIV_ROUND_UP(min(small
, large
), display
->cacheline_size
);
853 *display_wm
= entries
+ display
->guard_size
;
855 /* calculate the self-refresh watermark for display cursor */
856 entries
= line_count
* cpp
* crtc
->base
.cursor
->state
->crtc_w
;
857 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
858 *cursor_wm
= entries
+ cursor
->guard_size
;
860 return g4x_check_srwm(dev_priv
,
861 *display_wm
, *cursor_wm
,
865 #define FW_WM_VLV(value, plane) \
866 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
868 static void vlv_write_wm_values(struct drm_i915_private
*dev_priv
,
869 const struct vlv_wm_values
*wm
)
873 for_each_pipe(dev_priv
, pipe
) {
874 I915_WRITE(VLV_DDL(pipe
),
875 (wm
->ddl
[pipe
].plane
[PLANE_CURSOR
] << DDL_CURSOR_SHIFT
) |
876 (wm
->ddl
[pipe
].plane
[PLANE_SPRITE1
] << DDL_SPRITE_SHIFT(1)) |
877 (wm
->ddl
[pipe
].plane
[PLANE_SPRITE0
] << DDL_SPRITE_SHIFT(0)) |
878 (wm
->ddl
[pipe
].plane
[PLANE_PRIMARY
] << DDL_PLANE_SHIFT
));
882 * Zero the (unused) WM1 watermarks, and also clear all the
883 * high order bits so that there are no out of bounds values
884 * present in the registers during the reprogramming.
886 I915_WRITE(DSPHOWM
, 0);
887 I915_WRITE(DSPHOWM1
, 0);
888 I915_WRITE(DSPFW4
, 0);
889 I915_WRITE(DSPFW5
, 0);
890 I915_WRITE(DSPFW6
, 0);
893 FW_WM(wm
->sr
.plane
, SR
) |
894 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_CURSOR
], CURSORB
) |
895 FW_WM_VLV(wm
->pipe
[PIPE_B
].plane
[PLANE_PRIMARY
], PLANEB
) |
896 FW_WM_VLV(wm
->pipe
[PIPE_A
].plane
[PLANE_PRIMARY
], PLANEA
));
898 FW_WM_VLV(wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE1
], SPRITEB
) |
899 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_CURSOR
], CURSORA
) |
900 FW_WM_VLV(wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE0
], SPRITEA
));
902 FW_WM(wm
->sr
.cursor
, CURSOR_SR
));
904 if (IS_CHERRYVIEW(dev_priv
)) {
905 I915_WRITE(DSPFW7_CHV
,
906 FW_WM_VLV(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
], SPRITED
) |
907 FW_WM_VLV(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
], SPRITEC
));
908 I915_WRITE(DSPFW8_CHV
,
909 FW_WM_VLV(wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE1
], SPRITEF
) |
910 FW_WM_VLV(wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE0
], SPRITEE
));
911 I915_WRITE(DSPFW9_CHV
,
912 FW_WM_VLV(wm
->pipe
[PIPE_C
].plane
[PLANE_PRIMARY
], PLANEC
) |
913 FW_WM(wm
->pipe
[PIPE_C
].plane
[PLANE_CURSOR
], CURSORC
));
915 FW_WM(wm
->sr
.plane
>> 9, SR_HI
) |
916 FW_WM(wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE1
] >> 8, SPRITEF_HI
) |
917 FW_WM(wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE0
] >> 8, SPRITEE_HI
) |
918 FW_WM(wm
->pipe
[PIPE_C
].plane
[PLANE_PRIMARY
] >> 8, PLANEC_HI
) |
919 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
] >> 8, SPRITED_HI
) |
920 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
] >> 8, SPRITEC_HI
) |
921 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_PRIMARY
] >> 8, PLANEB_HI
) |
922 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE1
] >> 8, SPRITEB_HI
) |
923 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE0
] >> 8, SPRITEA_HI
) |
924 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_PRIMARY
] >> 8, PLANEA_HI
));
927 FW_WM_VLV(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
], SPRITED
) |
928 FW_WM_VLV(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
], SPRITEC
));
930 FW_WM(wm
->sr
.plane
>> 9, SR_HI
) |
931 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
] >> 8, SPRITED_HI
) |
932 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
] >> 8, SPRITEC_HI
) |
933 FW_WM(wm
->pipe
[PIPE_B
].plane
[PLANE_PRIMARY
] >> 8, PLANEB_HI
) |
934 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE1
] >> 8, SPRITEB_HI
) |
935 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE0
] >> 8, SPRITEA_HI
) |
936 FW_WM(wm
->pipe
[PIPE_A
].plane
[PLANE_PRIMARY
] >> 8, PLANEA_HI
));
939 POSTING_READ(DSPFW1
);
947 VLV_WM_LEVEL_DDR_DVFS
,
950 /* latency must be in 0.1us units. */
951 static unsigned int vlv_wm_method2(unsigned int pixel_rate
,
952 unsigned int pipe_htotal
,
953 unsigned int horiz_pixels
,
955 unsigned int latency
)
959 ret
= (latency
* pixel_rate
) / (pipe_htotal
* 10000);
960 ret
= (ret
+ 1) * horiz_pixels
* cpp
;
961 ret
= DIV_ROUND_UP(ret
, 64);
966 static void vlv_setup_wm_latency(struct drm_i915_private
*dev_priv
)
968 /* all latencies in usec */
969 dev_priv
->wm
.pri_latency
[VLV_WM_LEVEL_PM2
] = 3;
971 dev_priv
->wm
.max_level
= VLV_WM_LEVEL_PM2
;
973 if (IS_CHERRYVIEW(dev_priv
)) {
974 dev_priv
->wm
.pri_latency
[VLV_WM_LEVEL_PM5
] = 12;
975 dev_priv
->wm
.pri_latency
[VLV_WM_LEVEL_DDR_DVFS
] = 33;
977 dev_priv
->wm
.max_level
= VLV_WM_LEVEL_DDR_DVFS
;
981 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state
*crtc_state
,
982 const struct intel_plane_state
*plane_state
,
985 struct intel_plane
*plane
= to_intel_plane(plane_state
->base
.plane
);
986 struct drm_i915_private
*dev_priv
= to_i915(plane
->base
.dev
);
987 const struct drm_display_mode
*adjusted_mode
=
988 &crtc_state
->base
.adjusted_mode
;
989 int clock
, htotal
, cpp
, width
, wm
;
991 if (dev_priv
->wm
.pri_latency
[level
] == 0)
994 if (!plane_state
->base
.visible
)
997 cpp
= plane_state
->base
.fb
->format
->cpp
[0];
998 clock
= adjusted_mode
->crtc_clock
;
999 htotal
= adjusted_mode
->crtc_htotal
;
1000 width
= crtc_state
->pipe_src_w
;
1001 if (WARN_ON(htotal
== 0))
1004 if (plane
->base
.type
== DRM_PLANE_TYPE_CURSOR
) {
1006 * FIXME the formula gives values that are
1007 * too big for the cursor FIFO, and hence we
1008 * would never be able to use cursors. For
1009 * now just hardcode the watermark.
1013 wm
= vlv_wm_method2(clock
, htotal
, width
, cpp
,
1014 dev_priv
->wm
.pri_latency
[level
] * 10);
1017 return min_t(int, wm
, USHRT_MAX
);
1020 static void vlv_compute_fifo(struct intel_crtc
*crtc
)
1022 struct drm_device
*dev
= crtc
->base
.dev
;
1023 struct vlv_wm_state
*wm_state
= &crtc
->wm_state
;
1024 struct intel_plane
*plane
;
1025 unsigned int total_rate
= 0;
1026 const int fifo_size
= 512 - 1;
1027 int fifo_extra
, fifo_left
= fifo_size
;
1029 for_each_intel_plane_on_crtc(dev
, crtc
, plane
) {
1030 struct intel_plane_state
*state
=
1031 to_intel_plane_state(plane
->base
.state
);
1033 if (plane
->base
.type
== DRM_PLANE_TYPE_CURSOR
)
1036 if (state
->base
.visible
) {
1037 wm_state
->num_active_planes
++;
1038 total_rate
+= state
->base
.fb
->format
->cpp
[0];
1042 for_each_intel_plane_on_crtc(dev
, crtc
, plane
) {
1043 struct intel_plane_state
*state
=
1044 to_intel_plane_state(plane
->base
.state
);
1047 if (plane
->base
.type
== DRM_PLANE_TYPE_CURSOR
) {
1048 plane
->wm
.fifo_size
= 63;
1052 if (!state
->base
.visible
) {
1053 plane
->wm
.fifo_size
= 0;
1057 rate
= state
->base
.fb
->format
->cpp
[0];
1058 plane
->wm
.fifo_size
= fifo_size
* rate
/ total_rate
;
1059 fifo_left
-= plane
->wm
.fifo_size
;
1062 fifo_extra
= DIV_ROUND_UP(fifo_left
, wm_state
->num_active_planes
?: 1);
1064 /* spread the remainder evenly */
1065 for_each_intel_plane_on_crtc(dev
, crtc
, plane
) {
1071 if (plane
->base
.type
== DRM_PLANE_TYPE_CURSOR
)
1074 /* give it all to the first plane if none are active */
1075 if (plane
->wm
.fifo_size
== 0 &&
1076 wm_state
->num_active_planes
)
1079 plane_extra
= min(fifo_extra
, fifo_left
);
1080 plane
->wm
.fifo_size
+= plane_extra
;
1081 fifo_left
-= plane_extra
;
1084 WARN_ON(fifo_left
!= 0);
1087 static u16
vlv_invert_wm_value(u16 wm
, u16 fifo_size
)
1092 return fifo_size
- wm
;
1095 static void vlv_invert_wms(struct intel_crtc
*crtc
)
1097 struct vlv_wm_state
*wm_state
= &crtc
->wm_state
;
1100 for (level
= 0; level
< wm_state
->num_levels
; level
++) {
1101 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1102 const int sr_fifo_size
=
1103 INTEL_INFO(dev_priv
)->num_pipes
* 512 - 1;
1104 struct intel_plane
*plane
;
1106 wm_state
->sr
[level
].plane
=
1107 vlv_invert_wm_value(wm_state
->sr
[level
].plane
,
1109 wm_state
->sr
[level
].cursor
=
1110 vlv_invert_wm_value(wm_state
->sr
[level
].cursor
,
1113 for_each_intel_plane_on_crtc(&dev_priv
->drm
, crtc
, plane
) {
1114 wm_state
->wm
[level
].plane
[plane
->id
] =
1115 vlv_invert_wm_value(wm_state
->wm
[level
].plane
[plane
->id
],
1116 plane
->wm
.fifo_size
);
1121 static void vlv_compute_wm(struct intel_crtc
*crtc
)
1123 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1124 struct vlv_wm_state
*wm_state
= &crtc
->wm_state
;
1125 struct intel_plane
*plane
;
1128 memset(wm_state
, 0, sizeof(*wm_state
));
1130 wm_state
->cxsr
= crtc
->pipe
!= PIPE_C
&& crtc
->wm
.cxsr_allowed
;
1131 wm_state
->num_levels
= dev_priv
->wm
.max_level
+ 1;
1133 wm_state
->num_active_planes
= 0;
1135 vlv_compute_fifo(crtc
);
1137 if (wm_state
->num_active_planes
!= 1)
1138 wm_state
->cxsr
= false;
1140 for_each_intel_plane_on_crtc(&dev_priv
->drm
, crtc
, plane
) {
1141 struct intel_plane_state
*state
=
1142 to_intel_plane_state(plane
->base
.state
);
1145 if (!state
->base
.visible
)
1148 /* normal watermarks */
1149 for (level
= 0; level
< wm_state
->num_levels
; level
++) {
1150 int wm
= vlv_compute_wm_level(crtc
->config
, state
, level
);
1151 int max_wm
= plane
->wm
.fifo_size
;
1154 if (WARN_ON(level
== 0 && wm
> max_wm
))
1160 wm_state
->wm
[level
].plane
[plane
->id
] = wm
;
1163 wm_state
->num_levels
= level
;
1165 if (!wm_state
->cxsr
)
1168 /* maxfifo watermarks */
1169 if (plane
->id
== PLANE_CURSOR
) {
1170 for (level
= 0; level
< wm_state
->num_levels
; level
++)
1171 wm_state
->sr
[level
].cursor
=
1172 wm_state
->wm
[level
].plane
[PLANE_CURSOR
];
1174 for (level
= 0; level
< wm_state
->num_levels
; level
++)
1175 wm_state
->sr
[level
].plane
=
1176 max(wm_state
->sr
[level
].plane
,
1177 wm_state
->wm
[level
].plane
[plane
->id
]);
1181 /* clear any (partially) filled invalid levels */
1182 for (level
= wm_state
->num_levels
; level
< dev_priv
->wm
.max_level
+ 1; level
++) {
1183 memset(&wm_state
->wm
[level
], 0, sizeof(wm_state
->wm
[level
]));
1184 memset(&wm_state
->sr
[level
], 0, sizeof(wm_state
->sr
[level
]));
1187 vlv_invert_wms(crtc
);
1190 #define VLV_FIFO(plane, value) \
1191 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1193 static void vlv_pipe_set_fifo_size(struct intel_crtc
*crtc
)
1195 struct drm_device
*dev
= crtc
->base
.dev
;
1196 struct drm_i915_private
*dev_priv
= to_i915(dev
);
1197 struct intel_plane
*plane
;
1198 int sprite0_start
= 0, sprite1_start
= 0, fifo_size
= 0;
1200 for_each_intel_plane_on_crtc(dev
, crtc
, plane
) {
1201 switch (plane
->id
) {
1203 sprite0_start
= plane
->wm
.fifo_size
;
1206 sprite1_start
= sprite0_start
+ plane
->wm
.fifo_size
;
1209 fifo_size
= sprite1_start
+ plane
->wm
.fifo_size
;
1212 WARN_ON(plane
->wm
.fifo_size
!= 63);
1215 MISSING_CASE(plane
->id
);
1220 WARN_ON(fifo_size
!= 512 - 1);
1222 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1223 pipe_name(crtc
->pipe
), sprite0_start
,
1224 sprite1_start
, fifo_size
);
1226 spin_lock(&dev_priv
->wm
.dsparb_lock
);
1228 switch (crtc
->pipe
) {
1229 uint32_t dsparb
, dsparb2
, dsparb3
;
1231 dsparb
= I915_READ(DSPARB
);
1232 dsparb2
= I915_READ(DSPARB2
);
1234 dsparb
&= ~(VLV_FIFO(SPRITEA
, 0xff) |
1235 VLV_FIFO(SPRITEB
, 0xff));
1236 dsparb
|= (VLV_FIFO(SPRITEA
, sprite0_start
) |
1237 VLV_FIFO(SPRITEB
, sprite1_start
));
1239 dsparb2
&= ~(VLV_FIFO(SPRITEA_HI
, 0x1) |
1240 VLV_FIFO(SPRITEB_HI
, 0x1));
1241 dsparb2
|= (VLV_FIFO(SPRITEA_HI
, sprite0_start
>> 8) |
1242 VLV_FIFO(SPRITEB_HI
, sprite1_start
>> 8));
1244 I915_WRITE(DSPARB
, dsparb
);
1245 I915_WRITE(DSPARB2
, dsparb2
);
1248 dsparb
= I915_READ(DSPARB
);
1249 dsparb2
= I915_READ(DSPARB2
);
1251 dsparb
&= ~(VLV_FIFO(SPRITEC
, 0xff) |
1252 VLV_FIFO(SPRITED
, 0xff));
1253 dsparb
|= (VLV_FIFO(SPRITEC
, sprite0_start
) |
1254 VLV_FIFO(SPRITED
, sprite1_start
));
1256 dsparb2
&= ~(VLV_FIFO(SPRITEC_HI
, 0xff) |
1257 VLV_FIFO(SPRITED_HI
, 0xff));
1258 dsparb2
|= (VLV_FIFO(SPRITEC_HI
, sprite0_start
>> 8) |
1259 VLV_FIFO(SPRITED_HI
, sprite1_start
>> 8));
1261 I915_WRITE(DSPARB
, dsparb
);
1262 I915_WRITE(DSPARB2
, dsparb2
);
1265 dsparb3
= I915_READ(DSPARB3
);
1266 dsparb2
= I915_READ(DSPARB2
);
1268 dsparb3
&= ~(VLV_FIFO(SPRITEE
, 0xff) |
1269 VLV_FIFO(SPRITEF
, 0xff));
1270 dsparb3
|= (VLV_FIFO(SPRITEE
, sprite0_start
) |
1271 VLV_FIFO(SPRITEF
, sprite1_start
));
1273 dsparb2
&= ~(VLV_FIFO(SPRITEE_HI
, 0xff) |
1274 VLV_FIFO(SPRITEF_HI
, 0xff));
1275 dsparb2
|= (VLV_FIFO(SPRITEE_HI
, sprite0_start
>> 8) |
1276 VLV_FIFO(SPRITEF_HI
, sprite1_start
>> 8));
1278 I915_WRITE(DSPARB3
, dsparb3
);
1279 I915_WRITE(DSPARB2
, dsparb2
);
1285 POSTING_READ(DSPARB
);
1287 spin_unlock(&dev_priv
->wm
.dsparb_lock
);
1292 static void vlv_merge_wm(struct drm_i915_private
*dev_priv
,
1293 struct vlv_wm_values
*wm
)
1295 struct intel_crtc
*crtc
;
1296 int num_active_crtcs
= 0;
1298 wm
->level
= dev_priv
->wm
.max_level
;
1301 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
1302 const struct vlv_wm_state
*wm_state
= &crtc
->wm_state
;
1307 if (!wm_state
->cxsr
)
1311 wm
->level
= min_t(int, wm
->level
, wm_state
->num_levels
- 1);
1314 if (num_active_crtcs
!= 1)
1317 if (num_active_crtcs
> 1)
1318 wm
->level
= VLV_WM_LEVEL_PM2
;
1320 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
1321 struct vlv_wm_state
*wm_state
= &crtc
->wm_state
;
1322 enum pipe pipe
= crtc
->pipe
;
1327 wm
->pipe
[pipe
] = wm_state
->wm
[wm
->level
];
1329 wm
->sr
= wm_state
->sr
[wm
->level
];
1331 wm
->ddl
[pipe
].plane
[PLANE_PRIMARY
] = DDL_PRECISION_HIGH
| 2;
1332 wm
->ddl
[pipe
].plane
[PLANE_SPRITE0
] = DDL_PRECISION_HIGH
| 2;
1333 wm
->ddl
[pipe
].plane
[PLANE_SPRITE1
] = DDL_PRECISION_HIGH
| 2;
1334 wm
->ddl
[pipe
].plane
[PLANE_CURSOR
] = DDL_PRECISION_HIGH
| 2;
1338 static bool is_disabling(int old
, int new, int threshold
)
1340 return old
>= threshold
&& new < threshold
;
1343 static bool is_enabling(int old
, int new, int threshold
)
1345 return old
< threshold
&& new >= threshold
;
1348 static void vlv_update_wm(struct intel_crtc
*crtc
)
1350 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1351 enum pipe pipe
= crtc
->pipe
;
1352 struct vlv_wm_values
*old_wm
= &dev_priv
->wm
.vlv
;
1353 struct vlv_wm_values new_wm
= {};
1355 vlv_compute_wm(crtc
);
1356 vlv_merge_wm(dev_priv
, &new_wm
);
1358 if (memcmp(old_wm
, &new_wm
, sizeof(new_wm
)) == 0) {
1359 /* FIXME should be part of crtc atomic commit */
1360 vlv_pipe_set_fifo_size(crtc
);
1365 if (is_disabling(old_wm
->level
, new_wm
.level
, VLV_WM_LEVEL_DDR_DVFS
))
1366 chv_set_memory_dvfs(dev_priv
, false);
1368 if (is_disabling(old_wm
->level
, new_wm
.level
, VLV_WM_LEVEL_PM5
))
1369 chv_set_memory_pm5(dev_priv
, false);
1371 if (is_disabling(old_wm
->cxsr
, new_wm
.cxsr
, true))
1372 _intel_set_memory_cxsr(dev_priv
, false);
1374 /* FIXME should be part of crtc atomic commit */
1375 vlv_pipe_set_fifo_size(crtc
);
1377 vlv_write_wm_values(dev_priv
, &new_wm
);
1379 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1380 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1381 pipe_name(pipe
), new_wm
.pipe
[pipe
].plane
[PLANE_PRIMARY
], new_wm
.pipe
[pipe
].plane
[PLANE_CURSOR
],
1382 new_wm
.pipe
[pipe
].plane
[PLANE_SPRITE0
], new_wm
.pipe
[pipe
].plane
[PLANE_SPRITE1
],
1383 new_wm
.sr
.plane
, new_wm
.sr
.cursor
, new_wm
.level
, new_wm
.cxsr
);
1385 if (is_enabling(old_wm
->cxsr
, new_wm
.cxsr
, true))
1386 _intel_set_memory_cxsr(dev_priv
, true);
1388 if (is_enabling(old_wm
->level
, new_wm
.level
, VLV_WM_LEVEL_PM5
))
1389 chv_set_memory_pm5(dev_priv
, true);
1391 if (is_enabling(old_wm
->level
, new_wm
.level
, VLV_WM_LEVEL_DDR_DVFS
))
1392 chv_set_memory_dvfs(dev_priv
, true);
1397 #define single_plane_enabled(mask) is_power_of_2(mask)
1399 static void g4x_update_wm(struct intel_crtc
*crtc
)
1401 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1402 static const int sr_latency_ns
= 12000;
1403 int planea_wm
, planeb_wm
, cursora_wm
, cursorb_wm
;
1404 int plane_sr
, cursor_sr
;
1405 unsigned int enabled
= 0;
1408 if (g4x_compute_wm0(dev_priv
, PIPE_A
,
1409 &g4x_wm_info
, pessimal_latency_ns
,
1410 &g4x_cursor_wm_info
, pessimal_latency_ns
,
1411 &planea_wm
, &cursora_wm
))
1412 enabled
|= 1 << PIPE_A
;
1414 if (g4x_compute_wm0(dev_priv
, PIPE_B
,
1415 &g4x_wm_info
, pessimal_latency_ns
,
1416 &g4x_cursor_wm_info
, pessimal_latency_ns
,
1417 &planeb_wm
, &cursorb_wm
))
1418 enabled
|= 1 << PIPE_B
;
1420 if (single_plane_enabled(enabled
) &&
1421 g4x_compute_srwm(dev_priv
, ffs(enabled
) - 1,
1424 &g4x_cursor_wm_info
,
1425 &plane_sr
, &cursor_sr
)) {
1426 cxsr_enabled
= true;
1428 cxsr_enabled
= false;
1429 intel_set_memory_cxsr(dev_priv
, false);
1430 plane_sr
= cursor_sr
= 0;
1433 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1434 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1435 planea_wm
, cursora_wm
,
1436 planeb_wm
, cursorb_wm
,
1437 plane_sr
, cursor_sr
);
1440 FW_WM(plane_sr
, SR
) |
1441 FW_WM(cursorb_wm
, CURSORB
) |
1442 FW_WM(planeb_wm
, PLANEB
) |
1443 FW_WM(planea_wm
, PLANEA
));
1445 (I915_READ(DSPFW2
) & ~DSPFW_CURSORA_MASK
) |
1446 FW_WM(cursora_wm
, CURSORA
));
1447 /* HPLL off in SR has some issues on G4x... disable it */
1449 (I915_READ(DSPFW3
) & ~(DSPFW_HPLL_SR_EN
| DSPFW_CURSOR_SR_MASK
)) |
1450 FW_WM(cursor_sr
, CURSOR_SR
));
1453 intel_set_memory_cxsr(dev_priv
, true);
1456 static void i965_update_wm(struct intel_crtc
*unused_crtc
)
1458 struct drm_i915_private
*dev_priv
= to_i915(unused_crtc
->base
.dev
);
1459 struct intel_crtc
*crtc
;
1464 /* Calc sr entries for one plane configs */
1465 crtc
= single_enabled_crtc(dev_priv
);
1467 /* self-refresh has much higher latency */
1468 static const int sr_latency_ns
= 12000;
1469 const struct drm_display_mode
*adjusted_mode
=
1470 &crtc
->config
->base
.adjusted_mode
;
1471 const struct drm_framebuffer
*fb
=
1472 crtc
->base
.primary
->state
->fb
;
1473 int clock
= adjusted_mode
->crtc_clock
;
1474 int htotal
= adjusted_mode
->crtc_htotal
;
1475 int hdisplay
= crtc
->config
->pipe_src_w
;
1476 int cpp
= fb
->format
->cpp
[0];
1477 unsigned long line_time_us
;
1480 line_time_us
= max(htotal
* 1000 / clock
, 1);
1482 /* Use ns/us then divide to preserve precision */
1483 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
1485 entries
= DIV_ROUND_UP(entries
, I915_FIFO_LINE_SIZE
);
1486 srwm
= I965_FIFO_SIZE
- entries
;
1490 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1493 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
1494 cpp
* crtc
->base
.cursor
->state
->crtc_w
;
1495 entries
= DIV_ROUND_UP(entries
,
1496 i965_cursor_wm_info
.cacheline_size
);
1497 cursor_sr
= i965_cursor_wm_info
.fifo_size
-
1498 (entries
+ i965_cursor_wm_info
.guard_size
);
1500 if (cursor_sr
> i965_cursor_wm_info
.max_wm
)
1501 cursor_sr
= i965_cursor_wm_info
.max_wm
;
1503 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1504 "cursor %d\n", srwm
, cursor_sr
);
1506 cxsr_enabled
= true;
1508 cxsr_enabled
= false;
1509 /* Turn off self refresh if both pipes are enabled */
1510 intel_set_memory_cxsr(dev_priv
, false);
1513 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1516 /* 965 has limitations... */
1517 I915_WRITE(DSPFW1
, FW_WM(srwm
, SR
) |
1521 I915_WRITE(DSPFW2
, FW_WM(8, CURSORA
) |
1522 FW_WM(8, PLANEC_OLD
));
1523 /* update cursor SR watermark */
1524 I915_WRITE(DSPFW3
, FW_WM(cursor_sr
, CURSOR_SR
));
1527 intel_set_memory_cxsr(dev_priv
, true);
1532 static void i9xx_update_wm(struct intel_crtc
*unused_crtc
)
1534 struct drm_i915_private
*dev_priv
= to_i915(unused_crtc
->base
.dev
);
1535 const struct intel_watermark_params
*wm_info
;
1540 int planea_wm
, planeb_wm
;
1541 struct intel_crtc
*crtc
, *enabled
= NULL
;
1543 if (IS_I945GM(dev_priv
))
1544 wm_info
= &i945_wm_info
;
1545 else if (!IS_GEN2(dev_priv
))
1546 wm_info
= &i915_wm_info
;
1548 wm_info
= &i830_a_wm_info
;
1550 fifo_size
= dev_priv
->display
.get_fifo_size(dev_priv
, 0);
1551 crtc
= intel_get_crtc_for_plane(dev_priv
, 0);
1552 if (intel_crtc_active(crtc
)) {
1553 const struct drm_display_mode
*adjusted_mode
=
1554 &crtc
->config
->base
.adjusted_mode
;
1555 const struct drm_framebuffer
*fb
=
1556 crtc
->base
.primary
->state
->fb
;
1559 if (IS_GEN2(dev_priv
))
1562 cpp
= fb
->format
->cpp
[0];
1564 planea_wm
= intel_calculate_wm(adjusted_mode
->crtc_clock
,
1565 wm_info
, fifo_size
, cpp
,
1566 pessimal_latency_ns
);
1569 planea_wm
= fifo_size
- wm_info
->guard_size
;
1570 if (planea_wm
> (long)wm_info
->max_wm
)
1571 planea_wm
= wm_info
->max_wm
;
1574 if (IS_GEN2(dev_priv
))
1575 wm_info
= &i830_bc_wm_info
;
1577 fifo_size
= dev_priv
->display
.get_fifo_size(dev_priv
, 1);
1578 crtc
= intel_get_crtc_for_plane(dev_priv
, 1);
1579 if (intel_crtc_active(crtc
)) {
1580 const struct drm_display_mode
*adjusted_mode
=
1581 &crtc
->config
->base
.adjusted_mode
;
1582 const struct drm_framebuffer
*fb
=
1583 crtc
->base
.primary
->state
->fb
;
1586 if (IS_GEN2(dev_priv
))
1589 cpp
= fb
->format
->cpp
[0];
1591 planeb_wm
= intel_calculate_wm(adjusted_mode
->crtc_clock
,
1592 wm_info
, fifo_size
, cpp
,
1593 pessimal_latency_ns
);
1594 if (enabled
== NULL
)
1599 planeb_wm
= fifo_size
- wm_info
->guard_size
;
1600 if (planeb_wm
> (long)wm_info
->max_wm
)
1601 planeb_wm
= wm_info
->max_wm
;
1604 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
1606 if (IS_I915GM(dev_priv
) && enabled
) {
1607 struct drm_i915_gem_object
*obj
;
1609 obj
= intel_fb_obj(enabled
->base
.primary
->state
->fb
);
1611 /* self-refresh seems busted with untiled */
1612 if (!i915_gem_object_is_tiled(obj
))
1617 * Overlay gets an aggressive default since video jitter is bad.
1621 /* Play safe and disable self-refresh before adjusting watermarks. */
1622 intel_set_memory_cxsr(dev_priv
, false);
1624 /* Calc sr entries for one plane configs */
1625 if (HAS_FW_BLC(dev_priv
) && enabled
) {
1626 /* self-refresh has much higher latency */
1627 static const int sr_latency_ns
= 6000;
1628 const struct drm_display_mode
*adjusted_mode
=
1629 &enabled
->config
->base
.adjusted_mode
;
1630 const struct drm_framebuffer
*fb
=
1631 enabled
->base
.primary
->state
->fb
;
1632 int clock
= adjusted_mode
->crtc_clock
;
1633 int htotal
= adjusted_mode
->crtc_htotal
;
1634 int hdisplay
= enabled
->config
->pipe_src_w
;
1636 unsigned long line_time_us
;
1639 if (IS_I915GM(dev_priv
) || IS_I945GM(dev_priv
))
1642 cpp
= fb
->format
->cpp
[0];
1644 line_time_us
= max(htotal
* 1000 / clock
, 1);
1646 /* Use ns/us then divide to preserve precision */
1647 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
1649 entries
= DIV_ROUND_UP(entries
, wm_info
->cacheline_size
);
1650 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries
);
1651 srwm
= wm_info
->fifo_size
- entries
;
1655 if (IS_I945G(dev_priv
) || IS_I945GM(dev_priv
))
1656 I915_WRITE(FW_BLC_SELF
,
1657 FW_BLC_SELF_FIFO_MASK
| (srwm
& 0xff));
1659 I915_WRITE(FW_BLC_SELF
, srwm
& 0x3f);
1662 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1663 planea_wm
, planeb_wm
, cwm
, srwm
);
1665 fwater_lo
= ((planeb_wm
& 0x3f) << 16) | (planea_wm
& 0x3f);
1666 fwater_hi
= (cwm
& 0x1f);
1668 /* Set request length to 8 cachelines per fetch */
1669 fwater_lo
= fwater_lo
| (1 << 24) | (1 << 8);
1670 fwater_hi
= fwater_hi
| (1 << 8);
1672 I915_WRITE(FW_BLC
, fwater_lo
);
1673 I915_WRITE(FW_BLC2
, fwater_hi
);
1676 intel_set_memory_cxsr(dev_priv
, true);
1679 static void i845_update_wm(struct intel_crtc
*unused_crtc
)
1681 struct drm_i915_private
*dev_priv
= to_i915(unused_crtc
->base
.dev
);
1682 struct intel_crtc
*crtc
;
1683 const struct drm_display_mode
*adjusted_mode
;
1687 crtc
= single_enabled_crtc(dev_priv
);
1691 adjusted_mode
= &crtc
->config
->base
.adjusted_mode
;
1692 planea_wm
= intel_calculate_wm(adjusted_mode
->crtc_clock
,
1694 dev_priv
->display
.get_fifo_size(dev_priv
, 0),
1695 4, pessimal_latency_ns
);
1696 fwater_lo
= I915_READ(FW_BLC
) & ~0xfff;
1697 fwater_lo
|= (3<<8) | planea_wm
;
1699 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm
);
1701 I915_WRITE(FW_BLC
, fwater_lo
);
1704 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state
*pipe_config
)
1706 uint32_t pixel_rate
;
1708 pixel_rate
= pipe_config
->base
.adjusted_mode
.crtc_clock
;
1710 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1711 * adjust the pixel_rate here. */
1713 if (pipe_config
->pch_pfit
.enabled
) {
1714 uint64_t pipe_w
, pipe_h
, pfit_w
, pfit_h
;
1715 uint32_t pfit_size
= pipe_config
->pch_pfit
.size
;
1717 pipe_w
= pipe_config
->pipe_src_w
;
1718 pipe_h
= pipe_config
->pipe_src_h
;
1720 pfit_w
= (pfit_size
>> 16) & 0xFFFF;
1721 pfit_h
= pfit_size
& 0xFFFF;
1722 if (pipe_w
< pfit_w
)
1724 if (pipe_h
< pfit_h
)
1727 if (WARN_ON(!pfit_w
|| !pfit_h
))
1730 pixel_rate
= div_u64((uint64_t) pixel_rate
* pipe_w
* pipe_h
,
1737 /* latency must be in 0.1us units. */
1738 static uint32_t ilk_wm_method1(uint32_t pixel_rate
, uint8_t cpp
, uint32_t latency
)
1742 if (WARN(latency
== 0, "Latency value missing\n"))
1745 ret
= (uint64_t) pixel_rate
* cpp
* latency
;
1746 ret
= DIV_ROUND_UP_ULL(ret
, 64 * 10000) + 2;
1751 /* latency must be in 0.1us units. */
1752 static uint32_t ilk_wm_method2(uint32_t pixel_rate
, uint32_t pipe_htotal
,
1753 uint32_t horiz_pixels
, uint8_t cpp
,
1758 if (WARN(latency
== 0, "Latency value missing\n"))
1760 if (WARN_ON(!pipe_htotal
))
1763 ret
= (latency
* pixel_rate
) / (pipe_htotal
* 10000);
1764 ret
= (ret
+ 1) * horiz_pixels
* cpp
;
1765 ret
= DIV_ROUND_UP(ret
, 64) + 2;
1769 static uint32_t ilk_wm_fbc(uint32_t pri_val
, uint32_t horiz_pixels
,
1773 * Neither of these should be possible since this function shouldn't be
1774 * called if the CRTC is off or the plane is invisible. But let's be
1775 * extra paranoid to avoid a potential divide-by-zero if we screw up
1776 * elsewhere in the driver.
1780 if (WARN_ON(!horiz_pixels
))
1783 return DIV_ROUND_UP(pri_val
* 64, horiz_pixels
* cpp
) + 2;
1786 struct ilk_wm_maximums
{
1794 * For both WM_PIPE and WM_LP.
1795 * mem_value must be in 0.1us units.
1797 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state
*cstate
,
1798 const struct intel_plane_state
*pstate
,
1802 uint32_t method1
, method2
;
1805 if (!cstate
->base
.active
|| !pstate
->base
.visible
)
1808 cpp
= pstate
->base
.fb
->format
->cpp
[0];
1810 method1
= ilk_wm_method1(ilk_pipe_pixel_rate(cstate
), cpp
, mem_value
);
1815 method2
= ilk_wm_method2(ilk_pipe_pixel_rate(cstate
),
1816 cstate
->base
.adjusted_mode
.crtc_htotal
,
1817 drm_rect_width(&pstate
->base
.dst
),
1820 return min(method1
, method2
);
1824 * For both WM_PIPE and WM_LP.
1825 * mem_value must be in 0.1us units.
1827 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state
*cstate
,
1828 const struct intel_plane_state
*pstate
,
1831 uint32_t method1
, method2
;
1834 if (!cstate
->base
.active
|| !pstate
->base
.visible
)
1837 cpp
= pstate
->base
.fb
->format
->cpp
[0];
1839 method1
= ilk_wm_method1(ilk_pipe_pixel_rate(cstate
), cpp
, mem_value
);
1840 method2
= ilk_wm_method2(ilk_pipe_pixel_rate(cstate
),
1841 cstate
->base
.adjusted_mode
.crtc_htotal
,
1842 drm_rect_width(&pstate
->base
.dst
),
1844 return min(method1
, method2
);
1848 * For both WM_PIPE and WM_LP.
1849 * mem_value must be in 0.1us units.
1851 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state
*cstate
,
1852 const struct intel_plane_state
*pstate
,
1856 * We treat the cursor plane as always-on for the purposes of watermark
1857 * calculation. Until we have two-stage watermark programming merged,
1858 * this is necessary to avoid flickering.
1861 int width
= pstate
->base
.visible
? pstate
->base
.crtc_w
: 64;
1863 if (!cstate
->base
.active
)
1866 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate
),
1867 cstate
->base
.adjusted_mode
.crtc_htotal
,
1868 width
, cpp
, mem_value
);
1871 /* Only for WM_LP. */
1872 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state
*cstate
,
1873 const struct intel_plane_state
*pstate
,
1878 if (!cstate
->base
.active
|| !pstate
->base
.visible
)
1881 cpp
= pstate
->base
.fb
->format
->cpp
[0];
1883 return ilk_wm_fbc(pri_val
, drm_rect_width(&pstate
->base
.dst
), cpp
);
1887 ilk_display_fifo_size(const struct drm_i915_private
*dev_priv
)
1889 if (INTEL_GEN(dev_priv
) >= 8)
1891 else if (INTEL_GEN(dev_priv
) >= 7)
1898 ilk_plane_wm_reg_max(const struct drm_i915_private
*dev_priv
,
1899 int level
, bool is_sprite
)
1901 if (INTEL_GEN(dev_priv
) >= 8)
1902 /* BDW primary/sprite plane watermarks */
1903 return level
== 0 ? 255 : 2047;
1904 else if (INTEL_GEN(dev_priv
) >= 7)
1905 /* IVB/HSW primary/sprite plane watermarks */
1906 return level
== 0 ? 127 : 1023;
1907 else if (!is_sprite
)
1908 /* ILK/SNB primary plane watermarks */
1909 return level
== 0 ? 127 : 511;
1911 /* ILK/SNB sprite plane watermarks */
1912 return level
== 0 ? 63 : 255;
1916 ilk_cursor_wm_reg_max(const struct drm_i915_private
*dev_priv
, int level
)
1918 if (INTEL_GEN(dev_priv
) >= 7)
1919 return level
== 0 ? 63 : 255;
1921 return level
== 0 ? 31 : 63;
1924 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private
*dev_priv
)
1926 if (INTEL_GEN(dev_priv
) >= 8)
1932 /* Calculate the maximum primary/sprite plane watermark */
1933 static unsigned int ilk_plane_wm_max(const struct drm_device
*dev
,
1935 const struct intel_wm_config
*config
,
1936 enum intel_ddb_partitioning ddb_partitioning
,
1939 struct drm_i915_private
*dev_priv
= to_i915(dev
);
1940 unsigned int fifo_size
= ilk_display_fifo_size(dev_priv
);
1942 /* if sprites aren't enabled, sprites get nothing */
1943 if (is_sprite
&& !config
->sprites_enabled
)
1946 /* HSW allows LP1+ watermarks even with multiple pipes */
1947 if (level
== 0 || config
->num_pipes_active
> 1) {
1948 fifo_size
/= INTEL_INFO(dev_priv
)->num_pipes
;
1951 * For some reason the non self refresh
1952 * FIFO size is only half of the self
1953 * refresh FIFO size on ILK/SNB.
1955 if (INTEL_GEN(dev_priv
) <= 6)
1959 if (config
->sprites_enabled
) {
1960 /* level 0 is always calculated with 1:1 split */
1961 if (level
> 0 && ddb_partitioning
== INTEL_DDB_PART_5_6
) {
1970 /* clamp to max that the registers can hold */
1971 return min(fifo_size
, ilk_plane_wm_reg_max(dev_priv
, level
, is_sprite
));
1974 /* Calculate the maximum cursor plane watermark */
1975 static unsigned int ilk_cursor_wm_max(const struct drm_device
*dev
,
1977 const struct intel_wm_config
*config
)
1979 /* HSW LP1+ watermarks w/ multiple pipes */
1980 if (level
> 0 && config
->num_pipes_active
> 1)
1983 /* otherwise just report max that registers can hold */
1984 return ilk_cursor_wm_reg_max(to_i915(dev
), level
);
1987 static void ilk_compute_wm_maximums(const struct drm_device
*dev
,
1989 const struct intel_wm_config
*config
,
1990 enum intel_ddb_partitioning ddb_partitioning
,
1991 struct ilk_wm_maximums
*max
)
1993 max
->pri
= ilk_plane_wm_max(dev
, level
, config
, ddb_partitioning
, false);
1994 max
->spr
= ilk_plane_wm_max(dev
, level
, config
, ddb_partitioning
, true);
1995 max
->cur
= ilk_cursor_wm_max(dev
, level
, config
);
1996 max
->fbc
= ilk_fbc_wm_reg_max(to_i915(dev
));
1999 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private
*dev_priv
,
2001 struct ilk_wm_maximums
*max
)
2003 max
->pri
= ilk_plane_wm_reg_max(dev_priv
, level
, false);
2004 max
->spr
= ilk_plane_wm_reg_max(dev_priv
, level
, true);
2005 max
->cur
= ilk_cursor_wm_reg_max(dev_priv
, level
);
2006 max
->fbc
= ilk_fbc_wm_reg_max(dev_priv
);
2009 static bool ilk_validate_wm_level(int level
,
2010 const struct ilk_wm_maximums
*max
,
2011 struct intel_wm_level
*result
)
2015 /* already determined to be invalid? */
2016 if (!result
->enable
)
2019 result
->enable
= result
->pri_val
<= max
->pri
&&
2020 result
->spr_val
<= max
->spr
&&
2021 result
->cur_val
<= max
->cur
;
2023 ret
= result
->enable
;
2026 * HACK until we can pre-compute everything,
2027 * and thus fail gracefully if LP0 watermarks
2030 if (level
== 0 && !result
->enable
) {
2031 if (result
->pri_val
> max
->pri
)
2032 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2033 level
, result
->pri_val
, max
->pri
);
2034 if (result
->spr_val
> max
->spr
)
2035 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2036 level
, result
->spr_val
, max
->spr
);
2037 if (result
->cur_val
> max
->cur
)
2038 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2039 level
, result
->cur_val
, max
->cur
);
2041 result
->pri_val
= min_t(uint32_t, result
->pri_val
, max
->pri
);
2042 result
->spr_val
= min_t(uint32_t, result
->spr_val
, max
->spr
);
2043 result
->cur_val
= min_t(uint32_t, result
->cur_val
, max
->cur
);
2044 result
->enable
= true;
2050 static void ilk_compute_wm_level(const struct drm_i915_private
*dev_priv
,
2051 const struct intel_crtc
*intel_crtc
,
2053 struct intel_crtc_state
*cstate
,
2054 struct intel_plane_state
*pristate
,
2055 struct intel_plane_state
*sprstate
,
2056 struct intel_plane_state
*curstate
,
2057 struct intel_wm_level
*result
)
2059 uint16_t pri_latency
= dev_priv
->wm
.pri_latency
[level
];
2060 uint16_t spr_latency
= dev_priv
->wm
.spr_latency
[level
];
2061 uint16_t cur_latency
= dev_priv
->wm
.cur_latency
[level
];
2063 /* WM1+ latency values stored in 0.5us units */
2071 result
->pri_val
= ilk_compute_pri_wm(cstate
, pristate
,
2072 pri_latency
, level
);
2073 result
->fbc_val
= ilk_compute_fbc_wm(cstate
, pristate
, result
->pri_val
);
2077 result
->spr_val
= ilk_compute_spr_wm(cstate
, sprstate
, spr_latency
);
2080 result
->cur_val
= ilk_compute_cur_wm(cstate
, curstate
, cur_latency
);
2082 result
->enable
= true;
2086 hsw_compute_linetime_wm(const struct intel_crtc_state
*cstate
)
2088 const struct intel_atomic_state
*intel_state
=
2089 to_intel_atomic_state(cstate
->base
.state
);
2090 const struct drm_display_mode
*adjusted_mode
=
2091 &cstate
->base
.adjusted_mode
;
2092 u32 linetime
, ips_linetime
;
2094 if (!cstate
->base
.active
)
2096 if (WARN_ON(adjusted_mode
->crtc_clock
== 0))
2098 if (WARN_ON(intel_state
->cdclk
== 0))
2101 /* The WM are computed with base on how long it takes to fill a single
2102 * row at the given clock rate, multiplied by 8.
2104 linetime
= DIV_ROUND_CLOSEST(adjusted_mode
->crtc_htotal
* 1000 * 8,
2105 adjusted_mode
->crtc_clock
);
2106 ips_linetime
= DIV_ROUND_CLOSEST(adjusted_mode
->crtc_htotal
* 1000 * 8,
2107 intel_state
->cdclk
);
2109 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime
) |
2110 PIPE_WM_LINETIME_TIME(linetime
);
2113 static void intel_read_wm_latency(struct drm_i915_private
*dev_priv
,
2116 if (IS_GEN9(dev_priv
)) {
2119 int level
, max_level
= ilk_wm_max_level(dev_priv
);
2121 /* read the first set of memory latencies[0:3] */
2122 val
= 0; /* data0 to be programmed to 0 for first set */
2123 mutex_lock(&dev_priv
->rps
.hw_lock
);
2124 ret
= sandybridge_pcode_read(dev_priv
,
2125 GEN9_PCODE_READ_MEM_LATENCY
,
2127 mutex_unlock(&dev_priv
->rps
.hw_lock
);
2130 DRM_ERROR("SKL Mailbox read error = %d\n", ret
);
2134 wm
[0] = val
& GEN9_MEM_LATENCY_LEVEL_MASK
;
2135 wm
[1] = (val
>> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT
) &
2136 GEN9_MEM_LATENCY_LEVEL_MASK
;
2137 wm
[2] = (val
>> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT
) &
2138 GEN9_MEM_LATENCY_LEVEL_MASK
;
2139 wm
[3] = (val
>> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT
) &
2140 GEN9_MEM_LATENCY_LEVEL_MASK
;
2142 /* read the second set of memory latencies[4:7] */
2143 val
= 1; /* data0 to be programmed to 1 for second set */
2144 mutex_lock(&dev_priv
->rps
.hw_lock
);
2145 ret
= sandybridge_pcode_read(dev_priv
,
2146 GEN9_PCODE_READ_MEM_LATENCY
,
2148 mutex_unlock(&dev_priv
->rps
.hw_lock
);
2150 DRM_ERROR("SKL Mailbox read error = %d\n", ret
);
2154 wm
[4] = val
& GEN9_MEM_LATENCY_LEVEL_MASK
;
2155 wm
[5] = (val
>> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT
) &
2156 GEN9_MEM_LATENCY_LEVEL_MASK
;
2157 wm
[6] = (val
>> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT
) &
2158 GEN9_MEM_LATENCY_LEVEL_MASK
;
2159 wm
[7] = (val
>> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT
) &
2160 GEN9_MEM_LATENCY_LEVEL_MASK
;
2163 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2164 * need to be disabled. We make sure to sanitize the values out
2165 * of the punit to satisfy this requirement.
2167 for (level
= 1; level
<= max_level
; level
++) {
2168 if (wm
[level
] == 0) {
2169 for (i
= level
+ 1; i
<= max_level
; i
++)
2176 * WaWmMemoryReadLatency:skl
2178 * punit doesn't take into account the read latency so we need
2179 * to add 2us to the various latency levels we retrieve from the
2180 * punit when level 0 response data us 0us.
2184 for (level
= 1; level
<= max_level
; level
++) {
2191 } else if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
)) {
2192 uint64_t sskpd
= I915_READ64(MCH_SSKPD
);
2194 wm
[0] = (sskpd
>> 56) & 0xFF;
2196 wm
[0] = sskpd
& 0xF;
2197 wm
[1] = (sskpd
>> 4) & 0xFF;
2198 wm
[2] = (sskpd
>> 12) & 0xFF;
2199 wm
[3] = (sskpd
>> 20) & 0x1FF;
2200 wm
[4] = (sskpd
>> 32) & 0x1FF;
2201 } else if (INTEL_GEN(dev_priv
) >= 6) {
2202 uint32_t sskpd
= I915_READ(MCH_SSKPD
);
2204 wm
[0] = (sskpd
>> SSKPD_WM0_SHIFT
) & SSKPD_WM_MASK
;
2205 wm
[1] = (sskpd
>> SSKPD_WM1_SHIFT
) & SSKPD_WM_MASK
;
2206 wm
[2] = (sskpd
>> SSKPD_WM2_SHIFT
) & SSKPD_WM_MASK
;
2207 wm
[3] = (sskpd
>> SSKPD_WM3_SHIFT
) & SSKPD_WM_MASK
;
2208 } else if (INTEL_GEN(dev_priv
) >= 5) {
2209 uint32_t mltr
= I915_READ(MLTR_ILK
);
2211 /* ILK primary LP0 latency is 700 ns */
2213 wm
[1] = (mltr
>> MLTR_WM1_SHIFT
) & ILK_SRLT_MASK
;
2214 wm
[2] = (mltr
>> MLTR_WM2_SHIFT
) & ILK_SRLT_MASK
;
2218 static void intel_fixup_spr_wm_latency(struct drm_i915_private
*dev_priv
,
2221 /* ILK sprite LP0 latency is 1300 ns */
2222 if (IS_GEN5(dev_priv
))
2226 static void intel_fixup_cur_wm_latency(struct drm_i915_private
*dev_priv
,
2229 /* ILK cursor LP0 latency is 1300 ns */
2230 if (IS_GEN5(dev_priv
))
2233 /* WaDoubleCursorLP3Latency:ivb */
2234 if (IS_IVYBRIDGE(dev_priv
))
2238 int ilk_wm_max_level(const struct drm_i915_private
*dev_priv
)
2240 /* how many WM levels are we expecting */
2241 if (INTEL_GEN(dev_priv
) >= 9)
2243 else if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
2245 else if (INTEL_GEN(dev_priv
) >= 6)
2251 static void intel_print_wm_latency(struct drm_i915_private
*dev_priv
,
2253 const uint16_t wm
[8])
2255 int level
, max_level
= ilk_wm_max_level(dev_priv
);
2257 for (level
= 0; level
<= max_level
; level
++) {
2258 unsigned int latency
= wm
[level
];
2261 DRM_ERROR("%s WM%d latency not provided\n",
2267 * - latencies are in us on gen9.
2268 * - before then, WM1+ latency values are in 0.5us units
2270 if (IS_GEN9(dev_priv
))
2275 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2276 name
, level
, wm
[level
],
2277 latency
/ 10, latency
% 10);
2281 static bool ilk_increase_wm_latency(struct drm_i915_private
*dev_priv
,
2282 uint16_t wm
[5], uint16_t min
)
2284 int level
, max_level
= ilk_wm_max_level(dev_priv
);
2289 wm
[0] = max(wm
[0], min
);
2290 for (level
= 1; level
<= max_level
; level
++)
2291 wm
[level
] = max_t(uint16_t, wm
[level
], DIV_ROUND_UP(min
, 5));
2296 static void snb_wm_latency_quirk(struct drm_i915_private
*dev_priv
)
2301 * The BIOS provided WM memory latency values are often
2302 * inadequate for high resolution displays. Adjust them.
2304 changed
= ilk_increase_wm_latency(dev_priv
, dev_priv
->wm
.pri_latency
, 12) |
2305 ilk_increase_wm_latency(dev_priv
, dev_priv
->wm
.spr_latency
, 12) |
2306 ilk_increase_wm_latency(dev_priv
, dev_priv
->wm
.cur_latency
, 12);
2311 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2312 intel_print_wm_latency(dev_priv
, "Primary", dev_priv
->wm
.pri_latency
);
2313 intel_print_wm_latency(dev_priv
, "Sprite", dev_priv
->wm
.spr_latency
);
2314 intel_print_wm_latency(dev_priv
, "Cursor", dev_priv
->wm
.cur_latency
);
2317 static void ilk_setup_wm_latency(struct drm_i915_private
*dev_priv
)
2319 intel_read_wm_latency(dev_priv
, dev_priv
->wm
.pri_latency
);
2321 memcpy(dev_priv
->wm
.spr_latency
, dev_priv
->wm
.pri_latency
,
2322 sizeof(dev_priv
->wm
.pri_latency
));
2323 memcpy(dev_priv
->wm
.cur_latency
, dev_priv
->wm
.pri_latency
,
2324 sizeof(dev_priv
->wm
.pri_latency
));
2326 intel_fixup_spr_wm_latency(dev_priv
, dev_priv
->wm
.spr_latency
);
2327 intel_fixup_cur_wm_latency(dev_priv
, dev_priv
->wm
.cur_latency
);
2329 intel_print_wm_latency(dev_priv
, "Primary", dev_priv
->wm
.pri_latency
);
2330 intel_print_wm_latency(dev_priv
, "Sprite", dev_priv
->wm
.spr_latency
);
2331 intel_print_wm_latency(dev_priv
, "Cursor", dev_priv
->wm
.cur_latency
);
2333 if (IS_GEN6(dev_priv
))
2334 snb_wm_latency_quirk(dev_priv
);
2337 static void skl_setup_wm_latency(struct drm_i915_private
*dev_priv
)
2339 intel_read_wm_latency(dev_priv
, dev_priv
->wm
.skl_latency
);
2340 intel_print_wm_latency(dev_priv
, "Gen9 Plane", dev_priv
->wm
.skl_latency
);
2343 static bool ilk_validate_pipe_wm(struct drm_device
*dev
,
2344 struct intel_pipe_wm
*pipe_wm
)
2346 /* LP0 watermark maximums depend on this pipe alone */
2347 const struct intel_wm_config config
= {
2348 .num_pipes_active
= 1,
2349 .sprites_enabled
= pipe_wm
->sprites_enabled
,
2350 .sprites_scaled
= pipe_wm
->sprites_scaled
,
2352 struct ilk_wm_maximums max
;
2354 /* LP0 watermarks always use 1/2 DDB partitioning */
2355 ilk_compute_wm_maximums(dev
, 0, &config
, INTEL_DDB_PART_1_2
, &max
);
2357 /* At least LP0 must be valid */
2358 if (!ilk_validate_wm_level(0, &max
, &pipe_wm
->wm
[0])) {
2359 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2366 /* Compute new watermarks for the pipe */
2367 static int ilk_compute_pipe_wm(struct intel_crtc_state
*cstate
)
2369 struct drm_atomic_state
*state
= cstate
->base
.state
;
2370 struct intel_crtc
*intel_crtc
= to_intel_crtc(cstate
->base
.crtc
);
2371 struct intel_pipe_wm
*pipe_wm
;
2372 struct drm_device
*dev
= state
->dev
;
2373 const struct drm_i915_private
*dev_priv
= to_i915(dev
);
2374 struct intel_plane
*intel_plane
;
2375 struct intel_plane_state
*pristate
= NULL
;
2376 struct intel_plane_state
*sprstate
= NULL
;
2377 struct intel_plane_state
*curstate
= NULL
;
2378 int level
, max_level
= ilk_wm_max_level(dev_priv
), usable_level
;
2379 struct ilk_wm_maximums max
;
2381 pipe_wm
= &cstate
->wm
.ilk
.optimal
;
2383 for_each_intel_plane_on_crtc(dev
, intel_crtc
, intel_plane
) {
2384 struct intel_plane_state
*ps
;
2386 ps
= intel_atomic_get_existing_plane_state(state
,
2391 if (intel_plane
->base
.type
== DRM_PLANE_TYPE_PRIMARY
)
2393 else if (intel_plane
->base
.type
== DRM_PLANE_TYPE_OVERLAY
)
2395 else if (intel_plane
->base
.type
== DRM_PLANE_TYPE_CURSOR
)
2399 pipe_wm
->pipe_enabled
= cstate
->base
.active
;
2401 pipe_wm
->sprites_enabled
= sprstate
->base
.visible
;
2402 pipe_wm
->sprites_scaled
= sprstate
->base
.visible
&&
2403 (drm_rect_width(&sprstate
->base
.dst
) != drm_rect_width(&sprstate
->base
.src
) >> 16 ||
2404 drm_rect_height(&sprstate
->base
.dst
) != drm_rect_height(&sprstate
->base
.src
) >> 16);
2407 usable_level
= max_level
;
2409 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2410 if (INTEL_GEN(dev_priv
) <= 6 && pipe_wm
->sprites_enabled
)
2413 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2414 if (pipe_wm
->sprites_scaled
)
2417 ilk_compute_wm_level(dev_priv
, intel_crtc
, 0, cstate
,
2418 pristate
, sprstate
, curstate
, &pipe_wm
->raw_wm
[0]);
2420 memset(&pipe_wm
->wm
, 0, sizeof(pipe_wm
->wm
));
2421 pipe_wm
->wm
[0] = pipe_wm
->raw_wm
[0];
2423 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
2424 pipe_wm
->linetime
= hsw_compute_linetime_wm(cstate
);
2426 if (!ilk_validate_pipe_wm(dev
, pipe_wm
))
2429 ilk_compute_wm_reg_maximums(dev_priv
, 1, &max
);
2431 for (level
= 1; level
<= max_level
; level
++) {
2432 struct intel_wm_level
*wm
= &pipe_wm
->raw_wm
[level
];
2434 ilk_compute_wm_level(dev_priv
, intel_crtc
, level
, cstate
,
2435 pristate
, sprstate
, curstate
, wm
);
2438 * Disable any watermark level that exceeds the
2439 * register maximums since such watermarks are
2442 if (level
> usable_level
)
2445 if (ilk_validate_wm_level(level
, &max
, wm
))
2446 pipe_wm
->wm
[level
] = *wm
;
2448 usable_level
= level
;
2455 * Build a set of 'intermediate' watermark values that satisfy both the old
2456 * state and the new state. These can be programmed to the hardware
2459 static int ilk_compute_intermediate_wm(struct drm_device
*dev
,
2460 struct intel_crtc
*intel_crtc
,
2461 struct intel_crtc_state
*newstate
)
2463 struct intel_pipe_wm
*a
= &newstate
->wm
.ilk
.intermediate
;
2464 struct intel_pipe_wm
*b
= &intel_crtc
->wm
.active
.ilk
;
2465 int level
, max_level
= ilk_wm_max_level(to_i915(dev
));
2468 * Start with the final, target watermarks, then combine with the
2469 * currently active watermarks to get values that are safe both before
2470 * and after the vblank.
2472 *a
= newstate
->wm
.ilk
.optimal
;
2473 a
->pipe_enabled
|= b
->pipe_enabled
;
2474 a
->sprites_enabled
|= b
->sprites_enabled
;
2475 a
->sprites_scaled
|= b
->sprites_scaled
;
2477 for (level
= 0; level
<= max_level
; level
++) {
2478 struct intel_wm_level
*a_wm
= &a
->wm
[level
];
2479 const struct intel_wm_level
*b_wm
= &b
->wm
[level
];
2481 a_wm
->enable
&= b_wm
->enable
;
2482 a_wm
->pri_val
= max(a_wm
->pri_val
, b_wm
->pri_val
);
2483 a_wm
->spr_val
= max(a_wm
->spr_val
, b_wm
->spr_val
);
2484 a_wm
->cur_val
= max(a_wm
->cur_val
, b_wm
->cur_val
);
2485 a_wm
->fbc_val
= max(a_wm
->fbc_val
, b_wm
->fbc_val
);
2489 * We need to make sure that these merged watermark values are
2490 * actually a valid configuration themselves. If they're not,
2491 * there's no safe way to transition from the old state to
2492 * the new state, so we need to fail the atomic transaction.
2494 if (!ilk_validate_pipe_wm(dev
, a
))
2498 * If our intermediate WM are identical to the final WM, then we can
2499 * omit the post-vblank programming; only update if it's different.
2501 if (memcmp(a
, &newstate
->wm
.ilk
.optimal
, sizeof(*a
)) == 0)
2502 newstate
->wm
.need_postvbl_update
= false;
2508 * Merge the watermarks from all active pipes for a specific level.
2510 static void ilk_merge_wm_level(struct drm_device
*dev
,
2512 struct intel_wm_level
*ret_wm
)
2514 const struct intel_crtc
*intel_crtc
;
2516 ret_wm
->enable
= true;
2518 for_each_intel_crtc(dev
, intel_crtc
) {
2519 const struct intel_pipe_wm
*active
= &intel_crtc
->wm
.active
.ilk
;
2520 const struct intel_wm_level
*wm
= &active
->wm
[level
];
2522 if (!active
->pipe_enabled
)
2526 * The watermark values may have been used in the past,
2527 * so we must maintain them in the registers for some
2528 * time even if the level is now disabled.
2531 ret_wm
->enable
= false;
2533 ret_wm
->pri_val
= max(ret_wm
->pri_val
, wm
->pri_val
);
2534 ret_wm
->spr_val
= max(ret_wm
->spr_val
, wm
->spr_val
);
2535 ret_wm
->cur_val
= max(ret_wm
->cur_val
, wm
->cur_val
);
2536 ret_wm
->fbc_val
= max(ret_wm
->fbc_val
, wm
->fbc_val
);
2541 * Merge all low power watermarks for all active pipes.
2543 static void ilk_wm_merge(struct drm_device
*dev
,
2544 const struct intel_wm_config
*config
,
2545 const struct ilk_wm_maximums
*max
,
2546 struct intel_pipe_wm
*merged
)
2548 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2549 int level
, max_level
= ilk_wm_max_level(dev_priv
);
2550 int last_enabled_level
= max_level
;
2552 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2553 if ((INTEL_GEN(dev_priv
) <= 6 || IS_IVYBRIDGE(dev_priv
)) &&
2554 config
->num_pipes_active
> 1)
2555 last_enabled_level
= 0;
2557 /* ILK: FBC WM must be disabled always */
2558 merged
->fbc_wm_enabled
= INTEL_GEN(dev_priv
) >= 6;
2560 /* merge each WM1+ level */
2561 for (level
= 1; level
<= max_level
; level
++) {
2562 struct intel_wm_level
*wm
= &merged
->wm
[level
];
2564 ilk_merge_wm_level(dev
, level
, wm
);
2566 if (level
> last_enabled_level
)
2568 else if (!ilk_validate_wm_level(level
, max
, wm
))
2569 /* make sure all following levels get disabled */
2570 last_enabled_level
= level
- 1;
2573 * The spec says it is preferred to disable
2574 * FBC WMs instead of disabling a WM level.
2576 if (wm
->fbc_val
> max
->fbc
) {
2578 merged
->fbc_wm_enabled
= false;
2583 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2585 * FIXME this is racy. FBC might get enabled later.
2586 * What we should check here is whether FBC can be
2587 * enabled sometime later.
2589 if (IS_GEN5(dev_priv
) && !merged
->fbc_wm_enabled
&&
2590 intel_fbc_is_active(dev_priv
)) {
2591 for (level
= 2; level
<= max_level
; level
++) {
2592 struct intel_wm_level
*wm
= &merged
->wm
[level
];
2599 static int ilk_wm_lp_to_level(int wm_lp
, const struct intel_pipe_wm
*pipe_wm
)
2601 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2602 return wm_lp
+ (wm_lp
>= 2 && pipe_wm
->wm
[4].enable
);
2605 /* The value we need to program into the WM_LPx latency field */
2606 static unsigned int ilk_wm_lp_latency(struct drm_device
*dev
, int level
)
2608 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2610 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
2613 return dev_priv
->wm
.pri_latency
[level
];
2616 static void ilk_compute_wm_results(struct drm_device
*dev
,
2617 const struct intel_pipe_wm
*merged
,
2618 enum intel_ddb_partitioning partitioning
,
2619 struct ilk_wm_values
*results
)
2621 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2622 struct intel_crtc
*intel_crtc
;
2625 results
->enable_fbc_wm
= merged
->fbc_wm_enabled
;
2626 results
->partitioning
= partitioning
;
2628 /* LP1+ register values */
2629 for (wm_lp
= 1; wm_lp
<= 3; wm_lp
++) {
2630 const struct intel_wm_level
*r
;
2632 level
= ilk_wm_lp_to_level(wm_lp
, merged
);
2634 r
= &merged
->wm
[level
];
2637 * Maintain the watermark values even if the level is
2638 * disabled. Doing otherwise could cause underruns.
2640 results
->wm_lp
[wm_lp
- 1] =
2641 (ilk_wm_lp_latency(dev
, level
) << WM1_LP_LATENCY_SHIFT
) |
2642 (r
->pri_val
<< WM1_LP_SR_SHIFT
) |
2646 results
->wm_lp
[wm_lp
- 1] |= WM1_LP_SR_EN
;
2648 if (INTEL_GEN(dev_priv
) >= 8)
2649 results
->wm_lp
[wm_lp
- 1] |=
2650 r
->fbc_val
<< WM1_LP_FBC_SHIFT_BDW
;
2652 results
->wm_lp
[wm_lp
- 1] |=
2653 r
->fbc_val
<< WM1_LP_FBC_SHIFT
;
2656 * Always set WM1S_LP_EN when spr_val != 0, even if the
2657 * level is disabled. Doing otherwise could cause underruns.
2659 if (INTEL_GEN(dev_priv
) <= 6 && r
->spr_val
) {
2660 WARN_ON(wm_lp
!= 1);
2661 results
->wm_lp_spr
[wm_lp
- 1] = WM1S_LP_EN
| r
->spr_val
;
2663 results
->wm_lp_spr
[wm_lp
- 1] = r
->spr_val
;
2666 /* LP0 register values */
2667 for_each_intel_crtc(dev
, intel_crtc
) {
2668 enum pipe pipe
= intel_crtc
->pipe
;
2669 const struct intel_wm_level
*r
=
2670 &intel_crtc
->wm
.active
.ilk
.wm
[0];
2672 if (WARN_ON(!r
->enable
))
2675 results
->wm_linetime
[pipe
] = intel_crtc
->wm
.active
.ilk
.linetime
;
2677 results
->wm_pipe
[pipe
] =
2678 (r
->pri_val
<< WM0_PIPE_PLANE_SHIFT
) |
2679 (r
->spr_val
<< WM0_PIPE_SPRITE_SHIFT
) |
2684 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2685 * case both are at the same level. Prefer r1 in case they're the same. */
2686 static struct intel_pipe_wm
*ilk_find_best_result(struct drm_device
*dev
,
2687 struct intel_pipe_wm
*r1
,
2688 struct intel_pipe_wm
*r2
)
2690 int level
, max_level
= ilk_wm_max_level(to_i915(dev
));
2691 int level1
= 0, level2
= 0;
2693 for (level
= 1; level
<= max_level
; level
++) {
2694 if (r1
->wm
[level
].enable
)
2696 if (r2
->wm
[level
].enable
)
2700 if (level1
== level2
) {
2701 if (r2
->fbc_wm_enabled
&& !r1
->fbc_wm_enabled
)
2705 } else if (level1
> level2
) {
2712 /* dirty bits used to track which watermarks need changes */
2713 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2714 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2715 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2716 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2717 #define WM_DIRTY_FBC (1 << 24)
2718 #define WM_DIRTY_DDB (1 << 25)
2720 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private
*dev_priv
,
2721 const struct ilk_wm_values
*old
,
2722 const struct ilk_wm_values
*new)
2724 unsigned int dirty
= 0;
2728 for_each_pipe(dev_priv
, pipe
) {
2729 if (old
->wm_linetime
[pipe
] != new->wm_linetime
[pipe
]) {
2730 dirty
|= WM_DIRTY_LINETIME(pipe
);
2731 /* Must disable LP1+ watermarks too */
2732 dirty
|= WM_DIRTY_LP_ALL
;
2735 if (old
->wm_pipe
[pipe
] != new->wm_pipe
[pipe
]) {
2736 dirty
|= WM_DIRTY_PIPE(pipe
);
2737 /* Must disable LP1+ watermarks too */
2738 dirty
|= WM_DIRTY_LP_ALL
;
2742 if (old
->enable_fbc_wm
!= new->enable_fbc_wm
) {
2743 dirty
|= WM_DIRTY_FBC
;
2744 /* Must disable LP1+ watermarks too */
2745 dirty
|= WM_DIRTY_LP_ALL
;
2748 if (old
->partitioning
!= new->partitioning
) {
2749 dirty
|= WM_DIRTY_DDB
;
2750 /* Must disable LP1+ watermarks too */
2751 dirty
|= WM_DIRTY_LP_ALL
;
2754 /* LP1+ watermarks already deemed dirty, no need to continue */
2755 if (dirty
& WM_DIRTY_LP_ALL
)
2758 /* Find the lowest numbered LP1+ watermark in need of an update... */
2759 for (wm_lp
= 1; wm_lp
<= 3; wm_lp
++) {
2760 if (old
->wm_lp
[wm_lp
- 1] != new->wm_lp
[wm_lp
- 1] ||
2761 old
->wm_lp_spr
[wm_lp
- 1] != new->wm_lp_spr
[wm_lp
- 1])
2765 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2766 for (; wm_lp
<= 3; wm_lp
++)
2767 dirty
|= WM_DIRTY_LP(wm_lp
);
2772 static bool _ilk_disable_lp_wm(struct drm_i915_private
*dev_priv
,
2775 struct ilk_wm_values
*previous
= &dev_priv
->wm
.hw
;
2776 bool changed
= false;
2778 if (dirty
& WM_DIRTY_LP(3) && previous
->wm_lp
[2] & WM1_LP_SR_EN
) {
2779 previous
->wm_lp
[2] &= ~WM1_LP_SR_EN
;
2780 I915_WRITE(WM3_LP_ILK
, previous
->wm_lp
[2]);
2783 if (dirty
& WM_DIRTY_LP(2) && previous
->wm_lp
[1] & WM1_LP_SR_EN
) {
2784 previous
->wm_lp
[1] &= ~WM1_LP_SR_EN
;
2785 I915_WRITE(WM2_LP_ILK
, previous
->wm_lp
[1]);
2788 if (dirty
& WM_DIRTY_LP(1) && previous
->wm_lp
[0] & WM1_LP_SR_EN
) {
2789 previous
->wm_lp
[0] &= ~WM1_LP_SR_EN
;
2790 I915_WRITE(WM1_LP_ILK
, previous
->wm_lp
[0]);
2795 * Don't touch WM1S_LP_EN here.
2796 * Doing so could cause underruns.
2803 * The spec says we shouldn't write when we don't need, because every write
2804 * causes WMs to be re-evaluated, expending some power.
2806 static void ilk_write_wm_values(struct drm_i915_private
*dev_priv
,
2807 struct ilk_wm_values
*results
)
2809 struct ilk_wm_values
*previous
= &dev_priv
->wm
.hw
;
2813 dirty
= ilk_compute_wm_dirty(dev_priv
, previous
, results
);
2817 _ilk_disable_lp_wm(dev_priv
, dirty
);
2819 if (dirty
& WM_DIRTY_PIPE(PIPE_A
))
2820 I915_WRITE(WM0_PIPEA_ILK
, results
->wm_pipe
[0]);
2821 if (dirty
& WM_DIRTY_PIPE(PIPE_B
))
2822 I915_WRITE(WM0_PIPEB_ILK
, results
->wm_pipe
[1]);
2823 if (dirty
& WM_DIRTY_PIPE(PIPE_C
))
2824 I915_WRITE(WM0_PIPEC_IVB
, results
->wm_pipe
[2]);
2826 if (dirty
& WM_DIRTY_LINETIME(PIPE_A
))
2827 I915_WRITE(PIPE_WM_LINETIME(PIPE_A
), results
->wm_linetime
[0]);
2828 if (dirty
& WM_DIRTY_LINETIME(PIPE_B
))
2829 I915_WRITE(PIPE_WM_LINETIME(PIPE_B
), results
->wm_linetime
[1]);
2830 if (dirty
& WM_DIRTY_LINETIME(PIPE_C
))
2831 I915_WRITE(PIPE_WM_LINETIME(PIPE_C
), results
->wm_linetime
[2]);
2833 if (dirty
& WM_DIRTY_DDB
) {
2834 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
)) {
2835 val
= I915_READ(WM_MISC
);
2836 if (results
->partitioning
== INTEL_DDB_PART_1_2
)
2837 val
&= ~WM_MISC_DATA_PARTITION_5_6
;
2839 val
|= WM_MISC_DATA_PARTITION_5_6
;
2840 I915_WRITE(WM_MISC
, val
);
2842 val
= I915_READ(DISP_ARB_CTL2
);
2843 if (results
->partitioning
== INTEL_DDB_PART_1_2
)
2844 val
&= ~DISP_DATA_PARTITION_5_6
;
2846 val
|= DISP_DATA_PARTITION_5_6
;
2847 I915_WRITE(DISP_ARB_CTL2
, val
);
2851 if (dirty
& WM_DIRTY_FBC
) {
2852 val
= I915_READ(DISP_ARB_CTL
);
2853 if (results
->enable_fbc_wm
)
2854 val
&= ~DISP_FBC_WM_DIS
;
2856 val
|= DISP_FBC_WM_DIS
;
2857 I915_WRITE(DISP_ARB_CTL
, val
);
2860 if (dirty
& WM_DIRTY_LP(1) &&
2861 previous
->wm_lp_spr
[0] != results
->wm_lp_spr
[0])
2862 I915_WRITE(WM1S_LP_ILK
, results
->wm_lp_spr
[0]);
2864 if (INTEL_GEN(dev_priv
) >= 7) {
2865 if (dirty
& WM_DIRTY_LP(2) && previous
->wm_lp_spr
[1] != results
->wm_lp_spr
[1])
2866 I915_WRITE(WM2S_LP_IVB
, results
->wm_lp_spr
[1]);
2867 if (dirty
& WM_DIRTY_LP(3) && previous
->wm_lp_spr
[2] != results
->wm_lp_spr
[2])
2868 I915_WRITE(WM3S_LP_IVB
, results
->wm_lp_spr
[2]);
2871 if (dirty
& WM_DIRTY_LP(1) && previous
->wm_lp
[0] != results
->wm_lp
[0])
2872 I915_WRITE(WM1_LP_ILK
, results
->wm_lp
[0]);
2873 if (dirty
& WM_DIRTY_LP(2) && previous
->wm_lp
[1] != results
->wm_lp
[1])
2874 I915_WRITE(WM2_LP_ILK
, results
->wm_lp
[1]);
2875 if (dirty
& WM_DIRTY_LP(3) && previous
->wm_lp
[2] != results
->wm_lp
[2])
2876 I915_WRITE(WM3_LP_ILK
, results
->wm_lp
[2]);
2878 dev_priv
->wm
.hw
= *results
;
2881 bool ilk_disable_lp_wm(struct drm_device
*dev
)
2883 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2885 return _ilk_disable_lp_wm(dev_priv
, WM_DIRTY_LP_ALL
);
2888 #define SKL_SAGV_BLOCK_TIME 30 /* µs */
2891 * FIXME: We still don't have the proper code detect if we need to apply the WA,
2892 * so assume we'll always need it in order to avoid underruns.
2894 static bool skl_needs_memory_bw_wa(struct intel_atomic_state
*state
)
2896 struct drm_i915_private
*dev_priv
= to_i915(state
->base
.dev
);
2898 if (IS_SKYLAKE(dev_priv
) || IS_BROXTON(dev_priv
) ||
2899 IS_KABYLAKE(dev_priv
))
2906 intel_has_sagv(struct drm_i915_private
*dev_priv
)
2908 if (IS_KABYLAKE(dev_priv
))
2911 if (IS_SKYLAKE(dev_priv
) &&
2912 dev_priv
->sagv_status
!= I915_SAGV_NOT_CONTROLLED
)
2919 * SAGV dynamically adjusts the system agent voltage and clock frequencies
2920 * depending on power and performance requirements. The display engine access
2921 * to system memory is blocked during the adjustment time. Because of the
2922 * blocking time, having this enabled can cause full system hangs and/or pipe
2923 * underruns if we don't meet all of the following requirements:
2925 * - <= 1 pipe enabled
2926 * - All planes can enable watermarks for latencies >= SAGV engine block time
2927 * - We're not using an interlaced display configuration
2930 intel_enable_sagv(struct drm_i915_private
*dev_priv
)
2934 if (!intel_has_sagv(dev_priv
))
2937 if (dev_priv
->sagv_status
== I915_SAGV_ENABLED
)
2940 DRM_DEBUG_KMS("Enabling the SAGV\n");
2941 mutex_lock(&dev_priv
->rps
.hw_lock
);
2943 ret
= sandybridge_pcode_write(dev_priv
, GEN9_PCODE_SAGV_CONTROL
,
2946 /* We don't need to wait for the SAGV when enabling */
2947 mutex_unlock(&dev_priv
->rps
.hw_lock
);
2950 * Some skl systems, pre-release machines in particular,
2951 * don't actually have an SAGV.
2953 if (IS_SKYLAKE(dev_priv
) && ret
== -ENXIO
) {
2954 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2955 dev_priv
->sagv_status
= I915_SAGV_NOT_CONTROLLED
;
2957 } else if (ret
< 0) {
2958 DRM_ERROR("Failed to enable the SAGV\n");
2962 dev_priv
->sagv_status
= I915_SAGV_ENABLED
;
2967 intel_disable_sagv(struct drm_i915_private
*dev_priv
)
2971 if (!intel_has_sagv(dev_priv
))
2974 if (dev_priv
->sagv_status
== I915_SAGV_DISABLED
)
2977 DRM_DEBUG_KMS("Disabling the SAGV\n");
2978 mutex_lock(&dev_priv
->rps
.hw_lock
);
2980 /* bspec says to keep retrying for at least 1 ms */
2981 ret
= skl_pcode_request(dev_priv
, GEN9_PCODE_SAGV_CONTROL
,
2983 GEN9_SAGV_IS_DISABLED
, GEN9_SAGV_IS_DISABLED
,
2985 mutex_unlock(&dev_priv
->rps
.hw_lock
);
2988 * Some skl systems, pre-release machines in particular,
2989 * don't actually have an SAGV.
2991 if (IS_SKYLAKE(dev_priv
) && ret
== -ENXIO
) {
2992 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2993 dev_priv
->sagv_status
= I915_SAGV_NOT_CONTROLLED
;
2995 } else if (ret
< 0) {
2996 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret
);
3000 dev_priv
->sagv_status
= I915_SAGV_DISABLED
;
3004 bool intel_can_enable_sagv(struct drm_atomic_state
*state
)
3006 struct drm_device
*dev
= state
->dev
;
3007 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3008 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
3009 struct intel_crtc
*crtc
;
3010 struct intel_plane
*plane
;
3011 struct intel_crtc_state
*cstate
;
3015 if (!intel_has_sagv(dev_priv
))
3019 * SKL workaround: bspec recommends we disable the SAGV when we have
3020 * more then one pipe enabled
3022 * If there are no active CRTCs, no additional checks need be performed
3024 if (hweight32(intel_state
->active_crtcs
) == 0)
3026 else if (hweight32(intel_state
->active_crtcs
) > 1)
3029 /* Since we're now guaranteed to only have one active CRTC... */
3030 pipe
= ffs(intel_state
->active_crtcs
) - 1;
3031 crtc
= intel_get_crtc_for_pipe(dev_priv
, pipe
);
3032 cstate
= to_intel_crtc_state(crtc
->base
.state
);
3034 if (crtc
->base
.state
->adjusted_mode
.flags
& DRM_MODE_FLAG_INTERLACE
)
3037 for_each_intel_plane_on_crtc(dev
, crtc
, plane
) {
3038 struct skl_plane_wm
*wm
=
3039 &cstate
->wm
.skl
.optimal
.planes
[plane
->id
];
3041 /* Skip this plane if it's not enabled */
3042 if (!wm
->wm
[0].plane_en
)
3045 /* Find the highest enabled wm level for this plane */
3046 for (level
= ilk_wm_max_level(dev_priv
);
3047 !wm
->wm
[level
].plane_en
; --level
)
3050 latency
= dev_priv
->wm
.skl_latency
[level
];
3052 if (skl_needs_memory_bw_wa(intel_state
) &&
3053 plane
->base
.state
->fb
->modifier
==
3054 I915_FORMAT_MOD_X_TILED
)
3058 * If any of the planes on this pipe don't enable wm levels
3059 * that incur memory latencies higher then 30µs we can't enable
3062 if (latency
< SKL_SAGV_BLOCK_TIME
)
3070 skl_ddb_get_pipe_allocation_limits(struct drm_device
*dev
,
3071 const struct intel_crtc_state
*cstate
,
3072 struct skl_ddb_entry
*alloc
, /* out */
3073 int *num_active
/* out */)
3075 struct drm_atomic_state
*state
= cstate
->base
.state
;
3076 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
3077 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3078 struct drm_crtc
*for_crtc
= cstate
->base
.crtc
;
3079 unsigned int pipe_size
, ddb_size
;
3080 int nth_active_pipe
;
3082 if (WARN_ON(!state
) || !cstate
->base
.active
) {
3085 *num_active
= hweight32(dev_priv
->active_crtcs
);
3089 if (intel_state
->active_pipe_changes
)
3090 *num_active
= hweight32(intel_state
->active_crtcs
);
3092 *num_active
= hweight32(dev_priv
->active_crtcs
);
3094 ddb_size
= INTEL_INFO(dev_priv
)->ddb_size
;
3095 WARN_ON(ddb_size
== 0);
3097 ddb_size
-= 4; /* 4 blocks for bypass path allocation */
3100 * If the state doesn't change the active CRTC's, then there's
3101 * no need to recalculate; the existing pipe allocation limits
3102 * should remain unchanged. Note that we're safe from racing
3103 * commits since any racing commit that changes the active CRTC
3104 * list would need to grab _all_ crtc locks, including the one
3105 * we currently hold.
3107 if (!intel_state
->active_pipe_changes
) {
3109 * alloc may be cleared by clear_intel_crtc_state,
3110 * copy from old state to be sure
3112 *alloc
= to_intel_crtc_state(for_crtc
->state
)->wm
.skl
.ddb
;
3116 nth_active_pipe
= hweight32(intel_state
->active_crtcs
&
3117 (drm_crtc_mask(for_crtc
) - 1));
3118 pipe_size
= ddb_size
/ hweight32(intel_state
->active_crtcs
);
3119 alloc
->start
= nth_active_pipe
* ddb_size
/ *num_active
;
3120 alloc
->end
= alloc
->start
+ pipe_size
;
3123 static unsigned int skl_cursor_allocation(int num_active
)
3125 if (num_active
== 1)
3131 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry
*entry
, u32 reg
)
3133 entry
->start
= reg
& 0x3ff;
3134 entry
->end
= (reg
>> 16) & 0x3ff;
3139 void skl_ddb_get_hw_state(struct drm_i915_private
*dev_priv
,
3140 struct skl_ddb_allocation
*ddb
/* out */)
3142 struct intel_crtc
*crtc
;
3144 memset(ddb
, 0, sizeof(*ddb
));
3146 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
3147 enum intel_display_power_domain power_domain
;
3148 enum plane_id plane_id
;
3149 enum pipe pipe
= crtc
->pipe
;
3151 power_domain
= POWER_DOMAIN_PIPE(pipe
);
3152 if (!intel_display_power_get_if_enabled(dev_priv
, power_domain
))
3155 for_each_plane_id_on_crtc(crtc
, plane_id
) {
3158 if (plane_id
!= PLANE_CURSOR
)
3159 val
= I915_READ(PLANE_BUF_CFG(pipe
, plane_id
));
3161 val
= I915_READ(CUR_BUF_CFG(pipe
));
3163 skl_ddb_entry_init_from_hw(&ddb
->plane
[pipe
][plane_id
], val
);
3166 intel_display_power_put(dev_priv
, power_domain
);
3171 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3172 * The bspec defines downscale amount as:
3175 * Horizontal down scale amount = maximum[1, Horizontal source size /
3176 * Horizontal destination size]
3177 * Vertical down scale amount = maximum[1, Vertical source size /
3178 * Vertical destination size]
3179 * Total down scale amount = Horizontal down scale amount *
3180 * Vertical down scale amount
3183 * Return value is provided in 16.16 fixed point form to retain fractional part.
3184 * Caller should take care of dividing & rounding off the value.
3187 skl_plane_downscale_amount(const struct intel_plane_state
*pstate
)
3189 uint32_t downscale_h
, downscale_w
;
3190 uint32_t src_w
, src_h
, dst_w
, dst_h
;
3192 if (WARN_ON(!pstate
->base
.visible
))
3193 return DRM_PLANE_HELPER_NO_SCALING
;
3195 /* n.b., src is 16.16 fixed point, dst is whole integer */
3196 src_w
= drm_rect_width(&pstate
->base
.src
);
3197 src_h
= drm_rect_height(&pstate
->base
.src
);
3198 dst_w
= drm_rect_width(&pstate
->base
.dst
);
3199 dst_h
= drm_rect_height(&pstate
->base
.dst
);
3200 if (drm_rotation_90_or_270(pstate
->base
.rotation
))
3203 downscale_h
= max(src_h
/ dst_h
, (uint32_t)DRM_PLANE_HELPER_NO_SCALING
);
3204 downscale_w
= max(src_w
/ dst_w
, (uint32_t)DRM_PLANE_HELPER_NO_SCALING
);
3206 /* Provide result in 16.16 fixed point */
3207 return (uint64_t)downscale_w
* downscale_h
>> 16;
3211 skl_plane_relative_data_rate(const struct intel_crtc_state
*cstate
,
3212 const struct drm_plane_state
*pstate
,
3215 struct intel_plane_state
*intel_pstate
= to_intel_plane_state(pstate
);
3216 uint32_t down_scale_amount
, data_rate
;
3217 uint32_t width
= 0, height
= 0;
3218 struct drm_framebuffer
*fb
;
3221 if (!intel_pstate
->base
.visible
)
3225 format
= fb
->format
->format
;
3227 if (pstate
->plane
->type
== DRM_PLANE_TYPE_CURSOR
)
3229 if (y
&& format
!= DRM_FORMAT_NV12
)
3232 width
= drm_rect_width(&intel_pstate
->base
.src
) >> 16;
3233 height
= drm_rect_height(&intel_pstate
->base
.src
) >> 16;
3235 if (drm_rotation_90_or_270(pstate
->rotation
))
3236 swap(width
, height
);
3238 /* for planar format */
3239 if (format
== DRM_FORMAT_NV12
) {
3240 if (y
) /* y-plane data rate */
3241 data_rate
= width
* height
*
3243 else /* uv-plane data rate */
3244 data_rate
= (width
/ 2) * (height
/ 2) *
3247 /* for packed formats */
3248 data_rate
= width
* height
* fb
->format
->cpp
[0];
3251 down_scale_amount
= skl_plane_downscale_amount(intel_pstate
);
3253 return (uint64_t)data_rate
* down_scale_amount
>> 16;
3257 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3258 * a 8192x4096@32bpp framebuffer:
3259 * 3 * 4096 * 8192 * 4 < 2^32
3262 skl_get_total_relative_data_rate(struct intel_crtc_state
*intel_cstate
,
3263 unsigned *plane_data_rate
,
3264 unsigned *plane_y_data_rate
)
3266 struct drm_crtc_state
*cstate
= &intel_cstate
->base
;
3267 struct drm_atomic_state
*state
= cstate
->state
;
3268 struct drm_plane
*plane
;
3269 const struct drm_plane_state
*pstate
;
3270 unsigned int total_data_rate
= 0;
3272 if (WARN_ON(!state
))
3275 /* Calculate and cache data rate for each plane */
3276 drm_atomic_crtc_state_for_each_plane_state(plane
, pstate
, cstate
) {
3277 enum plane_id plane_id
= to_intel_plane(plane
)->id
;
3281 rate
= skl_plane_relative_data_rate(intel_cstate
,
3283 plane_data_rate
[plane_id
] = rate
;
3285 total_data_rate
+= rate
;
3288 rate
= skl_plane_relative_data_rate(intel_cstate
,
3290 plane_y_data_rate
[plane_id
] = rate
;
3292 total_data_rate
+= rate
;
3295 return total_data_rate
;
3299 skl_ddb_min_alloc(const struct drm_plane_state
*pstate
,
3302 struct drm_framebuffer
*fb
= pstate
->fb
;
3303 struct intel_plane_state
*intel_pstate
= to_intel_plane_state(pstate
);
3304 uint32_t src_w
, src_h
;
3305 uint32_t min_scanlines
= 8;
3311 /* For packed formats, no y-plane, return 0 */
3312 if (y
&& fb
->format
->format
!= DRM_FORMAT_NV12
)
3315 /* For Non Y-tile return 8-blocks */
3316 if (fb
->modifier
!= I915_FORMAT_MOD_Y_TILED
&&
3317 fb
->modifier
!= I915_FORMAT_MOD_Yf_TILED
)
3320 src_w
= drm_rect_width(&intel_pstate
->base
.src
) >> 16;
3321 src_h
= drm_rect_height(&intel_pstate
->base
.src
) >> 16;
3323 if (drm_rotation_90_or_270(pstate
->rotation
))
3326 /* Halve UV plane width and height for NV12 */
3327 if (fb
->format
->format
== DRM_FORMAT_NV12
&& !y
) {
3332 if (fb
->format
->format
== DRM_FORMAT_NV12
&& !y
)
3333 plane_bpp
= fb
->format
->cpp
[1];
3335 plane_bpp
= fb
->format
->cpp
[0];
3337 if (drm_rotation_90_or_270(pstate
->rotation
)) {
3338 switch (plane_bpp
) {
3352 WARN(1, "Unsupported pixel depth %u for rotation",
3358 return DIV_ROUND_UP((4 * src_w
* plane_bpp
), 512) * min_scanlines
/4 + 3;
3362 skl_ddb_calc_min(const struct intel_crtc_state
*cstate
, int num_active
,
3363 uint16_t *minimum
, uint16_t *y_minimum
)
3365 const struct drm_plane_state
*pstate
;
3366 struct drm_plane
*plane
;
3368 drm_atomic_crtc_state_for_each_plane_state(plane
, pstate
, &cstate
->base
) {
3369 enum plane_id plane_id
= to_intel_plane(plane
)->id
;
3371 if (plane_id
== PLANE_CURSOR
)
3374 if (!pstate
->visible
)
3377 minimum
[plane_id
] = skl_ddb_min_alloc(pstate
, 0);
3378 y_minimum
[plane_id
] = skl_ddb_min_alloc(pstate
, 1);
3381 minimum
[PLANE_CURSOR
] = skl_cursor_allocation(num_active
);
3385 skl_allocate_pipe_ddb(struct intel_crtc_state
*cstate
,
3386 struct skl_ddb_allocation
*ddb
/* out */)
3388 struct drm_atomic_state
*state
= cstate
->base
.state
;
3389 struct drm_crtc
*crtc
= cstate
->base
.crtc
;
3390 struct drm_device
*dev
= crtc
->dev
;
3391 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3392 enum pipe pipe
= intel_crtc
->pipe
;
3393 struct skl_ddb_entry
*alloc
= &cstate
->wm
.skl
.ddb
;
3394 uint16_t alloc_size
, start
;
3395 uint16_t minimum
[I915_MAX_PLANES
] = {};
3396 uint16_t y_minimum
[I915_MAX_PLANES
] = {};
3397 unsigned int total_data_rate
;
3398 enum plane_id plane_id
;
3400 unsigned plane_data_rate
[I915_MAX_PLANES
] = {};
3401 unsigned plane_y_data_rate
[I915_MAX_PLANES
] = {};
3403 /* Clear the partitioning for disabled planes. */
3404 memset(ddb
->plane
[pipe
], 0, sizeof(ddb
->plane
[pipe
]));
3405 memset(ddb
->y_plane
[pipe
], 0, sizeof(ddb
->y_plane
[pipe
]));
3407 if (WARN_ON(!state
))
3410 if (!cstate
->base
.active
) {
3411 alloc
->start
= alloc
->end
= 0;
3415 skl_ddb_get_pipe_allocation_limits(dev
, cstate
, alloc
, &num_active
);
3416 alloc_size
= skl_ddb_entry_size(alloc
);
3417 if (alloc_size
== 0) {
3418 memset(ddb
->plane
[pipe
], 0, sizeof(ddb
->plane
[pipe
]));
3422 skl_ddb_calc_min(cstate
, num_active
, minimum
, y_minimum
);
3425 * 1. Allocate the mininum required blocks for each active plane
3426 * and allocate the cursor, it doesn't require extra allocation
3427 * proportional to the data rate.
3430 for_each_plane_id_on_crtc(intel_crtc
, plane_id
) {
3431 alloc_size
-= minimum
[plane_id
];
3432 alloc_size
-= y_minimum
[plane_id
];
3435 ddb
->plane
[pipe
][PLANE_CURSOR
].start
= alloc
->end
- minimum
[PLANE_CURSOR
];
3436 ddb
->plane
[pipe
][PLANE_CURSOR
].end
= alloc
->end
;
3439 * 2. Distribute the remaining space in proportion to the amount of
3440 * data each plane needs to fetch from memory.
3442 * FIXME: we may not allocate every single block here.
3444 total_data_rate
= skl_get_total_relative_data_rate(cstate
,
3447 if (total_data_rate
== 0)
3450 start
= alloc
->start
;
3451 for_each_plane_id_on_crtc(intel_crtc
, plane_id
) {
3452 unsigned int data_rate
, y_data_rate
;
3453 uint16_t plane_blocks
, y_plane_blocks
= 0;
3455 if (plane_id
== PLANE_CURSOR
)
3458 data_rate
= plane_data_rate
[plane_id
];
3461 * allocation for (packed formats) or (uv-plane part of planar format):
3462 * promote the expression to 64 bits to avoid overflowing, the
3463 * result is < available as data_rate / total_data_rate < 1
3465 plane_blocks
= minimum
[plane_id
];
3466 plane_blocks
+= div_u64((uint64_t)alloc_size
* data_rate
,
3469 /* Leave disabled planes at (0,0) */
3471 ddb
->plane
[pipe
][plane_id
].start
= start
;
3472 ddb
->plane
[pipe
][plane_id
].end
= start
+ plane_blocks
;
3475 start
+= plane_blocks
;
3478 * allocation for y_plane part of planar format:
3480 y_data_rate
= plane_y_data_rate
[plane_id
];
3482 y_plane_blocks
= y_minimum
[plane_id
];
3483 y_plane_blocks
+= div_u64((uint64_t)alloc_size
* y_data_rate
,
3487 ddb
->y_plane
[pipe
][plane_id
].start
= start
;
3488 ddb
->y_plane
[pipe
][plane_id
].end
= start
+ y_plane_blocks
;
3491 start
+= y_plane_blocks
;
3498 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3499 * for the read latency) and cpp should always be <= 8, so that
3500 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3501 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3503 static uint_fixed_16_16_t
skl_wm_method1(uint32_t pixel_rate
, uint8_t cpp
,
3506 uint32_t wm_intermediate_val
;
3507 uint_fixed_16_16_t ret
;
3510 return FP_16_16_MAX
;
3512 wm_intermediate_val
= latency
* pixel_rate
* cpp
;
3513 ret
= fixed_16_16_div_round_up_u64(wm_intermediate_val
, 1000 * 512);
3517 static uint_fixed_16_16_t
skl_wm_method2(uint32_t pixel_rate
,
3518 uint32_t pipe_htotal
,
3520 uint_fixed_16_16_t plane_blocks_per_line
)
3522 uint32_t wm_intermediate_val
;
3523 uint_fixed_16_16_t ret
;
3526 return FP_16_16_MAX
;
3528 wm_intermediate_val
= latency
* pixel_rate
;
3529 wm_intermediate_val
= DIV_ROUND_UP(wm_intermediate_val
,
3530 pipe_htotal
* 1000);
3531 ret
= mul_u32_fixed_16_16(wm_intermediate_val
, plane_blocks_per_line
);
3535 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state
*cstate
,
3536 struct intel_plane_state
*pstate
)
3538 uint64_t adjusted_pixel_rate
;
3539 uint64_t downscale_amount
;
3540 uint64_t pixel_rate
;
3542 /* Shouldn't reach here on disabled planes... */
3543 if (WARN_ON(!pstate
->base
.visible
))
3547 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3548 * with additional adjustments for plane-specific scaling.
3550 adjusted_pixel_rate
= ilk_pipe_pixel_rate(cstate
);
3551 downscale_amount
= skl_plane_downscale_amount(pstate
);
3553 pixel_rate
= adjusted_pixel_rate
* downscale_amount
>> 16;
3554 WARN_ON(pixel_rate
!= clamp_t(uint32_t, pixel_rate
, 0, ~0));
3559 static int skl_compute_plane_wm(const struct drm_i915_private
*dev_priv
,
3560 struct intel_crtc_state
*cstate
,
3561 struct intel_plane_state
*intel_pstate
,
3562 uint16_t ddb_allocation
,
3564 uint16_t *out_blocks
, /* out */
3565 uint8_t *out_lines
, /* out */
3566 bool *enabled
/* out */)
3568 struct drm_plane_state
*pstate
= &intel_pstate
->base
;
3569 struct drm_framebuffer
*fb
= pstate
->fb
;
3570 uint32_t latency
= dev_priv
->wm
.skl_latency
[level
];
3571 uint_fixed_16_16_t method1
, method2
;
3572 uint_fixed_16_16_t plane_blocks_per_line
;
3573 uint_fixed_16_16_t selected_result
;
3574 uint32_t interm_pbpl
;
3575 uint32_t plane_bytes_per_line
;
3576 uint32_t res_blocks
, res_lines
;
3578 uint32_t width
= 0, height
= 0;
3579 uint32_t plane_pixel_rate
;
3580 uint_fixed_16_16_t y_tile_minimum
;
3581 uint32_t y_min_scanlines
;
3582 struct intel_atomic_state
*state
=
3583 to_intel_atomic_state(cstate
->base
.state
);
3584 bool apply_memory_bw_wa
= skl_needs_memory_bw_wa(state
);
3585 bool y_tiled
, x_tiled
;
3587 if (latency
== 0 || !cstate
->base
.active
|| !intel_pstate
->base
.visible
) {
3592 y_tiled
= fb
->modifier
== I915_FORMAT_MOD_Y_TILED
||
3593 fb
->modifier
== I915_FORMAT_MOD_Yf_TILED
;
3594 x_tiled
= fb
->modifier
== I915_FORMAT_MOD_X_TILED
;
3596 /* Display WA #1141: kbl. */
3597 if (IS_KABYLAKE(dev_priv
) && dev_priv
->ipc_enabled
)
3600 if (apply_memory_bw_wa
&& x_tiled
)
3603 width
= drm_rect_width(&intel_pstate
->base
.src
) >> 16;
3604 height
= drm_rect_height(&intel_pstate
->base
.src
) >> 16;
3606 if (drm_rotation_90_or_270(pstate
->rotation
))
3607 swap(width
, height
);
3609 cpp
= fb
->format
->cpp
[0];
3610 plane_pixel_rate
= skl_adjusted_plane_pixel_rate(cstate
, intel_pstate
);
3612 if (drm_rotation_90_or_270(pstate
->rotation
)) {
3613 int cpp
= (fb
->format
->format
== DRM_FORMAT_NV12
) ?
3614 fb
->format
->cpp
[1] :
3619 y_min_scanlines
= 16;
3622 y_min_scanlines
= 8;
3625 y_min_scanlines
= 4;
3632 y_min_scanlines
= 4;
3635 if (apply_memory_bw_wa
)
3636 y_min_scanlines
*= 2;
3638 plane_bytes_per_line
= width
* cpp
;
3640 interm_pbpl
= DIV_ROUND_UP(plane_bytes_per_line
*
3641 y_min_scanlines
, 512);
3642 plane_blocks_per_line
=
3643 fixed_16_16_div_round_up(interm_pbpl
, y_min_scanlines
);
3644 } else if (x_tiled
) {
3645 interm_pbpl
= DIV_ROUND_UP(plane_bytes_per_line
, 512);
3646 plane_blocks_per_line
= u32_to_fixed_16_16(interm_pbpl
);
3648 interm_pbpl
= DIV_ROUND_UP(plane_bytes_per_line
, 512) + 1;
3649 plane_blocks_per_line
= u32_to_fixed_16_16(interm_pbpl
);
3652 method1
= skl_wm_method1(plane_pixel_rate
, cpp
, latency
);
3653 method2
= skl_wm_method2(plane_pixel_rate
,
3654 cstate
->base
.adjusted_mode
.crtc_htotal
,
3656 plane_blocks_per_line
);
3658 y_tile_minimum
= mul_u32_fixed_16_16(y_min_scanlines
,
3659 plane_blocks_per_line
);
3662 selected_result
= max_fixed_16_16(method2
, y_tile_minimum
);
3664 if ((cpp
* cstate
->base
.adjusted_mode
.crtc_htotal
/ 512 < 1) &&
3665 (plane_bytes_per_line
/ 512 < 1))
3666 selected_result
= method2
;
3667 else if ((ddb_allocation
/
3668 fixed_16_16_to_u32_round_up(plane_blocks_per_line
)) >= 1)
3669 selected_result
= min_fixed_16_16(method1
, method2
);
3671 selected_result
= method1
;
3674 res_blocks
= fixed_16_16_to_u32_round_up(selected_result
) + 1;
3675 res_lines
= DIV_ROUND_UP(selected_result
.val
,
3676 plane_blocks_per_line
.val
);
3678 if (level
>= 1 && level
<= 7) {
3680 res_blocks
+= fixed_16_16_to_u32_round_up(y_tile_minimum
);
3681 res_lines
+= y_min_scanlines
;
3687 if (res_blocks
>= ddb_allocation
|| res_lines
> 31) {
3691 * If there are no valid level 0 watermarks, then we can't
3692 * support this display configuration.
3697 struct drm_plane
*plane
= pstate
->plane
;
3699 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3700 DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
3701 plane
->base
.id
, plane
->name
,
3702 res_blocks
, ddb_allocation
, res_lines
);
3707 *out_blocks
= res_blocks
;
3708 *out_lines
= res_lines
;
3715 skl_compute_wm_level(const struct drm_i915_private
*dev_priv
,
3716 struct skl_ddb_allocation
*ddb
,
3717 struct intel_crtc_state
*cstate
,
3718 struct intel_plane
*intel_plane
,
3720 struct skl_wm_level
*result
)
3722 struct drm_atomic_state
*state
= cstate
->base
.state
;
3723 struct intel_crtc
*intel_crtc
= to_intel_crtc(cstate
->base
.crtc
);
3724 struct drm_plane
*plane
= &intel_plane
->base
;
3725 struct intel_plane_state
*intel_pstate
= NULL
;
3726 uint16_t ddb_blocks
;
3727 enum pipe pipe
= intel_crtc
->pipe
;
3732 intel_atomic_get_existing_plane_state(state
,
3736 * Note: If we start supporting multiple pending atomic commits against
3737 * the same planes/CRTC's in the future, plane->state will no longer be
3738 * the correct pre-state to use for the calculations here and we'll
3739 * need to change where we get the 'unchanged' plane data from.
3741 * For now this is fine because we only allow one queued commit against
3742 * a CRTC. Even if the plane isn't modified by this transaction and we
3743 * don't have a plane lock, we still have the CRTC's lock, so we know
3744 * that no other transactions are racing with us to update it.
3747 intel_pstate
= to_intel_plane_state(plane
->state
);
3749 WARN_ON(!intel_pstate
->base
.fb
);
3751 ddb_blocks
= skl_ddb_entry_size(&ddb
->plane
[pipe
][intel_plane
->id
]);
3753 ret
= skl_compute_plane_wm(dev_priv
,
3758 &result
->plane_res_b
,
3759 &result
->plane_res_l
,
3768 skl_compute_linetime_wm(struct intel_crtc_state
*cstate
)
3770 struct drm_atomic_state
*state
= cstate
->base
.state
;
3771 struct drm_i915_private
*dev_priv
= to_i915(state
->dev
);
3772 uint32_t pixel_rate
;
3773 uint32_t linetime_wm
;
3775 if (!cstate
->base
.active
)
3778 pixel_rate
= ilk_pipe_pixel_rate(cstate
);
3780 if (WARN_ON(pixel_rate
== 0))
3783 linetime_wm
= DIV_ROUND_UP(8 * cstate
->base
.adjusted_mode
.crtc_htotal
*
3786 /* Display WA #1135: bxt. */
3787 if (IS_BROXTON(dev_priv
) && dev_priv
->ipc_enabled
)
3788 linetime_wm
= DIV_ROUND_UP(linetime_wm
, 2);
3793 static void skl_compute_transition_wm(struct intel_crtc_state
*cstate
,
3794 struct skl_wm_level
*trans_wm
/* out */)
3796 if (!cstate
->base
.active
)
3799 /* Until we know more, just disable transition WMs */
3800 trans_wm
->plane_en
= false;
3803 static int skl_build_pipe_wm(struct intel_crtc_state
*cstate
,
3804 struct skl_ddb_allocation
*ddb
,
3805 struct skl_pipe_wm
*pipe_wm
)
3807 struct drm_device
*dev
= cstate
->base
.crtc
->dev
;
3808 const struct drm_i915_private
*dev_priv
= to_i915(dev
);
3809 struct intel_plane
*intel_plane
;
3810 struct skl_plane_wm
*wm
;
3811 int level
, max_level
= ilk_wm_max_level(dev_priv
);
3815 * We'll only calculate watermarks for planes that are actually
3816 * enabled, so make sure all other planes are set as disabled.
3818 memset(pipe_wm
->planes
, 0, sizeof(pipe_wm
->planes
));
3820 for_each_intel_plane_mask(&dev_priv
->drm
,
3822 cstate
->base
.plane_mask
) {
3823 wm
= &pipe_wm
->planes
[intel_plane
->id
];
3825 for (level
= 0; level
<= max_level
; level
++) {
3826 ret
= skl_compute_wm_level(dev_priv
, ddb
, cstate
,
3832 skl_compute_transition_wm(cstate
, &wm
->trans_wm
);
3834 pipe_wm
->linetime
= skl_compute_linetime_wm(cstate
);
3839 static void skl_ddb_entry_write(struct drm_i915_private
*dev_priv
,
3841 const struct skl_ddb_entry
*entry
)
3844 I915_WRITE(reg
, (entry
->end
- 1) << 16 | entry
->start
);
3849 static void skl_write_wm_level(struct drm_i915_private
*dev_priv
,
3851 const struct skl_wm_level
*level
)
3855 if (level
->plane_en
) {
3857 val
|= level
->plane_res_b
;
3858 val
|= level
->plane_res_l
<< PLANE_WM_LINES_SHIFT
;
3861 I915_WRITE(reg
, val
);
3864 static void skl_write_plane_wm(struct intel_crtc
*intel_crtc
,
3865 const struct skl_plane_wm
*wm
,
3866 const struct skl_ddb_allocation
*ddb
,
3867 enum plane_id plane_id
)
3869 struct drm_crtc
*crtc
= &intel_crtc
->base
;
3870 struct drm_device
*dev
= crtc
->dev
;
3871 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3872 int level
, max_level
= ilk_wm_max_level(dev_priv
);
3873 enum pipe pipe
= intel_crtc
->pipe
;
3875 for (level
= 0; level
<= max_level
; level
++) {
3876 skl_write_wm_level(dev_priv
, PLANE_WM(pipe
, plane_id
, level
),
3879 skl_write_wm_level(dev_priv
, PLANE_WM_TRANS(pipe
, plane_id
),
3882 skl_ddb_entry_write(dev_priv
, PLANE_BUF_CFG(pipe
, plane_id
),
3883 &ddb
->plane
[pipe
][plane_id
]);
3884 skl_ddb_entry_write(dev_priv
, PLANE_NV12_BUF_CFG(pipe
, plane_id
),
3885 &ddb
->y_plane
[pipe
][plane_id
]);
3888 static void skl_write_cursor_wm(struct intel_crtc
*intel_crtc
,
3889 const struct skl_plane_wm
*wm
,
3890 const struct skl_ddb_allocation
*ddb
)
3892 struct drm_crtc
*crtc
= &intel_crtc
->base
;
3893 struct drm_device
*dev
= crtc
->dev
;
3894 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3895 int level
, max_level
= ilk_wm_max_level(dev_priv
);
3896 enum pipe pipe
= intel_crtc
->pipe
;
3898 for (level
= 0; level
<= max_level
; level
++) {
3899 skl_write_wm_level(dev_priv
, CUR_WM(pipe
, level
),
3902 skl_write_wm_level(dev_priv
, CUR_WM_TRANS(pipe
), &wm
->trans_wm
);
3904 skl_ddb_entry_write(dev_priv
, CUR_BUF_CFG(pipe
),
3905 &ddb
->plane
[pipe
][PLANE_CURSOR
]);
3908 bool skl_wm_level_equals(const struct skl_wm_level
*l1
,
3909 const struct skl_wm_level
*l2
)
3911 if (l1
->plane_en
!= l2
->plane_en
)
3914 /* If both planes aren't enabled, the rest shouldn't matter */
3918 return (l1
->plane_res_l
== l2
->plane_res_l
&&
3919 l1
->plane_res_b
== l2
->plane_res_b
);
3922 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry
*a
,
3923 const struct skl_ddb_entry
*b
)
3925 return a
->start
< b
->end
&& b
->start
< a
->end
;
3928 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry
**entries
,
3929 const struct skl_ddb_entry
*ddb
,
3934 for (i
= 0; i
< I915_MAX_PIPES
; i
++)
3935 if (i
!= ignore
&& entries
[i
] &&
3936 skl_ddb_entries_overlap(ddb
, entries
[i
]))
3942 static int skl_update_pipe_wm(struct drm_crtc_state
*cstate
,
3943 const struct skl_pipe_wm
*old_pipe_wm
,
3944 struct skl_pipe_wm
*pipe_wm
, /* out */
3945 struct skl_ddb_allocation
*ddb
, /* out */
3946 bool *changed
/* out */)
3948 struct intel_crtc_state
*intel_cstate
= to_intel_crtc_state(cstate
);
3951 ret
= skl_build_pipe_wm(intel_cstate
, ddb
, pipe_wm
);
3955 if (!memcmp(old_pipe_wm
, pipe_wm
, sizeof(*pipe_wm
)))
3964 pipes_modified(struct drm_atomic_state
*state
)
3966 struct drm_crtc
*crtc
;
3967 struct drm_crtc_state
*cstate
;
3968 uint32_t i
, ret
= 0;
3970 for_each_crtc_in_state(state
, crtc
, cstate
, i
)
3971 ret
|= drm_crtc_mask(crtc
);
3977 skl_ddb_add_affected_planes(struct intel_crtc_state
*cstate
)
3979 struct drm_atomic_state
*state
= cstate
->base
.state
;
3980 struct drm_device
*dev
= state
->dev
;
3981 struct drm_crtc
*crtc
= cstate
->base
.crtc
;
3982 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3983 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3984 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
3985 struct skl_ddb_allocation
*new_ddb
= &intel_state
->wm_results
.ddb
;
3986 struct skl_ddb_allocation
*cur_ddb
= &dev_priv
->wm
.skl_hw
.ddb
;
3987 struct drm_plane_state
*plane_state
;
3988 struct drm_plane
*plane
;
3989 enum pipe pipe
= intel_crtc
->pipe
;
3991 WARN_ON(!drm_atomic_get_existing_crtc_state(state
, crtc
));
3993 drm_for_each_plane_mask(plane
, dev
, cstate
->base
.plane_mask
) {
3994 enum plane_id plane_id
= to_intel_plane(plane
)->id
;
3996 if (skl_ddb_entry_equal(&cur_ddb
->plane
[pipe
][plane_id
],
3997 &new_ddb
->plane
[pipe
][plane_id
]) &&
3998 skl_ddb_entry_equal(&cur_ddb
->y_plane
[pipe
][plane_id
],
3999 &new_ddb
->y_plane
[pipe
][plane_id
]))
4002 plane_state
= drm_atomic_get_plane_state(state
, plane
);
4003 if (IS_ERR(plane_state
))
4004 return PTR_ERR(plane_state
);
4011 skl_compute_ddb(struct drm_atomic_state
*state
)
4013 struct drm_device
*dev
= state
->dev
;
4014 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4015 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
4016 struct intel_crtc
*intel_crtc
;
4017 struct skl_ddb_allocation
*ddb
= &intel_state
->wm_results
.ddb
;
4018 uint32_t realloc_pipes
= pipes_modified(state
);
4022 * If this is our first atomic update following hardware readout,
4023 * we can't trust the DDB that the BIOS programmed for us. Let's
4024 * pretend that all pipes switched active status so that we'll
4025 * ensure a full DDB recompute.
4027 if (dev_priv
->wm
.distrust_bios_wm
) {
4028 ret
= drm_modeset_lock(&dev
->mode_config
.connection_mutex
,
4029 state
->acquire_ctx
);
4033 intel_state
->active_pipe_changes
= ~0;
4036 * We usually only initialize intel_state->active_crtcs if we
4037 * we're doing a modeset; make sure this field is always
4038 * initialized during the sanitization process that happens
4039 * on the first commit too.
4041 if (!intel_state
->modeset
)
4042 intel_state
->active_crtcs
= dev_priv
->active_crtcs
;
4046 * If the modeset changes which CRTC's are active, we need to
4047 * recompute the DDB allocation for *all* active pipes, even
4048 * those that weren't otherwise being modified in any way by this
4049 * atomic commit. Due to the shrinking of the per-pipe allocations
4050 * when new active CRTC's are added, it's possible for a pipe that
4051 * we were already using and aren't changing at all here to suddenly
4052 * become invalid if its DDB needs exceeds its new allocation.
4054 * Note that if we wind up doing a full DDB recompute, we can't let
4055 * any other display updates race with this transaction, so we need
4056 * to grab the lock on *all* CRTC's.
4058 if (intel_state
->active_pipe_changes
) {
4060 intel_state
->wm_results
.dirty_pipes
= ~0;
4064 * We're not recomputing for the pipes not included in the commit, so
4065 * make sure we start with the current state.
4067 memcpy(ddb
, &dev_priv
->wm
.skl_hw
.ddb
, sizeof(*ddb
));
4069 for_each_intel_crtc_mask(dev
, intel_crtc
, realloc_pipes
) {
4070 struct intel_crtc_state
*cstate
;
4072 cstate
= intel_atomic_get_crtc_state(state
, intel_crtc
);
4074 return PTR_ERR(cstate
);
4076 ret
= skl_allocate_pipe_ddb(cstate
, ddb
);
4080 ret
= skl_ddb_add_affected_planes(cstate
);
4089 skl_copy_wm_for_pipe(struct skl_wm_values
*dst
,
4090 struct skl_wm_values
*src
,
4093 memcpy(dst
->ddb
.y_plane
[pipe
], src
->ddb
.y_plane
[pipe
],
4094 sizeof(dst
->ddb
.y_plane
[pipe
]));
4095 memcpy(dst
->ddb
.plane
[pipe
], src
->ddb
.plane
[pipe
],
4096 sizeof(dst
->ddb
.plane
[pipe
]));
4100 skl_print_wm_changes(const struct drm_atomic_state
*state
)
4102 const struct drm_device
*dev
= state
->dev
;
4103 const struct drm_i915_private
*dev_priv
= to_i915(dev
);
4104 const struct intel_atomic_state
*intel_state
=
4105 to_intel_atomic_state(state
);
4106 const struct drm_crtc
*crtc
;
4107 const struct drm_crtc_state
*cstate
;
4108 const struct intel_plane
*intel_plane
;
4109 const struct skl_ddb_allocation
*old_ddb
= &dev_priv
->wm
.skl_hw
.ddb
;
4110 const struct skl_ddb_allocation
*new_ddb
= &intel_state
->wm_results
.ddb
;
4113 for_each_crtc_in_state(state
, crtc
, cstate
, i
) {
4114 const struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4115 enum pipe pipe
= intel_crtc
->pipe
;
4117 for_each_intel_plane_on_crtc(dev
, intel_crtc
, intel_plane
) {
4118 enum plane_id plane_id
= intel_plane
->id
;
4119 const struct skl_ddb_entry
*old
, *new;
4121 old
= &old_ddb
->plane
[pipe
][plane_id
];
4122 new = &new_ddb
->plane
[pipe
][plane_id
];
4124 if (skl_ddb_entry_equal(old
, new))
4127 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4128 intel_plane
->base
.base
.id
,
4129 intel_plane
->base
.name
,
4130 old
->start
, old
->end
,
4131 new->start
, new->end
);
4137 skl_compute_wm(struct drm_atomic_state
*state
)
4139 struct drm_crtc
*crtc
;
4140 struct drm_crtc_state
*cstate
;
4141 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
4142 struct skl_wm_values
*results
= &intel_state
->wm_results
;
4143 struct skl_pipe_wm
*pipe_wm
;
4144 bool changed
= false;
4148 * If this transaction isn't actually touching any CRTC's, don't
4149 * bother with watermark calculation. Note that if we pass this
4150 * test, we're guaranteed to hold at least one CRTC state mutex,
4151 * which means we can safely use values like dev_priv->active_crtcs
4152 * since any racing commits that want to update them would need to
4153 * hold _all_ CRTC state mutexes.
4155 for_each_crtc_in_state(state
, crtc
, cstate
, i
)
4160 /* Clear all dirty flags */
4161 results
->dirty_pipes
= 0;
4163 ret
= skl_compute_ddb(state
);
4168 * Calculate WM's for all pipes that are part of this transaction.
4169 * Note that the DDB allocation above may have added more CRTC's that
4170 * weren't otherwise being modified (and set bits in dirty_pipes) if
4171 * pipe allocations had to change.
4173 * FIXME: Now that we're doing this in the atomic check phase, we
4174 * should allow skl_update_pipe_wm() to return failure in cases where
4175 * no suitable watermark values can be found.
4177 for_each_crtc_in_state(state
, crtc
, cstate
, i
) {
4178 struct intel_crtc_state
*intel_cstate
=
4179 to_intel_crtc_state(cstate
);
4180 const struct skl_pipe_wm
*old_pipe_wm
=
4181 &to_intel_crtc_state(crtc
->state
)->wm
.skl
.optimal
;
4183 pipe_wm
= &intel_cstate
->wm
.skl
.optimal
;
4184 ret
= skl_update_pipe_wm(cstate
, old_pipe_wm
, pipe_wm
,
4185 &results
->ddb
, &changed
);
4190 results
->dirty_pipes
|= drm_crtc_mask(crtc
);
4192 if ((results
->dirty_pipes
& drm_crtc_mask(crtc
)) == 0)
4193 /* This pipe's WM's did not change */
4196 intel_cstate
->update_wm_pre
= true;
4199 skl_print_wm_changes(state
);
4204 static void skl_atomic_update_crtc_wm(struct intel_atomic_state
*state
,
4205 struct intel_crtc_state
*cstate
)
4207 struct intel_crtc
*crtc
= to_intel_crtc(cstate
->base
.crtc
);
4208 struct drm_i915_private
*dev_priv
= to_i915(state
->base
.dev
);
4209 struct skl_pipe_wm
*pipe_wm
= &cstate
->wm
.skl
.optimal
;
4210 const struct skl_ddb_allocation
*ddb
= &state
->wm_results
.ddb
;
4211 enum pipe pipe
= crtc
->pipe
;
4212 enum plane_id plane_id
;
4214 if (!(state
->wm_results
.dirty_pipes
& drm_crtc_mask(&crtc
->base
)))
4217 I915_WRITE(PIPE_WM_LINETIME(pipe
), pipe_wm
->linetime
);
4219 for_each_plane_id_on_crtc(crtc
, plane_id
) {
4220 if (plane_id
!= PLANE_CURSOR
)
4221 skl_write_plane_wm(crtc
, &pipe_wm
->planes
[plane_id
],
4224 skl_write_cursor_wm(crtc
, &pipe_wm
->planes
[plane_id
],
4229 static void skl_initial_wm(struct intel_atomic_state
*state
,
4230 struct intel_crtc_state
*cstate
)
4232 struct intel_crtc
*intel_crtc
= to_intel_crtc(cstate
->base
.crtc
);
4233 struct drm_device
*dev
= intel_crtc
->base
.dev
;
4234 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4235 struct skl_wm_values
*results
= &state
->wm_results
;
4236 struct skl_wm_values
*hw_vals
= &dev_priv
->wm
.skl_hw
;
4237 enum pipe pipe
= intel_crtc
->pipe
;
4239 if ((results
->dirty_pipes
& drm_crtc_mask(&intel_crtc
->base
)) == 0)
4242 mutex_lock(&dev_priv
->wm
.wm_mutex
);
4244 if (cstate
->base
.active_changed
)
4245 skl_atomic_update_crtc_wm(state
, cstate
);
4247 skl_copy_wm_for_pipe(hw_vals
, results
, pipe
);
4249 mutex_unlock(&dev_priv
->wm
.wm_mutex
);
4252 static void ilk_compute_wm_config(struct drm_device
*dev
,
4253 struct intel_wm_config
*config
)
4255 struct intel_crtc
*crtc
;
4257 /* Compute the currently _active_ config */
4258 for_each_intel_crtc(dev
, crtc
) {
4259 const struct intel_pipe_wm
*wm
= &crtc
->wm
.active
.ilk
;
4261 if (!wm
->pipe_enabled
)
4264 config
->sprites_enabled
|= wm
->sprites_enabled
;
4265 config
->sprites_scaled
|= wm
->sprites_scaled
;
4266 config
->num_pipes_active
++;
4270 static void ilk_program_watermarks(struct drm_i915_private
*dev_priv
)
4272 struct drm_device
*dev
= &dev_priv
->drm
;
4273 struct intel_pipe_wm lp_wm_1_2
= {}, lp_wm_5_6
= {}, *best_lp_wm
;
4274 struct ilk_wm_maximums max
;
4275 struct intel_wm_config config
= {};
4276 struct ilk_wm_values results
= {};
4277 enum intel_ddb_partitioning partitioning
;
4279 ilk_compute_wm_config(dev
, &config
);
4281 ilk_compute_wm_maximums(dev
, 1, &config
, INTEL_DDB_PART_1_2
, &max
);
4282 ilk_wm_merge(dev
, &config
, &max
, &lp_wm_1_2
);
4284 /* 5/6 split only in single pipe config on IVB+ */
4285 if (INTEL_GEN(dev_priv
) >= 7 &&
4286 config
.num_pipes_active
== 1 && config
.sprites_enabled
) {
4287 ilk_compute_wm_maximums(dev
, 1, &config
, INTEL_DDB_PART_5_6
, &max
);
4288 ilk_wm_merge(dev
, &config
, &max
, &lp_wm_5_6
);
4290 best_lp_wm
= ilk_find_best_result(dev
, &lp_wm_1_2
, &lp_wm_5_6
);
4292 best_lp_wm
= &lp_wm_1_2
;
4295 partitioning
= (best_lp_wm
== &lp_wm_1_2
) ?
4296 INTEL_DDB_PART_1_2
: INTEL_DDB_PART_5_6
;
4298 ilk_compute_wm_results(dev
, best_lp_wm
, partitioning
, &results
);
4300 ilk_write_wm_values(dev_priv
, &results
);
4303 static void ilk_initial_watermarks(struct intel_atomic_state
*state
,
4304 struct intel_crtc_state
*cstate
)
4306 struct drm_i915_private
*dev_priv
= to_i915(cstate
->base
.crtc
->dev
);
4307 struct intel_crtc
*intel_crtc
= to_intel_crtc(cstate
->base
.crtc
);
4309 mutex_lock(&dev_priv
->wm
.wm_mutex
);
4310 intel_crtc
->wm
.active
.ilk
= cstate
->wm
.ilk
.intermediate
;
4311 ilk_program_watermarks(dev_priv
);
4312 mutex_unlock(&dev_priv
->wm
.wm_mutex
);
4315 static void ilk_optimize_watermarks(struct intel_atomic_state
*state
,
4316 struct intel_crtc_state
*cstate
)
4318 struct drm_i915_private
*dev_priv
= to_i915(cstate
->base
.crtc
->dev
);
4319 struct intel_crtc
*intel_crtc
= to_intel_crtc(cstate
->base
.crtc
);
4321 mutex_lock(&dev_priv
->wm
.wm_mutex
);
4322 if (cstate
->wm
.need_postvbl_update
) {
4323 intel_crtc
->wm
.active
.ilk
= cstate
->wm
.ilk
.optimal
;
4324 ilk_program_watermarks(dev_priv
);
4326 mutex_unlock(&dev_priv
->wm
.wm_mutex
);
4329 static inline void skl_wm_level_from_reg_val(uint32_t val
,
4330 struct skl_wm_level
*level
)
4332 level
->plane_en
= val
& PLANE_WM_EN
;
4333 level
->plane_res_b
= val
& PLANE_WM_BLOCKS_MASK
;
4334 level
->plane_res_l
= (val
>> PLANE_WM_LINES_SHIFT
) &
4335 PLANE_WM_LINES_MASK
;
4338 void skl_pipe_wm_get_hw_state(struct drm_crtc
*crtc
,
4339 struct skl_pipe_wm
*out
)
4341 struct drm_i915_private
*dev_priv
= to_i915(crtc
->dev
);
4342 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4343 enum pipe pipe
= intel_crtc
->pipe
;
4344 int level
, max_level
;
4345 enum plane_id plane_id
;
4348 max_level
= ilk_wm_max_level(dev_priv
);
4350 for_each_plane_id_on_crtc(intel_crtc
, plane_id
) {
4351 struct skl_plane_wm
*wm
= &out
->planes
[plane_id
];
4353 for (level
= 0; level
<= max_level
; level
++) {
4354 if (plane_id
!= PLANE_CURSOR
)
4355 val
= I915_READ(PLANE_WM(pipe
, plane_id
, level
));
4357 val
= I915_READ(CUR_WM(pipe
, level
));
4359 skl_wm_level_from_reg_val(val
, &wm
->wm
[level
]);
4362 if (plane_id
!= PLANE_CURSOR
)
4363 val
= I915_READ(PLANE_WM_TRANS(pipe
, plane_id
));
4365 val
= I915_READ(CUR_WM_TRANS(pipe
));
4367 skl_wm_level_from_reg_val(val
, &wm
->trans_wm
);
4370 if (!intel_crtc
->active
)
4373 out
->linetime
= I915_READ(PIPE_WM_LINETIME(pipe
));
4376 void skl_wm_get_hw_state(struct drm_device
*dev
)
4378 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4379 struct skl_wm_values
*hw
= &dev_priv
->wm
.skl_hw
;
4380 struct skl_ddb_allocation
*ddb
= &dev_priv
->wm
.skl_hw
.ddb
;
4381 struct drm_crtc
*crtc
;
4382 struct intel_crtc
*intel_crtc
;
4383 struct intel_crtc_state
*cstate
;
4385 skl_ddb_get_hw_state(dev_priv
, ddb
);
4386 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4387 intel_crtc
= to_intel_crtc(crtc
);
4388 cstate
= to_intel_crtc_state(crtc
->state
);
4390 skl_pipe_wm_get_hw_state(crtc
, &cstate
->wm
.skl
.optimal
);
4392 if (intel_crtc
->active
)
4393 hw
->dirty_pipes
|= drm_crtc_mask(crtc
);
4396 if (dev_priv
->active_crtcs
) {
4397 /* Fully recompute DDB on first atomic commit */
4398 dev_priv
->wm
.distrust_bios_wm
= true;
4400 /* Easy/common case; just sanitize DDB now if everything off */
4401 memset(ddb
, 0, sizeof(*ddb
));
4405 static void ilk_pipe_wm_get_hw_state(struct drm_crtc
*crtc
)
4407 struct drm_device
*dev
= crtc
->dev
;
4408 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4409 struct ilk_wm_values
*hw
= &dev_priv
->wm
.hw
;
4410 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4411 struct intel_crtc_state
*cstate
= to_intel_crtc_state(crtc
->state
);
4412 struct intel_pipe_wm
*active
= &cstate
->wm
.ilk
.optimal
;
4413 enum pipe pipe
= intel_crtc
->pipe
;
4414 static const i915_reg_t wm0_pipe_reg
[] = {
4415 [PIPE_A
] = WM0_PIPEA_ILK
,
4416 [PIPE_B
] = WM0_PIPEB_ILK
,
4417 [PIPE_C
] = WM0_PIPEC_IVB
,
4420 hw
->wm_pipe
[pipe
] = I915_READ(wm0_pipe_reg
[pipe
]);
4421 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
4422 hw
->wm_linetime
[pipe
] = I915_READ(PIPE_WM_LINETIME(pipe
));
4424 memset(active
, 0, sizeof(*active
));
4426 active
->pipe_enabled
= intel_crtc
->active
;
4428 if (active
->pipe_enabled
) {
4429 u32 tmp
= hw
->wm_pipe
[pipe
];
4432 * For active pipes LP0 watermark is marked as
4433 * enabled, and LP1+ watermaks as disabled since
4434 * we can't really reverse compute them in case
4435 * multiple pipes are active.
4437 active
->wm
[0].enable
= true;
4438 active
->wm
[0].pri_val
= (tmp
& WM0_PIPE_PLANE_MASK
) >> WM0_PIPE_PLANE_SHIFT
;
4439 active
->wm
[0].spr_val
= (tmp
& WM0_PIPE_SPRITE_MASK
) >> WM0_PIPE_SPRITE_SHIFT
;
4440 active
->wm
[0].cur_val
= tmp
& WM0_PIPE_CURSOR_MASK
;
4441 active
->linetime
= hw
->wm_linetime
[pipe
];
4443 int level
, max_level
= ilk_wm_max_level(dev_priv
);
4446 * For inactive pipes, all watermark levels
4447 * should be marked as enabled but zeroed,
4448 * which is what we'd compute them to.
4450 for (level
= 0; level
<= max_level
; level
++)
4451 active
->wm
[level
].enable
= true;
4454 intel_crtc
->wm
.active
.ilk
= *active
;
4457 #define _FW_WM(value, plane) \
4458 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4459 #define _FW_WM_VLV(value, plane) \
4460 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4462 static void vlv_read_wm_values(struct drm_i915_private
*dev_priv
,
4463 struct vlv_wm_values
*wm
)
4468 for_each_pipe(dev_priv
, pipe
) {
4469 tmp
= I915_READ(VLV_DDL(pipe
));
4471 wm
->ddl
[pipe
].plane
[PLANE_PRIMARY
] =
4472 (tmp
>> DDL_PLANE_SHIFT
) & (DDL_PRECISION_HIGH
| DRAIN_LATENCY_MASK
);
4473 wm
->ddl
[pipe
].plane
[PLANE_CURSOR
] =
4474 (tmp
>> DDL_CURSOR_SHIFT
) & (DDL_PRECISION_HIGH
| DRAIN_LATENCY_MASK
);
4475 wm
->ddl
[pipe
].plane
[PLANE_SPRITE0
] =
4476 (tmp
>> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH
| DRAIN_LATENCY_MASK
);
4477 wm
->ddl
[pipe
].plane
[PLANE_SPRITE1
] =
4478 (tmp
>> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH
| DRAIN_LATENCY_MASK
);
4481 tmp
= I915_READ(DSPFW1
);
4482 wm
->sr
.plane
= _FW_WM(tmp
, SR
);
4483 wm
->pipe
[PIPE_B
].plane
[PLANE_CURSOR
] = _FW_WM(tmp
, CURSORB
);
4484 wm
->pipe
[PIPE_B
].plane
[PLANE_PRIMARY
] = _FW_WM_VLV(tmp
, PLANEB
);
4485 wm
->pipe
[PIPE_A
].plane
[PLANE_PRIMARY
] = _FW_WM_VLV(tmp
, PLANEA
);
4487 tmp
= I915_READ(DSPFW2
);
4488 wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE1
] = _FW_WM_VLV(tmp
, SPRITEB
);
4489 wm
->pipe
[PIPE_A
].plane
[PLANE_CURSOR
] = _FW_WM(tmp
, CURSORA
);
4490 wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE0
] = _FW_WM_VLV(tmp
, SPRITEA
);
4492 tmp
= I915_READ(DSPFW3
);
4493 wm
->sr
.cursor
= _FW_WM(tmp
, CURSOR_SR
);
4495 if (IS_CHERRYVIEW(dev_priv
)) {
4496 tmp
= I915_READ(DSPFW7_CHV
);
4497 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
] = _FW_WM_VLV(tmp
, SPRITED
);
4498 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
] = _FW_WM_VLV(tmp
, SPRITEC
);
4500 tmp
= I915_READ(DSPFW8_CHV
);
4501 wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE1
] = _FW_WM_VLV(tmp
, SPRITEF
);
4502 wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE0
] = _FW_WM_VLV(tmp
, SPRITEE
);
4504 tmp
= I915_READ(DSPFW9_CHV
);
4505 wm
->pipe
[PIPE_C
].plane
[PLANE_PRIMARY
] = _FW_WM_VLV(tmp
, PLANEC
);
4506 wm
->pipe
[PIPE_C
].plane
[PLANE_CURSOR
] = _FW_WM(tmp
, CURSORC
);
4508 tmp
= I915_READ(DSPHOWM
);
4509 wm
->sr
.plane
|= _FW_WM(tmp
, SR_HI
) << 9;
4510 wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE1
] |= _FW_WM(tmp
, SPRITEF_HI
) << 8;
4511 wm
->pipe
[PIPE_C
].plane
[PLANE_SPRITE0
] |= _FW_WM(tmp
, SPRITEE_HI
) << 8;
4512 wm
->pipe
[PIPE_C
].plane
[PLANE_PRIMARY
] |= _FW_WM(tmp
, PLANEC_HI
) << 8;
4513 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
] |= _FW_WM(tmp
, SPRITED_HI
) << 8;
4514 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
] |= _FW_WM(tmp
, SPRITEC_HI
) << 8;
4515 wm
->pipe
[PIPE_B
].plane
[PLANE_PRIMARY
] |= _FW_WM(tmp
, PLANEB_HI
) << 8;
4516 wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE1
] |= _FW_WM(tmp
, SPRITEB_HI
) << 8;
4517 wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE0
] |= _FW_WM(tmp
, SPRITEA_HI
) << 8;
4518 wm
->pipe
[PIPE_A
].plane
[PLANE_PRIMARY
] |= _FW_WM(tmp
, PLANEA_HI
) << 8;
4520 tmp
= I915_READ(DSPFW7
);
4521 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
] = _FW_WM_VLV(tmp
, SPRITED
);
4522 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
] = _FW_WM_VLV(tmp
, SPRITEC
);
4524 tmp
= I915_READ(DSPHOWM
);
4525 wm
->sr
.plane
|= _FW_WM(tmp
, SR_HI
) << 9;
4526 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE1
] |= _FW_WM(tmp
, SPRITED_HI
) << 8;
4527 wm
->pipe
[PIPE_B
].plane
[PLANE_SPRITE0
] |= _FW_WM(tmp
, SPRITEC_HI
) << 8;
4528 wm
->pipe
[PIPE_B
].plane
[PLANE_PRIMARY
] |= _FW_WM(tmp
, PLANEB_HI
) << 8;
4529 wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE1
] |= _FW_WM(tmp
, SPRITEB_HI
) << 8;
4530 wm
->pipe
[PIPE_A
].plane
[PLANE_SPRITE0
] |= _FW_WM(tmp
, SPRITEA_HI
) << 8;
4531 wm
->pipe
[PIPE_A
].plane
[PLANE_PRIMARY
] |= _FW_WM(tmp
, PLANEA_HI
) << 8;
4538 void vlv_wm_get_hw_state(struct drm_device
*dev
)
4540 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4541 struct vlv_wm_values
*wm
= &dev_priv
->wm
.vlv
;
4542 struct intel_plane
*plane
;
4546 vlv_read_wm_values(dev_priv
, wm
);
4548 for_each_intel_plane(dev
, plane
)
4549 plane
->wm
.fifo_size
= vlv_get_fifo_size(plane
);
4551 wm
->cxsr
= I915_READ(FW_BLC_SELF_VLV
) & FW_CSPWRDWNEN
;
4552 wm
->level
= VLV_WM_LEVEL_PM2
;
4554 if (IS_CHERRYVIEW(dev_priv
)) {
4555 mutex_lock(&dev_priv
->rps
.hw_lock
);
4557 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DSPFREQ
);
4558 if (val
& DSP_MAXFIFO_PM5_ENABLE
)
4559 wm
->level
= VLV_WM_LEVEL_PM5
;
4562 * If DDR DVFS is disabled in the BIOS, Punit
4563 * will never ack the request. So if that happens
4564 * assume we don't have to enable/disable DDR DVFS
4565 * dynamically. To test that just set the REQ_ACK
4566 * bit to poke the Punit, but don't change the
4567 * HIGH/LOW bits so that we don't actually change
4568 * the current state.
4570 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
);
4571 val
|= FORCE_DDR_FREQ_REQ_ACK
;
4572 vlv_punit_write(dev_priv
, PUNIT_REG_DDR_SETUP2
, val
);
4574 if (wait_for((vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
) &
4575 FORCE_DDR_FREQ_REQ_ACK
) == 0, 3)) {
4576 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4577 "assuming DDR DVFS is disabled\n");
4578 dev_priv
->wm
.max_level
= VLV_WM_LEVEL_PM5
;
4580 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
);
4581 if ((val
& FORCE_DDR_HIGH_FREQ
) == 0)
4582 wm
->level
= VLV_WM_LEVEL_DDR_DVFS
;
4585 mutex_unlock(&dev_priv
->rps
.hw_lock
);
4588 for_each_pipe(dev_priv
, pipe
)
4589 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4591 wm
->pipe
[pipe
].plane
[PLANE_PRIMARY
],
4592 wm
->pipe
[pipe
].plane
[PLANE_CURSOR
],
4593 wm
->pipe
[pipe
].plane
[PLANE_SPRITE0
],
4594 wm
->pipe
[pipe
].plane
[PLANE_SPRITE1
]);
4596 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4597 wm
->sr
.plane
, wm
->sr
.cursor
, wm
->level
, wm
->cxsr
);
4600 void ilk_wm_get_hw_state(struct drm_device
*dev
)
4602 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4603 struct ilk_wm_values
*hw
= &dev_priv
->wm
.hw
;
4604 struct drm_crtc
*crtc
;
4606 for_each_crtc(dev
, crtc
)
4607 ilk_pipe_wm_get_hw_state(crtc
);
4609 hw
->wm_lp
[0] = I915_READ(WM1_LP_ILK
);
4610 hw
->wm_lp
[1] = I915_READ(WM2_LP_ILK
);
4611 hw
->wm_lp
[2] = I915_READ(WM3_LP_ILK
);
4613 hw
->wm_lp_spr
[0] = I915_READ(WM1S_LP_ILK
);
4614 if (INTEL_GEN(dev_priv
) >= 7) {
4615 hw
->wm_lp_spr
[1] = I915_READ(WM2S_LP_IVB
);
4616 hw
->wm_lp_spr
[2] = I915_READ(WM3S_LP_IVB
);
4619 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
4620 hw
->partitioning
= (I915_READ(WM_MISC
) & WM_MISC_DATA_PARTITION_5_6
) ?
4621 INTEL_DDB_PART_5_6
: INTEL_DDB_PART_1_2
;
4622 else if (IS_IVYBRIDGE(dev_priv
))
4623 hw
->partitioning
= (I915_READ(DISP_ARB_CTL2
) & DISP_DATA_PARTITION_5_6
) ?
4624 INTEL_DDB_PART_5_6
: INTEL_DDB_PART_1_2
;
4627 !(I915_READ(DISP_ARB_CTL
) & DISP_FBC_WM_DIS
);
4631 * intel_update_watermarks - update FIFO watermark values based on current modes
4633 * Calculate watermark values for the various WM regs based on current mode
4634 * and plane configuration.
4636 * There are several cases to deal with here:
4637 * - normal (i.e. non-self-refresh)
4638 * - self-refresh (SR) mode
4639 * - lines are large relative to FIFO size (buffer can hold up to 2)
4640 * - lines are small relative to FIFO size (buffer can hold more than 2
4641 * lines), so need to account for TLB latency
4643 * The normal calculation is:
4644 * watermark = dotclock * bytes per pixel * latency
4645 * where latency is platform & configuration dependent (we assume pessimal
4648 * The SR calculation is:
4649 * watermark = (trunc(latency/line time)+1) * surface width *
4652 * line time = htotal / dotclock
4653 * surface width = hdisplay for normal plane and 64 for cursor
4654 * and latency is assumed to be high, as above.
4656 * The final value programmed to the register should always be rounded up,
4657 * and include an extra 2 entries to account for clock crossings.
4659 * We don't use the sprite, so we can ignore that. And on Crestline we have
4660 * to set the non-SR watermarks to 8.
4662 void intel_update_watermarks(struct intel_crtc
*crtc
)
4664 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
4666 if (dev_priv
->display
.update_wm
)
4667 dev_priv
->display
.update_wm(crtc
);
4671 * Lock protecting IPS related data structures
4673 DEFINE_SPINLOCK(mchdev_lock
);
4675 /* Global for IPS driver to get at the current i915 device. Protected by
4677 static struct drm_i915_private
*i915_mch_dev
;
4679 bool ironlake_set_drps(struct drm_i915_private
*dev_priv
, u8 val
)
4683 assert_spin_locked(&mchdev_lock
);
4685 rgvswctl
= I915_READ16(MEMSWCTL
);
4686 if (rgvswctl
& MEMCTL_CMD_STS
) {
4687 DRM_DEBUG("gpu busy, RCS change rejected\n");
4688 return false; /* still busy with another command */
4691 rgvswctl
= (MEMCTL_CMD_CHFREQ
<< MEMCTL_CMD_SHIFT
) |
4692 (val
<< MEMCTL_FREQ_SHIFT
) | MEMCTL_SFCAVM
;
4693 I915_WRITE16(MEMSWCTL
, rgvswctl
);
4694 POSTING_READ16(MEMSWCTL
);
4696 rgvswctl
|= MEMCTL_CMD_STS
;
4697 I915_WRITE16(MEMSWCTL
, rgvswctl
);
4702 static void ironlake_enable_drps(struct drm_i915_private
*dev_priv
)
4705 u8 fmax
, fmin
, fstart
, vstart
;
4707 spin_lock_irq(&mchdev_lock
);
4709 rgvmodectl
= I915_READ(MEMMODECTL
);
4711 /* Enable temp reporting */
4712 I915_WRITE16(PMMISC
, I915_READ(PMMISC
) | MCPPCE_EN
);
4713 I915_WRITE16(TSC1
, I915_READ(TSC1
) | TSE
);
4715 /* 100ms RC evaluation intervals */
4716 I915_WRITE(RCUPEI
, 100000);
4717 I915_WRITE(RCDNEI
, 100000);
4719 /* Set max/min thresholds to 90ms and 80ms respectively */
4720 I915_WRITE(RCBMAXAVG
, 90000);
4721 I915_WRITE(RCBMINAVG
, 80000);
4723 I915_WRITE(MEMIHYST
, 1);
4725 /* Set up min, max, and cur for interrupt handling */
4726 fmax
= (rgvmodectl
& MEMMODE_FMAX_MASK
) >> MEMMODE_FMAX_SHIFT
;
4727 fmin
= (rgvmodectl
& MEMMODE_FMIN_MASK
);
4728 fstart
= (rgvmodectl
& MEMMODE_FSTART_MASK
) >>
4729 MEMMODE_FSTART_SHIFT
;
4731 vstart
= (I915_READ(PXVFREQ(fstart
)) & PXVFREQ_PX_MASK
) >>
4734 dev_priv
->ips
.fmax
= fmax
; /* IPS callback will increase this */
4735 dev_priv
->ips
.fstart
= fstart
;
4737 dev_priv
->ips
.max_delay
= fstart
;
4738 dev_priv
->ips
.min_delay
= fmin
;
4739 dev_priv
->ips
.cur_delay
= fstart
;
4741 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4742 fmax
, fmin
, fstart
);
4744 I915_WRITE(MEMINTREN
, MEMINT_CX_SUPR_EN
| MEMINT_EVAL_CHG_EN
);
4747 * Interrupts will be enabled in ironlake_irq_postinstall
4750 I915_WRITE(VIDSTART
, vstart
);
4751 POSTING_READ(VIDSTART
);
4753 rgvmodectl
|= MEMMODE_SWMODE_EN
;
4754 I915_WRITE(MEMMODECTL
, rgvmodectl
);
4756 if (wait_for_atomic((I915_READ(MEMSWCTL
) & MEMCTL_CMD_STS
) == 0, 10))
4757 DRM_ERROR("stuck trying to change perf mode\n");
4760 ironlake_set_drps(dev_priv
, fstart
);
4762 dev_priv
->ips
.last_count1
= I915_READ(DMIEC
) +
4763 I915_READ(DDREC
) + I915_READ(CSIEC
);
4764 dev_priv
->ips
.last_time1
= jiffies_to_msecs(jiffies
);
4765 dev_priv
->ips
.last_count2
= I915_READ(GFXEC
);
4766 dev_priv
->ips
.last_time2
= ktime_get_raw_ns();
4768 spin_unlock_irq(&mchdev_lock
);
4771 static void ironlake_disable_drps(struct drm_i915_private
*dev_priv
)
4775 spin_lock_irq(&mchdev_lock
);
4777 rgvswctl
= I915_READ16(MEMSWCTL
);
4779 /* Ack interrupts, disable EFC interrupt */
4780 I915_WRITE(MEMINTREN
, I915_READ(MEMINTREN
) & ~MEMINT_EVAL_CHG_EN
);
4781 I915_WRITE(MEMINTRSTS
, MEMINT_EVAL_CHG
);
4782 I915_WRITE(DEIER
, I915_READ(DEIER
) & ~DE_PCU_EVENT
);
4783 I915_WRITE(DEIIR
, DE_PCU_EVENT
);
4784 I915_WRITE(DEIMR
, I915_READ(DEIMR
) | DE_PCU_EVENT
);
4786 /* Go back to the starting frequency */
4787 ironlake_set_drps(dev_priv
, dev_priv
->ips
.fstart
);
4789 rgvswctl
|= MEMCTL_CMD_STS
;
4790 I915_WRITE(MEMSWCTL
, rgvswctl
);
4793 spin_unlock_irq(&mchdev_lock
);
4796 /* There's a funny hw issue where the hw returns all 0 when reading from
4797 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4798 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4799 * all limits and the gpu stuck at whatever frequency it is at atm).
4801 static u32
intel_rps_limits(struct drm_i915_private
*dev_priv
, u8 val
)
4805 /* Only set the down limit when we've reached the lowest level to avoid
4806 * getting more interrupts, otherwise leave this clear. This prevents a
4807 * race in the hw when coming out of rc6: There's a tiny window where
4808 * the hw runs at the minimal clock before selecting the desired
4809 * frequency, if the down threshold expires in that window we will not
4810 * receive a down interrupt. */
4811 if (IS_GEN9(dev_priv
)) {
4812 limits
= (dev_priv
->rps
.max_freq_softlimit
) << 23;
4813 if (val
<= dev_priv
->rps
.min_freq_softlimit
)
4814 limits
|= (dev_priv
->rps
.min_freq_softlimit
) << 14;
4816 limits
= dev_priv
->rps
.max_freq_softlimit
<< 24;
4817 if (val
<= dev_priv
->rps
.min_freq_softlimit
)
4818 limits
|= dev_priv
->rps
.min_freq_softlimit
<< 16;
4824 static void gen6_set_rps_thresholds(struct drm_i915_private
*dev_priv
, u8 val
)
4827 u32 threshold_up
= 0, threshold_down
= 0; /* in % */
4828 u32 ei_up
= 0, ei_down
= 0;
4830 new_power
= dev_priv
->rps
.power
;
4831 switch (dev_priv
->rps
.power
) {
4833 if (val
> dev_priv
->rps
.efficient_freq
+ 1 &&
4834 val
> dev_priv
->rps
.cur_freq
)
4835 new_power
= BETWEEN
;
4839 if (val
<= dev_priv
->rps
.efficient_freq
&&
4840 val
< dev_priv
->rps
.cur_freq
)
4841 new_power
= LOW_POWER
;
4842 else if (val
>= dev_priv
->rps
.rp0_freq
&&
4843 val
> dev_priv
->rps
.cur_freq
)
4844 new_power
= HIGH_POWER
;
4848 if (val
< (dev_priv
->rps
.rp1_freq
+ dev_priv
->rps
.rp0_freq
) >> 1 &&
4849 val
< dev_priv
->rps
.cur_freq
)
4850 new_power
= BETWEEN
;
4853 /* Max/min bins are special */
4854 if (val
<= dev_priv
->rps
.min_freq_softlimit
)
4855 new_power
= LOW_POWER
;
4856 if (val
>= dev_priv
->rps
.max_freq_softlimit
)
4857 new_power
= HIGH_POWER
;
4858 if (new_power
== dev_priv
->rps
.power
)
4861 /* Note the units here are not exactly 1us, but 1280ns. */
4862 switch (new_power
) {
4864 /* Upclock if more than 95% busy over 16ms */
4868 /* Downclock if less than 85% busy over 32ms */
4870 threshold_down
= 85;
4874 /* Upclock if more than 90% busy over 13ms */
4878 /* Downclock if less than 75% busy over 32ms */
4880 threshold_down
= 75;
4884 /* Upclock if more than 85% busy over 10ms */
4888 /* Downclock if less than 60% busy over 32ms */
4890 threshold_down
= 60;
4894 I915_WRITE(GEN6_RP_UP_EI
,
4895 GT_INTERVAL_FROM_US(dev_priv
, ei_up
));
4896 I915_WRITE(GEN6_RP_UP_THRESHOLD
,
4897 GT_INTERVAL_FROM_US(dev_priv
,
4898 ei_up
* threshold_up
/ 100));
4900 I915_WRITE(GEN6_RP_DOWN_EI
,
4901 GT_INTERVAL_FROM_US(dev_priv
, ei_down
));
4902 I915_WRITE(GEN6_RP_DOWN_THRESHOLD
,
4903 GT_INTERVAL_FROM_US(dev_priv
,
4904 ei_down
* threshold_down
/ 100));
4906 I915_WRITE(GEN6_RP_CONTROL
,
4907 GEN6_RP_MEDIA_TURBO
|
4908 GEN6_RP_MEDIA_HW_NORMAL_MODE
|
4909 GEN6_RP_MEDIA_IS_GFX
|
4911 GEN6_RP_UP_BUSY_AVG
|
4912 GEN6_RP_DOWN_IDLE_AVG
);
4914 dev_priv
->rps
.power
= new_power
;
4915 dev_priv
->rps
.up_threshold
= threshold_up
;
4916 dev_priv
->rps
.down_threshold
= threshold_down
;
4917 dev_priv
->rps
.last_adj
= 0;
4920 static u32
gen6_rps_pm_mask(struct drm_i915_private
*dev_priv
, u8 val
)
4924 if (val
> dev_priv
->rps
.min_freq_softlimit
)
4925 mask
|= GEN6_PM_RP_DOWN_EI_EXPIRED
| GEN6_PM_RP_DOWN_THRESHOLD
| GEN6_PM_RP_DOWN_TIMEOUT
;
4926 if (val
< dev_priv
->rps
.max_freq_softlimit
)
4927 mask
|= GEN6_PM_RP_UP_EI_EXPIRED
| GEN6_PM_RP_UP_THRESHOLD
;
4929 mask
&= dev_priv
->pm_rps_events
;
4931 return gen6_sanitize_rps_pm_mask(dev_priv
, ~mask
);
4934 /* gen6_set_rps is called to update the frequency request, but should also be
4935 * called when the range (min_delay and max_delay) is modified so that we can
4936 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4937 static void gen6_set_rps(struct drm_i915_private
*dev_priv
, u8 val
)
4939 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4940 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
))
4943 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
4944 WARN_ON(val
> dev_priv
->rps
.max_freq
);
4945 WARN_ON(val
< dev_priv
->rps
.min_freq
);
4947 /* min/max delay may still have been modified so be sure to
4948 * write the limits value.
4950 if (val
!= dev_priv
->rps
.cur_freq
) {
4951 gen6_set_rps_thresholds(dev_priv
, val
);
4953 if (IS_GEN9(dev_priv
))
4954 I915_WRITE(GEN6_RPNSWREQ
,
4955 GEN9_FREQUENCY(val
));
4956 else if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
4957 I915_WRITE(GEN6_RPNSWREQ
,
4958 HSW_FREQUENCY(val
));
4960 I915_WRITE(GEN6_RPNSWREQ
,
4961 GEN6_FREQUENCY(val
) |
4963 GEN6_AGGRESSIVE_TURBO
);
4966 /* Make sure we continue to get interrupts
4967 * until we hit the minimum or maximum frequencies.
4969 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS
, intel_rps_limits(dev_priv
, val
));
4970 I915_WRITE(GEN6_PMINTRMSK
, gen6_rps_pm_mask(dev_priv
, val
));
4972 POSTING_READ(GEN6_RPNSWREQ
);
4974 dev_priv
->rps
.cur_freq
= val
;
4975 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv
, val
));
4978 static void valleyview_set_rps(struct drm_i915_private
*dev_priv
, u8 val
)
4980 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
4981 WARN_ON(val
> dev_priv
->rps
.max_freq
);
4982 WARN_ON(val
< dev_priv
->rps
.min_freq
);
4984 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv
) && (val
& 1),
4985 "Odd GPU freq value\n"))
4988 I915_WRITE(GEN6_PMINTRMSK
, gen6_rps_pm_mask(dev_priv
, val
));
4990 if (val
!= dev_priv
->rps
.cur_freq
) {
4991 vlv_punit_write(dev_priv
, PUNIT_REG_GPU_FREQ_REQ
, val
);
4992 if (!IS_CHERRYVIEW(dev_priv
))
4993 gen6_set_rps_thresholds(dev_priv
, val
);
4996 dev_priv
->rps
.cur_freq
= val
;
4997 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv
, val
));
5000 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5002 * * If Gfx is Idle, then
5003 * 1. Forcewake Media well.
5004 * 2. Request idle freq.
5005 * 3. Release Forcewake of Media well.
5007 static void vlv_set_rps_idle(struct drm_i915_private
*dev_priv
)
5009 u32 val
= dev_priv
->rps
.idle_freq
;
5011 if (dev_priv
->rps
.cur_freq
<= val
)
5014 /* The punit delays the write of the frequency and voltage until it
5015 * determines the GPU is awake. During normal usage we don't want to
5016 * waste power changing the frequency if the GPU is sleeping (rc6).
5017 * However, the GPU and driver is now idle and we do not want to delay
5018 * switching to minimum voltage (reducing power whilst idle) as we do
5019 * not expect to be woken in the near future and so must flush the
5020 * change by waking the device.
5022 * We choose to take the media powerwell (either would do to trick the
5023 * punit into committing the voltage change) as that takes a lot less
5024 * power than the render powerwell.
5026 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_MEDIA
);
5027 valleyview_set_rps(dev_priv
, val
);
5028 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_MEDIA
);
5031 void gen6_rps_busy(struct drm_i915_private
*dev_priv
)
5033 mutex_lock(&dev_priv
->rps
.hw_lock
);
5034 if (dev_priv
->rps
.enabled
) {
5035 if (dev_priv
->pm_rps_events
& (GEN6_PM_RP_DOWN_EI_EXPIRED
| GEN6_PM_RP_UP_EI_EXPIRED
))
5036 gen6_rps_reset_ei(dev_priv
);
5037 I915_WRITE(GEN6_PMINTRMSK
,
5038 gen6_rps_pm_mask(dev_priv
, dev_priv
->rps
.cur_freq
));
5040 gen6_enable_rps_interrupts(dev_priv
);
5042 /* Ensure we start at the user's desired frequency */
5043 intel_set_rps(dev_priv
,
5044 clamp(dev_priv
->rps
.cur_freq
,
5045 dev_priv
->rps
.min_freq_softlimit
,
5046 dev_priv
->rps
.max_freq_softlimit
));
5048 mutex_unlock(&dev_priv
->rps
.hw_lock
);
5051 void gen6_rps_idle(struct drm_i915_private
*dev_priv
)
5053 /* Flush our bottom-half so that it does not race with us
5054 * setting the idle frequency and so that it is bounded by
5055 * our rpm wakeref. And then disable the interrupts to stop any
5056 * futher RPS reclocking whilst we are asleep.
5058 gen6_disable_rps_interrupts(dev_priv
);
5060 mutex_lock(&dev_priv
->rps
.hw_lock
);
5061 if (dev_priv
->rps
.enabled
) {
5062 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
5063 vlv_set_rps_idle(dev_priv
);
5065 gen6_set_rps(dev_priv
, dev_priv
->rps
.idle_freq
);
5066 dev_priv
->rps
.last_adj
= 0;
5067 I915_WRITE(GEN6_PMINTRMSK
,
5068 gen6_sanitize_rps_pm_mask(dev_priv
, ~0));
5070 mutex_unlock(&dev_priv
->rps
.hw_lock
);
5072 spin_lock(&dev_priv
->rps
.client_lock
);
5073 while (!list_empty(&dev_priv
->rps
.clients
))
5074 list_del_init(dev_priv
->rps
.clients
.next
);
5075 spin_unlock(&dev_priv
->rps
.client_lock
);
5078 void gen6_rps_boost(struct drm_i915_private
*dev_priv
,
5079 struct intel_rps_client
*rps
,
5080 unsigned long submitted
)
5082 /* This is intentionally racy! We peek at the state here, then
5083 * validate inside the RPS worker.
5085 if (!(dev_priv
->gt
.awake
&&
5086 dev_priv
->rps
.enabled
&&
5087 dev_priv
->rps
.cur_freq
< dev_priv
->rps
.boost_freq
))
5090 /* Force a RPS boost (and don't count it against the client) if
5091 * the GPU is severely congested.
5093 if (rps
&& time_after(jiffies
, submitted
+ DRM_I915_THROTTLE_JIFFIES
))
5096 spin_lock(&dev_priv
->rps
.client_lock
);
5097 if (rps
== NULL
|| list_empty(&rps
->link
)) {
5098 spin_lock_irq(&dev_priv
->irq_lock
);
5099 if (dev_priv
->rps
.interrupts_enabled
) {
5100 dev_priv
->rps
.client_boost
= true;
5101 schedule_work(&dev_priv
->rps
.work
);
5103 spin_unlock_irq(&dev_priv
->irq_lock
);
5106 list_add(&rps
->link
, &dev_priv
->rps
.clients
);
5109 dev_priv
->rps
.boosts
++;
5111 spin_unlock(&dev_priv
->rps
.client_lock
);
5114 void intel_set_rps(struct drm_i915_private
*dev_priv
, u8 val
)
5116 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
5117 valleyview_set_rps(dev_priv
, val
);
5119 gen6_set_rps(dev_priv
, val
);
5122 static void gen9_disable_rc6(struct drm_i915_private
*dev_priv
)
5124 I915_WRITE(GEN6_RC_CONTROL
, 0);
5125 I915_WRITE(GEN9_PG_ENABLE
, 0);
5128 static void gen9_disable_rps(struct drm_i915_private
*dev_priv
)
5130 I915_WRITE(GEN6_RP_CONTROL
, 0);
5133 static void gen6_disable_rps(struct drm_i915_private
*dev_priv
)
5135 I915_WRITE(GEN6_RC_CONTROL
, 0);
5136 I915_WRITE(GEN6_RPNSWREQ
, 1 << 31);
5137 I915_WRITE(GEN6_RP_CONTROL
, 0);
5140 static void cherryview_disable_rps(struct drm_i915_private
*dev_priv
)
5142 I915_WRITE(GEN6_RC_CONTROL
, 0);
5145 static void valleyview_disable_rps(struct drm_i915_private
*dev_priv
)
5147 /* we're doing forcewake before Disabling RC6,
5148 * This what the BIOS expects when going into suspend */
5149 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
5151 I915_WRITE(GEN6_RC_CONTROL
, 0);
5153 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5156 static void intel_print_rc6_info(struct drm_i915_private
*dev_priv
, u32 mode
)
5158 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
5159 if (mode
& (GEN7_RC_CTL_TO_MODE
| GEN6_RC_CTL_EI_MODE(1)))
5160 mode
= GEN6_RC_CTL_RC6_ENABLE
;
5164 if (HAS_RC6p(dev_priv
))
5165 DRM_DEBUG_DRIVER("Enabling RC6 states: "
5166 "RC6 %s RC6p %s RC6pp %s\n",
5167 onoff(mode
& GEN6_RC_CTL_RC6_ENABLE
),
5168 onoff(mode
& GEN6_RC_CTL_RC6p_ENABLE
),
5169 onoff(mode
& GEN6_RC_CTL_RC6pp_ENABLE
));
5172 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5173 onoff(mode
& GEN6_RC_CTL_RC6_ENABLE
));
5176 static bool bxt_check_bios_rc6_setup(struct drm_i915_private
*dev_priv
)
5178 struct i915_ggtt
*ggtt
= &dev_priv
->ggtt
;
5179 bool enable_rc6
= true;
5180 unsigned long rc6_ctx_base
;
5184 rc_ctl
= I915_READ(GEN6_RC_CONTROL
);
5185 rc_sw_target
= (I915_READ(GEN6_RC_STATE
) & RC_SW_TARGET_STATE_MASK
) >>
5186 RC_SW_TARGET_STATE_SHIFT
;
5187 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5188 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5189 onoff(rc_ctl
& GEN6_RC_CTL_HW_ENABLE
),
5190 onoff(rc_ctl
& GEN6_RC_CTL_RC6_ENABLE
),
5193 if (!(I915_READ(RC6_LOCATION
) & RC6_CTX_IN_DRAM
)) {
5194 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5199 * The exact context size is not known for BXT, so assume a page size
5202 rc6_ctx_base
= I915_READ(RC6_CTX_BASE
) & RC6_CTX_BASE_MASK
;
5203 if (!((rc6_ctx_base
>= ggtt
->stolen_reserved_base
) &&
5204 (rc6_ctx_base
+ PAGE_SIZE
<= ggtt
->stolen_reserved_base
+
5205 ggtt
->stolen_reserved_size
))) {
5206 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5210 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT
) & IDLE_TIME_MASK
) > 1) &&
5211 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0
) & IDLE_TIME_MASK
) > 1) &&
5212 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT
) & IDLE_TIME_MASK
) > 1) &&
5213 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT
) & IDLE_TIME_MASK
) > 1))) {
5214 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5218 if (!I915_READ(GEN8_PUSHBUS_CONTROL
) ||
5219 !I915_READ(GEN8_PUSHBUS_ENABLE
) ||
5220 !I915_READ(GEN8_PUSHBUS_SHIFT
)) {
5221 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5225 if (!I915_READ(GEN6_GFXPAUSE
)) {
5226 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5230 if (!I915_READ(GEN8_MISC_CTRL0
)) {
5231 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5238 int sanitize_rc6_option(struct drm_i915_private
*dev_priv
, int enable_rc6
)
5240 /* No RC6 before Ironlake and code is gone for ilk. */
5241 if (INTEL_INFO(dev_priv
)->gen
< 6)
5247 if (IS_GEN9_LP(dev_priv
) && !bxt_check_bios_rc6_setup(dev_priv
)) {
5248 DRM_INFO("RC6 disabled by BIOS\n");
5252 /* Respect the kernel parameter if it is set */
5253 if (enable_rc6
>= 0) {
5256 if (HAS_RC6p(dev_priv
))
5257 mask
= INTEL_RC6_ENABLE
| INTEL_RC6p_ENABLE
|
5260 mask
= INTEL_RC6_ENABLE
;
5262 if ((enable_rc6
& mask
) != enable_rc6
)
5263 DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5264 "(requested %d, valid %d)\n",
5265 enable_rc6
& mask
, enable_rc6
, mask
);
5267 return enable_rc6
& mask
;
5270 if (IS_IVYBRIDGE(dev_priv
))
5271 return (INTEL_RC6_ENABLE
| INTEL_RC6p_ENABLE
);
5273 return INTEL_RC6_ENABLE
;
5276 static void gen6_init_rps_frequencies(struct drm_i915_private
*dev_priv
)
5278 /* All of these values are in units of 50MHz */
5280 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5281 if (IS_GEN9_LP(dev_priv
)) {
5282 u32 rp_state_cap
= I915_READ(BXT_RP_STATE_CAP
);
5283 dev_priv
->rps
.rp0_freq
= (rp_state_cap
>> 16) & 0xff;
5284 dev_priv
->rps
.rp1_freq
= (rp_state_cap
>> 8) & 0xff;
5285 dev_priv
->rps
.min_freq
= (rp_state_cap
>> 0) & 0xff;
5287 u32 rp_state_cap
= I915_READ(GEN6_RP_STATE_CAP
);
5288 dev_priv
->rps
.rp0_freq
= (rp_state_cap
>> 0) & 0xff;
5289 dev_priv
->rps
.rp1_freq
= (rp_state_cap
>> 8) & 0xff;
5290 dev_priv
->rps
.min_freq
= (rp_state_cap
>> 16) & 0xff;
5292 /* hw_max = RP0 until we check for overclocking */
5293 dev_priv
->rps
.max_freq
= dev_priv
->rps
.rp0_freq
;
5295 dev_priv
->rps
.efficient_freq
= dev_priv
->rps
.rp1_freq
;
5296 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
) ||
5297 IS_SKYLAKE(dev_priv
) || IS_KABYLAKE(dev_priv
)) {
5298 u32 ddcc_status
= 0;
5300 if (sandybridge_pcode_read(dev_priv
,
5301 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL
,
5303 dev_priv
->rps
.efficient_freq
=
5305 ((ddcc_status
>> 8) & 0xff),
5306 dev_priv
->rps
.min_freq
,
5307 dev_priv
->rps
.max_freq
);
5310 if (IS_SKYLAKE(dev_priv
) || IS_KABYLAKE(dev_priv
)) {
5311 /* Store the frequency values in 16.66 MHZ units, which is
5312 * the natural hardware unit for SKL
5314 dev_priv
->rps
.rp0_freq
*= GEN9_FREQ_SCALER
;
5315 dev_priv
->rps
.rp1_freq
*= GEN9_FREQ_SCALER
;
5316 dev_priv
->rps
.min_freq
*= GEN9_FREQ_SCALER
;
5317 dev_priv
->rps
.max_freq
*= GEN9_FREQ_SCALER
;
5318 dev_priv
->rps
.efficient_freq
*= GEN9_FREQ_SCALER
;
5322 static void reset_rps(struct drm_i915_private
*dev_priv
,
5323 void (*set
)(struct drm_i915_private
*, u8
))
5325 u8 freq
= dev_priv
->rps
.cur_freq
;
5328 dev_priv
->rps
.power
= -1;
5329 dev_priv
->rps
.cur_freq
= -1;
5331 set(dev_priv
, freq
);
5334 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5335 static void gen9_enable_rps(struct drm_i915_private
*dev_priv
)
5337 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
5339 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5340 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
)) {
5342 * BIOS could leave the Hw Turbo enabled, so need to explicitly
5343 * clear out the Control register just to avoid inconsitency
5344 * with debugfs interface, which will show Turbo as enabled
5345 * only and that is not expected by the User after adding the
5346 * WaGsvDisableTurbo. Apart from this there is no problem even
5347 * if the Turbo is left enabled in the Control register, as the
5348 * Up/Down interrupts would remain masked.
5350 gen9_disable_rps(dev_priv
);
5351 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5355 /* Program defaults and thresholds for RPS*/
5356 I915_WRITE(GEN6_RC_VIDEO_FREQ
,
5357 GEN9_FREQUENCY(dev_priv
->rps
.rp1_freq
));
5359 /* 1 second timeout*/
5360 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
,
5361 GT_INTERVAL_FROM_US(dev_priv
, 1000000));
5363 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 0xa);
5365 /* Leaning on the below call to gen6_set_rps to program/setup the
5366 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5367 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5368 reset_rps(dev_priv
, gen6_set_rps
);
5370 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5373 static void gen9_enable_rc6(struct drm_i915_private
*dev_priv
)
5375 struct intel_engine_cs
*engine
;
5376 enum intel_engine_id id
;
5377 uint32_t rc6_mask
= 0;
5379 /* 1a: Software RC state - RC0 */
5380 I915_WRITE(GEN6_RC_STATE
, 0);
5382 /* 1b: Get forcewake during program sequence. Although the driver
5383 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5384 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
5386 /* 2a: Disable RC states. */
5387 I915_WRITE(GEN6_RC_CONTROL
, 0);
5389 /* 2b: Program RC6 thresholds.*/
5391 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5392 if (IS_SKYLAKE(dev_priv
))
5393 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 108 << 16);
5395 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 54 << 16);
5396 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000); /* 12500 * 1280ns */
5397 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25); /* 25 * 1280ns */
5398 for_each_engine(engine
, dev_priv
, id
)
5399 I915_WRITE(RING_MAX_IDLE(engine
->mmio_base
), 10);
5401 if (HAS_GUC(dev_priv
))
5402 I915_WRITE(GUC_MAX_IDLE_COUNT
, 0xA);
5404 I915_WRITE(GEN6_RC_SLEEP
, 0);
5406 /* 2c: Program Coarse Power Gating Policies. */
5407 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS
, 25);
5408 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS
, 25);
5410 /* 3a: Enable RC6 */
5411 if (intel_enable_rc6() & INTEL_RC6_ENABLE
)
5412 rc6_mask
= GEN6_RC_CTL_RC6_ENABLE
;
5413 DRM_INFO("RC6 %s\n", onoff(rc6_mask
& GEN6_RC_CTL_RC6_ENABLE
));
5414 /* WaRsUseTimeoutMode:bxt */
5415 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
)) {
5416 I915_WRITE(GEN6_RC6_THRESHOLD
, 625); /* 800us */
5417 I915_WRITE(GEN6_RC_CONTROL
, GEN6_RC_CTL_HW_ENABLE
|
5418 GEN7_RC_CTL_TO_MODE
|
5421 I915_WRITE(GEN6_RC6_THRESHOLD
, 37500); /* 37.5/125ms per EI */
5422 I915_WRITE(GEN6_RC_CONTROL
, GEN6_RC_CTL_HW_ENABLE
|
5423 GEN6_RC_CTL_EI_MODE(1) |
5428 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5429 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5431 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv
))
5432 I915_WRITE(GEN9_PG_ENABLE
, 0);
5434 I915_WRITE(GEN9_PG_ENABLE
, (rc6_mask
& GEN6_RC_CTL_RC6_ENABLE
) ?
5435 (GEN9_RENDER_PG_ENABLE
| GEN9_MEDIA_PG_ENABLE
) : 0);
5437 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5440 static void gen8_enable_rps(struct drm_i915_private
*dev_priv
)
5442 struct intel_engine_cs
*engine
;
5443 enum intel_engine_id id
;
5444 uint32_t rc6_mask
= 0;
5446 /* 1a: Software RC state - RC0 */
5447 I915_WRITE(GEN6_RC_STATE
, 0);
5449 /* 1c & 1d: Get forcewake during program sequence. Although the driver
5450 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5451 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
5453 /* 2a: Disable RC states. */
5454 I915_WRITE(GEN6_RC_CONTROL
, 0);
5456 /* 2b: Program RC6 thresholds.*/
5457 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 40 << 16);
5458 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000); /* 12500 * 1280ns */
5459 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25); /* 25 * 1280ns */
5460 for_each_engine(engine
, dev_priv
, id
)
5461 I915_WRITE(RING_MAX_IDLE(engine
->mmio_base
), 10);
5462 I915_WRITE(GEN6_RC_SLEEP
, 0);
5463 if (IS_BROADWELL(dev_priv
))
5464 I915_WRITE(GEN6_RC6_THRESHOLD
, 625); /* 800us/1.28 for TO */
5466 I915_WRITE(GEN6_RC6_THRESHOLD
, 50000); /* 50/125ms per EI */
5469 if (intel_enable_rc6() & INTEL_RC6_ENABLE
)
5470 rc6_mask
= GEN6_RC_CTL_RC6_ENABLE
;
5471 intel_print_rc6_info(dev_priv
, rc6_mask
);
5472 if (IS_BROADWELL(dev_priv
))
5473 I915_WRITE(GEN6_RC_CONTROL
, GEN6_RC_CTL_HW_ENABLE
|
5474 GEN7_RC_CTL_TO_MODE
|
5477 I915_WRITE(GEN6_RC_CONTROL
, GEN6_RC_CTL_HW_ENABLE
|
5478 GEN6_RC_CTL_EI_MODE(1) |
5481 /* 4 Program defaults and thresholds for RPS*/
5482 I915_WRITE(GEN6_RPNSWREQ
,
5483 HSW_FREQUENCY(dev_priv
->rps
.rp1_freq
));
5484 I915_WRITE(GEN6_RC_VIDEO_FREQ
,
5485 HSW_FREQUENCY(dev_priv
->rps
.rp1_freq
));
5486 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5487 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
, 100000000 / 128); /* 1 second timeout */
5489 /* Docs recommend 900MHz, and 300 MHz respectively */
5490 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS
,
5491 dev_priv
->rps
.max_freq_softlimit
<< 24 |
5492 dev_priv
->rps
.min_freq_softlimit
<< 16);
5494 I915_WRITE(GEN6_RP_UP_THRESHOLD
, 7600000 / 128); /* 76ms busyness per EI, 90% */
5495 I915_WRITE(GEN6_RP_DOWN_THRESHOLD
, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5496 I915_WRITE(GEN6_RP_UP_EI
, 66000); /* 84.48ms, XXX: random? */
5497 I915_WRITE(GEN6_RP_DOWN_EI
, 350000); /* 448ms, XXX: random? */
5499 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 10);
5502 I915_WRITE(GEN6_RP_CONTROL
,
5503 GEN6_RP_MEDIA_TURBO
|
5504 GEN6_RP_MEDIA_HW_NORMAL_MODE
|
5505 GEN6_RP_MEDIA_IS_GFX
|
5507 GEN6_RP_UP_BUSY_AVG
|
5508 GEN6_RP_DOWN_IDLE_AVG
);
5510 /* 6: Ring frequency + overclocking (our driver does this later */
5512 reset_rps(dev_priv
, gen6_set_rps
);
5514 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5517 static void gen6_enable_rps(struct drm_i915_private
*dev_priv
)
5519 struct intel_engine_cs
*engine
;
5520 enum intel_engine_id id
;
5521 u32 rc6vids
, rc6_mask
= 0;
5526 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
5528 /* Here begins a magic sequence of register writes to enable
5529 * auto-downclocking.
5531 * Perhaps there might be some value in exposing these to
5534 I915_WRITE(GEN6_RC_STATE
, 0);
5536 /* Clear the DBG now so we don't confuse earlier errors */
5537 gtfifodbg
= I915_READ(GTFIFODBG
);
5539 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg
);
5540 I915_WRITE(GTFIFODBG
, gtfifodbg
);
5543 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
5545 /* disable the counters and set deterministic thresholds */
5546 I915_WRITE(GEN6_RC_CONTROL
, 0);
5548 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT
, 1000 << 16);
5549 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 40 << 16 | 30);
5550 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT
, 30);
5551 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000);
5552 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25);
5554 for_each_engine(engine
, dev_priv
, id
)
5555 I915_WRITE(RING_MAX_IDLE(engine
->mmio_base
), 10);
5557 I915_WRITE(GEN6_RC_SLEEP
, 0);
5558 I915_WRITE(GEN6_RC1e_THRESHOLD
, 1000);
5559 if (IS_IVYBRIDGE(dev_priv
))
5560 I915_WRITE(GEN6_RC6_THRESHOLD
, 125000);
5562 I915_WRITE(GEN6_RC6_THRESHOLD
, 50000);
5563 I915_WRITE(GEN6_RC6p_THRESHOLD
, 150000);
5564 I915_WRITE(GEN6_RC6pp_THRESHOLD
, 64000); /* unused */
5566 /* Check if we are enabling RC6 */
5567 rc6_mode
= intel_enable_rc6();
5568 if (rc6_mode
& INTEL_RC6_ENABLE
)
5569 rc6_mask
|= GEN6_RC_CTL_RC6_ENABLE
;
5571 /* We don't use those on Haswell */
5572 if (!IS_HASWELL(dev_priv
)) {
5573 if (rc6_mode
& INTEL_RC6p_ENABLE
)
5574 rc6_mask
|= GEN6_RC_CTL_RC6p_ENABLE
;
5576 if (rc6_mode
& INTEL_RC6pp_ENABLE
)
5577 rc6_mask
|= GEN6_RC_CTL_RC6pp_ENABLE
;
5580 intel_print_rc6_info(dev_priv
, rc6_mask
);
5582 I915_WRITE(GEN6_RC_CONTROL
,
5584 GEN6_RC_CTL_EI_MODE(1) |
5585 GEN6_RC_CTL_HW_ENABLE
);
5587 /* Power down if completely idle for over 50ms */
5588 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
, 50000);
5589 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 10);
5591 reset_rps(dev_priv
, gen6_set_rps
);
5594 ret
= sandybridge_pcode_read(dev_priv
, GEN6_PCODE_READ_RC6VIDS
, &rc6vids
);
5595 if (IS_GEN6(dev_priv
) && ret
) {
5596 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5597 } else if (IS_GEN6(dev_priv
) && (GEN6_DECODE_RC6_VID(rc6vids
& 0xff) < 450)) {
5598 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5599 GEN6_DECODE_RC6_VID(rc6vids
& 0xff), 450);
5600 rc6vids
&= 0xffff00;
5601 rc6vids
|= GEN6_ENCODE_RC6_VID(450);
5602 ret
= sandybridge_pcode_write(dev_priv
, GEN6_PCODE_WRITE_RC6VIDS
, rc6vids
);
5604 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5607 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5610 static void gen6_update_ring_freq(struct drm_i915_private
*dev_priv
)
5613 unsigned int gpu_freq
;
5614 unsigned int max_ia_freq
, min_ring_freq
;
5615 unsigned int max_gpu_freq
, min_gpu_freq
;
5616 int scaling_factor
= 180;
5617 struct cpufreq_policy
*policy
;
5619 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
5621 policy
= cpufreq_cpu_get(0);
5623 max_ia_freq
= policy
->cpuinfo
.max_freq
;
5624 cpufreq_cpu_put(policy
);
5627 * Default to measured freq if none found, PCU will ensure we
5630 max_ia_freq
= tsc_khz
;
5633 /* Convert from kHz to MHz */
5634 max_ia_freq
/= 1000;
5636 min_ring_freq
= I915_READ(DCLK
) & 0xf;
5637 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5638 min_ring_freq
= mult_frac(min_ring_freq
, 8, 3);
5640 if (IS_SKYLAKE(dev_priv
) || IS_KABYLAKE(dev_priv
)) {
5641 /* Convert GT frequency to 50 HZ units */
5642 min_gpu_freq
= dev_priv
->rps
.min_freq
/ GEN9_FREQ_SCALER
;
5643 max_gpu_freq
= dev_priv
->rps
.max_freq
/ GEN9_FREQ_SCALER
;
5645 min_gpu_freq
= dev_priv
->rps
.min_freq
;
5646 max_gpu_freq
= dev_priv
->rps
.max_freq
;
5650 * For each potential GPU frequency, load a ring frequency we'd like
5651 * to use for memory access. We do this by specifying the IA frequency
5652 * the PCU should use as a reference to determine the ring frequency.
5654 for (gpu_freq
= max_gpu_freq
; gpu_freq
>= min_gpu_freq
; gpu_freq
--) {
5655 int diff
= max_gpu_freq
- gpu_freq
;
5656 unsigned int ia_freq
= 0, ring_freq
= 0;
5658 if (IS_SKYLAKE(dev_priv
) || IS_KABYLAKE(dev_priv
)) {
5660 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5661 * No floor required for ring frequency on SKL.
5663 ring_freq
= gpu_freq
;
5664 } else if (INTEL_INFO(dev_priv
)->gen
>= 8) {
5665 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5666 ring_freq
= max(min_ring_freq
, gpu_freq
);
5667 } else if (IS_HASWELL(dev_priv
)) {
5668 ring_freq
= mult_frac(gpu_freq
, 5, 4);
5669 ring_freq
= max(min_ring_freq
, ring_freq
);
5670 /* leave ia_freq as the default, chosen by cpufreq */
5672 /* On older processors, there is no separate ring
5673 * clock domain, so in order to boost the bandwidth
5674 * of the ring, we need to upclock the CPU (ia_freq).
5676 * For GPU frequencies less than 750MHz,
5677 * just use the lowest ring freq.
5679 if (gpu_freq
< min_freq
)
5682 ia_freq
= max_ia_freq
- ((diff
* scaling_factor
) / 2);
5683 ia_freq
= DIV_ROUND_CLOSEST(ia_freq
, 100);
5686 sandybridge_pcode_write(dev_priv
,
5687 GEN6_PCODE_WRITE_MIN_FREQ_TABLE
,
5688 ia_freq
<< GEN6_PCODE_FREQ_IA_RATIO_SHIFT
|
5689 ring_freq
<< GEN6_PCODE_FREQ_RING_RATIO_SHIFT
|
5694 static int cherryview_rps_max_freq(struct drm_i915_private
*dev_priv
)
5698 val
= vlv_punit_read(dev_priv
, FB_GFX_FMAX_AT_VMAX_FUSE
);
5700 switch (INTEL_INFO(dev_priv
)->sseu
.eu_total
) {
5702 /* (2 * 4) config */
5703 rp0
= (val
>> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT
);
5706 /* (2 * 6) config */
5707 rp0
= (val
>> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT
);
5710 /* (2 * 8) config */
5712 /* Setting (2 * 8) Min RP0 for any other combination */
5713 rp0
= (val
>> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT
);
5717 rp0
= (rp0
& FB_GFX_FREQ_FUSE_MASK
);
5722 static int cherryview_rps_rpe_freq(struct drm_i915_private
*dev_priv
)
5726 val
= vlv_punit_read(dev_priv
, PUNIT_GPU_DUTYCYCLE_REG
);
5727 rpe
= (val
>> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT
) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK
;
5732 static int cherryview_rps_guar_freq(struct drm_i915_private
*dev_priv
)
5736 val
= vlv_punit_read(dev_priv
, FB_GFX_FMAX_AT_VMAX_FUSE
);
5737 rp1
= (val
& FB_GFX_FREQ_FUSE_MASK
);
5742 static int valleyview_rps_guar_freq(struct drm_i915_private
*dev_priv
)
5746 val
= vlv_nc_read(dev_priv
, IOSF_NC_FB_GFX_FREQ_FUSE
);
5748 rp1
= (val
& FB_GFX_FGUARANTEED_FREQ_FUSE_MASK
) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT
;
5753 static int valleyview_rps_max_freq(struct drm_i915_private
*dev_priv
)
5757 val
= vlv_nc_read(dev_priv
, IOSF_NC_FB_GFX_FREQ_FUSE
);
5759 rp0
= (val
& FB_GFX_MAX_FREQ_FUSE_MASK
) >> FB_GFX_MAX_FREQ_FUSE_SHIFT
;
5761 rp0
= min_t(u32
, rp0
, 0xea);
5766 static int valleyview_rps_rpe_freq(struct drm_i915_private
*dev_priv
)
5770 val
= vlv_nc_read(dev_priv
, IOSF_NC_FB_GFX_FMAX_FUSE_LO
);
5771 rpe
= (val
& FB_FMAX_VMIN_FREQ_LO_MASK
) >> FB_FMAX_VMIN_FREQ_LO_SHIFT
;
5772 val
= vlv_nc_read(dev_priv
, IOSF_NC_FB_GFX_FMAX_FUSE_HI
);
5773 rpe
|= (val
& FB_FMAX_VMIN_FREQ_HI_MASK
) << 5;
5778 static int valleyview_rps_min_freq(struct drm_i915_private
*dev_priv
)
5782 val
= vlv_punit_read(dev_priv
, PUNIT_REG_GPU_LFM
) & 0xff;
5784 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5785 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5786 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5787 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5788 * to make sure it matches what Punit accepts.
5790 return max_t(u32
, val
, 0xc0);
5793 /* Check that the pctx buffer wasn't move under us. */
5794 static void valleyview_check_pctx(struct drm_i915_private
*dev_priv
)
5796 unsigned long pctx_addr
= I915_READ(VLV_PCBR
) & ~4095;
5798 WARN_ON(pctx_addr
!= dev_priv
->mm
.stolen_base
+
5799 dev_priv
->vlv_pctx
->stolen
->start
);
5803 /* Check that the pcbr address is not empty. */
5804 static void cherryview_check_pctx(struct drm_i915_private
*dev_priv
)
5806 unsigned long pctx_addr
= I915_READ(VLV_PCBR
) & ~4095;
5808 WARN_ON((pctx_addr
>> VLV_PCBR_ADDR_SHIFT
) == 0);
5811 static void cherryview_setup_pctx(struct drm_i915_private
*dev_priv
)
5813 struct i915_ggtt
*ggtt
= &dev_priv
->ggtt
;
5814 unsigned long pctx_paddr
, paddr
;
5816 int pctx_size
= 32*1024;
5818 pcbr
= I915_READ(VLV_PCBR
);
5819 if ((pcbr
>> VLV_PCBR_ADDR_SHIFT
) == 0) {
5820 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5821 paddr
= (dev_priv
->mm
.stolen_base
+
5822 (ggtt
->stolen_size
- pctx_size
));
5824 pctx_paddr
= (paddr
& (~4095));
5825 I915_WRITE(VLV_PCBR
, pctx_paddr
);
5828 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR
));
5831 static void valleyview_setup_pctx(struct drm_i915_private
*dev_priv
)
5833 struct drm_i915_gem_object
*pctx
;
5834 unsigned long pctx_paddr
;
5836 int pctx_size
= 24*1024;
5838 pcbr
= I915_READ(VLV_PCBR
);
5840 /* BIOS set it up already, grab the pre-alloc'd space */
5843 pcbr_offset
= (pcbr
& (~4095)) - dev_priv
->mm
.stolen_base
;
5844 pctx
= i915_gem_object_create_stolen_for_preallocated(dev_priv
,
5846 I915_GTT_OFFSET_NONE
,
5851 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5854 * From the Gunit register HAS:
5855 * The Gfx driver is expected to program this register and ensure
5856 * proper allocation within Gfx stolen memory. For example, this
5857 * register should be programmed such than the PCBR range does not
5858 * overlap with other ranges, such as the frame buffer, protected
5859 * memory, or any other relevant ranges.
5861 pctx
= i915_gem_object_create_stolen(dev_priv
, pctx_size
);
5863 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5867 pctx_paddr
= dev_priv
->mm
.stolen_base
+ pctx
->stolen
->start
;
5868 I915_WRITE(VLV_PCBR
, pctx_paddr
);
5871 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR
));
5872 dev_priv
->vlv_pctx
= pctx
;
5875 static void valleyview_cleanup_pctx(struct drm_i915_private
*dev_priv
)
5877 if (WARN_ON(!dev_priv
->vlv_pctx
))
5880 i915_gem_object_put(dev_priv
->vlv_pctx
);
5881 dev_priv
->vlv_pctx
= NULL
;
5884 static void vlv_init_gpll_ref_freq(struct drm_i915_private
*dev_priv
)
5886 dev_priv
->rps
.gpll_ref_freq
=
5887 vlv_get_cck_clock(dev_priv
, "GPLL ref",
5888 CCK_GPLL_CLOCK_CONTROL
,
5889 dev_priv
->czclk_freq
);
5891 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5892 dev_priv
->rps
.gpll_ref_freq
);
5895 static void valleyview_init_gt_powersave(struct drm_i915_private
*dev_priv
)
5899 valleyview_setup_pctx(dev_priv
);
5901 vlv_init_gpll_ref_freq(dev_priv
);
5903 val
= vlv_punit_read(dev_priv
, PUNIT_REG_GPU_FREQ_STS
);
5904 switch ((val
>> 6) & 3) {
5907 dev_priv
->mem_freq
= 800;
5910 dev_priv
->mem_freq
= 1066;
5913 dev_priv
->mem_freq
= 1333;
5916 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv
->mem_freq
);
5918 dev_priv
->rps
.max_freq
= valleyview_rps_max_freq(dev_priv
);
5919 dev_priv
->rps
.rp0_freq
= dev_priv
->rps
.max_freq
;
5920 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5921 intel_gpu_freq(dev_priv
, dev_priv
->rps
.max_freq
),
5922 dev_priv
->rps
.max_freq
);
5924 dev_priv
->rps
.efficient_freq
= valleyview_rps_rpe_freq(dev_priv
);
5925 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5926 intel_gpu_freq(dev_priv
, dev_priv
->rps
.efficient_freq
),
5927 dev_priv
->rps
.efficient_freq
);
5929 dev_priv
->rps
.rp1_freq
= valleyview_rps_guar_freq(dev_priv
);
5930 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5931 intel_gpu_freq(dev_priv
, dev_priv
->rps
.rp1_freq
),
5932 dev_priv
->rps
.rp1_freq
);
5934 dev_priv
->rps
.min_freq
= valleyview_rps_min_freq(dev_priv
);
5935 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5936 intel_gpu_freq(dev_priv
, dev_priv
->rps
.min_freq
),
5937 dev_priv
->rps
.min_freq
);
5940 static void cherryview_init_gt_powersave(struct drm_i915_private
*dev_priv
)
5944 cherryview_setup_pctx(dev_priv
);
5946 vlv_init_gpll_ref_freq(dev_priv
);
5948 mutex_lock(&dev_priv
->sb_lock
);
5949 val
= vlv_cck_read(dev_priv
, CCK_FUSE_REG
);
5950 mutex_unlock(&dev_priv
->sb_lock
);
5952 switch ((val
>> 2) & 0x7) {
5954 dev_priv
->mem_freq
= 2000;
5957 dev_priv
->mem_freq
= 1600;
5960 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv
->mem_freq
);
5962 dev_priv
->rps
.max_freq
= cherryview_rps_max_freq(dev_priv
);
5963 dev_priv
->rps
.rp0_freq
= dev_priv
->rps
.max_freq
;
5964 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5965 intel_gpu_freq(dev_priv
, dev_priv
->rps
.max_freq
),
5966 dev_priv
->rps
.max_freq
);
5968 dev_priv
->rps
.efficient_freq
= cherryview_rps_rpe_freq(dev_priv
);
5969 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5970 intel_gpu_freq(dev_priv
, dev_priv
->rps
.efficient_freq
),
5971 dev_priv
->rps
.efficient_freq
);
5973 dev_priv
->rps
.rp1_freq
= cherryview_rps_guar_freq(dev_priv
);
5974 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5975 intel_gpu_freq(dev_priv
, dev_priv
->rps
.rp1_freq
),
5976 dev_priv
->rps
.rp1_freq
);
5978 /* PUnit validated range is only [RPe, RP0] */
5979 dev_priv
->rps
.min_freq
= dev_priv
->rps
.efficient_freq
;
5980 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5981 intel_gpu_freq(dev_priv
, dev_priv
->rps
.min_freq
),
5982 dev_priv
->rps
.min_freq
);
5984 WARN_ONCE((dev_priv
->rps
.max_freq
|
5985 dev_priv
->rps
.efficient_freq
|
5986 dev_priv
->rps
.rp1_freq
|
5987 dev_priv
->rps
.min_freq
) & 1,
5988 "Odd GPU freq values\n");
5991 static void valleyview_cleanup_gt_powersave(struct drm_i915_private
*dev_priv
)
5993 valleyview_cleanup_pctx(dev_priv
);
5996 static void cherryview_enable_rps(struct drm_i915_private
*dev_priv
)
5998 struct intel_engine_cs
*engine
;
5999 enum intel_engine_id id
;
6000 u32 gtfifodbg
, val
, rc6_mode
= 0, pcbr
;
6002 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
6004 gtfifodbg
= I915_READ(GTFIFODBG
) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV
|
6005 GT_FIFO_FREE_ENTRIES_CHV
);
6007 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6009 I915_WRITE(GTFIFODBG
, gtfifodbg
);
6012 cherryview_check_pctx(dev_priv
);
6014 /* 1a & 1b: Get forcewake during program sequence. Although the driver
6015 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6016 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
6018 /* Disable RC states. */
6019 I915_WRITE(GEN6_RC_CONTROL
, 0);
6021 /* 2a: Program RC6 thresholds.*/
6022 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 40 << 16);
6023 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000); /* 12500 * 1280ns */
6024 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25); /* 25 * 1280ns */
6026 for_each_engine(engine
, dev_priv
, id
)
6027 I915_WRITE(RING_MAX_IDLE(engine
->mmio_base
), 10);
6028 I915_WRITE(GEN6_RC_SLEEP
, 0);
6030 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
6031 I915_WRITE(GEN6_RC6_THRESHOLD
, 0x186);
6033 /* allows RC6 residency counter to work */
6034 I915_WRITE(VLV_COUNTER_CONTROL
,
6035 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH
|
6036 VLV_MEDIA_RC6_COUNT_EN
|
6037 VLV_RENDER_RC6_COUNT_EN
));
6039 /* For now we assume BIOS is allocating and populating the PCBR */
6040 pcbr
= I915_READ(VLV_PCBR
);
6043 if ((intel_enable_rc6() & INTEL_RC6_ENABLE
) &&
6044 (pcbr
>> VLV_PCBR_ADDR_SHIFT
))
6045 rc6_mode
= GEN7_RC_CTL_TO_MODE
;
6047 I915_WRITE(GEN6_RC_CONTROL
, rc6_mode
);
6049 /* 4 Program defaults and thresholds for RPS*/
6050 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
, 1000000);
6051 I915_WRITE(GEN6_RP_UP_THRESHOLD
, 59400);
6052 I915_WRITE(GEN6_RP_DOWN_THRESHOLD
, 245000);
6053 I915_WRITE(GEN6_RP_UP_EI
, 66000);
6054 I915_WRITE(GEN6_RP_DOWN_EI
, 350000);
6056 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 10);
6059 I915_WRITE(GEN6_RP_CONTROL
,
6060 GEN6_RP_MEDIA_HW_NORMAL_MODE
|
6061 GEN6_RP_MEDIA_IS_GFX
|
6063 GEN6_RP_UP_BUSY_AVG
|
6064 GEN6_RP_DOWN_IDLE_AVG
);
6066 /* Setting Fixed Bias */
6067 val
= VLV_OVERRIDE_EN
|
6069 CHV_BIAS_CPU_50_SOC_50
;
6070 vlv_punit_write(dev_priv
, VLV_TURBO_SOC_OVERRIDE
, val
);
6072 val
= vlv_punit_read(dev_priv
, PUNIT_REG_GPU_FREQ_STS
);
6074 /* RPS code assumes GPLL is used */
6075 WARN_ONCE((val
& GPLLENABLE
) == 0, "GPLL not enabled\n");
6077 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val
& GPLLENABLE
));
6078 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val
);
6080 reset_rps(dev_priv
, valleyview_set_rps
);
6082 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
6085 static void valleyview_enable_rps(struct drm_i915_private
*dev_priv
)
6087 struct intel_engine_cs
*engine
;
6088 enum intel_engine_id id
;
6089 u32 gtfifodbg
, val
, rc6_mode
= 0;
6091 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
6093 valleyview_check_pctx(dev_priv
);
6095 gtfifodbg
= I915_READ(GTFIFODBG
);
6097 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6099 I915_WRITE(GTFIFODBG
, gtfifodbg
);
6102 /* If VLV, Forcewake all wells, else re-direct to regular path */
6103 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
6105 /* Disable RC states. */
6106 I915_WRITE(GEN6_RC_CONTROL
, 0);
6108 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
, 1000000);
6109 I915_WRITE(GEN6_RP_UP_THRESHOLD
, 59400);
6110 I915_WRITE(GEN6_RP_DOWN_THRESHOLD
, 245000);
6111 I915_WRITE(GEN6_RP_UP_EI
, 66000);
6112 I915_WRITE(GEN6_RP_DOWN_EI
, 350000);
6114 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 10);
6116 I915_WRITE(GEN6_RP_CONTROL
,
6117 GEN6_RP_MEDIA_TURBO
|
6118 GEN6_RP_MEDIA_HW_NORMAL_MODE
|
6119 GEN6_RP_MEDIA_IS_GFX
|
6121 GEN6_RP_UP_BUSY_AVG
|
6122 GEN6_RP_DOWN_IDLE_CONT
);
6124 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 0x00280000);
6125 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000);
6126 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25);
6128 for_each_engine(engine
, dev_priv
, id
)
6129 I915_WRITE(RING_MAX_IDLE(engine
->mmio_base
), 10);
6131 I915_WRITE(GEN6_RC6_THRESHOLD
, 0x557);
6133 /* allows RC6 residency counter to work */
6134 I915_WRITE(VLV_COUNTER_CONTROL
,
6135 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN
|
6136 VLV_RENDER_RC0_COUNT_EN
|
6137 VLV_MEDIA_RC6_COUNT_EN
|
6138 VLV_RENDER_RC6_COUNT_EN
));
6140 if (intel_enable_rc6() & INTEL_RC6_ENABLE
)
6141 rc6_mode
= GEN7_RC_CTL_TO_MODE
| VLV_RC_CTL_CTX_RST_PARALLEL
;
6143 intel_print_rc6_info(dev_priv
, rc6_mode
);
6145 I915_WRITE(GEN6_RC_CONTROL
, rc6_mode
);
6147 /* Setting Fixed Bias */
6148 val
= VLV_OVERRIDE_EN
|
6150 VLV_BIAS_CPU_125_SOC_875
;
6151 vlv_punit_write(dev_priv
, VLV_TURBO_SOC_OVERRIDE
, val
);
6153 val
= vlv_punit_read(dev_priv
, PUNIT_REG_GPU_FREQ_STS
);
6155 /* RPS code assumes GPLL is used */
6156 WARN_ONCE((val
& GPLLENABLE
) == 0, "GPLL not enabled\n");
6158 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val
& GPLLENABLE
));
6159 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val
);
6161 reset_rps(dev_priv
, valleyview_set_rps
);
6163 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
6166 static unsigned long intel_pxfreq(u32 vidfreq
)
6169 int div
= (vidfreq
& 0x3f0000) >> 16;
6170 int post
= (vidfreq
& 0x3000) >> 12;
6171 int pre
= (vidfreq
& 0x7);
6176 freq
= ((div
* 133333) / ((1<<post
) * pre
));
6181 static const struct cparams
{
6187 { 1, 1333, 301, 28664 },
6188 { 1, 1066, 294, 24460 },
6189 { 1, 800, 294, 25192 },
6190 { 0, 1333, 276, 27605 },
6191 { 0, 1066, 276, 27605 },
6192 { 0, 800, 231, 23784 },
6195 static unsigned long __i915_chipset_val(struct drm_i915_private
*dev_priv
)
6197 u64 total_count
, diff
, ret
;
6198 u32 count1
, count2
, count3
, m
= 0, c
= 0;
6199 unsigned long now
= jiffies_to_msecs(jiffies
), diff1
;
6202 assert_spin_locked(&mchdev_lock
);
6204 diff1
= now
- dev_priv
->ips
.last_time1
;
6206 /* Prevent division-by-zero if we are asking too fast.
6207 * Also, we don't get interesting results if we are polling
6208 * faster than once in 10ms, so just return the saved value
6212 return dev_priv
->ips
.chipset_power
;
6214 count1
= I915_READ(DMIEC
);
6215 count2
= I915_READ(DDREC
);
6216 count3
= I915_READ(CSIEC
);
6218 total_count
= count1
+ count2
+ count3
;
6220 /* FIXME: handle per-counter overflow */
6221 if (total_count
< dev_priv
->ips
.last_count1
) {
6222 diff
= ~0UL - dev_priv
->ips
.last_count1
;
6223 diff
+= total_count
;
6225 diff
= total_count
- dev_priv
->ips
.last_count1
;
6228 for (i
= 0; i
< ARRAY_SIZE(cparams
); i
++) {
6229 if (cparams
[i
].i
== dev_priv
->ips
.c_m
&&
6230 cparams
[i
].t
== dev_priv
->ips
.r_t
) {
6237 diff
= div_u64(diff
, diff1
);
6238 ret
= ((m
* diff
) + c
);
6239 ret
= div_u64(ret
, 10);
6241 dev_priv
->ips
.last_count1
= total_count
;
6242 dev_priv
->ips
.last_time1
= now
;
6244 dev_priv
->ips
.chipset_power
= ret
;
6249 unsigned long i915_chipset_val(struct drm_i915_private
*dev_priv
)
6253 if (INTEL_INFO(dev_priv
)->gen
!= 5)
6256 spin_lock_irq(&mchdev_lock
);
6258 val
= __i915_chipset_val(dev_priv
);
6260 spin_unlock_irq(&mchdev_lock
);
6265 unsigned long i915_mch_val(struct drm_i915_private
*dev_priv
)
6267 unsigned long m
, x
, b
;
6270 tsfs
= I915_READ(TSFS
);
6272 m
= ((tsfs
& TSFS_SLOPE_MASK
) >> TSFS_SLOPE_SHIFT
);
6273 x
= I915_READ8(TR1
);
6275 b
= tsfs
& TSFS_INTR_MASK
;
6277 return ((m
* x
) / 127) - b
;
6280 static int _pxvid_to_vd(u8 pxvid
)
6285 if (pxvid
>= 8 && pxvid
< 31)
6288 return (pxvid
+ 2) * 125;
6291 static u32
pvid_to_extvid(struct drm_i915_private
*dev_priv
, u8 pxvid
)
6293 const int vd
= _pxvid_to_vd(pxvid
);
6294 const int vm
= vd
- 1125;
6296 if (INTEL_INFO(dev_priv
)->is_mobile
)
6297 return vm
> 0 ? vm
: 0;
6302 static void __i915_update_gfx_val(struct drm_i915_private
*dev_priv
)
6304 u64 now
, diff
, diffms
;
6307 assert_spin_locked(&mchdev_lock
);
6309 now
= ktime_get_raw_ns();
6310 diffms
= now
- dev_priv
->ips
.last_time2
;
6311 do_div(diffms
, NSEC_PER_MSEC
);
6313 /* Don't divide by 0 */
6317 count
= I915_READ(GFXEC
);
6319 if (count
< dev_priv
->ips
.last_count2
) {
6320 diff
= ~0UL - dev_priv
->ips
.last_count2
;
6323 diff
= count
- dev_priv
->ips
.last_count2
;
6326 dev_priv
->ips
.last_count2
= count
;
6327 dev_priv
->ips
.last_time2
= now
;
6329 /* More magic constants... */
6331 diff
= div_u64(diff
, diffms
* 10);
6332 dev_priv
->ips
.gfx_power
= diff
;
6335 void i915_update_gfx_val(struct drm_i915_private
*dev_priv
)
6337 if (INTEL_INFO(dev_priv
)->gen
!= 5)
6340 spin_lock_irq(&mchdev_lock
);
6342 __i915_update_gfx_val(dev_priv
);
6344 spin_unlock_irq(&mchdev_lock
);
6347 static unsigned long __i915_gfx_val(struct drm_i915_private
*dev_priv
)
6349 unsigned long t
, corr
, state1
, corr2
, state2
;
6352 assert_spin_locked(&mchdev_lock
);
6354 pxvid
= I915_READ(PXVFREQ(dev_priv
->rps
.cur_freq
));
6355 pxvid
= (pxvid
>> 24) & 0x7f;
6356 ext_v
= pvid_to_extvid(dev_priv
, pxvid
);
6360 t
= i915_mch_val(dev_priv
);
6362 /* Revel in the empirically derived constants */
6364 /* Correction factor in 1/100000 units */
6366 corr
= ((t
* 2349) + 135940);
6368 corr
= ((t
* 964) + 29317);
6370 corr
= ((t
* 301) + 1004);
6372 corr
= corr
* ((150142 * state1
) / 10000 - 78642);
6374 corr2
= (corr
* dev_priv
->ips
.corr
);
6376 state2
= (corr2
* state1
) / 10000;
6377 state2
/= 100; /* convert to mW */
6379 __i915_update_gfx_val(dev_priv
);
6381 return dev_priv
->ips
.gfx_power
+ state2
;
6384 unsigned long i915_gfx_val(struct drm_i915_private
*dev_priv
)
6388 if (INTEL_INFO(dev_priv
)->gen
!= 5)
6391 spin_lock_irq(&mchdev_lock
);
6393 val
= __i915_gfx_val(dev_priv
);
6395 spin_unlock_irq(&mchdev_lock
);
6401 * i915_read_mch_val - return value for IPS use
6403 * Calculate and return a value for the IPS driver to use when deciding whether
6404 * we have thermal and power headroom to increase CPU or GPU power budget.
6406 unsigned long i915_read_mch_val(void)
6408 struct drm_i915_private
*dev_priv
;
6409 unsigned long chipset_val
, graphics_val
, ret
= 0;
6411 spin_lock_irq(&mchdev_lock
);
6414 dev_priv
= i915_mch_dev
;
6416 chipset_val
= __i915_chipset_val(dev_priv
);
6417 graphics_val
= __i915_gfx_val(dev_priv
);
6419 ret
= chipset_val
+ graphics_val
;
6422 spin_unlock_irq(&mchdev_lock
);
6426 EXPORT_SYMBOL_GPL(i915_read_mch_val
);
6429 * i915_gpu_raise - raise GPU frequency limit
6431 * Raise the limit; IPS indicates we have thermal headroom.
6433 bool i915_gpu_raise(void)
6435 struct drm_i915_private
*dev_priv
;
6438 spin_lock_irq(&mchdev_lock
);
6439 if (!i915_mch_dev
) {
6443 dev_priv
= i915_mch_dev
;
6445 if (dev_priv
->ips
.max_delay
> dev_priv
->ips
.fmax
)
6446 dev_priv
->ips
.max_delay
--;
6449 spin_unlock_irq(&mchdev_lock
);
6453 EXPORT_SYMBOL_GPL(i915_gpu_raise
);
6456 * i915_gpu_lower - lower GPU frequency limit
6458 * IPS indicates we're close to a thermal limit, so throttle back the GPU
6459 * frequency maximum.
6461 bool i915_gpu_lower(void)
6463 struct drm_i915_private
*dev_priv
;
6466 spin_lock_irq(&mchdev_lock
);
6467 if (!i915_mch_dev
) {
6471 dev_priv
= i915_mch_dev
;
6473 if (dev_priv
->ips
.max_delay
< dev_priv
->ips
.min_delay
)
6474 dev_priv
->ips
.max_delay
++;
6477 spin_unlock_irq(&mchdev_lock
);
6481 EXPORT_SYMBOL_GPL(i915_gpu_lower
);
6484 * i915_gpu_busy - indicate GPU business to IPS
6486 * Tell the IPS driver whether or not the GPU is busy.
6488 bool i915_gpu_busy(void)
6492 spin_lock_irq(&mchdev_lock
);
6494 ret
= i915_mch_dev
->gt
.awake
;
6495 spin_unlock_irq(&mchdev_lock
);
6499 EXPORT_SYMBOL_GPL(i915_gpu_busy
);
6502 * i915_gpu_turbo_disable - disable graphics turbo
6504 * Disable graphics turbo by resetting the max frequency and setting the
6505 * current frequency to the default.
6507 bool i915_gpu_turbo_disable(void)
6509 struct drm_i915_private
*dev_priv
;
6512 spin_lock_irq(&mchdev_lock
);
6513 if (!i915_mch_dev
) {
6517 dev_priv
= i915_mch_dev
;
6519 dev_priv
->ips
.max_delay
= dev_priv
->ips
.fstart
;
6521 if (!ironlake_set_drps(dev_priv
, dev_priv
->ips
.fstart
))
6525 spin_unlock_irq(&mchdev_lock
);
6529 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable
);
6532 * Tells the intel_ips driver that the i915 driver is now loaded, if
6533 * IPS got loaded first.
6535 * This awkward dance is so that neither module has to depend on the
6536 * other in order for IPS to do the appropriate communication of
6537 * GPU turbo limits to i915.
6540 ips_ping_for_i915_load(void)
6544 link
= symbol_get(ips_link_to_i915_driver
);
6547 symbol_put(ips_link_to_i915_driver
);
6551 void intel_gpu_ips_init(struct drm_i915_private
*dev_priv
)
6553 /* We only register the i915 ips part with intel-ips once everything is
6554 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6555 spin_lock_irq(&mchdev_lock
);
6556 i915_mch_dev
= dev_priv
;
6557 spin_unlock_irq(&mchdev_lock
);
6559 ips_ping_for_i915_load();
6562 void intel_gpu_ips_teardown(void)
6564 spin_lock_irq(&mchdev_lock
);
6565 i915_mch_dev
= NULL
;
6566 spin_unlock_irq(&mchdev_lock
);
6569 static void intel_init_emon(struct drm_i915_private
*dev_priv
)
6575 /* Disable to program */
6579 /* Program energy weights for various events */
6580 I915_WRITE(SDEW
, 0x15040d00);
6581 I915_WRITE(CSIEW0
, 0x007f0000);
6582 I915_WRITE(CSIEW1
, 0x1e220004);
6583 I915_WRITE(CSIEW2
, 0x04000004);
6585 for (i
= 0; i
< 5; i
++)
6586 I915_WRITE(PEW(i
), 0);
6587 for (i
= 0; i
< 3; i
++)
6588 I915_WRITE(DEW(i
), 0);
6590 /* Program P-state weights to account for frequency power adjustment */
6591 for (i
= 0; i
< 16; i
++) {
6592 u32 pxvidfreq
= I915_READ(PXVFREQ(i
));
6593 unsigned long freq
= intel_pxfreq(pxvidfreq
);
6594 unsigned long vid
= (pxvidfreq
& PXVFREQ_PX_MASK
) >>
6599 val
*= (freq
/ 1000);
6601 val
/= (127*127*900);
6603 DRM_ERROR("bad pxval: %ld\n", val
);
6606 /* Render standby states get 0 weight */
6610 for (i
= 0; i
< 4; i
++) {
6611 u32 val
= (pxw
[i
*4] << 24) | (pxw
[(i
*4)+1] << 16) |
6612 (pxw
[(i
*4)+2] << 8) | (pxw
[(i
*4)+3]);
6613 I915_WRITE(PXW(i
), val
);
6616 /* Adjust magic regs to magic values (more experimental results) */
6617 I915_WRITE(OGW0
, 0);
6618 I915_WRITE(OGW1
, 0);
6619 I915_WRITE(EG0
, 0x00007f00);
6620 I915_WRITE(EG1
, 0x0000000e);
6621 I915_WRITE(EG2
, 0x000e0000);
6622 I915_WRITE(EG3
, 0x68000300);
6623 I915_WRITE(EG4
, 0x42000000);
6624 I915_WRITE(EG5
, 0x00140031);
6628 for (i
= 0; i
< 8; i
++)
6629 I915_WRITE(PXWL(i
), 0);
6631 /* Enable PMON + select events */
6632 I915_WRITE(ECR
, 0x80000019);
6634 lcfuse
= I915_READ(LCFUSE02
);
6636 dev_priv
->ips
.corr
= (lcfuse
& LCFUSE_HIV_MASK
);
6639 void intel_init_gt_powersave(struct drm_i915_private
*dev_priv
)
6642 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6645 if (!i915
.enable_rc6
) {
6646 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6647 intel_runtime_pm_get(dev_priv
);
6650 mutex_lock(&dev_priv
->drm
.struct_mutex
);
6651 mutex_lock(&dev_priv
->rps
.hw_lock
);
6653 /* Initialize RPS limits (for userspace) */
6654 if (IS_CHERRYVIEW(dev_priv
))
6655 cherryview_init_gt_powersave(dev_priv
);
6656 else if (IS_VALLEYVIEW(dev_priv
))
6657 valleyview_init_gt_powersave(dev_priv
);
6658 else if (INTEL_GEN(dev_priv
) >= 6)
6659 gen6_init_rps_frequencies(dev_priv
);
6661 /* Derive initial user preferences/limits from the hardware limits */
6662 dev_priv
->rps
.idle_freq
= dev_priv
->rps
.min_freq
;
6663 dev_priv
->rps
.cur_freq
= dev_priv
->rps
.idle_freq
;
6665 dev_priv
->rps
.max_freq_softlimit
= dev_priv
->rps
.max_freq
;
6666 dev_priv
->rps
.min_freq_softlimit
= dev_priv
->rps
.min_freq
;
6668 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
6669 dev_priv
->rps
.min_freq_softlimit
=
6671 dev_priv
->rps
.efficient_freq
,
6672 intel_freq_opcode(dev_priv
, 450));
6674 /* After setting max-softlimit, find the overclock max freq */
6675 if (IS_GEN6(dev_priv
) ||
6676 IS_IVYBRIDGE(dev_priv
) || IS_HASWELL(dev_priv
)) {
6679 sandybridge_pcode_read(dev_priv
, GEN6_READ_OC_PARAMS
, ¶ms
);
6680 if (params
& BIT(31)) { /* OC supported */
6681 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
6682 (dev_priv
->rps
.max_freq
& 0xff) * 50,
6683 (params
& 0xff) * 50);
6684 dev_priv
->rps
.max_freq
= params
& 0xff;
6688 /* Finally allow us to boost to max by default */
6689 dev_priv
->rps
.boost_freq
= dev_priv
->rps
.max_freq
;
6691 mutex_unlock(&dev_priv
->rps
.hw_lock
);
6692 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
6694 intel_autoenable_gt_powersave(dev_priv
);
6697 void intel_cleanup_gt_powersave(struct drm_i915_private
*dev_priv
)
6699 if (IS_VALLEYVIEW(dev_priv
))
6700 valleyview_cleanup_gt_powersave(dev_priv
);
6702 if (!i915
.enable_rc6
)
6703 intel_runtime_pm_put(dev_priv
);
6707 * intel_suspend_gt_powersave - suspend PM work and helper threads
6708 * @dev_priv: i915 device
6710 * We don't want to disable RC6 or other features here, we just want
6711 * to make sure any work we've queued has finished and won't bother
6712 * us while we're suspended.
6714 void intel_suspend_gt_powersave(struct drm_i915_private
*dev_priv
)
6716 if (INTEL_GEN(dev_priv
) < 6)
6719 if (cancel_delayed_work_sync(&dev_priv
->rps
.autoenable_work
))
6720 intel_runtime_pm_put(dev_priv
);
6722 /* gen6_rps_idle() will be called later to disable interrupts */
6725 void intel_sanitize_gt_powersave(struct drm_i915_private
*dev_priv
)
6727 dev_priv
->rps
.enabled
= true; /* force disabling */
6728 intel_disable_gt_powersave(dev_priv
);
6730 gen6_reset_rps_interrupts(dev_priv
);
6733 void intel_disable_gt_powersave(struct drm_i915_private
*dev_priv
)
6735 if (!READ_ONCE(dev_priv
->rps
.enabled
))
6738 mutex_lock(&dev_priv
->rps
.hw_lock
);
6740 if (INTEL_GEN(dev_priv
) >= 9) {
6741 gen9_disable_rc6(dev_priv
);
6742 gen9_disable_rps(dev_priv
);
6743 } else if (IS_CHERRYVIEW(dev_priv
)) {
6744 cherryview_disable_rps(dev_priv
);
6745 } else if (IS_VALLEYVIEW(dev_priv
)) {
6746 valleyview_disable_rps(dev_priv
);
6747 } else if (INTEL_GEN(dev_priv
) >= 6) {
6748 gen6_disable_rps(dev_priv
);
6749 } else if (IS_IRONLAKE_M(dev_priv
)) {
6750 ironlake_disable_drps(dev_priv
);
6753 dev_priv
->rps
.enabled
= false;
6754 mutex_unlock(&dev_priv
->rps
.hw_lock
);
6757 void intel_enable_gt_powersave(struct drm_i915_private
*dev_priv
)
6759 /* We shouldn't be disabling as we submit, so this should be less
6760 * racy than it appears!
6762 if (READ_ONCE(dev_priv
->rps
.enabled
))
6765 /* Powersaving is controlled by the host when inside a VM */
6766 if (intel_vgpu_active(dev_priv
))
6769 mutex_lock(&dev_priv
->rps
.hw_lock
);
6771 if (IS_CHERRYVIEW(dev_priv
)) {
6772 cherryview_enable_rps(dev_priv
);
6773 } else if (IS_VALLEYVIEW(dev_priv
)) {
6774 valleyview_enable_rps(dev_priv
);
6775 } else if (INTEL_GEN(dev_priv
) >= 9) {
6776 gen9_enable_rc6(dev_priv
);
6777 gen9_enable_rps(dev_priv
);
6778 if (IS_SKYLAKE(dev_priv
) || IS_KABYLAKE(dev_priv
))
6779 gen6_update_ring_freq(dev_priv
);
6780 } else if (IS_BROADWELL(dev_priv
)) {
6781 gen8_enable_rps(dev_priv
);
6782 gen6_update_ring_freq(dev_priv
);
6783 } else if (INTEL_GEN(dev_priv
) >= 6) {
6784 gen6_enable_rps(dev_priv
);
6785 gen6_update_ring_freq(dev_priv
);
6786 } else if (IS_IRONLAKE_M(dev_priv
)) {
6787 ironlake_enable_drps(dev_priv
);
6788 intel_init_emon(dev_priv
);
6791 WARN_ON(dev_priv
->rps
.max_freq
< dev_priv
->rps
.min_freq
);
6792 WARN_ON(dev_priv
->rps
.idle_freq
> dev_priv
->rps
.max_freq
);
6794 WARN_ON(dev_priv
->rps
.efficient_freq
< dev_priv
->rps
.min_freq
);
6795 WARN_ON(dev_priv
->rps
.efficient_freq
> dev_priv
->rps
.max_freq
);
6797 dev_priv
->rps
.enabled
= true;
6798 mutex_unlock(&dev_priv
->rps
.hw_lock
);
6801 static void __intel_autoenable_gt_powersave(struct work_struct
*work
)
6803 struct drm_i915_private
*dev_priv
=
6804 container_of(work
, typeof(*dev_priv
), rps
.autoenable_work
.work
);
6805 struct intel_engine_cs
*rcs
;
6806 struct drm_i915_gem_request
*req
;
6808 if (READ_ONCE(dev_priv
->rps
.enabled
))
6811 rcs
= dev_priv
->engine
[RCS
];
6812 if (rcs
->last_retired_context
)
6815 if (!rcs
->init_context
)
6818 mutex_lock(&dev_priv
->drm
.struct_mutex
);
6820 req
= i915_gem_request_alloc(rcs
, dev_priv
->kernel_context
);
6824 if (!i915
.enable_execlists
&& i915_switch_context(req
) == 0)
6825 rcs
->init_context(req
);
6827 /* Mark the device busy, calling intel_enable_gt_powersave() */
6828 i915_add_request_no_flush(req
);
6831 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
6833 intel_runtime_pm_put(dev_priv
);
6836 void intel_autoenable_gt_powersave(struct drm_i915_private
*dev_priv
)
6838 if (READ_ONCE(dev_priv
->rps
.enabled
))
6841 if (IS_IRONLAKE_M(dev_priv
)) {
6842 ironlake_enable_drps(dev_priv
);
6843 intel_init_emon(dev_priv
);
6844 } else if (INTEL_INFO(dev_priv
)->gen
>= 6) {
6846 * PCU communication is slow and this doesn't need to be
6847 * done at any specific time, so do this out of our fast path
6848 * to make resume and init faster.
6850 * We depend on the HW RC6 power context save/restore
6851 * mechanism when entering D3 through runtime PM suspend. So
6852 * disable RPM until RPS/RC6 is properly setup. We can only
6853 * get here via the driver load/system resume/runtime resume
6854 * paths, so the _noresume version is enough (and in case of
6855 * runtime resume it's necessary).
6857 if (queue_delayed_work(dev_priv
->wq
,
6858 &dev_priv
->rps
.autoenable_work
,
6859 round_jiffies_up_relative(HZ
)))
6860 intel_runtime_pm_get_noresume(dev_priv
);
6864 static void ibx_init_clock_gating(struct drm_i915_private
*dev_priv
)
6867 * On Ibex Peak and Cougar Point, we need to disable clock
6868 * gating for the panel power sequencer or it will fail to
6869 * start up when no ports are active.
6871 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
);
6874 static void g4x_disable_trickle_feed(struct drm_i915_private
*dev_priv
)
6878 for_each_pipe(dev_priv
, pipe
) {
6879 I915_WRITE(DSPCNTR(pipe
),
6880 I915_READ(DSPCNTR(pipe
)) |
6881 DISPPLANE_TRICKLE_FEED_DISABLE
);
6883 I915_WRITE(DSPSURF(pipe
), I915_READ(DSPSURF(pipe
)));
6884 POSTING_READ(DSPSURF(pipe
));
6888 static void ilk_init_lp_watermarks(struct drm_i915_private
*dev_priv
)
6890 I915_WRITE(WM3_LP_ILK
, I915_READ(WM3_LP_ILK
) & ~WM1_LP_SR_EN
);
6891 I915_WRITE(WM2_LP_ILK
, I915_READ(WM2_LP_ILK
) & ~WM1_LP_SR_EN
);
6892 I915_WRITE(WM1_LP_ILK
, I915_READ(WM1_LP_ILK
) & ~WM1_LP_SR_EN
);
6895 * Don't touch WM1S_LP_EN here.
6896 * Doing so could cause underruns.
6900 static void ironlake_init_clock_gating(struct drm_i915_private
*dev_priv
)
6902 uint32_t dspclk_gate
= ILK_VRHUNIT_CLOCK_GATE_DISABLE
;
6906 * WaFbcDisableDpfcClockGating:ilk
6908 dspclk_gate
|= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE
|
6909 ILK_DPFCUNIT_CLOCK_GATE_DISABLE
|
6910 ILK_DPFDUNIT_CLOCK_GATE_ENABLE
;
6912 I915_WRITE(PCH_3DCGDIS0
,
6913 MARIUNIT_CLOCK_GATE_DISABLE
|
6914 SVSMUNIT_CLOCK_GATE_DISABLE
);
6915 I915_WRITE(PCH_3DCGDIS1
,
6916 VFMUNIT_CLOCK_GATE_DISABLE
);
6919 * According to the spec the following bits should be set in
6920 * order to enable memory self-refresh
6921 * The bit 22/21 of 0x42004
6922 * The bit 5 of 0x42020
6923 * The bit 15 of 0x45000
6925 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
6926 (I915_READ(ILK_DISPLAY_CHICKEN2
) |
6927 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
));
6928 dspclk_gate
|= ILK_DPARBUNIT_CLOCK_GATE_ENABLE
;
6929 I915_WRITE(DISP_ARB_CTL
,
6930 (I915_READ(DISP_ARB_CTL
) |
6933 ilk_init_lp_watermarks(dev_priv
);
6936 * Based on the document from hardware guys the following bits
6937 * should be set unconditionally in order to enable FBC.
6938 * The bit 22 of 0x42000
6939 * The bit 22 of 0x42004
6940 * The bit 7,8,9 of 0x42020.
6942 if (IS_IRONLAKE_M(dev_priv
)) {
6943 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6944 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
6945 I915_READ(ILK_DISPLAY_CHICKEN1
) |
6947 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
6948 I915_READ(ILK_DISPLAY_CHICKEN2
) |
6952 I915_WRITE(ILK_DSPCLK_GATE_D
, dspclk_gate
);
6954 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
6955 I915_READ(ILK_DISPLAY_CHICKEN2
) |
6956 ILK_ELPIN_409_SELECT
);
6957 I915_WRITE(_3D_CHICKEN2
,
6958 _3D_CHICKEN2_WM_READ_PIPELINED
<< 16 |
6959 _3D_CHICKEN2_WM_READ_PIPELINED
);
6961 /* WaDisableRenderCachePipelinedFlush:ilk */
6962 I915_WRITE(CACHE_MODE_0
,
6963 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE
));
6965 /* WaDisable_RenderCache_OperationalFlush:ilk */
6966 I915_WRITE(CACHE_MODE_0
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
6968 g4x_disable_trickle_feed(dev_priv
);
6970 ibx_init_clock_gating(dev_priv
);
6973 static void cpt_init_clock_gating(struct drm_i915_private
*dev_priv
)
6979 * On Ibex Peak and Cougar Point, we need to disable clock
6980 * gating for the panel power sequencer or it will fail to
6981 * start up when no ports are active.
6983 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
|
6984 PCH_DPLUNIT_CLOCK_GATE_DISABLE
|
6985 PCH_CPUNIT_CLOCK_GATE_DISABLE
);
6986 I915_WRITE(SOUTH_CHICKEN2
, I915_READ(SOUTH_CHICKEN2
) |
6987 DPLS_EDP_PPS_FIX_DIS
);
6988 /* The below fixes the weird display corruption, a few pixels shifted
6989 * downward, on (only) LVDS of some HP laptops with IVY.
6991 for_each_pipe(dev_priv
, pipe
) {
6992 val
= I915_READ(TRANS_CHICKEN2(pipe
));
6993 val
|= TRANS_CHICKEN2_TIMING_OVERRIDE
;
6994 val
&= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED
;
6995 if (dev_priv
->vbt
.fdi_rx_polarity_inverted
)
6996 val
|= TRANS_CHICKEN2_FDI_POLARITY_REVERSED
;
6997 val
&= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK
;
6998 val
&= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER
;
6999 val
&= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH
;
7000 I915_WRITE(TRANS_CHICKEN2(pipe
), val
);
7002 /* WADP0ClockGatingDisable */
7003 for_each_pipe(dev_priv
, pipe
) {
7004 I915_WRITE(TRANS_CHICKEN1(pipe
),
7005 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE
);
7009 static void gen6_check_mch_setup(struct drm_i915_private
*dev_priv
)
7013 tmp
= I915_READ(MCH_SSKPD
);
7014 if ((tmp
& MCH_SSKPD_WM0_MASK
) != MCH_SSKPD_WM0_VAL
)
7015 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7019 static void gen6_init_clock_gating(struct drm_i915_private
*dev_priv
)
7021 uint32_t dspclk_gate
= ILK_VRHUNIT_CLOCK_GATE_DISABLE
;
7023 I915_WRITE(ILK_DSPCLK_GATE_D
, dspclk_gate
);
7025 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
7026 I915_READ(ILK_DISPLAY_CHICKEN2
) |
7027 ILK_ELPIN_409_SELECT
);
7029 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7030 I915_WRITE(_3D_CHICKEN
,
7031 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB
));
7033 /* WaDisable_RenderCache_OperationalFlush:snb */
7034 I915_WRITE(CACHE_MODE_0
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
7037 * BSpec recoomends 8x4 when MSAA is used,
7038 * however in practice 16x4 seems fastest.
7040 * Note that PS/WM thread counts depend on the WIZ hashing
7041 * disable bit, which we don't touch here, but it's good
7042 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7044 I915_WRITE(GEN6_GT_MODE
,
7045 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK
, GEN6_WIZ_HASHING_16x4
));
7047 ilk_init_lp_watermarks(dev_priv
);
7049 I915_WRITE(CACHE_MODE_0
,
7050 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB
));
7052 I915_WRITE(GEN6_UCGCTL1
,
7053 I915_READ(GEN6_UCGCTL1
) |
7054 GEN6_BLBUNIT_CLOCK_GATE_DISABLE
|
7055 GEN6_CSUNIT_CLOCK_GATE_DISABLE
);
7057 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7058 * gating disable must be set. Failure to set it results in
7059 * flickering pixels due to Z write ordering failures after
7060 * some amount of runtime in the Mesa "fire" demo, and Unigine
7061 * Sanctuary and Tropics, and apparently anything else with
7062 * alpha test or pixel discard.
7064 * According to the spec, bit 11 (RCCUNIT) must also be set,
7065 * but we didn't debug actual testcases to find it out.
7067 * WaDisableRCCUnitClockGating:snb
7068 * WaDisableRCPBUnitClockGating:snb
7070 I915_WRITE(GEN6_UCGCTL2
,
7071 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE
|
7072 GEN6_RCCUNIT_CLOCK_GATE_DISABLE
);
7074 /* WaStripsFansDisableFastClipPerformanceFix:snb */
7075 I915_WRITE(_3D_CHICKEN3
,
7076 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL
));
7080 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
7081 * 3DSTATE_SF number of SF output attributes is more than 16."
7083 I915_WRITE(_3D_CHICKEN3
,
7084 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH
));
7087 * According to the spec the following bits should be
7088 * set in order to enable memory self-refresh and fbc:
7089 * The bit21 and bit22 of 0x42000
7090 * The bit21 and bit22 of 0x42004
7091 * The bit5 and bit7 of 0x42020
7092 * The bit14 of 0x70180
7093 * The bit14 of 0x71180
7095 * WaFbcAsynchFlipDisableFbcQueue:snb
7097 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
7098 I915_READ(ILK_DISPLAY_CHICKEN1
) |
7099 ILK_FBCQ_DIS
| ILK_PABSTRETCH_DIS
);
7100 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
7101 I915_READ(ILK_DISPLAY_CHICKEN2
) |
7102 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
);
7103 I915_WRITE(ILK_DSPCLK_GATE_D
,
7104 I915_READ(ILK_DSPCLK_GATE_D
) |
7105 ILK_DPARBUNIT_CLOCK_GATE_ENABLE
|
7106 ILK_DPFDUNIT_CLOCK_GATE_ENABLE
);
7108 g4x_disable_trickle_feed(dev_priv
);
7110 cpt_init_clock_gating(dev_priv
);
7112 gen6_check_mch_setup(dev_priv
);
7115 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private
*dev_priv
)
7117 uint32_t reg
= I915_READ(GEN7_FF_THREAD_MODE
);
7120 * WaVSThreadDispatchOverride:ivb,vlv
7122 * This actually overrides the dispatch
7123 * mode for all thread types.
7125 reg
&= ~GEN7_FF_SCHED_MASK
;
7126 reg
|= GEN7_FF_TS_SCHED_HW
;
7127 reg
|= GEN7_FF_VS_SCHED_HW
;
7128 reg
|= GEN7_FF_DS_SCHED_HW
;
7130 I915_WRITE(GEN7_FF_THREAD_MODE
, reg
);
7133 static void lpt_init_clock_gating(struct drm_i915_private
*dev_priv
)
7136 * TODO: this bit should only be enabled when really needed, then
7137 * disabled when not needed anymore in order to save power.
7139 if (HAS_PCH_LPT_LP(dev_priv
))
7140 I915_WRITE(SOUTH_DSPCLK_GATE_D
,
7141 I915_READ(SOUTH_DSPCLK_GATE_D
) |
7142 PCH_LP_PARTITION_LEVEL_DISABLE
);
7144 /* WADPOClockGatingDisable:hsw */
7145 I915_WRITE(TRANS_CHICKEN1(PIPE_A
),
7146 I915_READ(TRANS_CHICKEN1(PIPE_A
)) |
7147 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE
);
7150 static void lpt_suspend_hw(struct drm_i915_private
*dev_priv
)
7152 if (HAS_PCH_LPT_LP(dev_priv
)) {
7153 uint32_t val
= I915_READ(SOUTH_DSPCLK_GATE_D
);
7155 val
&= ~PCH_LP_PARTITION_LEVEL_DISABLE
;
7156 I915_WRITE(SOUTH_DSPCLK_GATE_D
, val
);
7160 static void gen8_set_l3sqc_credits(struct drm_i915_private
*dev_priv
,
7161 int general_prio_credits
,
7162 int high_prio_credits
)
7166 /* WaTempDisableDOPClkGating:bdw */
7167 misccpctl
= I915_READ(GEN7_MISCCPCTL
);
7168 I915_WRITE(GEN7_MISCCPCTL
, misccpctl
& ~GEN7_DOP_CLOCK_GATE_ENABLE
);
7170 I915_WRITE(GEN8_L3SQCREG1
,
7171 L3_GENERAL_PRIO_CREDITS(general_prio_credits
) |
7172 L3_HIGH_PRIO_CREDITS(high_prio_credits
));
7175 * Wait at least 100 clocks before re-enabling clock gating.
7176 * See the definition of L3SQCREG1 in BSpec.
7178 POSTING_READ(GEN8_L3SQCREG1
);
7180 I915_WRITE(GEN7_MISCCPCTL
, misccpctl
);
7183 static void kabylake_init_clock_gating(struct drm_i915_private
*dev_priv
)
7185 gen9_init_clock_gating(dev_priv
);
7187 /* WaDisableSDEUnitClockGating:kbl */
7188 if (IS_KBL_REVID(dev_priv
, 0, KBL_REVID_B0
))
7189 I915_WRITE(GEN8_UCGCTL6
, I915_READ(GEN8_UCGCTL6
) |
7190 GEN8_SDEUNIT_CLOCK_GATE_DISABLE
);
7192 /* WaDisableGamClockGating:kbl */
7193 if (IS_KBL_REVID(dev_priv
, 0, KBL_REVID_B0
))
7194 I915_WRITE(GEN6_UCGCTL1
, I915_READ(GEN6_UCGCTL1
) |
7195 GEN6_GAMUNIT_CLOCK_GATE_DISABLE
);
7197 /* WaFbcNukeOnHostModify:kbl */
7198 I915_WRITE(ILK_DPFC_CHICKEN
, I915_READ(ILK_DPFC_CHICKEN
) |
7199 ILK_DPFC_NUKE_ON_ANY_MODIFICATION
);
7202 static void skylake_init_clock_gating(struct drm_i915_private
*dev_priv
)
7204 gen9_init_clock_gating(dev_priv
);
7206 /* WAC6entrylatency:skl */
7207 I915_WRITE(FBC_LLC_READ_CTRL
, I915_READ(FBC_LLC_READ_CTRL
) |
7208 FBC_LLC_FULLY_OPEN
);
7210 /* WaFbcNukeOnHostModify:skl */
7211 I915_WRITE(ILK_DPFC_CHICKEN
, I915_READ(ILK_DPFC_CHICKEN
) |
7212 ILK_DPFC_NUKE_ON_ANY_MODIFICATION
);
7215 static void broadwell_init_clock_gating(struct drm_i915_private
*dev_priv
)
7219 ilk_init_lp_watermarks(dev_priv
);
7221 /* WaSwitchSolVfFArbitrationPriority:bdw */
7222 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) | HSW_ECOCHK_ARB_PRIO_SOL
);
7224 /* WaPsrDPAMaskVBlankInSRD:bdw */
7225 I915_WRITE(CHICKEN_PAR1_1
,
7226 I915_READ(CHICKEN_PAR1_1
) | DPA_MASK_VBLANK_SRD
);
7228 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7229 for_each_pipe(dev_priv
, pipe
) {
7230 I915_WRITE(CHICKEN_PIPESL_1(pipe
),
7231 I915_READ(CHICKEN_PIPESL_1(pipe
)) |
7232 BDW_DPRS_MASK_VBLANK_SRD
);
7235 /* WaVSRefCountFullforceMissDisable:bdw */
7236 /* WaDSRefCountFullforceMissDisable:bdw */
7237 I915_WRITE(GEN7_FF_THREAD_MODE
,
7238 I915_READ(GEN7_FF_THREAD_MODE
) &
7239 ~(GEN8_FF_DS_REF_CNT_FFME
| GEN7_FF_VS_REF_CNT_FFME
));
7241 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL
,
7242 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE
));
7244 /* WaDisableSDEUnitClockGating:bdw */
7245 I915_WRITE(GEN8_UCGCTL6
, I915_READ(GEN8_UCGCTL6
) |
7246 GEN8_SDEUNIT_CLOCK_GATE_DISABLE
);
7248 /* WaProgramL3SqcReg1Default:bdw */
7249 gen8_set_l3sqc_credits(dev_priv
, 30, 2);
7252 * WaGttCachingOffByDefault:bdw
7253 * GTT cache may not work with big pages, so if those
7254 * are ever enabled GTT cache may need to be disabled.
7256 I915_WRITE(HSW_GTT_CACHE_EN
, GTT_CACHE_EN_ALL
);
7258 /* WaKVMNotificationOnConfigChange:bdw */
7259 I915_WRITE(CHICKEN_PAR2_1
, I915_READ(CHICKEN_PAR2_1
)
7260 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT
);
7262 lpt_init_clock_gating(dev_priv
);
7265 static void haswell_init_clock_gating(struct drm_i915_private
*dev_priv
)
7267 ilk_init_lp_watermarks(dev_priv
);
7269 /* L3 caching of data atomics doesn't work -- disable it. */
7270 I915_WRITE(HSW_SCRATCH1
, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE
);
7271 I915_WRITE(HSW_ROW_CHICKEN3
,
7272 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE
));
7274 /* This is required by WaCatErrorRejectionIssue:hsw */
7275 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
,
7276 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
) |
7277 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB
);
7279 /* WaVSRefCountFullforceMissDisable:hsw */
7280 I915_WRITE(GEN7_FF_THREAD_MODE
,
7281 I915_READ(GEN7_FF_THREAD_MODE
) & ~GEN7_FF_VS_REF_CNT_FFME
);
7283 /* WaDisable_RenderCache_OperationalFlush:hsw */
7284 I915_WRITE(CACHE_MODE_0_GEN7
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
7286 /* enable HiZ Raw Stall Optimization */
7287 I915_WRITE(CACHE_MODE_0_GEN7
,
7288 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE
));
7290 /* WaDisable4x2SubspanOptimization:hsw */
7291 I915_WRITE(CACHE_MODE_1
,
7292 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE
));
7295 * BSpec recommends 8x4 when MSAA is used,
7296 * however in practice 16x4 seems fastest.
7298 * Note that PS/WM thread counts depend on the WIZ hashing
7299 * disable bit, which we don't touch here, but it's good
7300 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7302 I915_WRITE(GEN7_GT_MODE
,
7303 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK
, GEN6_WIZ_HASHING_16x4
));
7305 /* WaSampleCChickenBitEnable:hsw */
7306 I915_WRITE(HALF_SLICE_CHICKEN3
,
7307 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE
));
7309 /* WaSwitchSolVfFArbitrationPriority:hsw */
7310 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) | HSW_ECOCHK_ARB_PRIO_SOL
);
7312 /* WaRsPkgCStateDisplayPMReq:hsw */
7313 I915_WRITE(CHICKEN_PAR1_1
,
7314 I915_READ(CHICKEN_PAR1_1
) | FORCE_ARB_IDLE_PLANES
);
7316 lpt_init_clock_gating(dev_priv
);
7319 static void ivybridge_init_clock_gating(struct drm_i915_private
*dev_priv
)
7323 ilk_init_lp_watermarks(dev_priv
);
7325 I915_WRITE(ILK_DSPCLK_GATE_D
, ILK_VRHUNIT_CLOCK_GATE_DISABLE
);
7327 /* WaDisableEarlyCull:ivb */
7328 I915_WRITE(_3D_CHICKEN3
,
7329 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL
));
7331 /* WaDisableBackToBackFlipFix:ivb */
7332 I915_WRITE(IVB_CHICKEN3
,
7333 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE
|
7334 CHICKEN3_DGMG_DONE_FIX_DISABLE
);
7336 /* WaDisablePSDDualDispatchEnable:ivb */
7337 if (IS_IVB_GT1(dev_priv
))
7338 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1
,
7339 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE
));
7341 /* WaDisable_RenderCache_OperationalFlush:ivb */
7342 I915_WRITE(CACHE_MODE_0_GEN7
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
7344 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7345 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1
,
7346 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC
);
7348 /* WaApplyL3ControlAndL3ChickenMode:ivb */
7349 I915_WRITE(GEN7_L3CNTLREG1
,
7350 GEN7_WA_FOR_GEN7_L3_CONTROL
);
7351 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER
,
7352 GEN7_WA_L3_CHICKEN_MODE
);
7353 if (IS_IVB_GT1(dev_priv
))
7354 I915_WRITE(GEN7_ROW_CHICKEN2
,
7355 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
7357 /* must write both registers */
7358 I915_WRITE(GEN7_ROW_CHICKEN2
,
7359 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
7360 I915_WRITE(GEN7_ROW_CHICKEN2_GT2
,
7361 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
7364 /* WaForceL3Serialization:ivb */
7365 I915_WRITE(GEN7_L3SQCREG4
, I915_READ(GEN7_L3SQCREG4
) &
7366 ~L3SQ_URB_READ_CAM_MATCH_DISABLE
);
7369 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7370 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7372 I915_WRITE(GEN6_UCGCTL2
,
7373 GEN6_RCZUNIT_CLOCK_GATE_DISABLE
);
7375 /* This is required by WaCatErrorRejectionIssue:ivb */
7376 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
,
7377 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
) |
7378 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB
);
7380 g4x_disable_trickle_feed(dev_priv
);
7382 gen7_setup_fixed_func_scheduler(dev_priv
);
7384 if (0) { /* causes HiZ corruption on ivb:gt1 */
7385 /* enable HiZ Raw Stall Optimization */
7386 I915_WRITE(CACHE_MODE_0_GEN7
,
7387 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE
));
7390 /* WaDisable4x2SubspanOptimization:ivb */
7391 I915_WRITE(CACHE_MODE_1
,
7392 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE
));
7395 * BSpec recommends 8x4 when MSAA is used,
7396 * however in practice 16x4 seems fastest.
7398 * Note that PS/WM thread counts depend on the WIZ hashing
7399 * disable bit, which we don't touch here, but it's good
7400 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7402 I915_WRITE(GEN7_GT_MODE
,
7403 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK
, GEN6_WIZ_HASHING_16x4
));
7405 snpcr
= I915_READ(GEN6_MBCUNIT_SNPCR
);
7406 snpcr
&= ~GEN6_MBC_SNPCR_MASK
;
7407 snpcr
|= GEN6_MBC_SNPCR_MED
;
7408 I915_WRITE(GEN6_MBCUNIT_SNPCR
, snpcr
);
7410 if (!HAS_PCH_NOP(dev_priv
))
7411 cpt_init_clock_gating(dev_priv
);
7413 gen6_check_mch_setup(dev_priv
);
7416 static void valleyview_init_clock_gating(struct drm_i915_private
*dev_priv
)
7418 /* WaDisableEarlyCull:vlv */
7419 I915_WRITE(_3D_CHICKEN3
,
7420 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL
));
7422 /* WaDisableBackToBackFlipFix:vlv */
7423 I915_WRITE(IVB_CHICKEN3
,
7424 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE
|
7425 CHICKEN3_DGMG_DONE_FIX_DISABLE
);
7427 /* WaPsdDispatchEnable:vlv */
7428 /* WaDisablePSDDualDispatchEnable:vlv */
7429 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1
,
7430 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP
|
7431 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE
));
7433 /* WaDisable_RenderCache_OperationalFlush:vlv */
7434 I915_WRITE(CACHE_MODE_0_GEN7
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
7436 /* WaForceL3Serialization:vlv */
7437 I915_WRITE(GEN7_L3SQCREG4
, I915_READ(GEN7_L3SQCREG4
) &
7438 ~L3SQ_URB_READ_CAM_MATCH_DISABLE
);
7440 /* WaDisableDopClockGating:vlv */
7441 I915_WRITE(GEN7_ROW_CHICKEN2
,
7442 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
7444 /* This is required by WaCatErrorRejectionIssue:vlv */
7445 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
,
7446 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
) |
7447 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB
);
7449 gen7_setup_fixed_func_scheduler(dev_priv
);
7452 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7453 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7455 I915_WRITE(GEN6_UCGCTL2
,
7456 GEN6_RCZUNIT_CLOCK_GATE_DISABLE
);
7458 /* WaDisableL3Bank2xClockGate:vlv
7459 * Disabling L3 clock gating- MMIO 940c[25] = 1
7460 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7461 I915_WRITE(GEN7_UCGCTL4
,
7462 I915_READ(GEN7_UCGCTL4
) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE
);
7465 * BSpec says this must be set, even though
7466 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7468 I915_WRITE(CACHE_MODE_1
,
7469 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE
));
7472 * BSpec recommends 8x4 when MSAA is used,
7473 * however in practice 16x4 seems fastest.
7475 * Note that PS/WM thread counts depend on the WIZ hashing
7476 * disable bit, which we don't touch here, but it's good
7477 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7479 I915_WRITE(GEN7_GT_MODE
,
7480 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK
, GEN6_WIZ_HASHING_16x4
));
7483 * WaIncreaseL3CreditsForVLVB0:vlv
7484 * This is the hardware default actually.
7486 I915_WRITE(GEN7_L3SQCREG1
, VLV_B0_WA_L3SQCREG1_VALUE
);
7489 * WaDisableVLVClockGating_VBIIssue:vlv
7490 * Disable clock gating on th GCFG unit to prevent a delay
7491 * in the reporting of vblank events.
7493 I915_WRITE(VLV_GUNIT_CLOCK_GATE
, GCFG_DIS
);
7496 static void cherryview_init_clock_gating(struct drm_i915_private
*dev_priv
)
7498 /* WaVSRefCountFullforceMissDisable:chv */
7499 /* WaDSRefCountFullforceMissDisable:chv */
7500 I915_WRITE(GEN7_FF_THREAD_MODE
,
7501 I915_READ(GEN7_FF_THREAD_MODE
) &
7502 ~(GEN8_FF_DS_REF_CNT_FFME
| GEN7_FF_VS_REF_CNT_FFME
));
7504 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7505 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL
,
7506 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE
));
7508 /* WaDisableCSUnitClockGating:chv */
7509 I915_WRITE(GEN6_UCGCTL1
, I915_READ(GEN6_UCGCTL1
) |
7510 GEN6_CSUNIT_CLOCK_GATE_DISABLE
);
7512 /* WaDisableSDEUnitClockGating:chv */
7513 I915_WRITE(GEN8_UCGCTL6
, I915_READ(GEN8_UCGCTL6
) |
7514 GEN8_SDEUNIT_CLOCK_GATE_DISABLE
);
7517 * WaProgramL3SqcReg1Default:chv
7518 * See gfxspecs/Related Documents/Performance Guide/
7519 * LSQC Setting Recommendations.
7521 gen8_set_l3sqc_credits(dev_priv
, 38, 2);
7524 * GTT cache may not work with big pages, so if those
7525 * are ever enabled GTT cache may need to be disabled.
7527 I915_WRITE(HSW_GTT_CACHE_EN
, GTT_CACHE_EN_ALL
);
7530 static void g4x_init_clock_gating(struct drm_i915_private
*dev_priv
)
7532 uint32_t dspclk_gate
;
7534 I915_WRITE(RENCLK_GATE_D1
, 0);
7535 I915_WRITE(RENCLK_GATE_D2
, VF_UNIT_CLOCK_GATE_DISABLE
|
7536 GS_UNIT_CLOCK_GATE_DISABLE
|
7537 CL_UNIT_CLOCK_GATE_DISABLE
);
7538 I915_WRITE(RAMCLK_GATE_D
, 0);
7539 dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
|
7540 OVRUNIT_CLOCK_GATE_DISABLE
|
7541 OVCUNIT_CLOCK_GATE_DISABLE
;
7542 if (IS_GM45(dev_priv
))
7543 dspclk_gate
|= DSSUNIT_CLOCK_GATE_DISABLE
;
7544 I915_WRITE(DSPCLK_GATE_D
, dspclk_gate
);
7546 /* WaDisableRenderCachePipelinedFlush */
7547 I915_WRITE(CACHE_MODE_0
,
7548 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE
));
7550 /* WaDisable_RenderCache_OperationalFlush:g4x */
7551 I915_WRITE(CACHE_MODE_0
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
7553 g4x_disable_trickle_feed(dev_priv
);
7556 static void crestline_init_clock_gating(struct drm_i915_private
*dev_priv
)
7558 I915_WRITE(RENCLK_GATE_D1
, I965_RCC_CLOCK_GATE_DISABLE
);
7559 I915_WRITE(RENCLK_GATE_D2
, 0);
7560 I915_WRITE(DSPCLK_GATE_D
, 0);
7561 I915_WRITE(RAMCLK_GATE_D
, 0);
7562 I915_WRITE16(DEUC
, 0);
7563 I915_WRITE(MI_ARB_STATE
,
7564 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE
));
7566 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7567 I915_WRITE(CACHE_MODE_0
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
7570 static void broadwater_init_clock_gating(struct drm_i915_private
*dev_priv
)
7572 I915_WRITE(RENCLK_GATE_D1
, I965_RCZ_CLOCK_GATE_DISABLE
|
7573 I965_RCC_CLOCK_GATE_DISABLE
|
7574 I965_RCPB_CLOCK_GATE_DISABLE
|
7575 I965_ISC_CLOCK_GATE_DISABLE
|
7576 I965_FBC_CLOCK_GATE_DISABLE
);
7577 I915_WRITE(RENCLK_GATE_D2
, 0);
7578 I915_WRITE(MI_ARB_STATE
,
7579 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE
));
7581 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7582 I915_WRITE(CACHE_MODE_0
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
7585 static void gen3_init_clock_gating(struct drm_i915_private
*dev_priv
)
7587 u32 dstate
= I915_READ(D_STATE
);
7589 dstate
|= DSTATE_PLL_D3_OFF
| DSTATE_GFX_CLOCK_GATING
|
7590 DSTATE_DOT_CLOCK_GATING
;
7591 I915_WRITE(D_STATE
, dstate
);
7593 if (IS_PINEVIEW(dev_priv
))
7594 I915_WRITE(ECOSKPD
, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY
));
7596 /* IIR "flip pending" means done if this bit is set */
7597 I915_WRITE(ECOSKPD
, _MASKED_BIT_DISABLE(ECO_FLIP_DONE
));
7599 /* interrupts should cause a wake up from C3 */
7600 I915_WRITE(INSTPM
, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN
));
7602 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7603 I915_WRITE(MI_ARB_STATE
, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE
));
7605 I915_WRITE(MI_ARB_STATE
,
7606 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE
));
7609 static void i85x_init_clock_gating(struct drm_i915_private
*dev_priv
)
7611 I915_WRITE(RENCLK_GATE_D1
, SV_CLOCK_GATE_DISABLE
);
7613 /* interrupts should cause a wake up from C3 */
7614 I915_WRITE(MI_STATE
, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN
) |
7615 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE
));
7617 I915_WRITE(MEM_MODE
,
7618 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE
));
7621 static void i830_init_clock_gating(struct drm_i915_private
*dev_priv
)
7623 I915_WRITE(MEM_MODE
,
7624 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE
) |
7625 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE
));
7628 void intel_init_clock_gating(struct drm_i915_private
*dev_priv
)
7630 dev_priv
->display
.init_clock_gating(dev_priv
);
7633 void intel_suspend_hw(struct drm_i915_private
*dev_priv
)
7635 if (HAS_PCH_LPT(dev_priv
))
7636 lpt_suspend_hw(dev_priv
);
7639 static void nop_init_clock_gating(struct drm_i915_private
*dev_priv
)
7641 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7645 * intel_init_clock_gating_hooks - setup the clock gating hooks
7646 * @dev_priv: device private
7648 * Setup the hooks that configure which clocks of a given platform can be
7649 * gated and also apply various GT and display specific workarounds for these
7650 * platforms. Note that some GT specific workarounds are applied separately
7651 * when GPU contexts or batchbuffers start their execution.
7653 void intel_init_clock_gating_hooks(struct drm_i915_private
*dev_priv
)
7655 if (IS_SKYLAKE(dev_priv
))
7656 dev_priv
->display
.init_clock_gating
= skylake_init_clock_gating
;
7657 else if (IS_KABYLAKE(dev_priv
))
7658 dev_priv
->display
.init_clock_gating
= kabylake_init_clock_gating
;
7659 else if (IS_GEN9_LP(dev_priv
))
7660 dev_priv
->display
.init_clock_gating
= bxt_init_clock_gating
;
7661 else if (IS_BROADWELL(dev_priv
))
7662 dev_priv
->display
.init_clock_gating
= broadwell_init_clock_gating
;
7663 else if (IS_CHERRYVIEW(dev_priv
))
7664 dev_priv
->display
.init_clock_gating
= cherryview_init_clock_gating
;
7665 else if (IS_HASWELL(dev_priv
))
7666 dev_priv
->display
.init_clock_gating
= haswell_init_clock_gating
;
7667 else if (IS_IVYBRIDGE(dev_priv
))
7668 dev_priv
->display
.init_clock_gating
= ivybridge_init_clock_gating
;
7669 else if (IS_VALLEYVIEW(dev_priv
))
7670 dev_priv
->display
.init_clock_gating
= valleyview_init_clock_gating
;
7671 else if (IS_GEN6(dev_priv
))
7672 dev_priv
->display
.init_clock_gating
= gen6_init_clock_gating
;
7673 else if (IS_GEN5(dev_priv
))
7674 dev_priv
->display
.init_clock_gating
= ironlake_init_clock_gating
;
7675 else if (IS_G4X(dev_priv
))
7676 dev_priv
->display
.init_clock_gating
= g4x_init_clock_gating
;
7677 else if (IS_I965GM(dev_priv
))
7678 dev_priv
->display
.init_clock_gating
= crestline_init_clock_gating
;
7679 else if (IS_I965G(dev_priv
))
7680 dev_priv
->display
.init_clock_gating
= broadwater_init_clock_gating
;
7681 else if (IS_GEN3(dev_priv
))
7682 dev_priv
->display
.init_clock_gating
= gen3_init_clock_gating
;
7683 else if (IS_I85X(dev_priv
) || IS_I865G(dev_priv
))
7684 dev_priv
->display
.init_clock_gating
= i85x_init_clock_gating
;
7685 else if (IS_GEN2(dev_priv
))
7686 dev_priv
->display
.init_clock_gating
= i830_init_clock_gating
;
7688 MISSING_CASE(INTEL_DEVID(dev_priv
));
7689 dev_priv
->display
.init_clock_gating
= nop_init_clock_gating
;
7693 /* Set up chip specific power management-related functions */
7694 void intel_init_pm(struct drm_i915_private
*dev_priv
)
7696 intel_fbc_init(dev_priv
);
7699 if (IS_PINEVIEW(dev_priv
))
7700 i915_pineview_get_mem_freq(dev_priv
);
7701 else if (IS_GEN5(dev_priv
))
7702 i915_ironlake_get_mem_freq(dev_priv
);
7704 /* For FIFO watermark updates */
7705 if (INTEL_GEN(dev_priv
) >= 9) {
7706 skl_setup_wm_latency(dev_priv
);
7707 dev_priv
->display
.initial_watermarks
= skl_initial_wm
;
7708 dev_priv
->display
.atomic_update_watermarks
= skl_atomic_update_crtc_wm
;
7709 dev_priv
->display
.compute_global_watermarks
= skl_compute_wm
;
7710 } else if (HAS_PCH_SPLIT(dev_priv
)) {
7711 ilk_setup_wm_latency(dev_priv
);
7713 if ((IS_GEN5(dev_priv
) && dev_priv
->wm
.pri_latency
[1] &&
7714 dev_priv
->wm
.spr_latency
[1] && dev_priv
->wm
.cur_latency
[1]) ||
7715 (!IS_GEN5(dev_priv
) && dev_priv
->wm
.pri_latency
[0] &&
7716 dev_priv
->wm
.spr_latency
[0] && dev_priv
->wm
.cur_latency
[0])) {
7717 dev_priv
->display
.compute_pipe_wm
= ilk_compute_pipe_wm
;
7718 dev_priv
->display
.compute_intermediate_wm
=
7719 ilk_compute_intermediate_wm
;
7720 dev_priv
->display
.initial_watermarks
=
7721 ilk_initial_watermarks
;
7722 dev_priv
->display
.optimize_watermarks
=
7723 ilk_optimize_watermarks
;
7725 DRM_DEBUG_KMS("Failed to read display plane latency. "
7728 } else if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
7729 vlv_setup_wm_latency(dev_priv
);
7730 dev_priv
->display
.update_wm
= vlv_update_wm
;
7731 } else if (IS_PINEVIEW(dev_priv
)) {
7732 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv
),
7735 dev_priv
->mem_freq
)) {
7736 DRM_INFO("failed to find known CxSR latency "
7737 "(found ddr%s fsb freq %d, mem freq %d), "
7739 (dev_priv
->is_ddr3
== 1) ? "3" : "2",
7740 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
7741 /* Disable CxSR and never update its watermark again */
7742 intel_set_memory_cxsr(dev_priv
, false);
7743 dev_priv
->display
.update_wm
= NULL
;
7745 dev_priv
->display
.update_wm
= pineview_update_wm
;
7746 } else if (IS_G4X(dev_priv
)) {
7747 dev_priv
->display
.update_wm
= g4x_update_wm
;
7748 } else if (IS_GEN4(dev_priv
)) {
7749 dev_priv
->display
.update_wm
= i965_update_wm
;
7750 } else if (IS_GEN3(dev_priv
)) {
7751 dev_priv
->display
.update_wm
= i9xx_update_wm
;
7752 dev_priv
->display
.get_fifo_size
= i9xx_get_fifo_size
;
7753 } else if (IS_GEN2(dev_priv
)) {
7754 if (INTEL_INFO(dev_priv
)->num_pipes
== 1) {
7755 dev_priv
->display
.update_wm
= i845_update_wm
;
7756 dev_priv
->display
.get_fifo_size
= i845_get_fifo_size
;
7758 dev_priv
->display
.update_wm
= i9xx_update_wm
;
7759 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
7762 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7766 static inline int gen6_check_mailbox_status(struct drm_i915_private
*dev_priv
)
7769 I915_READ_FW(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_ERROR_MASK
;
7772 case GEN6_PCODE_SUCCESS
:
7774 case GEN6_PCODE_UNIMPLEMENTED_CMD
:
7775 case GEN6_PCODE_ILLEGAL_CMD
:
7777 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE
:
7778 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE
:
7780 case GEN6_PCODE_TIMEOUT
:
7788 static inline int gen7_check_mailbox_status(struct drm_i915_private
*dev_priv
)
7791 I915_READ_FW(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_ERROR_MASK
;
7794 case GEN6_PCODE_SUCCESS
:
7796 case GEN6_PCODE_ILLEGAL_CMD
:
7798 case GEN7_PCODE_TIMEOUT
:
7800 case GEN7_PCODE_ILLEGAL_DATA
:
7802 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE
:
7805 MISSING_CASE(flags
);
7810 int sandybridge_pcode_read(struct drm_i915_private
*dev_priv
, u32 mbox
, u32
*val
)
7814 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
7816 /* GEN6_PCODE_* are outside of the forcewake domain, we can
7817 * use te fw I915_READ variants to reduce the amount of work
7818 * required when reading/writing.
7821 if (I915_READ_FW(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) {
7822 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7826 I915_WRITE_FW(GEN6_PCODE_DATA
, *val
);
7827 I915_WRITE_FW(GEN6_PCODE_DATA1
, 0);
7828 I915_WRITE_FW(GEN6_PCODE_MAILBOX
, GEN6_PCODE_READY
| mbox
);
7830 if (intel_wait_for_register_fw(dev_priv
,
7831 GEN6_PCODE_MAILBOX
, GEN6_PCODE_READY
, 0,
7833 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox
);
7837 *val
= I915_READ_FW(GEN6_PCODE_DATA
);
7838 I915_WRITE_FW(GEN6_PCODE_DATA
, 0);
7840 if (INTEL_GEN(dev_priv
) > 6)
7841 status
= gen7_check_mailbox_status(dev_priv
);
7843 status
= gen6_check_mailbox_status(dev_priv
);
7846 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
7854 int sandybridge_pcode_write(struct drm_i915_private
*dev_priv
,
7859 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
7861 /* GEN6_PCODE_* are outside of the forcewake domain, we can
7862 * use te fw I915_READ variants to reduce the amount of work
7863 * required when reading/writing.
7866 if (I915_READ_FW(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) {
7867 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7871 I915_WRITE_FW(GEN6_PCODE_DATA
, val
);
7872 I915_WRITE_FW(GEN6_PCODE_DATA1
, 0);
7873 I915_WRITE_FW(GEN6_PCODE_MAILBOX
, GEN6_PCODE_READY
| mbox
);
7875 if (intel_wait_for_register_fw(dev_priv
,
7876 GEN6_PCODE_MAILBOX
, GEN6_PCODE_READY
, 0,
7878 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox
);
7882 I915_WRITE_FW(GEN6_PCODE_DATA
, 0);
7884 if (INTEL_GEN(dev_priv
) > 6)
7885 status
= gen7_check_mailbox_status(dev_priv
);
7887 status
= gen6_check_mailbox_status(dev_priv
);
7890 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
7898 static bool skl_pcode_try_request(struct drm_i915_private
*dev_priv
, u32 mbox
,
7899 u32 request
, u32 reply_mask
, u32 reply
,
7904 *status
= sandybridge_pcode_read(dev_priv
, mbox
, &val
);
7906 return *status
|| ((val
& reply_mask
) == reply
);
7910 * skl_pcode_request - send PCODE request until acknowledgment
7911 * @dev_priv: device private
7912 * @mbox: PCODE mailbox ID the request is targeted for
7913 * @request: request ID
7914 * @reply_mask: mask used to check for request acknowledgment
7915 * @reply: value used to check for request acknowledgment
7916 * @timeout_base_ms: timeout for polling with preemption enabled
7918 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
7919 * reports an error or an overall timeout of @timeout_base_ms+10 ms expires.
7920 * The request is acknowledged once the PCODE reply dword equals @reply after
7921 * applying @reply_mask. Polling is first attempted with preemption enabled
7922 * for @timeout_base_ms and if this times out for another 10 ms with
7923 * preemption disabled.
7925 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
7926 * other error as reported by PCODE.
7928 int skl_pcode_request(struct drm_i915_private
*dev_priv
, u32 mbox
, u32 request
,
7929 u32 reply_mask
, u32 reply
, int timeout_base_ms
)
7934 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
7936 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
7940 * Prime the PCODE by doing a request first. Normally it guarantees
7941 * that a subsequent request, at most @timeout_base_ms later, succeeds.
7942 * _wait_for() doesn't guarantee when its passed condition is evaluated
7943 * first, so send the first request explicitly.
7949 ret
= _wait_for(COND
, timeout_base_ms
* 1000, 10);
7954 * The above can time out if the number of requests was low (2 in the
7955 * worst case) _and_ PCODE was busy for some reason even after a
7956 * (queued) request and @timeout_base_ms delay. As a workaround retry
7957 * the poll with preemption disabled to maximize the number of
7958 * requests. Increase the timeout from @timeout_base_ms to 10ms to
7959 * account for interrupts that could reduce the number of these
7962 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
7963 WARN_ON_ONCE(timeout_base_ms
> 3);
7965 ret
= wait_for_atomic(COND
, 10);
7969 return ret
? ret
: status
;
7973 static int byt_gpu_freq(struct drm_i915_private
*dev_priv
, int val
)
7977 * Slow = Fast = GPLL ref * N
7979 return DIV_ROUND_CLOSEST(dev_priv
->rps
.gpll_ref_freq
* (val
- 0xb7), 1000);
7982 static int byt_freq_opcode(struct drm_i915_private
*dev_priv
, int val
)
7984 return DIV_ROUND_CLOSEST(1000 * val
, dev_priv
->rps
.gpll_ref_freq
) + 0xb7;
7987 static int chv_gpu_freq(struct drm_i915_private
*dev_priv
, int val
)
7991 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7993 return DIV_ROUND_CLOSEST(dev_priv
->rps
.gpll_ref_freq
* val
, 2 * 2 * 1000);
7996 static int chv_freq_opcode(struct drm_i915_private
*dev_priv
, int val
)
7998 /* CHV needs even values */
7999 return DIV_ROUND_CLOSEST(2 * 1000 * val
, dev_priv
->rps
.gpll_ref_freq
) * 2;
8002 int intel_gpu_freq(struct drm_i915_private
*dev_priv
, int val
)
8004 if (IS_GEN9(dev_priv
))
8005 return DIV_ROUND_CLOSEST(val
* GT_FREQUENCY_MULTIPLIER
,
8007 else if (IS_CHERRYVIEW(dev_priv
))
8008 return chv_gpu_freq(dev_priv
, val
);
8009 else if (IS_VALLEYVIEW(dev_priv
))
8010 return byt_gpu_freq(dev_priv
, val
);
8012 return val
* GT_FREQUENCY_MULTIPLIER
;
8015 int intel_freq_opcode(struct drm_i915_private
*dev_priv
, int val
)
8017 if (IS_GEN9(dev_priv
))
8018 return DIV_ROUND_CLOSEST(val
* GEN9_FREQ_SCALER
,
8019 GT_FREQUENCY_MULTIPLIER
);
8020 else if (IS_CHERRYVIEW(dev_priv
))
8021 return chv_freq_opcode(dev_priv
, val
);
8022 else if (IS_VALLEYVIEW(dev_priv
))
8023 return byt_freq_opcode(dev_priv
, val
);
8025 return DIV_ROUND_CLOSEST(val
, GT_FREQUENCY_MULTIPLIER
);
8028 struct request_boost
{
8029 struct work_struct work
;
8030 struct drm_i915_gem_request
*req
;
8033 static void __intel_rps_boost_work(struct work_struct
*work
)
8035 struct request_boost
*boost
= container_of(work
, struct request_boost
, work
);
8036 struct drm_i915_gem_request
*req
= boost
->req
;
8038 if (!i915_gem_request_completed(req
))
8039 gen6_rps_boost(req
->i915
, NULL
, req
->emitted_jiffies
);
8041 i915_gem_request_put(req
);
8045 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request
*req
)
8047 struct request_boost
*boost
;
8049 if (req
== NULL
|| INTEL_GEN(req
->i915
) < 6)
8052 if (i915_gem_request_completed(req
))
8055 boost
= kmalloc(sizeof(*boost
), GFP_ATOMIC
);
8059 boost
->req
= i915_gem_request_get(req
);
8061 INIT_WORK(&boost
->work
, __intel_rps_boost_work
);
8062 queue_work(req
->i915
->wq
, &boost
->work
);
8065 void intel_pm_setup(struct drm_i915_private
*dev_priv
)
8067 mutex_init(&dev_priv
->rps
.hw_lock
);
8068 spin_lock_init(&dev_priv
->rps
.client_lock
);
8070 INIT_DELAYED_WORK(&dev_priv
->rps
.autoenable_work
,
8071 __intel_autoenable_gt_powersave
);
8072 INIT_LIST_HEAD(&dev_priv
->rps
.clients
);
8074 dev_priv
->pm
.suspended
= false;
8075 atomic_set(&dev_priv
->pm
.wakeref_count
, 0);