2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
30 #include <linux/log2.h>
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
37 /* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
40 #define LEGACY_REQUEST_SIZE 200
42 int __intel_ring_space(int head
, int tail
, int size
)
44 int space
= head
- tail
;
47 return space
- I915_RING_FREE_SPACE
;
50 void intel_ring_update_space(struct intel_ring
*ring
)
52 if (ring
->last_retired_head
!= -1) {
53 ring
->head
= ring
->last_retired_head
;
54 ring
->last_retired_head
= -1;
57 ring
->space
= __intel_ring_space(ring
->head
& HEAD_ADDR
,
58 ring
->tail
, ring
->size
);
62 gen2_render_ring_flush(struct drm_i915_gem_request
*req
, u32 mode
)
64 struct intel_ring
*ring
= req
->ring
;
70 if (mode
& EMIT_INVALIDATE
)
73 ret
= intel_ring_begin(req
, 2);
77 intel_ring_emit(ring
, cmd
);
78 intel_ring_emit(ring
, MI_NOOP
);
79 intel_ring_advance(ring
);
85 gen4_render_ring_flush(struct drm_i915_gem_request
*req
, u32 mode
)
87 struct intel_ring
*ring
= req
->ring
;
94 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
96 * also flushed at 2d versus 3d pipeline switches.
100 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101 * MI_READ_FLUSH is set, and is always flushed on 965.
103 * I915_GEM_DOMAIN_COMMAND may not exist?
105 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106 * invalidated when MI_EXE_FLUSH is set.
108 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109 * invalidated with every MI_FLUSH.
113 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116 * are flushed at any MI_FLUSH.
120 if (mode
& EMIT_INVALIDATE
) {
122 if (IS_G4X(req
->i915
) || IS_GEN5(req
->i915
))
123 cmd
|= MI_INVALIDATE_ISP
;
126 ret
= intel_ring_begin(req
, 2);
130 intel_ring_emit(ring
, cmd
);
131 intel_ring_emit(ring
, MI_NOOP
);
132 intel_ring_advance(ring
);
138 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139 * implementing two workarounds on gen6. From section 1.4.7.1
140 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143 * produced by non-pipelined state commands), software needs to first
144 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
147 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 * And the workaround for these two requires this workaround first:
152 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153 * BEFORE the pipe-control with a post-sync op and no write-cache
156 * And this last workaround is tricky because of the requirements on
157 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
160 * "1 of the following must also be set:
161 * - Render Target Cache Flush Enable ([12] of DW1)
162 * - Depth Cache Flush Enable ([0] of DW1)
163 * - Stall at Pixel Scoreboard ([1] of DW1)
164 * - Depth Stall ([13] of DW1)
165 * - Post-Sync Operation ([13] of DW1)
166 * - Notify Enable ([8] of DW1)"
168 * The cache flushes require the workaround flush that triggered this
169 * one, so we can't use it. Depth stall would trigger the same.
170 * Post-sync nonzero is what triggered this second workaround, so we
171 * can't use that one either. Notify enable is IRQs, which aren't
172 * really our business. That leaves only stall at scoreboard.
175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request
*req
)
177 struct intel_ring
*ring
= req
->ring
;
179 i915_ggtt_offset(req
->engine
->scratch
) + 2 * CACHELINE_BYTES
;
182 ret
= intel_ring_begin(req
, 6);
186 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(5));
187 intel_ring_emit(ring
, PIPE_CONTROL_CS_STALL
|
188 PIPE_CONTROL_STALL_AT_SCOREBOARD
);
189 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
);
190 intel_ring_emit(ring
, 0); /* low dword */
191 intel_ring_emit(ring
, 0); /* high dword */
192 intel_ring_emit(ring
, MI_NOOP
);
193 intel_ring_advance(ring
);
195 ret
= intel_ring_begin(req
, 6);
199 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(5));
200 intel_ring_emit(ring
, PIPE_CONTROL_QW_WRITE
);
201 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
);
202 intel_ring_emit(ring
, 0);
203 intel_ring_emit(ring
, 0);
204 intel_ring_emit(ring
, MI_NOOP
);
205 intel_ring_advance(ring
);
211 gen6_render_ring_flush(struct drm_i915_gem_request
*req
, u32 mode
)
213 struct intel_ring
*ring
= req
->ring
;
215 i915_ggtt_offset(req
->engine
->scratch
) + 2 * CACHELINE_BYTES
;
219 /* Force SNB workarounds for PIPE_CONTROL flushes */
220 ret
= intel_emit_post_sync_nonzero_flush(req
);
224 /* Just flush everything. Experiments have shown that reducing the
225 * number of bits based on the write domains has little performance
228 if (mode
& EMIT_FLUSH
) {
229 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
230 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
232 * Ensure that any following seqno writes only happen
233 * when the render cache is indeed flushed.
235 flags
|= PIPE_CONTROL_CS_STALL
;
237 if (mode
& EMIT_INVALIDATE
) {
238 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
239 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
240 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
241 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
242 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
243 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
245 * TLB invalidate requires a post-sync write.
247 flags
|= PIPE_CONTROL_QW_WRITE
| PIPE_CONTROL_CS_STALL
;
250 ret
= intel_ring_begin(req
, 4);
254 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
255 intel_ring_emit(ring
, flags
);
256 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
);
257 intel_ring_emit(ring
, 0);
258 intel_ring_advance(ring
);
264 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request
*req
)
266 struct intel_ring
*ring
= req
->ring
;
269 ret
= intel_ring_begin(req
, 4);
273 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(ring
,
275 PIPE_CONTROL_CS_STALL
|
276 PIPE_CONTROL_STALL_AT_SCOREBOARD
);
277 intel_ring_emit(ring
, 0);
278 intel_ring_emit(ring
, 0);
279 intel_ring_advance(ring
);
285 gen7_render_ring_flush(struct drm_i915_gem_request
*req
, u32 mode
)
287 struct intel_ring
*ring
= req
->ring
;
289 i915_ggtt_offset(req
->engine
->scratch
) + 2 * CACHELINE_BYTES
;
294 * Ensure that any following seqno writes only happen when the render
295 * cache is indeed flushed.
297 * Workaround: 4th PIPE_CONTROL command (except the ones with only
298 * read-cache invalidate bits set) must have the CS_STALL bit set. We
299 * don't try to be clever and just set it unconditionally.
301 flags
|= PIPE_CONTROL_CS_STALL
;
303 /* Just flush everything. Experiments have shown that reducing the
304 * number of bits based on the write domains has little performance
307 if (mode
& EMIT_FLUSH
) {
308 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
309 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
310 flags
|= PIPE_CONTROL_DC_FLUSH_ENABLE
;
311 flags
|= PIPE_CONTROL_FLUSH_ENABLE
;
313 if (mode
& EMIT_INVALIDATE
) {
314 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
315 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
316 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
317 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
318 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
319 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
320 flags
|= PIPE_CONTROL_MEDIA_STATE_CLEAR
;
322 * TLB invalidate requires a post-sync write.
324 flags
|= PIPE_CONTROL_QW_WRITE
;
325 flags
|= PIPE_CONTROL_GLOBAL_GTT_IVB
;
327 flags
|= PIPE_CONTROL_STALL_AT_SCOREBOARD
;
329 /* Workaround: we must issue a pipe_control with CS-stall bit
330 * set before a pipe_control command that has the state cache
331 * invalidate bit set. */
332 gen7_render_ring_cs_stall_wa(req
);
335 ret
= intel_ring_begin(req
, 4);
339 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
340 intel_ring_emit(ring
, flags
);
341 intel_ring_emit(ring
, scratch_addr
);
342 intel_ring_emit(ring
, 0);
343 intel_ring_advance(ring
);
349 gen8_emit_pipe_control(struct drm_i915_gem_request
*req
,
350 u32 flags
, u32 scratch_addr
)
352 struct intel_ring
*ring
= req
->ring
;
355 ret
= intel_ring_begin(req
, 6);
359 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(6));
360 intel_ring_emit(ring
, flags
);
361 intel_ring_emit(ring
, scratch_addr
);
362 intel_ring_emit(ring
, 0);
363 intel_ring_emit(ring
, 0);
364 intel_ring_emit(ring
, 0);
365 intel_ring_advance(ring
);
371 gen8_render_ring_flush(struct drm_i915_gem_request
*req
, u32 mode
)
374 i915_ggtt_offset(req
->engine
->scratch
) + 2 * CACHELINE_BYTES
;
378 flags
|= PIPE_CONTROL_CS_STALL
;
380 if (mode
& EMIT_FLUSH
) {
381 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
382 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
383 flags
|= PIPE_CONTROL_DC_FLUSH_ENABLE
;
384 flags
|= PIPE_CONTROL_FLUSH_ENABLE
;
386 if (mode
& EMIT_INVALIDATE
) {
387 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
388 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
389 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
390 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
391 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
392 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
393 flags
|= PIPE_CONTROL_QW_WRITE
;
394 flags
|= PIPE_CONTROL_GLOBAL_GTT_IVB
;
396 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397 ret
= gen8_emit_pipe_control(req
,
398 PIPE_CONTROL_CS_STALL
|
399 PIPE_CONTROL_STALL_AT_SCOREBOARD
,
405 return gen8_emit_pipe_control(req
, flags
, scratch_addr
);
408 static void ring_setup_phys_status_page(struct intel_engine_cs
*engine
)
410 struct drm_i915_private
*dev_priv
= engine
->i915
;
413 addr
= dev_priv
->status_page_dmah
->busaddr
;
414 if (INTEL_GEN(dev_priv
) >= 4)
415 addr
|= (dev_priv
->status_page_dmah
->busaddr
>> 28) & 0xf0;
416 I915_WRITE(HWS_PGA
, addr
);
419 static void intel_ring_setup_status_page(struct intel_engine_cs
*engine
)
421 struct drm_i915_private
*dev_priv
= engine
->i915
;
424 /* The ring status page addresses are no longer next to the rest of
425 * the ring registers as of gen7.
427 if (IS_GEN7(dev_priv
)) {
428 switch (engine
->id
) {
430 mmio
= RENDER_HWS_PGA_GEN7
;
433 mmio
= BLT_HWS_PGA_GEN7
;
436 * VCS2 actually doesn't exist on Gen7. Only shut up
437 * gcc switch check warning
441 mmio
= BSD_HWS_PGA_GEN7
;
444 mmio
= VEBOX_HWS_PGA_GEN7
;
447 } else if (IS_GEN6(dev_priv
)) {
448 mmio
= RING_HWS_PGA_GEN6(engine
->mmio_base
);
450 /* XXX: gen8 returns to sanity */
451 mmio
= RING_HWS_PGA(engine
->mmio_base
);
454 I915_WRITE(mmio
, engine
->status_page
.ggtt_offset
);
458 * Flush the TLB for this page
460 * FIXME: These two bits have disappeared on gen8, so a question
461 * arises: do we still need this and if so how should we go about
462 * invalidating the TLB?
464 if (IS_GEN(dev_priv
, 6, 7)) {
465 i915_reg_t reg
= RING_INSTPM(engine
->mmio_base
);
467 /* ring should be idle before issuing a sync flush*/
468 WARN_ON((I915_READ_MODE(engine
) & MODE_IDLE
) == 0);
471 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE
|
473 if (intel_wait_for_register(dev_priv
,
474 reg
, INSTPM_SYNC_FLUSH
, 0,
476 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
481 static bool stop_ring(struct intel_engine_cs
*engine
)
483 struct drm_i915_private
*dev_priv
= engine
->i915
;
485 if (INTEL_GEN(dev_priv
) > 2) {
486 I915_WRITE_MODE(engine
, _MASKED_BIT_ENABLE(STOP_RING
));
487 if (intel_wait_for_register(dev_priv
,
488 RING_MI_MODE(engine
->mmio_base
),
492 DRM_ERROR("%s : timed out trying to stop ring\n",
494 /* Sometimes we observe that the idle flag is not
495 * set even though the ring is empty. So double
496 * check before giving up.
498 if (I915_READ_HEAD(engine
) != I915_READ_TAIL(engine
))
503 I915_WRITE_CTL(engine
, 0);
504 I915_WRITE_HEAD(engine
, 0);
505 I915_WRITE_TAIL(engine
, 0);
507 if (INTEL_GEN(dev_priv
) > 2) {
508 (void)I915_READ_CTL(engine
);
509 I915_WRITE_MODE(engine
, _MASKED_BIT_DISABLE(STOP_RING
));
512 return (I915_READ_HEAD(engine
) & HEAD_ADDR
) == 0;
515 static int init_ring_common(struct intel_engine_cs
*engine
)
517 struct drm_i915_private
*dev_priv
= engine
->i915
;
518 struct intel_ring
*ring
= engine
->buffer
;
521 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
523 if (!stop_ring(engine
)) {
524 /* G45 ring initialization often fails to reset head to zero */
525 DRM_DEBUG_KMS("%s head not reset to zero "
526 "ctl %08x head %08x tail %08x start %08x\n",
528 I915_READ_CTL(engine
),
529 I915_READ_HEAD(engine
),
530 I915_READ_TAIL(engine
),
531 I915_READ_START(engine
));
533 if (!stop_ring(engine
)) {
534 DRM_ERROR("failed to set %s head to zero "
535 "ctl %08x head %08x tail %08x start %08x\n",
537 I915_READ_CTL(engine
),
538 I915_READ_HEAD(engine
),
539 I915_READ_TAIL(engine
),
540 I915_READ_START(engine
));
546 if (HWS_NEEDS_PHYSICAL(dev_priv
))
547 ring_setup_phys_status_page(engine
);
549 intel_ring_setup_status_page(engine
);
551 intel_engine_reset_breadcrumbs(engine
);
553 /* Enforce ordering by reading HEAD register back */
554 I915_READ_HEAD(engine
);
556 /* Initialize the ring. This must happen _after_ we've cleared the ring
557 * registers with the above sequence (the readback of the HEAD registers
558 * also enforces ordering), otherwise the hw might lose the new ring
559 * register values. */
560 I915_WRITE_START(engine
, i915_ggtt_offset(ring
->vma
));
562 /* WaClearRingBufHeadRegAtInit:ctg,elk */
563 if (I915_READ_HEAD(engine
))
564 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
565 engine
->name
, I915_READ_HEAD(engine
));
567 intel_ring_update_space(ring
);
568 I915_WRITE_HEAD(engine
, ring
->head
);
569 I915_WRITE_TAIL(engine
, ring
->tail
);
570 (void)I915_READ_TAIL(engine
);
572 I915_WRITE_CTL(engine
, RING_CTL_SIZE(ring
->size
) | RING_VALID
);
574 /* If the head is still not zero, the ring is dead */
575 if (intel_wait_for_register_fw(dev_priv
, RING_CTL(engine
->mmio_base
),
576 RING_VALID
, RING_VALID
,
578 DRM_ERROR("%s initialization failed "
579 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
581 I915_READ_CTL(engine
),
582 I915_READ_CTL(engine
) & RING_VALID
,
583 I915_READ_HEAD(engine
), ring
->head
,
584 I915_READ_TAIL(engine
), ring
->tail
,
585 I915_READ_START(engine
),
586 i915_ggtt_offset(ring
->vma
));
591 intel_engine_init_hangcheck(engine
);
594 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
599 static void reset_ring_common(struct intel_engine_cs
*engine
,
600 struct drm_i915_gem_request
*request
)
602 struct intel_ring
*ring
= request
->ring
;
604 ring
->head
= request
->postfix
;
605 ring
->last_retired_head
= -1;
608 static int intel_ring_workarounds_emit(struct drm_i915_gem_request
*req
)
610 struct intel_ring
*ring
= req
->ring
;
611 struct i915_workarounds
*w
= &req
->i915
->workarounds
;
617 ret
= req
->engine
->emit_flush(req
, EMIT_BARRIER
);
621 ret
= intel_ring_begin(req
, (w
->count
* 2 + 2));
625 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(w
->count
));
626 for (i
= 0; i
< w
->count
; i
++) {
627 intel_ring_emit_reg(ring
, w
->reg
[i
].addr
);
628 intel_ring_emit(ring
, w
->reg
[i
].value
);
630 intel_ring_emit(ring
, MI_NOOP
);
632 intel_ring_advance(ring
);
634 ret
= req
->engine
->emit_flush(req
, EMIT_BARRIER
);
638 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w
->count
);
643 static int intel_rcs_ctx_init(struct drm_i915_gem_request
*req
)
647 ret
= intel_ring_workarounds_emit(req
);
651 ret
= i915_gem_render_state_emit(req
);
658 static int wa_add(struct drm_i915_private
*dev_priv
,
660 const u32 mask
, const u32 val
)
662 const u32 idx
= dev_priv
->workarounds
.count
;
664 if (WARN_ON(idx
>= I915_MAX_WA_REGS
))
667 dev_priv
->workarounds
.reg
[idx
].addr
= addr
;
668 dev_priv
->workarounds
.reg
[idx
].value
= val
;
669 dev_priv
->workarounds
.reg
[idx
].mask
= mask
;
671 dev_priv
->workarounds
.count
++;
676 #define WA_REG(addr, mask, val) do { \
677 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
682 #define WA_SET_BIT_MASKED(addr, mask) \
683 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
685 #define WA_CLR_BIT_MASKED(addr, mask) \
686 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
688 #define WA_SET_FIELD_MASKED(addr, mask, value) \
689 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
691 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
692 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
694 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
696 static int wa_ring_whitelist_reg(struct intel_engine_cs
*engine
,
699 struct drm_i915_private
*dev_priv
= engine
->i915
;
700 struct i915_workarounds
*wa
= &dev_priv
->workarounds
;
701 const uint32_t index
= wa
->hw_whitelist_count
[engine
->id
];
703 if (WARN_ON(index
>= RING_MAX_NONPRIV_SLOTS
))
706 WA_WRITE(RING_FORCE_TO_NONPRIV(engine
->mmio_base
, index
),
707 i915_mmio_reg_offset(reg
));
708 wa
->hw_whitelist_count
[engine
->id
]++;
713 static int gen8_init_workarounds(struct intel_engine_cs
*engine
)
715 struct drm_i915_private
*dev_priv
= engine
->i915
;
717 WA_SET_BIT_MASKED(INSTPM
, INSTPM_FORCE_ORDERING
);
719 /* WaDisableAsyncFlipPerfMode:bdw,chv */
720 WA_SET_BIT_MASKED(MI_MODE
, ASYNC_FLIP_PERF_DISABLE
);
722 /* WaDisablePartialInstShootdown:bdw,chv */
723 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
,
724 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
);
726 /* Use Force Non-Coherent whenever executing a 3D context. This is a
727 * workaround for for a possible hang in the unlikely event a TLB
728 * invalidation occurs during a PSD flush.
730 /* WaForceEnableNonCoherent:bdw,chv */
731 /* WaHdcDisableFetchWhenMasked:bdw,chv */
732 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
733 HDC_DONOT_FETCH_MEM_WHEN_MASKED
|
734 HDC_FORCE_NON_COHERENT
);
736 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
737 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
738 * polygons in the same 8x4 pixel/sample area to be processed without
739 * stalling waiting for the earlier ones to write to Hierarchical Z
742 * This optimization is off by default for BDW and CHV; turn it on.
744 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7
, HIZ_RAW_STALL_OPT_DISABLE
);
746 /* Wa4x4STCOptimizationDisable:bdw,chv */
747 WA_SET_BIT_MASKED(CACHE_MODE_1
, GEN8_4x4_STC_OPTIMIZATION_DISABLE
);
750 * BSpec recommends 8x4 when MSAA is used,
751 * however in practice 16x4 seems fastest.
753 * Note that PS/WM thread counts depend on the WIZ hashing
754 * disable bit, which we don't touch here, but it's good
755 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
757 WA_SET_FIELD_MASKED(GEN7_GT_MODE
,
758 GEN6_WIZ_HASHING_MASK
,
759 GEN6_WIZ_HASHING_16x4
);
764 static int bdw_init_workarounds(struct intel_engine_cs
*engine
)
766 struct drm_i915_private
*dev_priv
= engine
->i915
;
769 ret
= gen8_init_workarounds(engine
);
773 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
774 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
, STALL_DOP_GATING_DISABLE
);
776 /* WaDisableDopClockGating:bdw */
777 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2
,
778 DOP_CLOCK_GATING_DISABLE
);
780 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3
,
781 GEN8_SAMPLER_POWER_BYPASS_DIS
);
783 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
784 /* WaForceContextSaveRestoreNonCoherent:bdw */
785 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT
|
786 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
787 (IS_BDW_GT3(dev_priv
) ? HDC_FENCE_DEST_SLM_DISABLE
: 0));
792 static int chv_init_workarounds(struct intel_engine_cs
*engine
)
794 struct drm_i915_private
*dev_priv
= engine
->i915
;
797 ret
= gen8_init_workarounds(engine
);
801 /* WaDisableThreadStallDopClockGating:chv */
802 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
, STALL_DOP_GATING_DISABLE
);
804 /* Improve HiZ throughput on CHV. */
805 WA_SET_BIT_MASKED(HIZ_CHICKEN
, CHV_HZ_8X8_MODE_IN_1X
);
810 static int gen9_init_workarounds(struct intel_engine_cs
*engine
)
812 struct drm_i915_private
*dev_priv
= engine
->i915
;
815 /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
816 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS
, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE
));
818 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
819 I915_WRITE(BDW_SCRATCH1
, I915_READ(BDW_SCRATCH1
) |
820 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE
);
822 /* WaDisableKillLogic:bxt,skl,kbl */
823 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) |
826 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
827 /* WaDisablePartialInstShootdown:skl,bxt,kbl */
828 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
,
829 FLOW_CONTROL_ENABLE
|
830 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
);
832 /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
833 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3
,
834 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC
);
836 /* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
837 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
))
838 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5
,
839 GEN9_DG_MIRROR_FIX_ENABLE
);
841 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
842 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
)) {
843 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1
,
844 GEN9_RHWO_OPTIMIZATION_DISABLE
);
846 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
847 * but we do that in per ctx batchbuffer as there is an issue
848 * with this register not getting restored on ctx restore
852 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
853 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7
,
854 GEN9_ENABLE_GPGPU_PREEMPTION
);
856 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
857 /* WaDisablePartialResolveInVc:skl,bxt,kbl */
858 WA_SET_BIT_MASKED(CACHE_MODE_1
, (GEN8_4x4_STC_OPTIMIZATION_DISABLE
|
859 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE
));
861 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
862 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5
,
863 GEN9_CCS_TLB_PREFETCH_ENABLE
);
865 /* WaDisableMaskBasedCammingInRCC:bxt */
866 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
))
867 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0
,
868 PIXEL_MASK_CAMMING_DISABLE
);
870 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
871 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
872 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT
|
873 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE
);
875 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
876 * both tied to WaForceContextSaveRestoreNonCoherent
877 * in some hsds for skl. We keep the tie for all gen9. The
878 * documentation is a bit hazy and so we want to get common behaviour,
879 * even though there is no clear evidence we would need both on kbl/bxt.
880 * This area has been source of system hangs so we play it safe
881 * and mimic the skl regardless of what bspec says.
883 * Use Force Non-Coherent whenever executing a 3D context. This
884 * is a workaround for a possible hang in the unlikely event
885 * a TLB invalidation occurs during a PSD flush.
888 /* WaForceEnableNonCoherent:skl,bxt,kbl */
889 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
890 HDC_FORCE_NON_COHERENT
);
892 /* WaDisableHDCInvalidation:skl,bxt,kbl */
893 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) |
894 BDW_DISABLE_HDC_INVALIDATION
);
896 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
897 if (IS_SKYLAKE(dev_priv
) ||
898 IS_KABYLAKE(dev_priv
) ||
899 IS_BXT_REVID(dev_priv
, 0, BXT_REVID_B0
))
900 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3
,
901 GEN8_SAMPLER_POWER_BYPASS_DIS
);
903 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
904 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2
, GEN8_ST_PO_DISABLE
);
906 /* WaOCLCoherentLineFlush:skl,bxt,kbl */
907 I915_WRITE(GEN8_L3SQCREG4
, (I915_READ(GEN8_L3SQCREG4
) |
908 GEN8_LQSC_FLUSH_COHERENT_LINES
));
910 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
911 ret
= wa_ring_whitelist_reg(engine
, GEN9_CTX_PREEMPT_REG
);
915 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
916 ret
= wa_ring_whitelist_reg(engine
, GEN8_CS_CHICKEN1
);
920 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
921 ret
= wa_ring_whitelist_reg(engine
, GEN8_HDC_CHICKEN1
);
928 static int skl_tune_iz_hashing(struct intel_engine_cs
*engine
)
930 struct drm_i915_private
*dev_priv
= engine
->i915
;
931 u8 vals
[3] = { 0, 0, 0 };
934 for (i
= 0; i
< 3; i
++) {
938 * Only consider slices where one, and only one, subslice has 7
941 if (!is_power_of_2(INTEL_INFO(dev_priv
)->sseu
.subslice_7eu
[i
]))
945 * subslice_7eu[i] != 0 (because of the check above) and
946 * ss_max == 4 (maximum number of subslices possible per slice)
950 ss
= ffs(INTEL_INFO(dev_priv
)->sseu
.subslice_7eu
[i
]) - 1;
954 if (vals
[0] == 0 && vals
[1] == 0 && vals
[2] == 0)
957 /* Tune IZ hashing. See intel_device_info_runtime_init() */
958 WA_SET_FIELD_MASKED(GEN7_GT_MODE
,
959 GEN9_IZ_HASHING_MASK(2) |
960 GEN9_IZ_HASHING_MASK(1) |
961 GEN9_IZ_HASHING_MASK(0),
962 GEN9_IZ_HASHING(2, vals
[2]) |
963 GEN9_IZ_HASHING(1, vals
[1]) |
964 GEN9_IZ_HASHING(0, vals
[0]));
969 static int skl_init_workarounds(struct intel_engine_cs
*engine
)
971 struct drm_i915_private
*dev_priv
= engine
->i915
;
974 ret
= gen9_init_workarounds(engine
);
979 * Actual WA is to disable percontext preemption granularity control
980 * until D0 which is the default case so this is equivalent to
981 * !WaDisablePerCtxtPreemptionGranularityControl:skl
983 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1
,
984 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL
));
986 /* WaEnableGapsTsvCreditFix:skl */
987 I915_WRITE(GEN8_GARBCNTL
, (I915_READ(GEN8_GARBCNTL
) |
988 GEN9_GAPS_TSV_CREDIT_DISABLE
));
990 /* WaDisableGafsUnitClkGating:skl */
991 WA_SET_BIT(GEN7_UCGCTL4
, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE
);
993 /* WaInPlaceDecompressionHang:skl */
994 if (IS_SKL_REVID(dev_priv
, SKL_REVID_H0
, REVID_FOREVER
))
995 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA
,
996 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS
);
998 /* WaDisableLSQCROPERFforOCL:skl */
999 ret
= wa_ring_whitelist_reg(engine
, GEN8_L3SQCREG4
);
1003 return skl_tune_iz_hashing(engine
);
1006 static int bxt_init_workarounds(struct intel_engine_cs
*engine
)
1008 struct drm_i915_private
*dev_priv
= engine
->i915
;
1011 ret
= gen9_init_workarounds(engine
);
1015 /* WaStoreMultiplePTEenable:bxt */
1016 /* This is a requirement according to Hardware specification */
1017 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
))
1018 I915_WRITE(TILECTL
, I915_READ(TILECTL
) | TILECTL_TLBPF
);
1020 /* WaSetClckGatingDisableMedia:bxt */
1021 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
)) {
1022 I915_WRITE(GEN7_MISCCPCTL
, (I915_READ(GEN7_MISCCPCTL
) &
1023 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE
));
1026 /* WaDisableThreadStallDopClockGating:bxt */
1027 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
,
1028 STALL_DOP_GATING_DISABLE
);
1030 /* WaDisablePooledEuLoadBalancingFix:bxt */
1031 if (IS_BXT_REVID(dev_priv
, BXT_REVID_B0
, REVID_FOREVER
)) {
1032 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2
,
1033 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE
);
1036 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1037 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_B0
)) {
1039 GEN7_HALF_SLICE_CHICKEN1
,
1040 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE
);
1043 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1044 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1045 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1046 /* WaDisableLSQCROPERFforOCL:bxt */
1047 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
)) {
1048 ret
= wa_ring_whitelist_reg(engine
, GEN9_CS_DEBUG_MODE1
);
1052 ret
= wa_ring_whitelist_reg(engine
, GEN8_L3SQCREG4
);
1057 /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1058 if (IS_BXT_REVID(dev_priv
, BXT_REVID_B0
, REVID_FOREVER
))
1059 I915_WRITE(GEN8_L3SQCREG1
, L3_GENERAL_PRIO_CREDITS(62) |
1060 L3_HIGH_PRIO_CREDITS(2));
1062 /* WaToEnableHwFixForPushConstHWBug:bxt */
1063 if (IS_BXT_REVID(dev_priv
, BXT_REVID_C0
, REVID_FOREVER
))
1064 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2
,
1065 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION
);
1067 /* WaInPlaceDecompressionHang:bxt */
1068 if (IS_BXT_REVID(dev_priv
, BXT_REVID_C0
, REVID_FOREVER
))
1069 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA
,
1070 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS
);
1075 static int kbl_init_workarounds(struct intel_engine_cs
*engine
)
1077 struct drm_i915_private
*dev_priv
= engine
->i915
;
1080 ret
= gen9_init_workarounds(engine
);
1084 /* WaEnableGapsTsvCreditFix:kbl */
1085 I915_WRITE(GEN8_GARBCNTL
, (I915_READ(GEN8_GARBCNTL
) |
1086 GEN9_GAPS_TSV_CREDIT_DISABLE
));
1088 /* WaDisableDynamicCreditSharing:kbl */
1089 if (IS_KBL_REVID(dev_priv
, 0, KBL_REVID_B0
))
1090 WA_SET_BIT(GAMT_CHKN_BIT_REG
,
1091 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING
);
1093 /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1094 if (IS_KBL_REVID(dev_priv
, KBL_REVID_A0
, KBL_REVID_A0
))
1095 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
1096 HDC_FENCE_DEST_SLM_DISABLE
);
1098 /* WaToEnableHwFixForPushConstHWBug:kbl */
1099 if (IS_KBL_REVID(dev_priv
, KBL_REVID_C0
, REVID_FOREVER
))
1100 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2
,
1101 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION
);
1103 /* WaDisableGafsUnitClkGating:kbl */
1104 WA_SET_BIT(GEN7_UCGCTL4
, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE
);
1106 /* WaDisableSbeCacheDispatchPortSharing:kbl */
1108 GEN7_HALF_SLICE_CHICKEN1
,
1109 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE
);
1111 /* WaInPlaceDecompressionHang:kbl */
1112 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA
,
1113 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS
);
1115 /* WaDisableLSQCROPERFforOCL:kbl */
1116 ret
= wa_ring_whitelist_reg(engine
, GEN8_L3SQCREG4
);
1123 int init_workarounds_ring(struct intel_engine_cs
*engine
)
1125 struct drm_i915_private
*dev_priv
= engine
->i915
;
1127 WARN_ON(engine
->id
!= RCS
);
1129 dev_priv
->workarounds
.count
= 0;
1130 dev_priv
->workarounds
.hw_whitelist_count
[RCS
] = 0;
1132 if (IS_BROADWELL(dev_priv
))
1133 return bdw_init_workarounds(engine
);
1135 if (IS_CHERRYVIEW(dev_priv
))
1136 return chv_init_workarounds(engine
);
1138 if (IS_SKYLAKE(dev_priv
))
1139 return skl_init_workarounds(engine
);
1141 if (IS_BROXTON(dev_priv
))
1142 return bxt_init_workarounds(engine
);
1144 if (IS_KABYLAKE(dev_priv
))
1145 return kbl_init_workarounds(engine
);
1150 static int init_render_ring(struct intel_engine_cs
*engine
)
1152 struct drm_i915_private
*dev_priv
= engine
->i915
;
1153 int ret
= init_ring_common(engine
);
1157 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1158 if (IS_GEN(dev_priv
, 4, 6))
1159 I915_WRITE(MI_MODE
, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH
));
1161 /* We need to disable the AsyncFlip performance optimisations in order
1162 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1163 * programmed to '1' on all products.
1165 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1167 if (IS_GEN(dev_priv
, 6, 7))
1168 I915_WRITE(MI_MODE
, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE
));
1170 /* Required for the hardware to program scanline values for waiting */
1171 /* WaEnableFlushTlbInvalidationMode:snb */
1172 if (IS_GEN6(dev_priv
))
1173 I915_WRITE(GFX_MODE
,
1174 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT
));
1176 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1177 if (IS_GEN7(dev_priv
))
1178 I915_WRITE(GFX_MODE_GEN7
,
1179 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT
) |
1180 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE
));
1182 if (IS_GEN6(dev_priv
)) {
1183 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1184 * "If this bit is set, STCunit will have LRA as replacement
1185 * policy. [...] This bit must be reset. LRA replacement
1186 * policy is not supported."
1188 I915_WRITE(CACHE_MODE_0
,
1189 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB
));
1192 if (IS_GEN(dev_priv
, 6, 7))
1193 I915_WRITE(INSTPM
, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING
));
1195 if (INTEL_INFO(dev_priv
)->gen
>= 6)
1196 I915_WRITE_IMR(engine
, ~engine
->irq_keep_mask
);
1198 return init_workarounds_ring(engine
);
1201 static void render_ring_cleanup(struct intel_engine_cs
*engine
)
1203 struct drm_i915_private
*dev_priv
= engine
->i915
;
1205 i915_vma_unpin_and_release(&dev_priv
->semaphore
);
1208 static u32
*gen8_rcs_signal(struct drm_i915_gem_request
*req
, u32
*out
)
1210 struct drm_i915_private
*dev_priv
= req
->i915
;
1211 struct intel_engine_cs
*waiter
;
1212 enum intel_engine_id id
;
1214 for_each_engine(waiter
, dev_priv
, id
) {
1215 u64 gtt_offset
= req
->engine
->semaphore
.signal_ggtt
[id
];
1216 if (gtt_offset
== MI_SEMAPHORE_SYNC_INVALID
)
1219 *out
++ = GFX_OP_PIPE_CONTROL(6);
1220 *out
++ = (PIPE_CONTROL_GLOBAL_GTT_IVB
|
1221 PIPE_CONTROL_QW_WRITE
|
1222 PIPE_CONTROL_CS_STALL
);
1223 *out
++ = lower_32_bits(gtt_offset
);
1224 *out
++ = upper_32_bits(gtt_offset
);
1225 *out
++ = req
->global_seqno
;
1227 *out
++ = (MI_SEMAPHORE_SIGNAL
|
1228 MI_SEMAPHORE_TARGET(waiter
->hw_id
));
1235 static u32
*gen8_xcs_signal(struct drm_i915_gem_request
*req
, u32
*out
)
1237 struct drm_i915_private
*dev_priv
= req
->i915
;
1238 struct intel_engine_cs
*waiter
;
1239 enum intel_engine_id id
;
1241 for_each_engine(waiter
, dev_priv
, id
) {
1242 u64 gtt_offset
= req
->engine
->semaphore
.signal_ggtt
[id
];
1243 if (gtt_offset
== MI_SEMAPHORE_SYNC_INVALID
)
1246 *out
++ = (MI_FLUSH_DW
+ 1) | MI_FLUSH_DW_OP_STOREDW
;
1247 *out
++ = lower_32_bits(gtt_offset
) | MI_FLUSH_DW_USE_GTT
;
1248 *out
++ = upper_32_bits(gtt_offset
);
1249 *out
++ = req
->global_seqno
;
1250 *out
++ = (MI_SEMAPHORE_SIGNAL
|
1251 MI_SEMAPHORE_TARGET(waiter
->hw_id
));
1258 static u32
*gen6_signal(struct drm_i915_gem_request
*req
, u32
*out
)
1260 struct drm_i915_private
*dev_priv
= req
->i915
;
1261 struct intel_engine_cs
*engine
;
1262 enum intel_engine_id id
;
1265 for_each_engine(engine
, dev_priv
, id
) {
1266 i915_reg_t mbox_reg
;
1268 if (!(BIT(engine
->hw_id
) & GEN6_SEMAPHORES_MASK
))
1271 mbox_reg
= req
->engine
->semaphore
.mbox
.signal
[engine
->hw_id
];
1272 if (i915_mmio_reg_valid(mbox_reg
)) {
1273 *out
++ = MI_LOAD_REGISTER_IMM(1);
1274 *out
++ = i915_mmio_reg_offset(mbox_reg
);
1275 *out
++ = req
->global_seqno
;
1285 static void i9xx_submit_request(struct drm_i915_gem_request
*request
)
1287 struct drm_i915_private
*dev_priv
= request
->i915
;
1289 i915_gem_request_submit(request
);
1291 I915_WRITE_TAIL(request
->engine
, request
->tail
);
1294 static void i9xx_emit_breadcrumb(struct drm_i915_gem_request
*req
,
1297 *out
++ = MI_STORE_DWORD_INDEX
;
1298 *out
++ = I915_GEM_HWS_INDEX
<< MI_STORE_DWORD_INDEX_SHIFT
;
1299 *out
++ = req
->global_seqno
;
1300 *out
++ = MI_USER_INTERRUPT
;
1302 req
->tail
= intel_ring_offset(req
->ring
, out
);
1305 static const int i9xx_emit_breadcrumb_sz
= 4;
1308 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
1310 * @request - request to write to the ring
1312 * Update the mailbox registers in the *other* rings with the current seqno.
1313 * This acts like a signal in the canonical semaphore.
1315 static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request
*req
,
1318 return i9xx_emit_breadcrumb(req
,
1319 req
->engine
->semaphore
.signal(req
, out
));
1322 static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request
*req
,
1325 struct intel_engine_cs
*engine
= req
->engine
;
1327 if (engine
->semaphore
.signal
)
1328 out
= engine
->semaphore
.signal(req
, out
);
1330 *out
++ = GFX_OP_PIPE_CONTROL(6);
1331 *out
++ = (PIPE_CONTROL_GLOBAL_GTT_IVB
|
1332 PIPE_CONTROL_CS_STALL
|
1333 PIPE_CONTROL_QW_WRITE
);
1334 *out
++ = intel_hws_seqno_address(engine
);
1336 *out
++ = req
->global_seqno
;
1337 /* We're thrashing one dword of HWS. */
1339 *out
++ = MI_USER_INTERRUPT
;
1342 req
->tail
= intel_ring_offset(req
->ring
, out
);
1345 static const int gen8_render_emit_breadcrumb_sz
= 8;
1348 * intel_ring_sync - sync the waiter to the signaller on seqno
1350 * @waiter - ring that is waiting
1351 * @signaller - ring which has, or will signal
1352 * @seqno - seqno which the waiter will block on
1356 gen8_ring_sync_to(struct drm_i915_gem_request
*req
,
1357 struct drm_i915_gem_request
*signal
)
1359 struct intel_ring
*ring
= req
->ring
;
1360 struct drm_i915_private
*dev_priv
= req
->i915
;
1361 u64 offset
= GEN8_WAIT_OFFSET(req
->engine
, signal
->engine
->id
);
1362 struct i915_hw_ppgtt
*ppgtt
;
1365 ret
= intel_ring_begin(req
, 4);
1369 intel_ring_emit(ring
,
1371 MI_SEMAPHORE_GLOBAL_GTT
|
1372 MI_SEMAPHORE_SAD_GTE_SDD
);
1373 intel_ring_emit(ring
, signal
->global_seqno
);
1374 intel_ring_emit(ring
, lower_32_bits(offset
));
1375 intel_ring_emit(ring
, upper_32_bits(offset
));
1376 intel_ring_advance(ring
);
1378 /* When the !RCS engines idle waiting upon a semaphore, they lose their
1379 * pagetables and we must reload them before executing the batch.
1380 * We do this on the i915_switch_context() following the wait and
1381 * before the dispatch.
1383 ppgtt
= req
->ctx
->ppgtt
;
1384 if (ppgtt
&& req
->engine
->id
!= RCS
)
1385 ppgtt
->pd_dirty_rings
|= intel_engine_flag(req
->engine
);
1390 gen6_ring_sync_to(struct drm_i915_gem_request
*req
,
1391 struct drm_i915_gem_request
*signal
)
1393 struct intel_ring
*ring
= req
->ring
;
1394 u32 dw1
= MI_SEMAPHORE_MBOX
|
1395 MI_SEMAPHORE_COMPARE
|
1396 MI_SEMAPHORE_REGISTER
;
1397 u32 wait_mbox
= signal
->engine
->semaphore
.mbox
.wait
[req
->engine
->hw_id
];
1400 WARN_ON(wait_mbox
== MI_SEMAPHORE_SYNC_INVALID
);
1402 ret
= intel_ring_begin(req
, 4);
1406 intel_ring_emit(ring
, dw1
| wait_mbox
);
1407 /* Throughout all of the GEM code, seqno passed implies our current
1408 * seqno is >= the last seqno executed. However for hardware the
1409 * comparison is strictly greater than.
1411 intel_ring_emit(ring
, signal
->global_seqno
- 1);
1412 intel_ring_emit(ring
, 0);
1413 intel_ring_emit(ring
, MI_NOOP
);
1414 intel_ring_advance(ring
);
1420 gen5_seqno_barrier(struct intel_engine_cs
*engine
)
1422 /* MI_STORE are internally buffered by the GPU and not flushed
1423 * either by MI_FLUSH or SyncFlush or any other combination of
1426 * "Only the submission of the store operation is guaranteed.
1427 * The write result will be complete (coherent) some time later
1428 * (this is practically a finite period but there is no guaranteed
1431 * Empirically, we observe that we need a delay of at least 75us to
1432 * be sure that the seqno write is visible by the CPU.
1434 usleep_range(125, 250);
1438 gen6_seqno_barrier(struct intel_engine_cs
*engine
)
1440 struct drm_i915_private
*dev_priv
= engine
->i915
;
1442 /* Workaround to force correct ordering between irq and seqno writes on
1443 * ivb (and maybe also on snb) by reading from a CS register (like
1444 * ACTHD) before reading the status page.
1446 * Note that this effectively stalls the read by the time it takes to
1447 * do a memory transaction, which more or less ensures that the write
1448 * from the GPU has sufficient time to invalidate the CPU cacheline.
1449 * Alternatively we could delay the interrupt from the CS ring to give
1450 * the write time to land, but that would incur a delay after every
1451 * batch i.e. much more frequent than a delay when waiting for the
1452 * interrupt (with the same net latency).
1454 * Also note that to prevent whole machine hangs on gen7, we have to
1455 * take the spinlock to guard against concurrent cacheline access.
1457 spin_lock_irq(&dev_priv
->uncore
.lock
);
1458 POSTING_READ_FW(RING_ACTHD(engine
->mmio_base
));
1459 spin_unlock_irq(&dev_priv
->uncore
.lock
);
1463 gen5_irq_enable(struct intel_engine_cs
*engine
)
1465 gen5_enable_gt_irq(engine
->i915
, engine
->irq_enable_mask
);
1469 gen5_irq_disable(struct intel_engine_cs
*engine
)
1471 gen5_disable_gt_irq(engine
->i915
, engine
->irq_enable_mask
);
1475 i9xx_irq_enable(struct intel_engine_cs
*engine
)
1477 struct drm_i915_private
*dev_priv
= engine
->i915
;
1479 dev_priv
->irq_mask
&= ~engine
->irq_enable_mask
;
1480 I915_WRITE(IMR
, dev_priv
->irq_mask
);
1481 POSTING_READ_FW(RING_IMR(engine
->mmio_base
));
1485 i9xx_irq_disable(struct intel_engine_cs
*engine
)
1487 struct drm_i915_private
*dev_priv
= engine
->i915
;
1489 dev_priv
->irq_mask
|= engine
->irq_enable_mask
;
1490 I915_WRITE(IMR
, dev_priv
->irq_mask
);
1494 i8xx_irq_enable(struct intel_engine_cs
*engine
)
1496 struct drm_i915_private
*dev_priv
= engine
->i915
;
1498 dev_priv
->irq_mask
&= ~engine
->irq_enable_mask
;
1499 I915_WRITE16(IMR
, dev_priv
->irq_mask
);
1500 POSTING_READ16(RING_IMR(engine
->mmio_base
));
1504 i8xx_irq_disable(struct intel_engine_cs
*engine
)
1506 struct drm_i915_private
*dev_priv
= engine
->i915
;
1508 dev_priv
->irq_mask
|= engine
->irq_enable_mask
;
1509 I915_WRITE16(IMR
, dev_priv
->irq_mask
);
1513 bsd_ring_flush(struct drm_i915_gem_request
*req
, u32 mode
)
1515 struct intel_ring
*ring
= req
->ring
;
1518 ret
= intel_ring_begin(req
, 2);
1522 intel_ring_emit(ring
, MI_FLUSH
);
1523 intel_ring_emit(ring
, MI_NOOP
);
1524 intel_ring_advance(ring
);
1529 gen6_irq_enable(struct intel_engine_cs
*engine
)
1531 struct drm_i915_private
*dev_priv
= engine
->i915
;
1533 I915_WRITE_IMR(engine
,
1534 ~(engine
->irq_enable_mask
|
1535 engine
->irq_keep_mask
));
1536 gen5_enable_gt_irq(dev_priv
, engine
->irq_enable_mask
);
1540 gen6_irq_disable(struct intel_engine_cs
*engine
)
1542 struct drm_i915_private
*dev_priv
= engine
->i915
;
1544 I915_WRITE_IMR(engine
, ~engine
->irq_keep_mask
);
1545 gen5_disable_gt_irq(dev_priv
, engine
->irq_enable_mask
);
1549 hsw_vebox_irq_enable(struct intel_engine_cs
*engine
)
1551 struct drm_i915_private
*dev_priv
= engine
->i915
;
1553 I915_WRITE_IMR(engine
, ~engine
->irq_enable_mask
);
1554 gen6_unmask_pm_irq(dev_priv
, engine
->irq_enable_mask
);
1558 hsw_vebox_irq_disable(struct intel_engine_cs
*engine
)
1560 struct drm_i915_private
*dev_priv
= engine
->i915
;
1562 I915_WRITE_IMR(engine
, ~0);
1563 gen6_mask_pm_irq(dev_priv
, engine
->irq_enable_mask
);
1567 gen8_irq_enable(struct intel_engine_cs
*engine
)
1569 struct drm_i915_private
*dev_priv
= engine
->i915
;
1571 I915_WRITE_IMR(engine
,
1572 ~(engine
->irq_enable_mask
|
1573 engine
->irq_keep_mask
));
1574 POSTING_READ_FW(RING_IMR(engine
->mmio_base
));
1578 gen8_irq_disable(struct intel_engine_cs
*engine
)
1580 struct drm_i915_private
*dev_priv
= engine
->i915
;
1582 I915_WRITE_IMR(engine
, ~engine
->irq_keep_mask
);
1586 i965_emit_bb_start(struct drm_i915_gem_request
*req
,
1587 u64 offset
, u32 length
,
1588 unsigned int dispatch_flags
)
1590 struct intel_ring
*ring
= req
->ring
;
1593 ret
= intel_ring_begin(req
, 2);
1597 intel_ring_emit(ring
,
1598 MI_BATCH_BUFFER_START
|
1600 (dispatch_flags
& I915_DISPATCH_SECURE
?
1601 0 : MI_BATCH_NON_SECURE_I965
));
1602 intel_ring_emit(ring
, offset
);
1603 intel_ring_advance(ring
);
1608 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1609 #define I830_BATCH_LIMIT (256*1024)
1610 #define I830_TLB_ENTRIES (2)
1611 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1613 i830_emit_bb_start(struct drm_i915_gem_request
*req
,
1614 u64 offset
, u32 len
,
1615 unsigned int dispatch_flags
)
1617 struct intel_ring
*ring
= req
->ring
;
1618 u32 cs_offset
= i915_ggtt_offset(req
->engine
->scratch
);
1621 ret
= intel_ring_begin(req
, 6);
1625 /* Evict the invalid PTE TLBs */
1626 intel_ring_emit(ring
, COLOR_BLT_CMD
| BLT_WRITE_RGBA
);
1627 intel_ring_emit(ring
, BLT_DEPTH_32
| BLT_ROP_COLOR_COPY
| 4096);
1628 intel_ring_emit(ring
, I830_TLB_ENTRIES
<< 16 | 4); /* load each page */
1629 intel_ring_emit(ring
, cs_offset
);
1630 intel_ring_emit(ring
, 0xdeadbeef);
1631 intel_ring_emit(ring
, MI_NOOP
);
1632 intel_ring_advance(ring
);
1634 if ((dispatch_flags
& I915_DISPATCH_PINNED
) == 0) {
1635 if (len
> I830_BATCH_LIMIT
)
1638 ret
= intel_ring_begin(req
, 6 + 2);
1642 /* Blit the batch (which has now all relocs applied) to the
1643 * stable batch scratch bo area (so that the CS never
1644 * stumbles over its tlb invalidation bug) ...
1646 intel_ring_emit(ring
, SRC_COPY_BLT_CMD
| BLT_WRITE_RGBA
);
1647 intel_ring_emit(ring
,
1648 BLT_DEPTH_32
| BLT_ROP_SRC_COPY
| 4096);
1649 intel_ring_emit(ring
, DIV_ROUND_UP(len
, 4096) << 16 | 4096);
1650 intel_ring_emit(ring
, cs_offset
);
1651 intel_ring_emit(ring
, 4096);
1652 intel_ring_emit(ring
, offset
);
1654 intel_ring_emit(ring
, MI_FLUSH
);
1655 intel_ring_emit(ring
, MI_NOOP
);
1656 intel_ring_advance(ring
);
1658 /* ... and execute it. */
1662 ret
= intel_ring_begin(req
, 2);
1666 intel_ring_emit(ring
, MI_BATCH_BUFFER_START
| MI_BATCH_GTT
);
1667 intel_ring_emit(ring
, offset
| (dispatch_flags
& I915_DISPATCH_SECURE
?
1668 0 : MI_BATCH_NON_SECURE
));
1669 intel_ring_advance(ring
);
1675 i915_emit_bb_start(struct drm_i915_gem_request
*req
,
1676 u64 offset
, u32 len
,
1677 unsigned int dispatch_flags
)
1679 struct intel_ring
*ring
= req
->ring
;
1682 ret
= intel_ring_begin(req
, 2);
1686 intel_ring_emit(ring
, MI_BATCH_BUFFER_START
| MI_BATCH_GTT
);
1687 intel_ring_emit(ring
, offset
| (dispatch_flags
& I915_DISPATCH_SECURE
?
1688 0 : MI_BATCH_NON_SECURE
));
1689 intel_ring_advance(ring
);
1694 static void cleanup_phys_status_page(struct intel_engine_cs
*engine
)
1696 struct drm_i915_private
*dev_priv
= engine
->i915
;
1698 if (!dev_priv
->status_page_dmah
)
1701 drm_pci_free(&dev_priv
->drm
, dev_priv
->status_page_dmah
);
1702 engine
->status_page
.page_addr
= NULL
;
1705 static void cleanup_status_page(struct intel_engine_cs
*engine
)
1707 struct i915_vma
*vma
;
1708 struct drm_i915_gem_object
*obj
;
1710 vma
= fetch_and_zero(&engine
->status_page
.vma
);
1716 i915_vma_unpin(vma
);
1717 i915_vma_close(vma
);
1719 i915_gem_object_unpin_map(obj
);
1720 __i915_gem_object_release_unless_active(obj
);
1723 static int init_status_page(struct intel_engine_cs
*engine
)
1725 struct drm_i915_gem_object
*obj
;
1726 struct i915_vma
*vma
;
1731 obj
= i915_gem_object_create_internal(engine
->i915
, PAGE_SIZE
);
1733 DRM_ERROR("Failed to allocate status page\n");
1734 return PTR_ERR(obj
);
1737 ret
= i915_gem_object_set_cache_level(obj
, I915_CACHE_LLC
);
1741 vma
= i915_vma_instance(obj
, &engine
->i915
->ggtt
.base
, NULL
);
1748 if (!HAS_LLC(engine
->i915
))
1749 /* On g33, we cannot place HWS above 256MiB, so
1750 * restrict its pinning to the low mappable arena.
1751 * Though this restriction is not documented for
1752 * gen4, gen5, or byt, they also behave similarly
1753 * and hang if the HWS is placed at the top of the
1754 * GTT. To generalise, it appears that all !llc
1755 * platforms have issues with us placing the HWS
1756 * above the mappable region (even though we never
1759 flags
|= PIN_MAPPABLE
;
1760 ret
= i915_vma_pin(vma
, 0, 4096, flags
);
1764 vaddr
= i915_gem_object_pin_map(obj
, I915_MAP_WB
);
1765 if (IS_ERR(vaddr
)) {
1766 ret
= PTR_ERR(vaddr
);
1770 engine
->status_page
.vma
= vma
;
1771 engine
->status_page
.ggtt_offset
= i915_ggtt_offset(vma
);
1772 engine
->status_page
.page_addr
= memset(vaddr
, 0, PAGE_SIZE
);
1774 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1775 engine
->name
, i915_ggtt_offset(vma
));
1779 i915_vma_unpin(vma
);
1781 i915_gem_object_put(obj
);
1785 static int init_phys_status_page(struct intel_engine_cs
*engine
)
1787 struct drm_i915_private
*dev_priv
= engine
->i915
;
1789 dev_priv
->status_page_dmah
=
1790 drm_pci_alloc(&dev_priv
->drm
, PAGE_SIZE
, PAGE_SIZE
);
1791 if (!dev_priv
->status_page_dmah
)
1794 engine
->status_page
.page_addr
= dev_priv
->status_page_dmah
->vaddr
;
1795 memset(engine
->status_page
.page_addr
, 0, PAGE_SIZE
);
1800 int intel_ring_pin(struct intel_ring
*ring
, unsigned int offset_bias
)
1803 enum i915_map_type map
;
1804 struct i915_vma
*vma
= ring
->vma
;
1808 GEM_BUG_ON(ring
->vaddr
);
1810 map
= HAS_LLC(ring
->engine
->i915
) ? I915_MAP_WB
: I915_MAP_WC
;
1814 flags
|= PIN_OFFSET_BIAS
| offset_bias
;
1815 if (vma
->obj
->stolen
)
1816 flags
|= PIN_MAPPABLE
;
1818 if (!(vma
->flags
& I915_VMA_GLOBAL_BIND
)) {
1819 if (flags
& PIN_MAPPABLE
|| map
== I915_MAP_WC
)
1820 ret
= i915_gem_object_set_to_gtt_domain(vma
->obj
, true);
1822 ret
= i915_gem_object_set_to_cpu_domain(vma
->obj
, true);
1827 ret
= i915_vma_pin(vma
, 0, PAGE_SIZE
, flags
);
1831 if (i915_vma_is_map_and_fenceable(vma
))
1832 addr
= (void __force
*)i915_vma_pin_iomap(vma
);
1834 addr
= i915_gem_object_pin_map(vma
->obj
, map
);
1842 i915_vma_unpin(vma
);
1843 return PTR_ERR(addr
);
1846 void intel_ring_unpin(struct intel_ring
*ring
)
1848 GEM_BUG_ON(!ring
->vma
);
1849 GEM_BUG_ON(!ring
->vaddr
);
1851 if (i915_vma_is_map_and_fenceable(ring
->vma
))
1852 i915_vma_unpin_iomap(ring
->vma
);
1854 i915_gem_object_unpin_map(ring
->vma
->obj
);
1857 i915_vma_unpin(ring
->vma
);
1860 static struct i915_vma
*
1861 intel_ring_create_vma(struct drm_i915_private
*dev_priv
, int size
)
1863 struct drm_i915_gem_object
*obj
;
1864 struct i915_vma
*vma
;
1866 obj
= i915_gem_object_create_stolen(dev_priv
, size
);
1868 obj
= i915_gem_object_create(dev_priv
, size
);
1870 return ERR_CAST(obj
);
1872 /* mark ring buffers as read-only from GPU side by default */
1875 vma
= i915_vma_instance(obj
, &dev_priv
->ggtt
.base
, NULL
);
1882 i915_gem_object_put(obj
);
1887 intel_engine_create_ring(struct intel_engine_cs
*engine
, int size
)
1889 struct intel_ring
*ring
;
1890 struct i915_vma
*vma
;
1892 GEM_BUG_ON(!is_power_of_2(size
));
1893 GEM_BUG_ON(RING_CTL_SIZE(size
) & ~RING_NR_PAGES
);
1895 ring
= kzalloc(sizeof(*ring
), GFP_KERNEL
);
1897 return ERR_PTR(-ENOMEM
);
1899 ring
->engine
= engine
;
1901 INIT_LIST_HEAD(&ring
->request_list
);
1904 /* Workaround an erratum on the i830 which causes a hang if
1905 * the TAIL pointer points to within the last 2 cachelines
1908 ring
->effective_size
= size
;
1909 if (IS_I830(engine
->i915
) || IS_I845G(engine
->i915
))
1910 ring
->effective_size
-= 2 * CACHELINE_BYTES
;
1912 ring
->last_retired_head
= -1;
1913 intel_ring_update_space(ring
);
1915 vma
= intel_ring_create_vma(engine
->i915
, size
);
1918 return ERR_CAST(vma
);
1926 intel_ring_free(struct intel_ring
*ring
)
1928 struct drm_i915_gem_object
*obj
= ring
->vma
->obj
;
1930 i915_vma_close(ring
->vma
);
1931 __i915_gem_object_release_unless_active(obj
);
1936 static int context_pin(struct i915_gem_context
*ctx
, unsigned int flags
)
1938 struct i915_vma
*vma
= ctx
->engine
[RCS
].state
;
1941 /* Clear this page out of any CPU caches for coherent swap-in/out.
1942 * We only want to do this on the first bind so that we do not stall
1943 * on an active context (which by nature is already on the GPU).
1945 if (!(vma
->flags
& I915_VMA_GLOBAL_BIND
)) {
1946 ret
= i915_gem_object_set_to_gtt_domain(vma
->obj
, false);
1951 return i915_vma_pin(vma
, 0, ctx
->ggtt_alignment
, PIN_GLOBAL
| flags
);
1954 static int intel_ring_context_pin(struct intel_engine_cs
*engine
,
1955 struct i915_gem_context
*ctx
)
1957 struct intel_context
*ce
= &ctx
->engine
[engine
->id
];
1960 lockdep_assert_held(&ctx
->i915
->drm
.struct_mutex
);
1962 if (ce
->pin_count
++)
1969 if (i915_gem_context_is_kernel(ctx
))
1972 ret
= context_pin(ctx
, flags
);
1977 /* The kernel context is only used as a placeholder for flushing the
1978 * active context. It is never used for submitting user rendering and
1979 * as such never requires the golden render context, and so we can skip
1980 * emitting it when we switch to the kernel context. This is required
1981 * as during eviction we cannot allocate and pin the renderstate in
1982 * order to initialise the context.
1984 if (i915_gem_context_is_kernel(ctx
))
1985 ce
->initialised
= true;
1987 i915_gem_context_get(ctx
);
1995 static void intel_ring_context_unpin(struct intel_engine_cs
*engine
,
1996 struct i915_gem_context
*ctx
)
1998 struct intel_context
*ce
= &ctx
->engine
[engine
->id
];
2000 lockdep_assert_held(&ctx
->i915
->drm
.struct_mutex
);
2001 GEM_BUG_ON(ce
->pin_count
== 0);
2003 if (--ce
->pin_count
)
2007 i915_vma_unpin(ce
->state
);
2009 i915_gem_context_put(ctx
);
2012 static int intel_init_ring_buffer(struct intel_engine_cs
*engine
)
2014 struct drm_i915_private
*dev_priv
= engine
->i915
;
2015 struct intel_ring
*ring
;
2018 WARN_ON(engine
->buffer
);
2020 intel_engine_setup_common(engine
);
2022 ret
= intel_engine_init_common(engine
);
2026 ring
= intel_engine_create_ring(engine
, 32 * PAGE_SIZE
);
2028 ret
= PTR_ERR(ring
);
2032 if (HWS_NEEDS_PHYSICAL(dev_priv
)) {
2033 WARN_ON(engine
->id
!= RCS
);
2034 ret
= init_phys_status_page(engine
);
2038 ret
= init_status_page(engine
);
2043 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2044 ret
= intel_ring_pin(ring
, I915_GTT_PAGE_SIZE
);
2046 intel_ring_free(ring
);
2049 engine
->buffer
= ring
;
2054 intel_engine_cleanup(engine
);
2058 void intel_engine_cleanup(struct intel_engine_cs
*engine
)
2060 struct drm_i915_private
*dev_priv
;
2062 dev_priv
= engine
->i915
;
2064 if (engine
->buffer
) {
2065 WARN_ON(INTEL_GEN(dev_priv
) > 2 &&
2066 (I915_READ_MODE(engine
) & MODE_IDLE
) == 0);
2068 intel_ring_unpin(engine
->buffer
);
2069 intel_ring_free(engine
->buffer
);
2070 engine
->buffer
= NULL
;
2073 if (engine
->cleanup
)
2074 engine
->cleanup(engine
);
2076 if (HWS_NEEDS_PHYSICAL(dev_priv
)) {
2077 WARN_ON(engine
->id
!= RCS
);
2078 cleanup_phys_status_page(engine
);
2080 cleanup_status_page(engine
);
2083 intel_engine_cleanup_common(engine
);
2085 engine
->i915
= NULL
;
2086 dev_priv
->engine
[engine
->id
] = NULL
;
2090 void intel_legacy_submission_resume(struct drm_i915_private
*dev_priv
)
2092 struct intel_engine_cs
*engine
;
2093 enum intel_engine_id id
;
2095 for_each_engine(engine
, dev_priv
, id
) {
2096 engine
->buffer
->head
= engine
->buffer
->tail
;
2097 engine
->buffer
->last_retired_head
= -1;
2101 static int ring_request_alloc(struct drm_i915_gem_request
*request
)
2105 GEM_BUG_ON(!request
->ctx
->engine
[request
->engine
->id
].pin_count
);
2107 /* Flush enough space to reduce the likelihood of waiting after
2108 * we start building the request - in which case we will just
2109 * have to repeat work.
2111 request
->reserved_space
+= LEGACY_REQUEST_SIZE
;
2113 GEM_BUG_ON(!request
->engine
->buffer
);
2114 request
->ring
= request
->engine
->buffer
;
2116 ret
= intel_ring_begin(request
, 0);
2120 request
->reserved_space
-= LEGACY_REQUEST_SIZE
;
2124 static int wait_for_space(struct drm_i915_gem_request
*req
, int bytes
)
2126 struct intel_ring
*ring
= req
->ring
;
2127 struct drm_i915_gem_request
*target
;
2130 lockdep_assert_held(&req
->i915
->drm
.struct_mutex
);
2132 intel_ring_update_space(ring
);
2133 if (ring
->space
>= bytes
)
2137 * Space is reserved in the ringbuffer for finalising the request,
2138 * as that cannot be allowed to fail. During request finalisation,
2139 * reserved_space is set to 0 to stop the overallocation and the
2140 * assumption is that then we never need to wait (which has the
2141 * risk of failing with EINTR).
2143 * See also i915_gem_request_alloc() and i915_add_request().
2145 GEM_BUG_ON(!req
->reserved_space
);
2147 list_for_each_entry(target
, &ring
->request_list
, ring_link
) {
2150 /* Would completion of this request free enough space? */
2151 space
= __intel_ring_space(target
->postfix
, ring
->tail
,
2157 if (WARN_ON(&target
->ring_link
== &ring
->request_list
))
2160 timeout
= i915_wait_request(target
,
2161 I915_WAIT_INTERRUPTIBLE
| I915_WAIT_LOCKED
,
2162 MAX_SCHEDULE_TIMEOUT
);
2166 i915_gem_request_retire_upto(target
);
2168 intel_ring_update_space(ring
);
2169 GEM_BUG_ON(ring
->space
< bytes
);
2173 int intel_ring_begin(struct drm_i915_gem_request
*req
, int num_dwords
)
2175 struct intel_ring
*ring
= req
->ring
;
2176 int remain_actual
= ring
->size
- ring
->tail
;
2177 int remain_usable
= ring
->effective_size
- ring
->tail
;
2178 int bytes
= num_dwords
* sizeof(u32
);
2179 int total_bytes
, wait_bytes
;
2180 bool need_wrap
= false;
2182 total_bytes
= bytes
+ req
->reserved_space
;
2184 if (unlikely(bytes
> remain_usable
)) {
2186 * Not enough space for the basic request. So need to flush
2187 * out the remainder and then wait for base + reserved.
2189 wait_bytes
= remain_actual
+ total_bytes
;
2191 } else if (unlikely(total_bytes
> remain_usable
)) {
2193 * The base request will fit but the reserved space
2194 * falls off the end. So we don't need an immediate wrap
2195 * and only need to effectively wait for the reserved
2196 * size space from the start of ringbuffer.
2198 wait_bytes
= remain_actual
+ req
->reserved_space
;
2200 /* No wrapping required, just waiting. */
2201 wait_bytes
= total_bytes
;
2204 if (wait_bytes
> ring
->space
) {
2205 int ret
= wait_for_space(req
, wait_bytes
);
2210 if (unlikely(need_wrap
)) {
2211 GEM_BUG_ON(remain_actual
> ring
->space
);
2212 GEM_BUG_ON(ring
->tail
+ remain_actual
> ring
->size
);
2214 /* Fill the tail with MI_NOOP */
2215 memset(ring
->vaddr
+ ring
->tail
, 0, remain_actual
);
2217 ring
->space
-= remain_actual
;
2220 ring
->space
-= bytes
;
2221 GEM_BUG_ON(ring
->space
< 0);
2225 /* Align the ring tail to a cacheline boundary */
2226 int intel_ring_cacheline_align(struct drm_i915_gem_request
*req
)
2228 struct intel_ring
*ring
= req
->ring
;
2230 (ring
->tail
& (CACHELINE_BYTES
- 1)) / sizeof(uint32_t);
2233 if (num_dwords
== 0)
2236 num_dwords
= CACHELINE_BYTES
/ sizeof(uint32_t) - num_dwords
;
2237 ret
= intel_ring_begin(req
, num_dwords
);
2241 while (num_dwords
--)
2242 intel_ring_emit(ring
, MI_NOOP
);
2244 intel_ring_advance(ring
);
2249 static void gen6_bsd_submit_request(struct drm_i915_gem_request
*request
)
2251 struct drm_i915_private
*dev_priv
= request
->i915
;
2253 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
2255 /* Every tail move must follow the sequence below */
2257 /* Disable notification that the ring is IDLE. The GT
2258 * will then assume that it is busy and bring it out of rc6.
2260 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL
,
2261 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE
));
2263 /* Clear the context id. Here be magic! */
2264 I915_WRITE64_FW(GEN6_BSD_RNCID
, 0x0);
2266 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2267 if (intel_wait_for_register_fw(dev_priv
,
2268 GEN6_BSD_SLEEP_PSMI_CONTROL
,
2269 GEN6_BSD_SLEEP_INDICATOR
,
2272 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2274 /* Now that the ring is fully powered up, update the tail */
2275 i9xx_submit_request(request
);
2277 /* Let the ring send IDLE messages to the GT again,
2278 * and so let it sleep to conserve power when idle.
2280 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL
,
2281 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE
));
2283 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
2286 static int gen6_bsd_ring_flush(struct drm_i915_gem_request
*req
, u32 mode
)
2288 struct intel_ring
*ring
= req
->ring
;
2292 ret
= intel_ring_begin(req
, 4);
2297 if (INTEL_GEN(req
->i915
) >= 8)
2300 /* We always require a command barrier so that subsequent
2301 * commands, such as breadcrumb interrupts, are strictly ordered
2302 * wrt the contents of the write cache being flushed to memory
2303 * (and thus being coherent from the CPU).
2305 cmd
|= MI_FLUSH_DW_STORE_INDEX
| MI_FLUSH_DW_OP_STOREDW
;
2308 * Bspec vol 1c.5 - video engine command streamer:
2309 * "If ENABLED, all TLBs will be invalidated once the flush
2310 * operation is complete. This bit is only valid when the
2311 * Post-Sync Operation field is a value of 1h or 3h."
2313 if (mode
& EMIT_INVALIDATE
)
2314 cmd
|= MI_INVALIDATE_TLB
| MI_INVALIDATE_BSD
;
2316 intel_ring_emit(ring
, cmd
);
2317 intel_ring_emit(ring
, I915_GEM_HWS_SCRATCH_ADDR
| MI_FLUSH_DW_USE_GTT
);
2318 if (INTEL_GEN(req
->i915
) >= 8) {
2319 intel_ring_emit(ring
, 0); /* upper addr */
2320 intel_ring_emit(ring
, 0); /* value */
2322 intel_ring_emit(ring
, 0);
2323 intel_ring_emit(ring
, MI_NOOP
);
2325 intel_ring_advance(ring
);
2330 gen8_emit_bb_start(struct drm_i915_gem_request
*req
,
2331 u64 offset
, u32 len
,
2332 unsigned int dispatch_flags
)
2334 struct intel_ring
*ring
= req
->ring
;
2335 bool ppgtt
= USES_PPGTT(req
->i915
) &&
2336 !(dispatch_flags
& I915_DISPATCH_SECURE
);
2339 ret
= intel_ring_begin(req
, 4);
2343 /* FIXME(BDW): Address space and security selectors. */
2344 intel_ring_emit(ring
, MI_BATCH_BUFFER_START_GEN8
| (ppgtt
<<8) |
2345 (dispatch_flags
& I915_DISPATCH_RS
?
2346 MI_BATCH_RESOURCE_STREAMER
: 0));
2347 intel_ring_emit(ring
, lower_32_bits(offset
));
2348 intel_ring_emit(ring
, upper_32_bits(offset
));
2349 intel_ring_emit(ring
, MI_NOOP
);
2350 intel_ring_advance(ring
);
2356 hsw_emit_bb_start(struct drm_i915_gem_request
*req
,
2357 u64 offset
, u32 len
,
2358 unsigned int dispatch_flags
)
2360 struct intel_ring
*ring
= req
->ring
;
2363 ret
= intel_ring_begin(req
, 2);
2367 intel_ring_emit(ring
,
2368 MI_BATCH_BUFFER_START
|
2369 (dispatch_flags
& I915_DISPATCH_SECURE
?
2370 0 : MI_BATCH_PPGTT_HSW
| MI_BATCH_NON_SECURE_HSW
) |
2371 (dispatch_flags
& I915_DISPATCH_RS
?
2372 MI_BATCH_RESOURCE_STREAMER
: 0));
2373 /* bit0-7 is the length on GEN6+ */
2374 intel_ring_emit(ring
, offset
);
2375 intel_ring_advance(ring
);
2381 gen6_emit_bb_start(struct drm_i915_gem_request
*req
,
2382 u64 offset
, u32 len
,
2383 unsigned int dispatch_flags
)
2385 struct intel_ring
*ring
= req
->ring
;
2388 ret
= intel_ring_begin(req
, 2);
2392 intel_ring_emit(ring
,
2393 MI_BATCH_BUFFER_START
|
2394 (dispatch_flags
& I915_DISPATCH_SECURE
?
2395 0 : MI_BATCH_NON_SECURE_I965
));
2396 /* bit0-7 is the length on GEN6+ */
2397 intel_ring_emit(ring
, offset
);
2398 intel_ring_advance(ring
);
2403 /* Blitter support (SandyBridge+) */
2405 static int gen6_ring_flush(struct drm_i915_gem_request
*req
, u32 mode
)
2407 struct intel_ring
*ring
= req
->ring
;
2411 ret
= intel_ring_begin(req
, 4);
2416 if (INTEL_GEN(req
->i915
) >= 8)
2419 /* We always require a command barrier so that subsequent
2420 * commands, such as breadcrumb interrupts, are strictly ordered
2421 * wrt the contents of the write cache being flushed to memory
2422 * (and thus being coherent from the CPU).
2424 cmd
|= MI_FLUSH_DW_STORE_INDEX
| MI_FLUSH_DW_OP_STOREDW
;
2427 * Bspec vol 1c.3 - blitter engine command streamer:
2428 * "If ENABLED, all TLBs will be invalidated once the flush
2429 * operation is complete. This bit is only valid when the
2430 * Post-Sync Operation field is a value of 1h or 3h."
2432 if (mode
& EMIT_INVALIDATE
)
2433 cmd
|= MI_INVALIDATE_TLB
;
2434 intel_ring_emit(ring
, cmd
);
2435 intel_ring_emit(ring
,
2436 I915_GEM_HWS_SCRATCH_ADDR
| MI_FLUSH_DW_USE_GTT
);
2437 if (INTEL_GEN(req
->i915
) >= 8) {
2438 intel_ring_emit(ring
, 0); /* upper addr */
2439 intel_ring_emit(ring
, 0); /* value */
2441 intel_ring_emit(ring
, 0);
2442 intel_ring_emit(ring
, MI_NOOP
);
2444 intel_ring_advance(ring
);
2449 static void intel_ring_init_semaphores(struct drm_i915_private
*dev_priv
,
2450 struct intel_engine_cs
*engine
)
2452 struct drm_i915_gem_object
*obj
;
2455 if (!i915
.semaphores
)
2458 if (INTEL_GEN(dev_priv
) >= 8 && !dev_priv
->semaphore
) {
2459 struct i915_vma
*vma
;
2461 obj
= i915_gem_object_create(dev_priv
, PAGE_SIZE
);
2465 vma
= i915_vma_instance(obj
, &dev_priv
->ggtt
.base
, NULL
);
2469 ret
= i915_gem_object_set_to_gtt_domain(obj
, false);
2473 ret
= i915_vma_pin(vma
, 0, 0, PIN_GLOBAL
| PIN_HIGH
);
2477 dev_priv
->semaphore
= vma
;
2480 if (INTEL_GEN(dev_priv
) >= 8) {
2481 u32 offset
= i915_ggtt_offset(dev_priv
->semaphore
);
2483 engine
->semaphore
.sync_to
= gen8_ring_sync_to
;
2484 engine
->semaphore
.signal
= gen8_xcs_signal
;
2486 for (i
= 0; i
< I915_NUM_ENGINES
; i
++) {
2489 if (i
!= engine
->id
)
2490 ring_offset
= offset
+ GEN8_SEMAPHORE_OFFSET(engine
->id
, i
);
2492 ring_offset
= MI_SEMAPHORE_SYNC_INVALID
;
2494 engine
->semaphore
.signal_ggtt
[i
] = ring_offset
;
2496 } else if (INTEL_GEN(dev_priv
) >= 6) {
2497 engine
->semaphore
.sync_to
= gen6_ring_sync_to
;
2498 engine
->semaphore
.signal
= gen6_signal
;
2501 * The current semaphore is only applied on pre-gen8
2502 * platform. And there is no VCS2 ring on the pre-gen8
2503 * platform. So the semaphore between RCS and VCS2 is
2504 * initialized as INVALID. Gen8 will initialize the
2505 * sema between VCS2 and RCS later.
2507 for (i
= 0; i
< GEN6_NUM_SEMAPHORES
; i
++) {
2508 static const struct {
2510 i915_reg_t mbox_reg
;
2511 } sem_data
[GEN6_NUM_SEMAPHORES
][GEN6_NUM_SEMAPHORES
] = {
2513 [VCS_HW
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_RV
, .mbox_reg
= GEN6_VRSYNC
},
2514 [BCS_HW
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_RB
, .mbox_reg
= GEN6_BRSYNC
},
2515 [VECS_HW
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_RVE
, .mbox_reg
= GEN6_VERSYNC
},
2518 [RCS_HW
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_VR
, .mbox_reg
= GEN6_RVSYNC
},
2519 [BCS_HW
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_VB
, .mbox_reg
= GEN6_BVSYNC
},
2520 [VECS_HW
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_VVE
, .mbox_reg
= GEN6_VEVSYNC
},
2523 [RCS_HW
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_BR
, .mbox_reg
= GEN6_RBSYNC
},
2524 [VCS_HW
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_BV
, .mbox_reg
= GEN6_VBSYNC
},
2525 [VECS_HW
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_BVE
, .mbox_reg
= GEN6_VEBSYNC
},
2528 [RCS_HW
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_VER
, .mbox_reg
= GEN6_RVESYNC
},
2529 [VCS_HW
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_VEV
, .mbox_reg
= GEN6_VVESYNC
},
2530 [BCS_HW
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_VEB
, .mbox_reg
= GEN6_BVESYNC
},
2534 i915_reg_t mbox_reg
;
2536 if (i
== engine
->hw_id
) {
2537 wait_mbox
= MI_SEMAPHORE_SYNC_INVALID
;
2538 mbox_reg
= GEN6_NOSYNC
;
2540 wait_mbox
= sem_data
[engine
->hw_id
][i
].wait_mbox
;
2541 mbox_reg
= sem_data
[engine
->hw_id
][i
].mbox_reg
;
2544 engine
->semaphore
.mbox
.wait
[i
] = wait_mbox
;
2545 engine
->semaphore
.mbox
.signal
[i
] = mbox_reg
;
2552 i915_gem_object_put(obj
);
2554 DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2555 i915
.semaphores
= 0;
2558 static void intel_ring_init_irq(struct drm_i915_private
*dev_priv
,
2559 struct intel_engine_cs
*engine
)
2561 engine
->irq_enable_mask
= GT_RENDER_USER_INTERRUPT
<< engine
->irq_shift
;
2563 if (INTEL_GEN(dev_priv
) >= 8) {
2564 engine
->irq_enable
= gen8_irq_enable
;
2565 engine
->irq_disable
= gen8_irq_disable
;
2566 engine
->irq_seqno_barrier
= gen6_seqno_barrier
;
2567 } else if (INTEL_GEN(dev_priv
) >= 6) {
2568 engine
->irq_enable
= gen6_irq_enable
;
2569 engine
->irq_disable
= gen6_irq_disable
;
2570 engine
->irq_seqno_barrier
= gen6_seqno_barrier
;
2571 } else if (INTEL_GEN(dev_priv
) >= 5) {
2572 engine
->irq_enable
= gen5_irq_enable
;
2573 engine
->irq_disable
= gen5_irq_disable
;
2574 engine
->irq_seqno_barrier
= gen5_seqno_barrier
;
2575 } else if (INTEL_GEN(dev_priv
) >= 3) {
2576 engine
->irq_enable
= i9xx_irq_enable
;
2577 engine
->irq_disable
= i9xx_irq_disable
;
2579 engine
->irq_enable
= i8xx_irq_enable
;
2580 engine
->irq_disable
= i8xx_irq_disable
;
2584 static void intel_ring_default_vfuncs(struct drm_i915_private
*dev_priv
,
2585 struct intel_engine_cs
*engine
)
2587 intel_ring_init_irq(dev_priv
, engine
);
2588 intel_ring_init_semaphores(dev_priv
, engine
);
2590 engine
->init_hw
= init_ring_common
;
2591 engine
->reset_hw
= reset_ring_common
;
2593 engine
->context_pin
= intel_ring_context_pin
;
2594 engine
->context_unpin
= intel_ring_context_unpin
;
2596 engine
->request_alloc
= ring_request_alloc
;
2598 engine
->emit_breadcrumb
= i9xx_emit_breadcrumb
;
2599 engine
->emit_breadcrumb_sz
= i9xx_emit_breadcrumb_sz
;
2600 if (i915
.semaphores
) {
2603 engine
->emit_breadcrumb
= gen6_sema_emit_breadcrumb
;
2605 num_rings
= hweight32(INTEL_INFO(dev_priv
)->ring_mask
) - 1;
2606 if (INTEL_GEN(dev_priv
) >= 8) {
2607 engine
->emit_breadcrumb_sz
+= num_rings
* 6;
2609 engine
->emit_breadcrumb_sz
+= num_rings
* 3;
2611 engine
->emit_breadcrumb_sz
++;
2614 engine
->submit_request
= i9xx_submit_request
;
2616 if (INTEL_GEN(dev_priv
) >= 8)
2617 engine
->emit_bb_start
= gen8_emit_bb_start
;
2618 else if (INTEL_GEN(dev_priv
) >= 6)
2619 engine
->emit_bb_start
= gen6_emit_bb_start
;
2620 else if (INTEL_GEN(dev_priv
) >= 4)
2621 engine
->emit_bb_start
= i965_emit_bb_start
;
2622 else if (IS_I830(dev_priv
) || IS_I845G(dev_priv
))
2623 engine
->emit_bb_start
= i830_emit_bb_start
;
2625 engine
->emit_bb_start
= i915_emit_bb_start
;
2628 int intel_init_render_ring_buffer(struct intel_engine_cs
*engine
)
2630 struct drm_i915_private
*dev_priv
= engine
->i915
;
2633 intel_ring_default_vfuncs(dev_priv
, engine
);
2635 if (HAS_L3_DPF(dev_priv
))
2636 engine
->irq_keep_mask
= GT_RENDER_L3_PARITY_ERROR_INTERRUPT
;
2638 if (INTEL_GEN(dev_priv
) >= 8) {
2639 engine
->init_context
= intel_rcs_ctx_init
;
2640 engine
->emit_breadcrumb
= gen8_render_emit_breadcrumb
;
2641 engine
->emit_breadcrumb_sz
= gen8_render_emit_breadcrumb_sz
;
2642 engine
->emit_flush
= gen8_render_ring_flush
;
2643 if (i915
.semaphores
) {
2646 engine
->semaphore
.signal
= gen8_rcs_signal
;
2649 hweight32(INTEL_INFO(dev_priv
)->ring_mask
) - 1;
2650 engine
->emit_breadcrumb_sz
+= num_rings
* 6;
2652 } else if (INTEL_GEN(dev_priv
) >= 6) {
2653 engine
->init_context
= intel_rcs_ctx_init
;
2654 engine
->emit_flush
= gen7_render_ring_flush
;
2655 if (IS_GEN6(dev_priv
))
2656 engine
->emit_flush
= gen6_render_ring_flush
;
2657 } else if (IS_GEN5(dev_priv
)) {
2658 engine
->emit_flush
= gen4_render_ring_flush
;
2660 if (INTEL_GEN(dev_priv
) < 4)
2661 engine
->emit_flush
= gen2_render_ring_flush
;
2663 engine
->emit_flush
= gen4_render_ring_flush
;
2664 engine
->irq_enable_mask
= I915_USER_INTERRUPT
;
2667 if (IS_HASWELL(dev_priv
))
2668 engine
->emit_bb_start
= hsw_emit_bb_start
;
2670 engine
->init_hw
= init_render_ring
;
2671 engine
->cleanup
= render_ring_cleanup
;
2673 ret
= intel_init_ring_buffer(engine
);
2677 if (INTEL_GEN(dev_priv
) >= 6) {
2678 ret
= intel_engine_create_scratch(engine
, PAGE_SIZE
);
2681 } else if (HAS_BROKEN_CS_TLB(dev_priv
)) {
2682 ret
= intel_engine_create_scratch(engine
, I830_WA_SIZE
);
2690 int intel_init_bsd_ring_buffer(struct intel_engine_cs
*engine
)
2692 struct drm_i915_private
*dev_priv
= engine
->i915
;
2694 intel_ring_default_vfuncs(dev_priv
, engine
);
2696 if (INTEL_GEN(dev_priv
) >= 6) {
2697 /* gen6 bsd needs a special wa for tail updates */
2698 if (IS_GEN6(dev_priv
))
2699 engine
->submit_request
= gen6_bsd_submit_request
;
2700 engine
->emit_flush
= gen6_bsd_ring_flush
;
2701 if (INTEL_GEN(dev_priv
) < 8)
2702 engine
->irq_enable_mask
= GT_BSD_USER_INTERRUPT
;
2704 engine
->mmio_base
= BSD_RING_BASE
;
2705 engine
->emit_flush
= bsd_ring_flush
;
2706 if (IS_GEN5(dev_priv
))
2707 engine
->irq_enable_mask
= ILK_BSD_USER_INTERRUPT
;
2709 engine
->irq_enable_mask
= I915_BSD_USER_INTERRUPT
;
2712 return intel_init_ring_buffer(engine
);
2716 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2718 int intel_init_bsd2_ring_buffer(struct intel_engine_cs
*engine
)
2720 struct drm_i915_private
*dev_priv
= engine
->i915
;
2722 intel_ring_default_vfuncs(dev_priv
, engine
);
2724 engine
->emit_flush
= gen6_bsd_ring_flush
;
2726 return intel_init_ring_buffer(engine
);
2729 int intel_init_blt_ring_buffer(struct intel_engine_cs
*engine
)
2731 struct drm_i915_private
*dev_priv
= engine
->i915
;
2733 intel_ring_default_vfuncs(dev_priv
, engine
);
2735 engine
->emit_flush
= gen6_ring_flush
;
2736 if (INTEL_GEN(dev_priv
) < 8)
2737 engine
->irq_enable_mask
= GT_BLT_USER_INTERRUPT
;
2739 return intel_init_ring_buffer(engine
);
2742 int intel_init_vebox_ring_buffer(struct intel_engine_cs
*engine
)
2744 struct drm_i915_private
*dev_priv
= engine
->i915
;
2746 intel_ring_default_vfuncs(dev_priv
, engine
);
2748 engine
->emit_flush
= gen6_ring_flush
;
2750 if (INTEL_GEN(dev_priv
) < 8) {
2751 engine
->irq_enable_mask
= PM_VEBOX_USER_INTERRUPT
;
2752 engine
->irq_enable
= hsw_vebox_irq_enable
;
2753 engine
->irq_disable
= hsw_vebox_irq_disable
;
2756 return intel_init_ring_buffer(engine
);