1 #ifndef _INTEL_RINGBUFFER_H_
2 #define _INTEL_RINGBUFFER_H_
4 #include <linux/hashtable.h>
5 #include "i915_gem_batch_pool.h"
6 #include "i915_gem_request.h"
7 #include "i915_gem_timeline.h"
9 #define I915_CMD_HASH_ORDER 9
11 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
12 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
13 * to give some inclination as to some of the magic values used in the various
16 #define CACHELINE_BYTES 64
17 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
20 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
21 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
22 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
24 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
25 * cacheline, the Head Pointer must not be greater than the Tail
28 #define I915_RING_FREE_SPACE 64
30 struct intel_hw_status_page
{
36 #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
37 #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
39 #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
40 #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
42 #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
43 #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
45 #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
46 #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
48 #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
49 #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
51 #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
52 #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
54 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
55 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
57 #define gen8_semaphore_seqno_size sizeof(uint64_t)
58 #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
59 (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
60 #define GEN8_SIGNAL_OFFSET(__ring, to) \
61 (dev_priv->semaphore->node.start + \
62 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
63 #define GEN8_WAIT_OFFSET(__ring, from) \
64 (dev_priv->semaphore->node.start + \
65 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
67 enum intel_engine_hangcheck_action
{
72 ENGINE_ACTIVE_SUBUNITS
,
77 static inline const char *
78 hangcheck_action_to_str(const enum intel_engine_hangcheck_action a
)
85 case ENGINE_ACTIVE_SEQNO
:
86 return "active seqno";
87 case ENGINE_ACTIVE_HEAD
:
89 case ENGINE_ACTIVE_SUBUNITS
:
90 return "active subunits";
91 case ENGINE_WAIT_KICK
:
100 #define I915_MAX_SLICES 3
101 #define I915_MAX_SUBSLICES 3
103 #define instdone_slice_mask(dev_priv__) \
104 (INTEL_GEN(dev_priv__) == 7 ? \
105 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
107 #define instdone_subslice_mask(dev_priv__) \
108 (INTEL_GEN(dev_priv__) == 7 ? \
109 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
111 #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
112 for ((slice__) = 0, (subslice__) = 0; \
113 (slice__) < I915_MAX_SLICES; \
114 (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
115 (slice__) += ((subslice__) == 0)) \
116 for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
117 (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
119 struct intel_instdone
{
121 /* The following exist only in the RCS engine */
123 u32 sampler
[I915_MAX_SLICES
][I915_MAX_SUBSLICES
];
124 u32 row
[I915_MAX_SLICES
][I915_MAX_SUBSLICES
];
127 struct intel_engine_hangcheck
{
130 enum intel_engine_hangcheck_action action
;
131 unsigned long action_timestamp
;
133 struct intel_instdone instdone
;
138 struct i915_vma
*vma
;
141 struct intel_engine_cs
*engine
;
143 struct list_head request_list
;
151 /** We track the position of the requests in the ring buffer, and
152 * when each is retired we increment last_retired_head as the GPU
153 * must have finished processing the request and so we know we
154 * can advance the ringbuffer up to that position.
156 * last_retired_head is set to -1 after the value is consumed so
157 * we can detect new retirements.
159 u32 last_retired_head
;
162 struct i915_gem_context
;
163 struct drm_i915_reg_table
;
166 * we use a single page to load ctx workarounds so all of these
167 * values are referred in terms of dwords
169 * struct i915_wa_ctx_bb:
170 * offset: specifies batch starting position, also helpful in case
171 * if we want to have multiple batches at different offsets based on
172 * some criteria. It is not a requirement at the moment but provides
173 * an option for future use.
174 * size: size of the batch in DWORDS
176 struct i915_ctx_workarounds
{
177 struct i915_wa_ctx_bb
{
180 } indirect_ctx
, per_ctx
;
181 struct i915_vma
*vma
;
184 struct drm_i915_gem_request
;
185 struct intel_render_state
;
187 struct intel_engine_cs
{
188 struct drm_i915_private
*i915
;
190 enum intel_engine_id
{
194 VCS2
, /* Keep instances of the same type engine together. */
197 #define _VCS(n) (VCS + (n))
198 unsigned int exec_id
;
199 enum intel_engine_hw_id
{
206 enum intel_engine_hw_id guc_id
; /* XXX same as hw_id? */
208 unsigned int irq_shift
;
209 struct intel_ring
*buffer
;
210 struct intel_timeline
*timeline
;
212 struct intel_render_state
*render_state
;
214 /* Rather than have every client wait upon all user interrupts,
215 * with the herd waking after every interrupt and each doing the
216 * heavyweight seqno dance, we delegate the task (of being the
217 * bottom-half of the user interrupt) to the first client. After
218 * every interrupt, we wake up one client, who does the heavyweight
219 * coherent seqno read and either goes back to sleep (if incomplete),
220 * or wakes up all the completed clients in parallel, before then
221 * transferring the bottom-half status to the next client in the queue.
223 * Compared to walking the entire list of waiters in a single dedicated
224 * bottom-half, we reduce the latency of the first waiter by avoiding
225 * a context switch, but incur additional coherent seqno reads when
226 * following the chain of request breadcrumbs. Since it is most likely
227 * that we have a single client waiting on each seqno, then reducing
228 * the overhead of waking that client is much preferred.
230 struct intel_breadcrumbs
{
231 struct task_struct __rcu
*irq_seqno_bh
; /* bh for interrupts */
234 spinlock_t lock
; /* protects the lists of requests; irqsafe */
235 struct rb_root waiters
; /* sorted by retirement, priority */
236 struct rb_root signals
; /* sorted by retirement */
237 struct intel_wait
*first_wait
; /* oldest waiter by retirement */
238 struct task_struct
*signaler
; /* used for fence signalling */
239 struct drm_i915_gem_request
*first_signal
;
240 struct timer_list fake_irq
; /* used after a missed interrupt */
241 struct timer_list hangcheck
; /* detect missed interrupts */
243 unsigned long timeout
;
245 bool irq_enabled
: 1;
246 bool rpm_wakelock
: 1;
250 * A pool of objects to use as shadow copies of client batch buffers
251 * when the command parser is enabled. Prevents the client from
252 * modifying the batch contents after software parsing.
254 struct i915_gem_batch_pool batch_pool
;
256 struct intel_hw_status_page status_page
;
257 struct i915_ctx_workarounds wa_ctx
;
258 struct i915_vma
*scratch
;
260 u32 irq_keep_mask
; /* always keep these interrupts */
261 u32 irq_enable_mask
; /* bitmask to enable ring interrupt */
262 void (*irq_enable
)(struct intel_engine_cs
*engine
);
263 void (*irq_disable
)(struct intel_engine_cs
*engine
);
265 int (*init_hw
)(struct intel_engine_cs
*engine
);
266 void (*reset_hw
)(struct intel_engine_cs
*engine
,
267 struct drm_i915_gem_request
*req
);
269 int (*context_pin
)(struct intel_engine_cs
*engine
,
270 struct i915_gem_context
*ctx
);
271 void (*context_unpin
)(struct intel_engine_cs
*engine
,
272 struct i915_gem_context
*ctx
);
273 int (*request_alloc
)(struct drm_i915_gem_request
*req
);
274 int (*init_context
)(struct drm_i915_gem_request
*req
);
276 int (*emit_flush
)(struct drm_i915_gem_request
*request
,
278 #define EMIT_INVALIDATE BIT(0)
279 #define EMIT_FLUSH BIT(1)
280 #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
281 int (*emit_bb_start
)(struct drm_i915_gem_request
*req
,
282 u64 offset
, u32 length
,
283 unsigned int dispatch_flags
);
284 #define I915_DISPATCH_SECURE BIT(0)
285 #define I915_DISPATCH_PINNED BIT(1)
286 #define I915_DISPATCH_RS BIT(2)
287 void (*emit_breadcrumb
)(struct drm_i915_gem_request
*req
,
289 int emit_breadcrumb_sz
;
291 /* Pass the request to the hardware queue (e.g. directly into
292 * the legacy ringbuffer or to the end of an execlist).
294 * This is called from an atomic context with irqs disabled; must
297 void (*submit_request
)(struct drm_i915_gem_request
*req
);
299 /* Call when the priority on a request has changed and it and its
300 * dependencies may need rescheduling. Note the request itself may
301 * not be ready to run!
303 * Called under the struct_mutex.
305 void (*schedule
)(struct drm_i915_gem_request
*request
,
308 /* Some chipsets are not quite as coherent as advertised and need
309 * an expensive kick to force a true read of the up-to-date seqno.
310 * However, the up-to-date seqno is not always required and the last
311 * seen value is good enough. Note that the seqno will always be
312 * monotonic, even if not coherent.
314 void (*irq_seqno_barrier
)(struct intel_engine_cs
*engine
);
315 void (*cleanup
)(struct intel_engine_cs
*engine
);
317 /* GEN8 signal/wait table - never trust comments!
318 * signal to signal to signal to signal to signal to
319 * RCS VCS BCS VECS VCS2
320 * --------------------------------------------------------------------
321 * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
322 * |-------------------------------------------------------------------
323 * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
324 * |-------------------------------------------------------------------
325 * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
326 * |-------------------------------------------------------------------
327 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
328 * |-------------------------------------------------------------------
329 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
330 * |-------------------------------------------------------------------
333 * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
334 * ie. transpose of g(x, y)
336 * sync from sync from sync from sync from sync from
337 * RCS VCS BCS VECS VCS2
338 * --------------------------------------------------------------------
339 * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
340 * |-------------------------------------------------------------------
341 * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
342 * |-------------------------------------------------------------------
343 * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
344 * |-------------------------------------------------------------------
345 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
346 * |-------------------------------------------------------------------
347 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
348 * |-------------------------------------------------------------------
351 * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
352 * ie. transpose of f(x, y)
356 #define GEN6_SEMAPHORE_LAST VECS_HW
357 #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
358 #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
360 /* our mbox written by others */
361 u32 wait
[GEN6_NUM_SEMAPHORES
];
362 /* mboxes this ring signals to */
363 i915_reg_t signal
[GEN6_NUM_SEMAPHORES
];
365 u64 signal_ggtt
[I915_NUM_ENGINES
];
369 int (*sync_to
)(struct drm_i915_gem_request
*req
,
370 struct drm_i915_gem_request
*signal
);
371 u32
*(*signal
)(struct drm_i915_gem_request
*req
, u32
*out
);
375 struct tasklet_struct irq_tasklet
;
376 struct execlist_port
{
377 struct drm_i915_gem_request
*request
;
380 struct rb_root execlist_queue
;
381 struct rb_node
*execlist_first
;
382 unsigned int fw_domains
;
383 bool disable_lite_restore_wa
;
385 u32 ctx_desc_template
;
387 /* Contexts are pinned whilst they are active on the GPU. The last
388 * context executed remains active whilst the GPU is idle - the
389 * switch away and write to the context object only occurs on the
390 * next execution. Contexts are only unpinned on retirement of the
391 * following request ensuring that we can always write to the object
392 * on the context switch even after idling. Across suspend, we switch
393 * to the kernel context and trash it as the save may not happen
394 * before the hardware is powered down.
396 struct i915_gem_context
*last_retired_context
;
398 /* We track the current MI_SET_CONTEXT in order to eliminate
399 * redudant context switches. This presumes that requests are not
400 * reordered! Or when they are the tracking is updated along with
401 * the emission of individual requests into the legacy command
404 struct i915_gem_context
*legacy_active_context
;
406 struct intel_engine_hangcheck hangcheck
;
408 bool needs_cmd_parser
;
411 * Table of commands the command parser needs to know about
414 DECLARE_HASHTABLE(cmd_hash
, I915_CMD_HASH_ORDER
);
417 * Table of registers allowed in commands that read/write registers.
419 const struct drm_i915_reg_table
*reg_tables
;
423 * Returns the bitmask for the length field of the specified command.
424 * Return 0 for an unrecognized/invalid command.
426 * If the command parser finds an entry for a command in the engine's
427 * cmd_tables, it gets the command's length based on the table entry.
428 * If not, it calls this function to determine the per-engine length
429 * field encoding for the command (i.e. different opcode ranges use
430 * certain bits to encode the command length in the header).
432 u32 (*get_cmd_length_mask
)(u32 cmd_header
);
435 static inline unsigned
436 intel_engine_flag(const struct intel_engine_cs
*engine
)
438 return 1 << engine
->id
;
442 intel_flush_status_page(struct intel_engine_cs
*engine
, int reg
)
445 clflush(&engine
->status_page
.page_addr
[reg
]);
450 intel_read_status_page(struct intel_engine_cs
*engine
, int reg
)
452 /* Ensure that the compiler doesn't optimize away the load. */
453 return READ_ONCE(engine
->status_page
.page_addr
[reg
]);
457 intel_write_status_page(struct intel_engine_cs
*engine
,
460 engine
->status_page
.page_addr
[reg
] = value
;
464 * Reads a dword out of the status page, which is written to from the command
465 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
468 * The following dwords have a reserved meaning:
469 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
470 * 0x04: ring 0 head pointer
471 * 0x05: ring 1 head pointer (915-class)
472 * 0x06: ring 2 head pointer (915-class)
473 * 0x10-0x1b: Context status DWords (GM45)
474 * 0x1f: Last written status offset. (GM45)
475 * 0x20-0x2f: Reserved (Gen6+)
477 * The area from dword 0x30 to 0x3ff is available for driver usage.
479 #define I915_GEM_HWS_INDEX 0x30
480 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
481 #define I915_GEM_HWS_SCRATCH_INDEX 0x40
482 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
485 intel_engine_create_ring(struct intel_engine_cs
*engine
, int size
);
486 int intel_ring_pin(struct intel_ring
*ring
, unsigned int offset_bias
);
487 void intel_ring_unpin(struct intel_ring
*ring
);
488 void intel_ring_free(struct intel_ring
*ring
);
490 void intel_engine_stop(struct intel_engine_cs
*engine
);
491 void intel_engine_cleanup(struct intel_engine_cs
*engine
);
493 void intel_legacy_submission_resume(struct drm_i915_private
*dev_priv
);
495 int __must_check
intel_ring_begin(struct drm_i915_gem_request
*req
, int n
);
496 int __must_check
intel_ring_cacheline_align(struct drm_i915_gem_request
*req
);
498 static inline void intel_ring_emit(struct intel_ring
*ring
, u32 data
)
500 *(uint32_t *)(ring
->vaddr
+ ring
->tail
) = data
;
504 static inline void intel_ring_emit_reg(struct intel_ring
*ring
, i915_reg_t reg
)
506 intel_ring_emit(ring
, i915_mmio_reg_offset(reg
));
509 static inline void intel_ring_advance(struct intel_ring
*ring
)
513 * This serves as a placeholder in the code so that the reader
514 * can compare against the preceding intel_ring_begin() and
515 * check that the number of dwords emitted matches the space
516 * reserved for the command packet (i.e. the value passed to
517 * intel_ring_begin()).
521 static inline u32
intel_ring_offset(struct intel_ring
*ring
, void *addr
)
523 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
524 u32 offset
= addr
- ring
->vaddr
;
525 return offset
& (ring
->size
- 1);
528 int __intel_ring_space(int head
, int tail
, int size
);
529 void intel_ring_update_space(struct intel_ring
*ring
);
531 void intel_engine_init_global_seqno(struct intel_engine_cs
*engine
, u32 seqno
);
533 void intel_engine_setup_common(struct intel_engine_cs
*engine
);
534 int intel_engine_init_common(struct intel_engine_cs
*engine
);
535 int intel_engine_create_scratch(struct intel_engine_cs
*engine
, int size
);
536 void intel_engine_cleanup_common(struct intel_engine_cs
*engine
);
538 int intel_init_render_ring_buffer(struct intel_engine_cs
*engine
);
539 int intel_init_bsd_ring_buffer(struct intel_engine_cs
*engine
);
540 int intel_init_bsd2_ring_buffer(struct intel_engine_cs
*engine
);
541 int intel_init_blt_ring_buffer(struct intel_engine_cs
*engine
);
542 int intel_init_vebox_ring_buffer(struct intel_engine_cs
*engine
);
544 u64
intel_engine_get_active_head(struct intel_engine_cs
*engine
);
545 u64
intel_engine_get_last_batch_head(struct intel_engine_cs
*engine
);
547 static inline u32
intel_engine_get_seqno(struct intel_engine_cs
*engine
)
549 return intel_read_status_page(engine
, I915_GEM_HWS_INDEX
);
552 static inline u32
intel_engine_last_submit(struct intel_engine_cs
*engine
)
554 /* We are only peeking at the tail of the submit queue (and not the
555 * queue itself) in order to gain a hint as to the current active
556 * state of the engine. Callers are not expected to be taking
557 * engine->timeline->lock, nor are they expected to be concerned
558 * wtih serialising this hint with anything, so document it as
559 * a hint and nothing more.
561 return READ_ONCE(engine
->timeline
->last_submitted_seqno
);
564 int init_workarounds_ring(struct intel_engine_cs
*engine
);
566 void intel_engine_get_instdone(struct intel_engine_cs
*engine
,
567 struct intel_instdone
*instdone
);
570 * Arbitrary size for largest possible 'add request' sequence. The code paths
571 * are complex and variable. Empirical measurement shows that the worst case
572 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
573 * we need to allocate double the largest single packet within that emission
574 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
576 #define MIN_SPACE_FOR_ADD_REQUEST 336
578 static inline u32
intel_hws_seqno_address(struct intel_engine_cs
*engine
)
580 return engine
->status_page
.ggtt_offset
+ I915_GEM_HWS_INDEX_ADDR
;
583 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
584 int intel_engine_init_breadcrumbs(struct intel_engine_cs
*engine
);
586 static inline void intel_wait_init(struct intel_wait
*wait
, u32 seqno
)
592 static inline bool intel_wait_complete(const struct intel_wait
*wait
)
594 return RB_EMPTY_NODE(&wait
->node
);
597 bool intel_engine_add_wait(struct intel_engine_cs
*engine
,
598 struct intel_wait
*wait
);
599 void intel_engine_remove_wait(struct intel_engine_cs
*engine
,
600 struct intel_wait
*wait
);
601 void intel_engine_enable_signaling(struct drm_i915_gem_request
*request
);
603 static inline bool intel_engine_has_waiter(const struct intel_engine_cs
*engine
)
605 return rcu_access_pointer(engine
->breadcrumbs
.irq_seqno_bh
);
608 static inline bool intel_engine_wakeup(const struct intel_engine_cs
*engine
)
612 /* Note that for this not to dangerously chase a dangling pointer,
613 * we must hold the rcu_read_lock here.
615 * Also note that tsk is likely to be in !TASK_RUNNING state so an
616 * early test for tsk->state != TASK_RUNNING before wake_up_process()
617 * is unlikely to be beneficial.
619 if (intel_engine_has_waiter(engine
)) {
620 struct task_struct
*tsk
;
623 tsk
= rcu_dereference(engine
->breadcrumbs
.irq_seqno_bh
);
625 wakeup
= wake_up_process(tsk
);
632 void intel_engine_reset_breadcrumbs(struct intel_engine_cs
*engine
);
633 void intel_engine_fini_breadcrumbs(struct intel_engine_cs
*engine
);
634 unsigned int intel_breadcrumbs_busy(struct drm_i915_private
*i915
);
636 #endif /* _INTEL_RINGBUFFER_H_ */