memcg: export struct mem_cgroup
[linux/fpc-iii.git] / mm / slab_common.c
blob5ce4faeb16fbbdfa19b16c3d551aace8c3a495c0
1 /*
2 * Slab allocator functions that are independent of the allocator strategy
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6 #include <linux/slab.h>
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
26 #include "slab.h"
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
34 * Set of flags that will prevent slab merging
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 SLAB_FAILSLAB)
40 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | SLAB_NOTRACK)
43 * Merge control. If this is set then no merging of slab caches will occur.
44 * (Could be removed. This was introduced to pacify the merge skeptics.)
46 static int slab_nomerge;
48 static int __init setup_slab_nomerge(char *str)
50 slab_nomerge = 1;
51 return 1;
54 #ifdef CONFIG_SLUB
55 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
56 #endif
58 __setup("slab_nomerge", setup_slab_nomerge);
61 * Determine the size of a slab object
63 unsigned int kmem_cache_size(struct kmem_cache *s)
65 return s->object_size;
67 EXPORT_SYMBOL(kmem_cache_size);
69 #ifdef CONFIG_DEBUG_VM
70 static int kmem_cache_sanity_check(const char *name, size_t size)
72 struct kmem_cache *s = NULL;
74 if (!name || in_interrupt() || size < sizeof(void *) ||
75 size > KMALLOC_MAX_SIZE) {
76 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
77 return -EINVAL;
80 list_for_each_entry(s, &slab_caches, list) {
81 char tmp;
82 int res;
85 * This happens when the module gets unloaded and doesn't
86 * destroy its slab cache and no-one else reuses the vmalloc
87 * area of the module. Print a warning.
89 res = probe_kernel_address(s->name, tmp);
90 if (res) {
91 pr_err("Slab cache with size %d has lost its name\n",
92 s->object_size);
93 continue;
97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
98 return 0;
100 #else
101 static inline int kmem_cache_sanity_check(const char *name, size_t size)
103 return 0;
105 #endif
107 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
109 size_t i;
111 for (i = 0; i < nr; i++)
112 kmem_cache_free(s, p[i]);
115 bool __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
116 void **p)
118 size_t i;
120 for (i = 0; i < nr; i++) {
121 void *x = p[i] = kmem_cache_alloc(s, flags);
122 if (!x) {
123 __kmem_cache_free_bulk(s, i, p);
124 return false;
127 return true;
130 #ifdef CONFIG_MEMCG_KMEM
131 void slab_init_memcg_params(struct kmem_cache *s)
133 s->memcg_params.is_root_cache = true;
134 INIT_LIST_HEAD(&s->memcg_params.list);
135 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
138 static int init_memcg_params(struct kmem_cache *s,
139 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
141 struct memcg_cache_array *arr;
143 if (memcg) {
144 s->memcg_params.is_root_cache = false;
145 s->memcg_params.memcg = memcg;
146 s->memcg_params.root_cache = root_cache;
147 return 0;
150 slab_init_memcg_params(s);
152 if (!memcg_nr_cache_ids)
153 return 0;
155 arr = kzalloc(sizeof(struct memcg_cache_array) +
156 memcg_nr_cache_ids * sizeof(void *),
157 GFP_KERNEL);
158 if (!arr)
159 return -ENOMEM;
161 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
162 return 0;
165 static void destroy_memcg_params(struct kmem_cache *s)
167 if (is_root_cache(s))
168 kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
171 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
173 struct memcg_cache_array *old, *new;
175 if (!is_root_cache(s))
176 return 0;
178 new = kzalloc(sizeof(struct memcg_cache_array) +
179 new_array_size * sizeof(void *), GFP_KERNEL);
180 if (!new)
181 return -ENOMEM;
183 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
184 lockdep_is_held(&slab_mutex));
185 if (old)
186 memcpy(new->entries, old->entries,
187 memcg_nr_cache_ids * sizeof(void *));
189 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
190 if (old)
191 kfree_rcu(old, rcu);
192 return 0;
195 int memcg_update_all_caches(int num_memcgs)
197 struct kmem_cache *s;
198 int ret = 0;
200 mutex_lock(&slab_mutex);
201 list_for_each_entry(s, &slab_caches, list) {
202 ret = update_memcg_params(s, num_memcgs);
204 * Instead of freeing the memory, we'll just leave the caches
205 * up to this point in an updated state.
207 if (ret)
208 break;
210 mutex_unlock(&slab_mutex);
211 return ret;
213 #else
214 static inline int init_memcg_params(struct kmem_cache *s,
215 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
217 return 0;
220 static inline void destroy_memcg_params(struct kmem_cache *s)
223 #endif /* CONFIG_MEMCG_KMEM */
226 * Find a mergeable slab cache
228 int slab_unmergeable(struct kmem_cache *s)
230 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
231 return 1;
233 if (!is_root_cache(s))
234 return 1;
236 if (s->ctor)
237 return 1;
240 * We may have set a slab to be unmergeable during bootstrap.
242 if (s->refcount < 0)
243 return 1;
245 return 0;
248 struct kmem_cache *find_mergeable(size_t size, size_t align,
249 unsigned long flags, const char *name, void (*ctor)(void *))
251 struct kmem_cache *s;
253 if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
254 return NULL;
256 if (ctor)
257 return NULL;
259 size = ALIGN(size, sizeof(void *));
260 align = calculate_alignment(flags, align, size);
261 size = ALIGN(size, align);
262 flags = kmem_cache_flags(size, flags, name, NULL);
264 list_for_each_entry_reverse(s, &slab_caches, list) {
265 if (slab_unmergeable(s))
266 continue;
268 if (size > s->size)
269 continue;
271 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
272 continue;
274 * Check if alignment is compatible.
275 * Courtesy of Adrian Drzewiecki
277 if ((s->size & ~(align - 1)) != s->size)
278 continue;
280 if (s->size - size >= sizeof(void *))
281 continue;
283 if (IS_ENABLED(CONFIG_SLAB) && align &&
284 (align > s->align || s->align % align))
285 continue;
287 return s;
289 return NULL;
293 * Figure out what the alignment of the objects will be given a set of
294 * flags, a user specified alignment and the size of the objects.
296 unsigned long calculate_alignment(unsigned long flags,
297 unsigned long align, unsigned long size)
300 * If the user wants hardware cache aligned objects then follow that
301 * suggestion if the object is sufficiently large.
303 * The hardware cache alignment cannot override the specified
304 * alignment though. If that is greater then use it.
306 if (flags & SLAB_HWCACHE_ALIGN) {
307 unsigned long ralign = cache_line_size();
308 while (size <= ralign / 2)
309 ralign /= 2;
310 align = max(align, ralign);
313 if (align < ARCH_SLAB_MINALIGN)
314 align = ARCH_SLAB_MINALIGN;
316 return ALIGN(align, sizeof(void *));
319 static struct kmem_cache *
320 do_kmem_cache_create(const char *name, size_t object_size, size_t size,
321 size_t align, unsigned long flags, void (*ctor)(void *),
322 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
324 struct kmem_cache *s;
325 int err;
327 err = -ENOMEM;
328 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
329 if (!s)
330 goto out;
332 s->name = name;
333 s->object_size = object_size;
334 s->size = size;
335 s->align = align;
336 s->ctor = ctor;
338 err = init_memcg_params(s, memcg, root_cache);
339 if (err)
340 goto out_free_cache;
342 err = __kmem_cache_create(s, flags);
343 if (err)
344 goto out_free_cache;
346 s->refcount = 1;
347 list_add(&s->list, &slab_caches);
348 out:
349 if (err)
350 return ERR_PTR(err);
351 return s;
353 out_free_cache:
354 destroy_memcg_params(s);
355 kmem_cache_free(kmem_cache, s);
356 goto out;
360 * kmem_cache_create - Create a cache.
361 * @name: A string which is used in /proc/slabinfo to identify this cache.
362 * @size: The size of objects to be created in this cache.
363 * @align: The required alignment for the objects.
364 * @flags: SLAB flags
365 * @ctor: A constructor for the objects.
367 * Returns a ptr to the cache on success, NULL on failure.
368 * Cannot be called within a interrupt, but can be interrupted.
369 * The @ctor is run when new pages are allocated by the cache.
371 * The flags are
373 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
374 * to catch references to uninitialised memory.
376 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
377 * for buffer overruns.
379 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
380 * cacheline. This can be beneficial if you're counting cycles as closely
381 * as davem.
383 struct kmem_cache *
384 kmem_cache_create(const char *name, size_t size, size_t align,
385 unsigned long flags, void (*ctor)(void *))
387 struct kmem_cache *s;
388 const char *cache_name;
389 int err;
391 get_online_cpus();
392 get_online_mems();
393 memcg_get_cache_ids();
395 mutex_lock(&slab_mutex);
397 err = kmem_cache_sanity_check(name, size);
398 if (err) {
399 s = NULL; /* suppress uninit var warning */
400 goto out_unlock;
404 * Some allocators will constraint the set of valid flags to a subset
405 * of all flags. We expect them to define CACHE_CREATE_MASK in this
406 * case, and we'll just provide them with a sanitized version of the
407 * passed flags.
409 flags &= CACHE_CREATE_MASK;
411 s = __kmem_cache_alias(name, size, align, flags, ctor);
412 if (s)
413 goto out_unlock;
415 cache_name = kstrdup_const(name, GFP_KERNEL);
416 if (!cache_name) {
417 err = -ENOMEM;
418 goto out_unlock;
421 s = do_kmem_cache_create(cache_name, size, size,
422 calculate_alignment(flags, align, size),
423 flags, ctor, NULL, NULL);
424 if (IS_ERR(s)) {
425 err = PTR_ERR(s);
426 kfree_const(cache_name);
429 out_unlock:
430 mutex_unlock(&slab_mutex);
432 memcg_put_cache_ids();
433 put_online_mems();
434 put_online_cpus();
436 if (err) {
437 if (flags & SLAB_PANIC)
438 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
439 name, err);
440 else {
441 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
442 name, err);
443 dump_stack();
445 return NULL;
447 return s;
449 EXPORT_SYMBOL(kmem_cache_create);
451 static int do_kmem_cache_shutdown(struct kmem_cache *s,
452 struct list_head *release, bool *need_rcu_barrier)
454 if (__kmem_cache_shutdown(s) != 0) {
455 printk(KERN_ERR "kmem_cache_destroy %s: "
456 "Slab cache still has objects\n", s->name);
457 dump_stack();
458 return -EBUSY;
461 if (s->flags & SLAB_DESTROY_BY_RCU)
462 *need_rcu_barrier = true;
464 #ifdef CONFIG_MEMCG_KMEM
465 if (!is_root_cache(s))
466 list_del(&s->memcg_params.list);
467 #endif
468 list_move(&s->list, release);
469 return 0;
472 static void do_kmem_cache_release(struct list_head *release,
473 bool need_rcu_barrier)
475 struct kmem_cache *s, *s2;
477 if (need_rcu_barrier)
478 rcu_barrier();
480 list_for_each_entry_safe(s, s2, release, list) {
481 #ifdef SLAB_SUPPORTS_SYSFS
482 sysfs_slab_remove(s);
483 #else
484 slab_kmem_cache_release(s);
485 #endif
489 #ifdef CONFIG_MEMCG_KMEM
491 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
492 * @memcg: The memory cgroup the new cache is for.
493 * @root_cache: The parent of the new cache.
495 * This function attempts to create a kmem cache that will serve allocation
496 * requests going from @memcg to @root_cache. The new cache inherits properties
497 * from its parent.
499 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
500 struct kmem_cache *root_cache)
502 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
503 struct cgroup_subsys_state *css = &memcg->css;
504 struct memcg_cache_array *arr;
505 struct kmem_cache *s = NULL;
506 char *cache_name;
507 int idx;
509 get_online_cpus();
510 get_online_mems();
512 mutex_lock(&slab_mutex);
515 * The memory cgroup could have been deactivated while the cache
516 * creation work was pending.
518 if (!memcg_kmem_is_active(memcg))
519 goto out_unlock;
521 idx = memcg_cache_id(memcg);
522 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
523 lockdep_is_held(&slab_mutex));
526 * Since per-memcg caches are created asynchronously on first
527 * allocation (see memcg_kmem_get_cache()), several threads can try to
528 * create the same cache, but only one of them may succeed.
530 if (arr->entries[idx])
531 goto out_unlock;
533 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
534 cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
535 css->id, memcg_name_buf);
536 if (!cache_name)
537 goto out_unlock;
539 s = do_kmem_cache_create(cache_name, root_cache->object_size,
540 root_cache->size, root_cache->align,
541 root_cache->flags, root_cache->ctor,
542 memcg, root_cache);
544 * If we could not create a memcg cache, do not complain, because
545 * that's not critical at all as we can always proceed with the root
546 * cache.
548 if (IS_ERR(s)) {
549 kfree(cache_name);
550 goto out_unlock;
553 list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
556 * Since readers won't lock (see cache_from_memcg_idx()), we need a
557 * barrier here to ensure nobody will see the kmem_cache partially
558 * initialized.
560 smp_wmb();
561 arr->entries[idx] = s;
563 out_unlock:
564 mutex_unlock(&slab_mutex);
566 put_online_mems();
567 put_online_cpus();
570 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
572 int idx;
573 struct memcg_cache_array *arr;
574 struct kmem_cache *s, *c;
576 idx = memcg_cache_id(memcg);
578 get_online_cpus();
579 get_online_mems();
581 mutex_lock(&slab_mutex);
582 list_for_each_entry(s, &slab_caches, list) {
583 if (!is_root_cache(s))
584 continue;
586 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
587 lockdep_is_held(&slab_mutex));
588 c = arr->entries[idx];
589 if (!c)
590 continue;
592 __kmem_cache_shrink(c, true);
593 arr->entries[idx] = NULL;
595 mutex_unlock(&slab_mutex);
597 put_online_mems();
598 put_online_cpus();
601 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
603 LIST_HEAD(release);
604 bool need_rcu_barrier = false;
605 struct kmem_cache *s, *s2;
607 get_online_cpus();
608 get_online_mems();
610 mutex_lock(&slab_mutex);
611 list_for_each_entry_safe(s, s2, &slab_caches, list) {
612 if (is_root_cache(s) || s->memcg_params.memcg != memcg)
613 continue;
615 * The cgroup is about to be freed and therefore has no charges
616 * left. Hence, all its caches must be empty by now.
618 BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier));
620 mutex_unlock(&slab_mutex);
622 put_online_mems();
623 put_online_cpus();
625 do_kmem_cache_release(&release, need_rcu_barrier);
627 #endif /* CONFIG_MEMCG_KMEM */
629 void slab_kmem_cache_release(struct kmem_cache *s)
631 destroy_memcg_params(s);
632 kfree_const(s->name);
633 kmem_cache_free(kmem_cache, s);
636 void kmem_cache_destroy(struct kmem_cache *s)
638 struct kmem_cache *c, *c2;
639 LIST_HEAD(release);
640 bool need_rcu_barrier = false;
641 bool busy = false;
643 if (unlikely(!s))
644 return;
646 BUG_ON(!is_root_cache(s));
648 get_online_cpus();
649 get_online_mems();
651 mutex_lock(&slab_mutex);
653 s->refcount--;
654 if (s->refcount)
655 goto out_unlock;
657 for_each_memcg_cache_safe(c, c2, s) {
658 if (do_kmem_cache_shutdown(c, &release, &need_rcu_barrier))
659 busy = true;
662 if (!busy)
663 do_kmem_cache_shutdown(s, &release, &need_rcu_barrier);
665 out_unlock:
666 mutex_unlock(&slab_mutex);
668 put_online_mems();
669 put_online_cpus();
671 do_kmem_cache_release(&release, need_rcu_barrier);
673 EXPORT_SYMBOL(kmem_cache_destroy);
676 * kmem_cache_shrink - Shrink a cache.
677 * @cachep: The cache to shrink.
679 * Releases as many slabs as possible for a cache.
680 * To help debugging, a zero exit status indicates all slabs were released.
682 int kmem_cache_shrink(struct kmem_cache *cachep)
684 int ret;
686 get_online_cpus();
687 get_online_mems();
688 ret = __kmem_cache_shrink(cachep, false);
689 put_online_mems();
690 put_online_cpus();
691 return ret;
693 EXPORT_SYMBOL(kmem_cache_shrink);
695 int slab_is_available(void)
697 return slab_state >= UP;
700 #ifndef CONFIG_SLOB
701 /* Create a cache during boot when no slab services are available yet */
702 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
703 unsigned long flags)
705 int err;
707 s->name = name;
708 s->size = s->object_size = size;
709 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
711 slab_init_memcg_params(s);
713 err = __kmem_cache_create(s, flags);
715 if (err)
716 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
717 name, size, err);
719 s->refcount = -1; /* Exempt from merging for now */
722 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
723 unsigned long flags)
725 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
727 if (!s)
728 panic("Out of memory when creating slab %s\n", name);
730 create_boot_cache(s, name, size, flags);
731 list_add(&s->list, &slab_caches);
732 s->refcount = 1;
733 return s;
736 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
737 EXPORT_SYMBOL(kmalloc_caches);
739 #ifdef CONFIG_ZONE_DMA
740 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
741 EXPORT_SYMBOL(kmalloc_dma_caches);
742 #endif
745 * Conversion table for small slabs sizes / 8 to the index in the
746 * kmalloc array. This is necessary for slabs < 192 since we have non power
747 * of two cache sizes there. The size of larger slabs can be determined using
748 * fls.
750 static s8 size_index[24] = {
751 3, /* 8 */
752 4, /* 16 */
753 5, /* 24 */
754 5, /* 32 */
755 6, /* 40 */
756 6, /* 48 */
757 6, /* 56 */
758 6, /* 64 */
759 1, /* 72 */
760 1, /* 80 */
761 1, /* 88 */
762 1, /* 96 */
763 7, /* 104 */
764 7, /* 112 */
765 7, /* 120 */
766 7, /* 128 */
767 2, /* 136 */
768 2, /* 144 */
769 2, /* 152 */
770 2, /* 160 */
771 2, /* 168 */
772 2, /* 176 */
773 2, /* 184 */
774 2 /* 192 */
777 static inline int size_index_elem(size_t bytes)
779 return (bytes - 1) / 8;
783 * Find the kmem_cache structure that serves a given size of
784 * allocation
786 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
788 int index;
790 if (unlikely(size > KMALLOC_MAX_SIZE)) {
791 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
792 return NULL;
795 if (size <= 192) {
796 if (!size)
797 return ZERO_SIZE_PTR;
799 index = size_index[size_index_elem(size)];
800 } else
801 index = fls(size - 1);
803 #ifdef CONFIG_ZONE_DMA
804 if (unlikely((flags & GFP_DMA)))
805 return kmalloc_dma_caches[index];
807 #endif
808 return kmalloc_caches[index];
812 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
813 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
814 * kmalloc-67108864.
816 static struct {
817 const char *name;
818 unsigned long size;
819 } const kmalloc_info[] __initconst = {
820 {NULL, 0}, {"kmalloc-96", 96},
821 {"kmalloc-192", 192}, {"kmalloc-8", 8},
822 {"kmalloc-16", 16}, {"kmalloc-32", 32},
823 {"kmalloc-64", 64}, {"kmalloc-128", 128},
824 {"kmalloc-256", 256}, {"kmalloc-512", 512},
825 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
826 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
827 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
828 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
829 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
830 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
831 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
832 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
833 {"kmalloc-67108864", 67108864}
837 * Patch up the size_index table if we have strange large alignment
838 * requirements for the kmalloc array. This is only the case for
839 * MIPS it seems. The standard arches will not generate any code here.
841 * Largest permitted alignment is 256 bytes due to the way we
842 * handle the index determination for the smaller caches.
844 * Make sure that nothing crazy happens if someone starts tinkering
845 * around with ARCH_KMALLOC_MINALIGN
847 void __init setup_kmalloc_cache_index_table(void)
849 int i;
851 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
852 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
854 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
855 int elem = size_index_elem(i);
857 if (elem >= ARRAY_SIZE(size_index))
858 break;
859 size_index[elem] = KMALLOC_SHIFT_LOW;
862 if (KMALLOC_MIN_SIZE >= 64) {
864 * The 96 byte size cache is not used if the alignment
865 * is 64 byte.
867 for (i = 64 + 8; i <= 96; i += 8)
868 size_index[size_index_elem(i)] = 7;
872 if (KMALLOC_MIN_SIZE >= 128) {
874 * The 192 byte sized cache is not used if the alignment
875 * is 128 byte. Redirect kmalloc to use the 256 byte cache
876 * instead.
878 for (i = 128 + 8; i <= 192; i += 8)
879 size_index[size_index_elem(i)] = 8;
883 static void __init new_kmalloc_cache(int idx, unsigned long flags)
885 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
886 kmalloc_info[idx].size, flags);
890 * Create the kmalloc array. Some of the regular kmalloc arrays
891 * may already have been created because they were needed to
892 * enable allocations for slab creation.
894 void __init create_kmalloc_caches(unsigned long flags)
896 int i;
898 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
899 if (!kmalloc_caches[i])
900 new_kmalloc_cache(i, flags);
903 * Caches that are not of the two-to-the-power-of size.
904 * These have to be created immediately after the
905 * earlier power of two caches
907 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
908 new_kmalloc_cache(1, flags);
909 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
910 new_kmalloc_cache(2, flags);
913 /* Kmalloc array is now usable */
914 slab_state = UP;
916 #ifdef CONFIG_ZONE_DMA
917 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
918 struct kmem_cache *s = kmalloc_caches[i];
920 if (s) {
921 int size = kmalloc_size(i);
922 char *n = kasprintf(GFP_NOWAIT,
923 "dma-kmalloc-%d", size);
925 BUG_ON(!n);
926 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
927 size, SLAB_CACHE_DMA | flags);
930 #endif
932 #endif /* !CONFIG_SLOB */
935 * To avoid unnecessary overhead, we pass through large allocation requests
936 * directly to the page allocator. We use __GFP_COMP, because we will need to
937 * know the allocation order to free the pages properly in kfree.
939 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
941 void *ret;
942 struct page *page;
944 flags |= __GFP_COMP;
945 page = alloc_kmem_pages(flags, order);
946 ret = page ? page_address(page) : NULL;
947 kmemleak_alloc(ret, size, 1, flags);
948 kasan_kmalloc_large(ret, size);
949 return ret;
951 EXPORT_SYMBOL(kmalloc_order);
953 #ifdef CONFIG_TRACING
954 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
956 void *ret = kmalloc_order(size, flags, order);
957 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
958 return ret;
960 EXPORT_SYMBOL(kmalloc_order_trace);
961 #endif
963 #ifdef CONFIG_SLABINFO
965 #ifdef CONFIG_SLAB
966 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
967 #else
968 #define SLABINFO_RIGHTS S_IRUSR
969 #endif
971 static void print_slabinfo_header(struct seq_file *m)
974 * Output format version, so at least we can change it
975 * without _too_ many complaints.
977 #ifdef CONFIG_DEBUG_SLAB
978 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
979 #else
980 seq_puts(m, "slabinfo - version: 2.1\n");
981 #endif
982 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
983 "<objperslab> <pagesperslab>");
984 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
985 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
986 #ifdef CONFIG_DEBUG_SLAB
987 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
988 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
989 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
990 #endif
991 seq_putc(m, '\n');
994 void *slab_start(struct seq_file *m, loff_t *pos)
996 mutex_lock(&slab_mutex);
997 return seq_list_start(&slab_caches, *pos);
1000 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1002 return seq_list_next(p, &slab_caches, pos);
1005 void slab_stop(struct seq_file *m, void *p)
1007 mutex_unlock(&slab_mutex);
1010 static void
1011 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1013 struct kmem_cache *c;
1014 struct slabinfo sinfo;
1016 if (!is_root_cache(s))
1017 return;
1019 for_each_memcg_cache(c, s) {
1020 memset(&sinfo, 0, sizeof(sinfo));
1021 get_slabinfo(c, &sinfo);
1023 info->active_slabs += sinfo.active_slabs;
1024 info->num_slabs += sinfo.num_slabs;
1025 info->shared_avail += sinfo.shared_avail;
1026 info->active_objs += sinfo.active_objs;
1027 info->num_objs += sinfo.num_objs;
1031 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1033 struct slabinfo sinfo;
1035 memset(&sinfo, 0, sizeof(sinfo));
1036 get_slabinfo(s, &sinfo);
1038 memcg_accumulate_slabinfo(s, &sinfo);
1040 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1041 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1042 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1044 seq_printf(m, " : tunables %4u %4u %4u",
1045 sinfo.limit, sinfo.batchcount, sinfo.shared);
1046 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1047 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1048 slabinfo_show_stats(m, s);
1049 seq_putc(m, '\n');
1052 static int slab_show(struct seq_file *m, void *p)
1054 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1056 if (p == slab_caches.next)
1057 print_slabinfo_header(m);
1058 if (is_root_cache(s))
1059 cache_show(s, m);
1060 return 0;
1063 #ifdef CONFIG_MEMCG_KMEM
1064 int memcg_slab_show(struct seq_file *m, void *p)
1066 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1067 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1069 if (p == slab_caches.next)
1070 print_slabinfo_header(m);
1071 if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1072 cache_show(s, m);
1073 return 0;
1075 #endif
1078 * slabinfo_op - iterator that generates /proc/slabinfo
1080 * Output layout:
1081 * cache-name
1082 * num-active-objs
1083 * total-objs
1084 * object size
1085 * num-active-slabs
1086 * total-slabs
1087 * num-pages-per-slab
1088 * + further values on SMP and with statistics enabled
1090 static const struct seq_operations slabinfo_op = {
1091 .start = slab_start,
1092 .next = slab_next,
1093 .stop = slab_stop,
1094 .show = slab_show,
1097 static int slabinfo_open(struct inode *inode, struct file *file)
1099 return seq_open(file, &slabinfo_op);
1102 static const struct file_operations proc_slabinfo_operations = {
1103 .open = slabinfo_open,
1104 .read = seq_read,
1105 .write = slabinfo_write,
1106 .llseek = seq_lseek,
1107 .release = seq_release,
1110 static int __init slab_proc_init(void)
1112 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1113 &proc_slabinfo_operations);
1114 return 0;
1116 module_init(slab_proc_init);
1117 #endif /* CONFIG_SLABINFO */
1119 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1120 gfp_t flags)
1122 void *ret;
1123 size_t ks = 0;
1125 if (p)
1126 ks = ksize(p);
1128 if (ks >= new_size) {
1129 kasan_krealloc((void *)p, new_size);
1130 return (void *)p;
1133 ret = kmalloc_track_caller(new_size, flags);
1134 if (ret && p)
1135 memcpy(ret, p, ks);
1137 return ret;
1141 * __krealloc - like krealloc() but don't free @p.
1142 * @p: object to reallocate memory for.
1143 * @new_size: how many bytes of memory are required.
1144 * @flags: the type of memory to allocate.
1146 * This function is like krealloc() except it never frees the originally
1147 * allocated buffer. Use this if you don't want to free the buffer immediately
1148 * like, for example, with RCU.
1150 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1152 if (unlikely(!new_size))
1153 return ZERO_SIZE_PTR;
1155 return __do_krealloc(p, new_size, flags);
1158 EXPORT_SYMBOL(__krealloc);
1161 * krealloc - reallocate memory. The contents will remain unchanged.
1162 * @p: object to reallocate memory for.
1163 * @new_size: how many bytes of memory are required.
1164 * @flags: the type of memory to allocate.
1166 * The contents of the object pointed to are preserved up to the
1167 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1168 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1169 * %NULL pointer, the object pointed to is freed.
1171 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1173 void *ret;
1175 if (unlikely(!new_size)) {
1176 kfree(p);
1177 return ZERO_SIZE_PTR;
1180 ret = __do_krealloc(p, new_size, flags);
1181 if (ret && p != ret)
1182 kfree(p);
1184 return ret;
1186 EXPORT_SYMBOL(krealloc);
1189 * kzfree - like kfree but zero memory
1190 * @p: object to free memory of
1192 * The memory of the object @p points to is zeroed before freed.
1193 * If @p is %NULL, kzfree() does nothing.
1195 * Note: this function zeroes the whole allocated buffer which can be a good
1196 * deal bigger than the requested buffer size passed to kmalloc(). So be
1197 * careful when using this function in performance sensitive code.
1199 void kzfree(const void *p)
1201 size_t ks;
1202 void *mem = (void *)p;
1204 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1205 return;
1206 ks = ksize(mem);
1207 memset(mem, 0, ks);
1208 kfree(mem);
1210 EXPORT_SYMBOL(kzfree);
1212 /* Tracepoints definitions. */
1213 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1214 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1215 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1216 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1217 EXPORT_TRACEPOINT_SYMBOL(kfree);
1218 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);