2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/proc_fs.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/isolation.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/smt.h>
15 #include <linux/unistd.h>
16 #include <linux/cpu.h>
17 #include <linux/oom.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bug.h>
21 #include <linux/kthread.h>
22 #include <linux/stop_machine.h>
23 #include <linux/mutex.h>
24 #include <linux/gfp.h>
25 #include <linux/suspend.h>
26 #include <linux/lockdep.h>
27 #include <linux/tick.h>
28 #include <linux/irq.h>
29 #include <linux/nmi.h>
30 #include <linux/smpboot.h>
31 #include <linux/relay.h>
32 #include <linux/slab.h>
33 #include <linux/percpu-rwsem.h>
35 #include <trace/events/power.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/cpuhp.h>
42 * cpuhp_cpu_state - Per cpu hotplug state storage
43 * @state: The current cpu state
44 * @target: The target state
45 * @thread: Pointer to the hotplug thread
46 * @should_run: Thread should execute
47 * @rollback: Perform a rollback
48 * @single: Single callback invocation
49 * @bringup: Single callback bringup or teardown selector
50 * @cb_state: The state for a single callback (install/uninstall)
51 * @result: Result of the operation
52 * @done_up: Signal completion to the issuer of the task for cpu-up
53 * @done_down: Signal completion to the issuer of the task for cpu-down
55 struct cpuhp_cpu_state
{
56 enum cpuhp_state state
;
57 enum cpuhp_state target
;
58 enum cpuhp_state fail
;
60 struct task_struct
*thread
;
66 struct hlist_node
*node
;
67 struct hlist_node
*last
;
68 enum cpuhp_state cb_state
;
70 struct completion done_up
;
71 struct completion done_down
;
75 static DEFINE_PER_CPU(struct cpuhp_cpu_state
, cpuhp_state
) = {
76 .fail
= CPUHP_INVALID
,
79 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
80 static struct lockdep_map cpuhp_state_up_map
=
81 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map
);
82 static struct lockdep_map cpuhp_state_down_map
=
83 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map
);
86 static inline void cpuhp_lock_acquire(bool bringup
)
88 lock_map_acquire(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
91 static inline void cpuhp_lock_release(bool bringup
)
93 lock_map_release(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
97 static inline void cpuhp_lock_acquire(bool bringup
) { }
98 static inline void cpuhp_lock_release(bool bringup
) { }
103 * cpuhp_step - Hotplug state machine step
104 * @name: Name of the step
105 * @startup: Startup function of the step
106 * @teardown: Teardown function of the step
107 * @cant_stop: Bringup/teardown can't be stopped at this step
112 int (*single
)(unsigned int cpu
);
113 int (*multi
)(unsigned int cpu
,
114 struct hlist_node
*node
);
117 int (*single
)(unsigned int cpu
);
118 int (*multi
)(unsigned int cpu
,
119 struct hlist_node
*node
);
121 struct hlist_head list
;
126 static DEFINE_MUTEX(cpuhp_state_mutex
);
127 static struct cpuhp_step cpuhp_hp_states
[];
129 static struct cpuhp_step
*cpuhp_get_step(enum cpuhp_state state
)
131 return cpuhp_hp_states
+ state
;
135 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
136 * @cpu: The cpu for which the callback should be invoked
137 * @state: The state to do callbacks for
138 * @bringup: True if the bringup callback should be invoked
139 * @node: For multi-instance, do a single entry callback for install/remove
140 * @lastp: For multi-instance rollback, remember how far we got
142 * Called from cpu hotplug and from the state register machinery.
144 static int cpuhp_invoke_callback(unsigned int cpu
, enum cpuhp_state state
,
145 bool bringup
, struct hlist_node
*node
,
146 struct hlist_node
**lastp
)
148 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
149 struct cpuhp_step
*step
= cpuhp_get_step(state
);
150 int (*cbm
)(unsigned int cpu
, struct hlist_node
*node
);
151 int (*cb
)(unsigned int cpu
);
154 if (st
->fail
== state
) {
155 st
->fail
= CPUHP_INVALID
;
157 if (!(bringup
? step
->startup
.single
: step
->teardown
.single
))
163 if (!step
->multi_instance
) {
164 WARN_ON_ONCE(lastp
&& *lastp
);
165 cb
= bringup
? step
->startup
.single
: step
->teardown
.single
;
168 trace_cpuhp_enter(cpu
, st
->target
, state
, cb
);
170 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
173 cbm
= bringup
? step
->startup
.multi
: step
->teardown
.multi
;
177 /* Single invocation for instance add/remove */
179 WARN_ON_ONCE(lastp
&& *lastp
);
180 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
181 ret
= cbm(cpu
, node
);
182 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
186 /* State transition. Invoke on all instances */
188 hlist_for_each(node
, &step
->list
) {
189 if (lastp
&& node
== *lastp
)
192 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
193 ret
= cbm(cpu
, node
);
194 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
208 /* Rollback the instances if one failed */
209 cbm
= !bringup
? step
->startup
.multi
: step
->teardown
.multi
;
213 hlist_for_each(node
, &step
->list
) {
217 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
218 ret
= cbm(cpu
, node
);
219 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
221 * Rollback must not fail,
229 static bool cpuhp_is_ap_state(enum cpuhp_state state
)
232 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
233 * purposes as that state is handled explicitly in cpu_down.
235 return state
> CPUHP_BRINGUP_CPU
&& state
!= CPUHP_TEARDOWN_CPU
;
238 static inline void wait_for_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
240 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
241 wait_for_completion(done
);
244 static inline void complete_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
246 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
251 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
253 static bool cpuhp_is_atomic_state(enum cpuhp_state state
)
255 return CPUHP_AP_IDLE_DEAD
<= state
&& state
< CPUHP_AP_ONLINE
;
258 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
259 static DEFINE_MUTEX(cpu_add_remove_lock
);
260 bool cpuhp_tasks_frozen
;
261 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen
);
264 * The following two APIs (cpu_maps_update_begin/done) must be used when
265 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
267 void cpu_maps_update_begin(void)
269 mutex_lock(&cpu_add_remove_lock
);
272 void cpu_maps_update_done(void)
274 mutex_unlock(&cpu_add_remove_lock
);
278 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
279 * Should always be manipulated under cpu_add_remove_lock
281 static int cpu_hotplug_disabled
;
283 #ifdef CONFIG_HOTPLUG_CPU
285 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock
);
287 void cpus_read_lock(void)
289 percpu_down_read(&cpu_hotplug_lock
);
291 EXPORT_SYMBOL_GPL(cpus_read_lock
);
293 int cpus_read_trylock(void)
295 return percpu_down_read_trylock(&cpu_hotplug_lock
);
297 EXPORT_SYMBOL_GPL(cpus_read_trylock
);
299 void cpus_read_unlock(void)
301 percpu_up_read(&cpu_hotplug_lock
);
303 EXPORT_SYMBOL_GPL(cpus_read_unlock
);
305 void cpus_write_lock(void)
307 percpu_down_write(&cpu_hotplug_lock
);
310 void cpus_write_unlock(void)
312 percpu_up_write(&cpu_hotplug_lock
);
315 void lockdep_assert_cpus_held(void)
318 * We can't have hotplug operations before userspace starts running,
319 * and some init codepaths will knowingly not take the hotplug lock.
320 * This is all valid, so mute lockdep until it makes sense to report
323 if (system_state
< SYSTEM_RUNNING
)
326 percpu_rwsem_assert_held(&cpu_hotplug_lock
);
329 static void lockdep_acquire_cpus_lock(void)
331 rwsem_acquire(&cpu_hotplug_lock
.rw_sem
.dep_map
, 0, 0, _THIS_IP_
);
334 static void lockdep_release_cpus_lock(void)
336 rwsem_release(&cpu_hotplug_lock
.rw_sem
.dep_map
, 1, _THIS_IP_
);
340 * Wait for currently running CPU hotplug operations to complete (if any) and
341 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
342 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
343 * hotplug path before performing hotplug operations. So acquiring that lock
344 * guarantees mutual exclusion from any currently running hotplug operations.
346 void cpu_hotplug_disable(void)
348 cpu_maps_update_begin();
349 cpu_hotplug_disabled
++;
350 cpu_maps_update_done();
352 EXPORT_SYMBOL_GPL(cpu_hotplug_disable
);
354 static void __cpu_hotplug_enable(void)
356 if (WARN_ONCE(!cpu_hotplug_disabled
, "Unbalanced cpu hotplug enable\n"))
358 cpu_hotplug_disabled
--;
361 void cpu_hotplug_enable(void)
363 cpu_maps_update_begin();
364 __cpu_hotplug_enable();
365 cpu_maps_update_done();
367 EXPORT_SYMBOL_GPL(cpu_hotplug_enable
);
371 static void lockdep_acquire_cpus_lock(void)
375 static void lockdep_release_cpus_lock(void)
379 #endif /* CONFIG_HOTPLUG_CPU */
382 * Architectures that need SMT-specific errata handling during SMT hotplug
383 * should override this.
385 void __weak
arch_smt_update(void) { }
387 #ifdef CONFIG_HOTPLUG_SMT
388 enum cpuhp_smt_control cpu_smt_control __read_mostly
= CPU_SMT_ENABLED
;
390 void __init
cpu_smt_disable(bool force
)
392 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
||
393 cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
397 pr_info("SMT: Force disabled\n");
398 cpu_smt_control
= CPU_SMT_FORCE_DISABLED
;
400 pr_info("SMT: disabled\n");
401 cpu_smt_control
= CPU_SMT_DISABLED
;
406 * The decision whether SMT is supported can only be done after the full
407 * CPU identification. Called from architecture code.
409 void __init
cpu_smt_check_topology(void)
411 if (!topology_smt_supported())
412 cpu_smt_control
= CPU_SMT_NOT_SUPPORTED
;
415 static int __init
smt_cmdline_disable(char *str
)
417 cpu_smt_disable(str
&& !strcmp(str
, "force"));
420 early_param("nosmt", smt_cmdline_disable
);
422 static inline bool cpu_smt_allowed(unsigned int cpu
)
424 if (cpu_smt_control
== CPU_SMT_ENABLED
)
427 if (topology_is_primary_thread(cpu
))
431 * On x86 it's required to boot all logical CPUs at least once so
432 * that the init code can get a chance to set CR4.MCE on each
433 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
434 * core will shutdown the machine.
436 return !per_cpu(cpuhp_state
, cpu
).booted_once
;
439 static inline bool cpu_smt_allowed(unsigned int cpu
) { return true; }
442 static inline enum cpuhp_state
443 cpuhp_set_state(struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
445 enum cpuhp_state prev_state
= st
->state
;
447 st
->rollback
= false;
452 st
->bringup
= st
->state
< target
;
458 cpuhp_reset_state(struct cpuhp_cpu_state
*st
, enum cpuhp_state prev_state
)
463 * If we have st->last we need to undo partial multi_instance of this
464 * state first. Otherwise start undo at the previous state.
473 st
->target
= prev_state
;
474 st
->bringup
= !st
->bringup
;
477 /* Regular hotplug invocation of the AP hotplug thread */
478 static void __cpuhp_kick_ap(struct cpuhp_cpu_state
*st
)
480 if (!st
->single
&& st
->state
== st
->target
)
485 * Make sure the above stores are visible before should_run becomes
486 * true. Paired with the mb() above in cpuhp_thread_fun()
489 st
->should_run
= true;
490 wake_up_process(st
->thread
);
491 wait_for_ap_thread(st
, st
->bringup
);
494 static int cpuhp_kick_ap(struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
496 enum cpuhp_state prev_state
;
499 prev_state
= cpuhp_set_state(st
, target
);
501 if ((ret
= st
->result
)) {
502 cpuhp_reset_state(st
, prev_state
);
509 static int bringup_wait_for_ap(unsigned int cpu
)
511 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
513 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
514 wait_for_ap_thread(st
, true);
515 if (WARN_ON_ONCE((!cpu_online(cpu
))))
518 /* Unpark the stopper thread and the hotplug thread of the target cpu */
519 stop_machine_unpark(cpu
);
520 kthread_unpark(st
->thread
);
523 * SMT soft disabling on X86 requires to bring the CPU out of the
524 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
525 * CPU marked itself as booted_once in notify_cpu_starting() so the
526 * cpu_smt_allowed() check will now return false if this is not the
529 if (!cpu_smt_allowed(cpu
))
532 if (st
->target
<= CPUHP_AP_ONLINE_IDLE
)
535 return cpuhp_kick_ap(st
, st
->target
);
538 static int bringup_cpu(unsigned int cpu
)
540 struct task_struct
*idle
= idle_thread_get(cpu
);
544 * Some architectures have to walk the irq descriptors to
545 * setup the vector space for the cpu which comes online.
546 * Prevent irq alloc/free across the bringup.
550 /* Arch-specific enabling code. */
551 ret
= __cpu_up(cpu
, idle
);
555 return bringup_wait_for_ap(cpu
);
559 * Hotplug state machine related functions
562 static void undo_cpu_up(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
564 for (st
->state
--; st
->state
> st
->target
; st
->state
--)
565 cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
568 static inline bool can_rollback_cpu(struct cpuhp_cpu_state
*st
)
570 if (IS_ENABLED(CONFIG_HOTPLUG_CPU
))
573 * When CPU hotplug is disabled, then taking the CPU down is not
574 * possible because takedown_cpu() and the architecture and
575 * subsystem specific mechanisms are not available. So the CPU
576 * which would be completely unplugged again needs to stay around
577 * in the current state.
579 return st
->state
<= CPUHP_BRINGUP_CPU
;
582 static int cpuhp_up_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
583 enum cpuhp_state target
)
585 enum cpuhp_state prev_state
= st
->state
;
588 while (st
->state
< target
) {
590 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
592 if (can_rollback_cpu(st
)) {
593 st
->target
= prev_state
;
594 undo_cpu_up(cpu
, st
);
603 * The cpu hotplug threads manage the bringup and teardown of the cpus
605 static void cpuhp_create(unsigned int cpu
)
607 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
609 init_completion(&st
->done_up
);
610 init_completion(&st
->done_down
);
613 static int cpuhp_should_run(unsigned int cpu
)
615 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
617 return st
->should_run
;
621 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
622 * callbacks when a state gets [un]installed at runtime.
624 * Each invocation of this function by the smpboot thread does a single AP
627 * It has 3 modes of operation:
628 * - single: runs st->cb_state
629 * - up: runs ++st->state, while st->state < st->target
630 * - down: runs st->state--, while st->state > st->target
632 * When complete or on error, should_run is cleared and the completion is fired.
634 static void cpuhp_thread_fun(unsigned int cpu
)
636 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
637 bool bringup
= st
->bringup
;
638 enum cpuhp_state state
;
640 if (WARN_ON_ONCE(!st
->should_run
))
644 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
645 * that if we see ->should_run we also see the rest of the state.
650 * The BP holds the hotplug lock, but we're now running on the AP,
651 * ensure that anybody asserting the lock is held, will actually find
654 lockdep_acquire_cpus_lock();
655 cpuhp_lock_acquire(bringup
);
658 state
= st
->cb_state
;
659 st
->should_run
= false;
664 st
->should_run
= (st
->state
< st
->target
);
665 WARN_ON_ONCE(st
->state
> st
->target
);
669 st
->should_run
= (st
->state
> st
->target
);
670 WARN_ON_ONCE(st
->state
< st
->target
);
674 WARN_ON_ONCE(!cpuhp_is_ap_state(state
));
676 if (cpuhp_is_atomic_state(state
)) {
678 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
682 * STARTING/DYING must not fail!
684 WARN_ON_ONCE(st
->result
);
686 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
691 * If we fail on a rollback, we're up a creek without no
692 * paddle, no way forward, no way back. We loose, thanks for
695 WARN_ON_ONCE(st
->rollback
);
696 st
->should_run
= false;
699 cpuhp_lock_release(bringup
);
700 lockdep_release_cpus_lock();
703 complete_ap_thread(st
, bringup
);
706 /* Invoke a single callback on a remote cpu */
708 cpuhp_invoke_ap_callback(int cpu
, enum cpuhp_state state
, bool bringup
,
709 struct hlist_node
*node
)
711 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
714 if (!cpu_online(cpu
))
717 cpuhp_lock_acquire(false);
718 cpuhp_lock_release(false);
720 cpuhp_lock_acquire(true);
721 cpuhp_lock_release(true);
724 * If we are up and running, use the hotplug thread. For early calls
725 * we invoke the thread function directly.
728 return cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
730 st
->rollback
= false;
734 st
->bringup
= bringup
;
735 st
->cb_state
= state
;
741 * If we failed and did a partial, do a rollback.
743 if ((ret
= st
->result
) && st
->last
) {
745 st
->bringup
= !bringup
;
751 * Clean up the leftovers so the next hotplug operation wont use stale
754 st
->node
= st
->last
= NULL
;
758 static int cpuhp_kick_ap_work(unsigned int cpu
)
760 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
761 enum cpuhp_state prev_state
= st
->state
;
764 cpuhp_lock_acquire(false);
765 cpuhp_lock_release(false);
767 cpuhp_lock_acquire(true);
768 cpuhp_lock_release(true);
770 trace_cpuhp_enter(cpu
, st
->target
, prev_state
, cpuhp_kick_ap_work
);
771 ret
= cpuhp_kick_ap(st
, st
->target
);
772 trace_cpuhp_exit(cpu
, st
->state
, prev_state
, ret
);
777 static struct smp_hotplug_thread cpuhp_threads
= {
778 .store
= &cpuhp_state
.thread
,
779 .create
= &cpuhp_create
,
780 .thread_should_run
= cpuhp_should_run
,
781 .thread_fn
= cpuhp_thread_fun
,
782 .thread_comm
= "cpuhp/%u",
786 void __init
cpuhp_threads_init(void)
788 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads
));
789 kthread_unpark(this_cpu_read(cpuhp_state
.thread
));
792 #ifdef CONFIG_HOTPLUG_CPU
794 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
797 * This function walks all processes, finds a valid mm struct for each one and
798 * then clears a corresponding bit in mm's cpumask. While this all sounds
799 * trivial, there are various non-obvious corner cases, which this function
800 * tries to solve in a safe manner.
802 * Also note that the function uses a somewhat relaxed locking scheme, so it may
803 * be called only for an already offlined CPU.
805 void clear_tasks_mm_cpumask(int cpu
)
807 struct task_struct
*p
;
810 * This function is called after the cpu is taken down and marked
811 * offline, so its not like new tasks will ever get this cpu set in
812 * their mm mask. -- Peter Zijlstra
813 * Thus, we may use rcu_read_lock() here, instead of grabbing
814 * full-fledged tasklist_lock.
816 WARN_ON(cpu_online(cpu
));
818 for_each_process(p
) {
819 struct task_struct
*t
;
822 * Main thread might exit, but other threads may still have
823 * a valid mm. Find one.
825 t
= find_lock_task_mm(p
);
828 cpumask_clear_cpu(cpu
, mm_cpumask(t
->mm
));
834 /* Take this CPU down. */
835 static int take_cpu_down(void *_param
)
837 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
838 enum cpuhp_state target
= max((int)st
->target
, CPUHP_AP_OFFLINE
);
839 int err
, cpu
= smp_processor_id();
842 /* Ensure this CPU doesn't handle any more interrupts. */
843 err
= __cpu_disable();
848 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
849 * do this step again.
851 WARN_ON(st
->state
!= CPUHP_TEARDOWN_CPU
);
853 /* Invoke the former CPU_DYING callbacks */
854 for (; st
->state
> target
; st
->state
--) {
855 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
857 * DYING must not fail!
862 /* Give up timekeeping duties */
863 tick_handover_do_timer();
864 /* Remove CPU from timer broadcasting */
865 tick_offline_cpu(cpu
);
866 /* Park the stopper thread */
867 stop_machine_park(cpu
);
871 static int takedown_cpu(unsigned int cpu
)
873 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
876 /* Park the smpboot threads */
877 kthread_park(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
880 * Prevent irq alloc/free while the dying cpu reorganizes the
881 * interrupt affinities.
886 * So now all preempt/rcu users must observe !cpu_active().
888 err
= stop_machine_cpuslocked(take_cpu_down
, NULL
, cpumask_of(cpu
));
890 /* CPU refused to die */
892 /* Unpark the hotplug thread so we can rollback there */
893 kthread_unpark(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
896 BUG_ON(cpu_online(cpu
));
899 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
900 * all runnable tasks from the CPU, there's only the idle task left now
901 * that the migration thread is done doing the stop_machine thing.
903 * Wait for the stop thread to go away.
905 wait_for_ap_thread(st
, false);
906 BUG_ON(st
->state
!= CPUHP_AP_IDLE_DEAD
);
908 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
911 hotplug_cpu__broadcast_tick_pull(cpu
);
912 /* This actually kills the CPU. */
915 tick_cleanup_dead_cpu(cpu
);
916 rcutree_migrate_callbacks(cpu
);
920 static void cpuhp_complete_idle_dead(void *arg
)
922 struct cpuhp_cpu_state
*st
= arg
;
924 complete_ap_thread(st
, false);
927 void cpuhp_report_idle_dead(void)
929 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
931 BUG_ON(st
->state
!= CPUHP_AP_OFFLINE
);
932 rcu_report_dead(smp_processor_id());
933 st
->state
= CPUHP_AP_IDLE_DEAD
;
935 * We cannot call complete after rcu_report_dead() so we delegate it
938 smp_call_function_single(cpumask_first(cpu_online_mask
),
939 cpuhp_complete_idle_dead
, st
, 0);
942 static void undo_cpu_down(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
944 for (st
->state
++; st
->state
< st
->target
; st
->state
++)
945 cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
948 static int cpuhp_down_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
949 enum cpuhp_state target
)
951 enum cpuhp_state prev_state
= st
->state
;
954 for (; st
->state
> target
; st
->state
--) {
955 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
957 st
->target
= prev_state
;
958 if (st
->state
< prev_state
)
959 undo_cpu_down(cpu
, st
);
966 /* Requires cpu_add_remove_lock to be held */
967 static int __ref
_cpu_down(unsigned int cpu
, int tasks_frozen
,
968 enum cpuhp_state target
)
970 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
971 int prev_state
, ret
= 0;
973 if (num_online_cpus() == 1)
976 if (!cpu_present(cpu
))
981 cpuhp_tasks_frozen
= tasks_frozen
;
983 prev_state
= cpuhp_set_state(st
, target
);
985 * If the current CPU state is in the range of the AP hotplug thread,
986 * then we need to kick the thread.
988 if (st
->state
> CPUHP_TEARDOWN_CPU
) {
989 st
->target
= max((int)target
, CPUHP_TEARDOWN_CPU
);
990 ret
= cpuhp_kick_ap_work(cpu
);
992 * The AP side has done the error rollback already. Just
993 * return the error code..
999 * We might have stopped still in the range of the AP hotplug
1000 * thread. Nothing to do anymore.
1002 if (st
->state
> CPUHP_TEARDOWN_CPU
)
1005 st
->target
= target
;
1008 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1009 * to do the further cleanups.
1011 ret
= cpuhp_down_callbacks(cpu
, st
, target
);
1012 if (ret
&& st
->state
== CPUHP_TEARDOWN_CPU
&& st
->state
< prev_state
) {
1013 cpuhp_reset_state(st
, prev_state
);
1014 __cpuhp_kick_ap(st
);
1018 cpus_write_unlock();
1020 * Do post unplug cleanup. This is still protected against
1021 * concurrent CPU hotplug via cpu_add_remove_lock.
1023 lockup_detector_cleanup();
1028 static int cpu_down_maps_locked(unsigned int cpu
, enum cpuhp_state target
)
1030 if (cpu_hotplug_disabled
)
1032 return _cpu_down(cpu
, 0, target
);
1035 static int do_cpu_down(unsigned int cpu
, enum cpuhp_state target
)
1039 cpu_maps_update_begin();
1040 err
= cpu_down_maps_locked(cpu
, target
);
1041 cpu_maps_update_done();
1045 int cpu_down(unsigned int cpu
)
1047 return do_cpu_down(cpu
, CPUHP_OFFLINE
);
1049 EXPORT_SYMBOL(cpu_down
);
1052 #define takedown_cpu NULL
1053 #endif /*CONFIG_HOTPLUG_CPU*/
1056 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1057 * @cpu: cpu that just started
1059 * It must be called by the arch code on the new cpu, before the new cpu
1060 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1062 void notify_cpu_starting(unsigned int cpu
)
1064 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1065 enum cpuhp_state target
= min((int)st
->target
, CPUHP_AP_ONLINE
);
1068 rcu_cpu_starting(cpu
); /* Enables RCU usage on this CPU. */
1069 st
->booted_once
= true;
1070 while (st
->state
< target
) {
1072 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
1074 * STARTING must not fail!
1081 * Called from the idle task. Wake up the controlling task which brings the
1082 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1083 * the rest of the online bringup to the hotplug thread.
1085 void cpuhp_online_idle(enum cpuhp_state state
)
1087 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
1089 /* Happens for the boot cpu */
1090 if (state
!= CPUHP_AP_ONLINE_IDLE
)
1093 st
->state
= CPUHP_AP_ONLINE_IDLE
;
1094 complete_ap_thread(st
, true);
1097 /* Requires cpu_add_remove_lock to be held */
1098 static int _cpu_up(unsigned int cpu
, int tasks_frozen
, enum cpuhp_state target
)
1100 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1101 struct task_struct
*idle
;
1106 if (!cpu_present(cpu
)) {
1112 * The caller of do_cpu_up might have raced with another
1113 * caller. Ignore it for now.
1115 if (st
->state
>= target
)
1118 if (st
->state
== CPUHP_OFFLINE
) {
1119 /* Let it fail before we try to bring the cpu up */
1120 idle
= idle_thread_get(cpu
);
1122 ret
= PTR_ERR(idle
);
1127 cpuhp_tasks_frozen
= tasks_frozen
;
1129 cpuhp_set_state(st
, target
);
1131 * If the current CPU state is in the range of the AP hotplug thread,
1132 * then we need to kick the thread once more.
1134 if (st
->state
> CPUHP_BRINGUP_CPU
) {
1135 ret
= cpuhp_kick_ap_work(cpu
);
1137 * The AP side has done the error rollback already. Just
1138 * return the error code..
1145 * Try to reach the target state. We max out on the BP at
1146 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1147 * responsible for bringing it up to the target state.
1149 target
= min((int)target
, CPUHP_BRINGUP_CPU
);
1150 ret
= cpuhp_up_callbacks(cpu
, st
, target
);
1152 cpus_write_unlock();
1157 static int do_cpu_up(unsigned int cpu
, enum cpuhp_state target
)
1161 if (!cpu_possible(cpu
)) {
1162 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1164 #if defined(CONFIG_IA64)
1165 pr_err("please check additional_cpus= boot parameter\n");
1170 err
= try_online_node(cpu_to_node(cpu
));
1174 cpu_maps_update_begin();
1176 if (cpu_hotplug_disabled
) {
1180 if (!cpu_smt_allowed(cpu
)) {
1185 err
= _cpu_up(cpu
, 0, target
);
1187 cpu_maps_update_done();
1191 int cpu_up(unsigned int cpu
)
1193 return do_cpu_up(cpu
, CPUHP_ONLINE
);
1195 EXPORT_SYMBOL_GPL(cpu_up
);
1197 #ifdef CONFIG_PM_SLEEP_SMP
1198 static cpumask_var_t frozen_cpus
;
1200 int freeze_secondary_cpus(int primary
)
1204 cpu_maps_update_begin();
1205 if (primary
== -1) {
1206 primary
= cpumask_first(cpu_online_mask
);
1207 if (!housekeeping_cpu(primary
, HK_FLAG_TIMER
))
1208 primary
= housekeeping_any_cpu(HK_FLAG_TIMER
);
1210 if (!cpu_online(primary
))
1211 primary
= cpumask_first(cpu_online_mask
);
1215 * We take down all of the non-boot CPUs in one shot to avoid races
1216 * with the userspace trying to use the CPU hotplug at the same time
1218 cpumask_clear(frozen_cpus
);
1220 pr_info("Disabling non-boot CPUs ...\n");
1221 for_each_online_cpu(cpu
) {
1225 if (pm_wakeup_pending()) {
1226 pr_info("Wakeup pending. Abort CPU freeze\n");
1231 trace_suspend_resume(TPS("CPU_OFF"), cpu
, true);
1232 error
= _cpu_down(cpu
, 1, CPUHP_OFFLINE
);
1233 trace_suspend_resume(TPS("CPU_OFF"), cpu
, false);
1235 cpumask_set_cpu(cpu
, frozen_cpus
);
1237 pr_err("Error taking CPU%d down: %d\n", cpu
, error
);
1243 BUG_ON(num_online_cpus() > 1);
1245 pr_err("Non-boot CPUs are not disabled\n");
1248 * Make sure the CPUs won't be enabled by someone else. We need to do
1249 * this even in case of failure as all disable_nonboot_cpus() users are
1250 * supposed to do enable_nonboot_cpus() on the failure path.
1252 cpu_hotplug_disabled
++;
1254 cpu_maps_update_done();
1258 void __weak
arch_enable_nonboot_cpus_begin(void)
1262 void __weak
arch_enable_nonboot_cpus_end(void)
1266 void enable_nonboot_cpus(void)
1270 /* Allow everyone to use the CPU hotplug again */
1271 cpu_maps_update_begin();
1272 __cpu_hotplug_enable();
1273 if (cpumask_empty(frozen_cpus
))
1276 pr_info("Enabling non-boot CPUs ...\n");
1278 arch_enable_nonboot_cpus_begin();
1280 for_each_cpu(cpu
, frozen_cpus
) {
1281 trace_suspend_resume(TPS("CPU_ON"), cpu
, true);
1282 error
= _cpu_up(cpu
, 1, CPUHP_ONLINE
);
1283 trace_suspend_resume(TPS("CPU_ON"), cpu
, false);
1285 pr_info("CPU%d is up\n", cpu
);
1288 pr_warn("Error taking CPU%d up: %d\n", cpu
, error
);
1291 arch_enable_nonboot_cpus_end();
1293 cpumask_clear(frozen_cpus
);
1295 cpu_maps_update_done();
1298 static int __init
alloc_frozen_cpus(void)
1300 if (!alloc_cpumask_var(&frozen_cpus
, GFP_KERNEL
|__GFP_ZERO
))
1304 core_initcall(alloc_frozen_cpus
);
1307 * When callbacks for CPU hotplug notifications are being executed, we must
1308 * ensure that the state of the system with respect to the tasks being frozen
1309 * or not, as reported by the notification, remains unchanged *throughout the
1310 * duration* of the execution of the callbacks.
1311 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1313 * This synchronization is implemented by mutually excluding regular CPU
1314 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1315 * Hibernate notifications.
1318 cpu_hotplug_pm_callback(struct notifier_block
*nb
,
1319 unsigned long action
, void *ptr
)
1323 case PM_SUSPEND_PREPARE
:
1324 case PM_HIBERNATION_PREPARE
:
1325 cpu_hotplug_disable();
1328 case PM_POST_SUSPEND
:
1329 case PM_POST_HIBERNATION
:
1330 cpu_hotplug_enable();
1341 static int __init
cpu_hotplug_pm_sync_init(void)
1344 * cpu_hotplug_pm_callback has higher priority than x86
1345 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1346 * to disable cpu hotplug to avoid cpu hotplug race.
1348 pm_notifier(cpu_hotplug_pm_callback
, 0);
1351 core_initcall(cpu_hotplug_pm_sync_init
);
1353 #endif /* CONFIG_PM_SLEEP_SMP */
1357 #endif /* CONFIG_SMP */
1359 /* Boot processor state steps */
1360 static struct cpuhp_step cpuhp_hp_states
[] = {
1363 .startup
.single
= NULL
,
1364 .teardown
.single
= NULL
,
1367 [CPUHP_CREATE_THREADS
]= {
1368 .name
= "threads:prepare",
1369 .startup
.single
= smpboot_create_threads
,
1370 .teardown
.single
= NULL
,
1373 [CPUHP_PERF_PREPARE
] = {
1374 .name
= "perf:prepare",
1375 .startup
.single
= perf_event_init_cpu
,
1376 .teardown
.single
= perf_event_exit_cpu
,
1378 [CPUHP_WORKQUEUE_PREP
] = {
1379 .name
= "workqueue:prepare",
1380 .startup
.single
= workqueue_prepare_cpu
,
1381 .teardown
.single
= NULL
,
1383 [CPUHP_HRTIMERS_PREPARE
] = {
1384 .name
= "hrtimers:prepare",
1385 .startup
.single
= hrtimers_prepare_cpu
,
1386 .teardown
.single
= hrtimers_dead_cpu
,
1388 [CPUHP_SMPCFD_PREPARE
] = {
1389 .name
= "smpcfd:prepare",
1390 .startup
.single
= smpcfd_prepare_cpu
,
1391 .teardown
.single
= smpcfd_dead_cpu
,
1393 [CPUHP_RELAY_PREPARE
] = {
1394 .name
= "relay:prepare",
1395 .startup
.single
= relay_prepare_cpu
,
1396 .teardown
.single
= NULL
,
1398 [CPUHP_SLAB_PREPARE
] = {
1399 .name
= "slab:prepare",
1400 .startup
.single
= slab_prepare_cpu
,
1401 .teardown
.single
= slab_dead_cpu
,
1403 [CPUHP_RCUTREE_PREP
] = {
1404 .name
= "RCU/tree:prepare",
1405 .startup
.single
= rcutree_prepare_cpu
,
1406 .teardown
.single
= rcutree_dead_cpu
,
1409 * On the tear-down path, timers_dead_cpu() must be invoked
1410 * before blk_mq_queue_reinit_notify() from notify_dead(),
1411 * otherwise a RCU stall occurs.
1413 [CPUHP_TIMERS_PREPARE
] = {
1414 .name
= "timers:prepare",
1415 .startup
.single
= timers_prepare_cpu
,
1416 .teardown
.single
= timers_dead_cpu
,
1418 /* Kicks the plugged cpu into life */
1419 [CPUHP_BRINGUP_CPU
] = {
1420 .name
= "cpu:bringup",
1421 .startup
.single
= bringup_cpu
,
1422 .teardown
.single
= NULL
,
1425 /* Final state before CPU kills itself */
1426 [CPUHP_AP_IDLE_DEAD
] = {
1427 .name
= "idle:dead",
1430 * Last state before CPU enters the idle loop to die. Transient state
1431 * for synchronization.
1433 [CPUHP_AP_OFFLINE
] = {
1434 .name
= "ap:offline",
1437 /* First state is scheduler control. Interrupts are disabled */
1438 [CPUHP_AP_SCHED_STARTING
] = {
1439 .name
= "sched:starting",
1440 .startup
.single
= sched_cpu_starting
,
1441 .teardown
.single
= sched_cpu_dying
,
1443 [CPUHP_AP_RCUTREE_DYING
] = {
1444 .name
= "RCU/tree:dying",
1445 .startup
.single
= NULL
,
1446 .teardown
.single
= rcutree_dying_cpu
,
1448 [CPUHP_AP_SMPCFD_DYING
] = {
1449 .name
= "smpcfd:dying",
1450 .startup
.single
= NULL
,
1451 .teardown
.single
= smpcfd_dying_cpu
,
1453 /* Entry state on starting. Interrupts enabled from here on. Transient
1454 * state for synchronsization */
1455 [CPUHP_AP_ONLINE
] = {
1456 .name
= "ap:online",
1459 * Handled on controll processor until the plugged processor manages
1462 [CPUHP_TEARDOWN_CPU
] = {
1463 .name
= "cpu:teardown",
1464 .startup
.single
= NULL
,
1465 .teardown
.single
= takedown_cpu
,
1468 /* Handle smpboot threads park/unpark */
1469 [CPUHP_AP_SMPBOOT_THREADS
] = {
1470 .name
= "smpboot/threads:online",
1471 .startup
.single
= smpboot_unpark_threads
,
1472 .teardown
.single
= smpboot_park_threads
,
1474 [CPUHP_AP_IRQ_AFFINITY_ONLINE
] = {
1475 .name
= "irq/affinity:online",
1476 .startup
.single
= irq_affinity_online_cpu
,
1477 .teardown
.single
= NULL
,
1479 [CPUHP_AP_PERF_ONLINE
] = {
1480 .name
= "perf:online",
1481 .startup
.single
= perf_event_init_cpu
,
1482 .teardown
.single
= perf_event_exit_cpu
,
1484 [CPUHP_AP_WATCHDOG_ONLINE
] = {
1485 .name
= "lockup_detector:online",
1486 .startup
.single
= lockup_detector_online_cpu
,
1487 .teardown
.single
= lockup_detector_offline_cpu
,
1489 [CPUHP_AP_WORKQUEUE_ONLINE
] = {
1490 .name
= "workqueue:online",
1491 .startup
.single
= workqueue_online_cpu
,
1492 .teardown
.single
= workqueue_offline_cpu
,
1494 [CPUHP_AP_RCUTREE_ONLINE
] = {
1495 .name
= "RCU/tree:online",
1496 .startup
.single
= rcutree_online_cpu
,
1497 .teardown
.single
= rcutree_offline_cpu
,
1501 * The dynamically registered state space is here
1505 /* Last state is scheduler control setting the cpu active */
1506 [CPUHP_AP_ACTIVE
] = {
1507 .name
= "sched:active",
1508 .startup
.single
= sched_cpu_activate
,
1509 .teardown
.single
= sched_cpu_deactivate
,
1513 /* CPU is fully up and running. */
1516 .startup
.single
= NULL
,
1517 .teardown
.single
= NULL
,
1521 /* Sanity check for callbacks */
1522 static int cpuhp_cb_check(enum cpuhp_state state
)
1524 if (state
<= CPUHP_OFFLINE
|| state
>= CPUHP_ONLINE
)
1530 * Returns a free for dynamic slot assignment of the Online state. The states
1531 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1532 * by having no name assigned.
1534 static int cpuhp_reserve_state(enum cpuhp_state state
)
1536 enum cpuhp_state i
, end
;
1537 struct cpuhp_step
*step
;
1540 case CPUHP_AP_ONLINE_DYN
:
1541 step
= cpuhp_hp_states
+ CPUHP_AP_ONLINE_DYN
;
1542 end
= CPUHP_AP_ONLINE_DYN_END
;
1544 case CPUHP_BP_PREPARE_DYN
:
1545 step
= cpuhp_hp_states
+ CPUHP_BP_PREPARE_DYN
;
1546 end
= CPUHP_BP_PREPARE_DYN_END
;
1552 for (i
= state
; i
<= end
; i
++, step
++) {
1556 WARN(1, "No more dynamic states available for CPU hotplug\n");
1560 static int cpuhp_store_callbacks(enum cpuhp_state state
, const char *name
,
1561 int (*startup
)(unsigned int cpu
),
1562 int (*teardown
)(unsigned int cpu
),
1563 bool multi_instance
)
1565 /* (Un)Install the callbacks for further cpu hotplug operations */
1566 struct cpuhp_step
*sp
;
1570 * If name is NULL, then the state gets removed.
1572 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1573 * the first allocation from these dynamic ranges, so the removal
1574 * would trigger a new allocation and clear the wrong (already
1575 * empty) state, leaving the callbacks of the to be cleared state
1576 * dangling, which causes wreckage on the next hotplug operation.
1578 if (name
&& (state
== CPUHP_AP_ONLINE_DYN
||
1579 state
== CPUHP_BP_PREPARE_DYN
)) {
1580 ret
= cpuhp_reserve_state(state
);
1585 sp
= cpuhp_get_step(state
);
1586 if (name
&& sp
->name
)
1589 sp
->startup
.single
= startup
;
1590 sp
->teardown
.single
= teardown
;
1592 sp
->multi_instance
= multi_instance
;
1593 INIT_HLIST_HEAD(&sp
->list
);
1597 static void *cpuhp_get_teardown_cb(enum cpuhp_state state
)
1599 return cpuhp_get_step(state
)->teardown
.single
;
1603 * Call the startup/teardown function for a step either on the AP or
1604 * on the current CPU.
1606 static int cpuhp_issue_call(int cpu
, enum cpuhp_state state
, bool bringup
,
1607 struct hlist_node
*node
)
1609 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1613 * If there's nothing to do, we done.
1614 * Relies on the union for multi_instance.
1616 if ((bringup
&& !sp
->startup
.single
) ||
1617 (!bringup
&& !sp
->teardown
.single
))
1620 * The non AP bound callbacks can fail on bringup. On teardown
1621 * e.g. module removal we crash for now.
1624 if (cpuhp_is_ap_state(state
))
1625 ret
= cpuhp_invoke_ap_callback(cpu
, state
, bringup
, node
);
1627 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1629 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1631 BUG_ON(ret
&& !bringup
);
1636 * Called from __cpuhp_setup_state on a recoverable failure.
1638 * Note: The teardown callbacks for rollback are not allowed to fail!
1640 static void cpuhp_rollback_install(int failedcpu
, enum cpuhp_state state
,
1641 struct hlist_node
*node
)
1645 /* Roll back the already executed steps on the other cpus */
1646 for_each_present_cpu(cpu
) {
1647 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1648 int cpustate
= st
->state
;
1650 if (cpu
>= failedcpu
)
1653 /* Did we invoke the startup call on that cpu ? */
1654 if (cpustate
>= state
)
1655 cpuhp_issue_call(cpu
, state
, false, node
);
1659 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state
,
1660 struct hlist_node
*node
,
1663 struct cpuhp_step
*sp
;
1667 lockdep_assert_cpus_held();
1669 sp
= cpuhp_get_step(state
);
1670 if (sp
->multi_instance
== false)
1673 mutex_lock(&cpuhp_state_mutex
);
1675 if (!invoke
|| !sp
->startup
.multi
)
1679 * Try to call the startup callback for each present cpu
1680 * depending on the hotplug state of the cpu.
1682 for_each_present_cpu(cpu
) {
1683 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1684 int cpustate
= st
->state
;
1686 if (cpustate
< state
)
1689 ret
= cpuhp_issue_call(cpu
, state
, true, node
);
1691 if (sp
->teardown
.multi
)
1692 cpuhp_rollback_install(cpu
, state
, node
);
1698 hlist_add_head(node
, &sp
->list
);
1700 mutex_unlock(&cpuhp_state_mutex
);
1704 int __cpuhp_state_add_instance(enum cpuhp_state state
, struct hlist_node
*node
,
1710 ret
= __cpuhp_state_add_instance_cpuslocked(state
, node
, invoke
);
1714 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance
);
1717 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1718 * @state: The state to setup
1719 * @invoke: If true, the startup function is invoked for cpus where
1720 * cpu state >= @state
1721 * @startup: startup callback function
1722 * @teardown: teardown callback function
1723 * @multi_instance: State is set up for multiple instances which get
1726 * The caller needs to hold cpus read locked while calling this function.
1729 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1730 * 0 for all other states
1731 * On failure: proper (negative) error code
1733 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state
,
1734 const char *name
, bool invoke
,
1735 int (*startup
)(unsigned int cpu
),
1736 int (*teardown
)(unsigned int cpu
),
1737 bool multi_instance
)
1742 lockdep_assert_cpus_held();
1744 if (cpuhp_cb_check(state
) || !name
)
1747 mutex_lock(&cpuhp_state_mutex
);
1749 ret
= cpuhp_store_callbacks(state
, name
, startup
, teardown
,
1752 dynstate
= state
== CPUHP_AP_ONLINE_DYN
;
1753 if (ret
> 0 && dynstate
) {
1758 if (ret
|| !invoke
|| !startup
)
1762 * Try to call the startup callback for each present cpu
1763 * depending on the hotplug state of the cpu.
1765 for_each_present_cpu(cpu
) {
1766 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1767 int cpustate
= st
->state
;
1769 if (cpustate
< state
)
1772 ret
= cpuhp_issue_call(cpu
, state
, true, NULL
);
1775 cpuhp_rollback_install(cpu
, state
, NULL
);
1776 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1781 mutex_unlock(&cpuhp_state_mutex
);
1783 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1784 * dynamically allocated state in case of success.
1786 if (!ret
&& dynstate
)
1790 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked
);
1792 int __cpuhp_setup_state(enum cpuhp_state state
,
1793 const char *name
, bool invoke
,
1794 int (*startup
)(unsigned int cpu
),
1795 int (*teardown
)(unsigned int cpu
),
1796 bool multi_instance
)
1801 ret
= __cpuhp_setup_state_cpuslocked(state
, name
, invoke
, startup
,
1802 teardown
, multi_instance
);
1806 EXPORT_SYMBOL(__cpuhp_setup_state
);
1808 int __cpuhp_state_remove_instance(enum cpuhp_state state
,
1809 struct hlist_node
*node
, bool invoke
)
1811 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1814 BUG_ON(cpuhp_cb_check(state
));
1816 if (!sp
->multi_instance
)
1820 mutex_lock(&cpuhp_state_mutex
);
1822 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1825 * Call the teardown callback for each present cpu depending
1826 * on the hotplug state of the cpu. This function is not
1827 * allowed to fail currently!
1829 for_each_present_cpu(cpu
) {
1830 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1831 int cpustate
= st
->state
;
1833 if (cpustate
>= state
)
1834 cpuhp_issue_call(cpu
, state
, false, node
);
1839 mutex_unlock(&cpuhp_state_mutex
);
1844 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance
);
1847 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1848 * @state: The state to remove
1849 * @invoke: If true, the teardown function is invoked for cpus where
1850 * cpu state >= @state
1852 * The caller needs to hold cpus read locked while calling this function.
1853 * The teardown callback is currently not allowed to fail. Think
1854 * about module removal!
1856 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state
, bool invoke
)
1858 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1861 BUG_ON(cpuhp_cb_check(state
));
1863 lockdep_assert_cpus_held();
1865 mutex_lock(&cpuhp_state_mutex
);
1866 if (sp
->multi_instance
) {
1867 WARN(!hlist_empty(&sp
->list
),
1868 "Error: Removing state %d which has instances left.\n",
1873 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1877 * Call the teardown callback for each present cpu depending
1878 * on the hotplug state of the cpu. This function is not
1879 * allowed to fail currently!
1881 for_each_present_cpu(cpu
) {
1882 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1883 int cpustate
= st
->state
;
1885 if (cpustate
>= state
)
1886 cpuhp_issue_call(cpu
, state
, false, NULL
);
1889 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1890 mutex_unlock(&cpuhp_state_mutex
);
1892 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked
);
1894 void __cpuhp_remove_state(enum cpuhp_state state
, bool invoke
)
1897 __cpuhp_remove_state_cpuslocked(state
, invoke
);
1900 EXPORT_SYMBOL(__cpuhp_remove_state
);
1902 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1903 static ssize_t
show_cpuhp_state(struct device
*dev
,
1904 struct device_attribute
*attr
, char *buf
)
1906 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1908 return sprintf(buf
, "%d\n", st
->state
);
1910 static DEVICE_ATTR(state
, 0444, show_cpuhp_state
, NULL
);
1912 static ssize_t
write_cpuhp_target(struct device
*dev
,
1913 struct device_attribute
*attr
,
1914 const char *buf
, size_t count
)
1916 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1917 struct cpuhp_step
*sp
;
1920 ret
= kstrtoint(buf
, 10, &target
);
1924 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1925 if (target
< CPUHP_OFFLINE
|| target
> CPUHP_ONLINE
)
1928 if (target
!= CPUHP_OFFLINE
&& target
!= CPUHP_ONLINE
)
1932 ret
= lock_device_hotplug_sysfs();
1936 mutex_lock(&cpuhp_state_mutex
);
1937 sp
= cpuhp_get_step(target
);
1938 ret
= !sp
->name
|| sp
->cant_stop
? -EINVAL
: 0;
1939 mutex_unlock(&cpuhp_state_mutex
);
1943 if (st
->state
< target
)
1944 ret
= do_cpu_up(dev
->id
, target
);
1946 ret
= do_cpu_down(dev
->id
, target
);
1948 unlock_device_hotplug();
1949 return ret
? ret
: count
;
1952 static ssize_t
show_cpuhp_target(struct device
*dev
,
1953 struct device_attribute
*attr
, char *buf
)
1955 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1957 return sprintf(buf
, "%d\n", st
->target
);
1959 static DEVICE_ATTR(target
, 0644, show_cpuhp_target
, write_cpuhp_target
);
1962 static ssize_t
write_cpuhp_fail(struct device
*dev
,
1963 struct device_attribute
*attr
,
1964 const char *buf
, size_t count
)
1966 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1967 struct cpuhp_step
*sp
;
1970 ret
= kstrtoint(buf
, 10, &fail
);
1974 if (fail
< CPUHP_OFFLINE
|| fail
> CPUHP_ONLINE
)
1978 * Cannot fail STARTING/DYING callbacks.
1980 if (cpuhp_is_atomic_state(fail
))
1984 * Cannot fail anything that doesn't have callbacks.
1986 mutex_lock(&cpuhp_state_mutex
);
1987 sp
= cpuhp_get_step(fail
);
1988 if (!sp
->startup
.single
&& !sp
->teardown
.single
)
1990 mutex_unlock(&cpuhp_state_mutex
);
1999 static ssize_t
show_cpuhp_fail(struct device
*dev
,
2000 struct device_attribute
*attr
, char *buf
)
2002 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2004 return sprintf(buf
, "%d\n", st
->fail
);
2007 static DEVICE_ATTR(fail
, 0644, show_cpuhp_fail
, write_cpuhp_fail
);
2009 static struct attribute
*cpuhp_cpu_attrs
[] = {
2010 &dev_attr_state
.attr
,
2011 &dev_attr_target
.attr
,
2012 &dev_attr_fail
.attr
,
2016 static const struct attribute_group cpuhp_cpu_attr_group
= {
2017 .attrs
= cpuhp_cpu_attrs
,
2022 static ssize_t
show_cpuhp_states(struct device
*dev
,
2023 struct device_attribute
*attr
, char *buf
)
2025 ssize_t cur
, res
= 0;
2028 mutex_lock(&cpuhp_state_mutex
);
2029 for (i
= CPUHP_OFFLINE
; i
<= CPUHP_ONLINE
; i
++) {
2030 struct cpuhp_step
*sp
= cpuhp_get_step(i
);
2033 cur
= sprintf(buf
, "%3d: %s\n", i
, sp
->name
);
2038 mutex_unlock(&cpuhp_state_mutex
);
2041 static DEVICE_ATTR(states
, 0444, show_cpuhp_states
, NULL
);
2043 static struct attribute
*cpuhp_cpu_root_attrs
[] = {
2044 &dev_attr_states
.attr
,
2048 static const struct attribute_group cpuhp_cpu_root_attr_group
= {
2049 .attrs
= cpuhp_cpu_root_attrs
,
2054 #ifdef CONFIG_HOTPLUG_SMT
2056 static void cpuhp_offline_cpu_device(unsigned int cpu
)
2058 struct device
*dev
= get_cpu_device(cpu
);
2060 dev
->offline
= true;
2061 /* Tell user space about the state change */
2062 kobject_uevent(&dev
->kobj
, KOBJ_OFFLINE
);
2065 static void cpuhp_online_cpu_device(unsigned int cpu
)
2067 struct device
*dev
= get_cpu_device(cpu
);
2069 dev
->offline
= false;
2070 /* Tell user space about the state change */
2071 kobject_uevent(&dev
->kobj
, KOBJ_ONLINE
);
2074 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval
)
2078 cpu_maps_update_begin();
2079 for_each_online_cpu(cpu
) {
2080 if (topology_is_primary_thread(cpu
))
2082 ret
= cpu_down_maps_locked(cpu
, CPUHP_OFFLINE
);
2086 * As this needs to hold the cpu maps lock it's impossible
2087 * to call device_offline() because that ends up calling
2088 * cpu_down() which takes cpu maps lock. cpu maps lock
2089 * needs to be held as this might race against in kernel
2090 * abusers of the hotplug machinery (thermal management).
2092 * So nothing would update device:offline state. That would
2093 * leave the sysfs entry stale and prevent onlining after
2094 * smt control has been changed to 'off' again. This is
2095 * called under the sysfs hotplug lock, so it is properly
2096 * serialized against the regular offline usage.
2098 cpuhp_offline_cpu_device(cpu
);
2101 cpu_smt_control
= ctrlval
;
2102 cpu_maps_update_done();
2106 int cpuhp_smt_enable(void)
2110 cpu_maps_update_begin();
2111 cpu_smt_control
= CPU_SMT_ENABLED
;
2112 for_each_present_cpu(cpu
) {
2113 /* Skip online CPUs and CPUs on offline nodes */
2114 if (cpu_online(cpu
) || !node_online(cpu_to_node(cpu
)))
2116 ret
= _cpu_up(cpu
, 0, CPUHP_ONLINE
);
2119 /* See comment in cpuhp_smt_disable() */
2120 cpuhp_online_cpu_device(cpu
);
2122 cpu_maps_update_done();
2128 __store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2129 const char *buf
, size_t count
)
2133 if (sysfs_streq(buf
, "on"))
2134 ctrlval
= CPU_SMT_ENABLED
;
2135 else if (sysfs_streq(buf
, "off"))
2136 ctrlval
= CPU_SMT_DISABLED
;
2137 else if (sysfs_streq(buf
, "forceoff"))
2138 ctrlval
= CPU_SMT_FORCE_DISABLED
;
2142 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
)
2145 if (cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
2148 ret
= lock_device_hotplug_sysfs();
2152 if (ctrlval
!= cpu_smt_control
) {
2154 case CPU_SMT_ENABLED
:
2155 ret
= cpuhp_smt_enable();
2157 case CPU_SMT_DISABLED
:
2158 case CPU_SMT_FORCE_DISABLED
:
2159 ret
= cpuhp_smt_disable(ctrlval
);
2164 unlock_device_hotplug();
2165 return ret
? ret
: count
;
2168 #else /* !CONFIG_HOTPLUG_SMT */
2170 __store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2171 const char *buf
, size_t count
)
2175 #endif /* CONFIG_HOTPLUG_SMT */
2177 static const char *smt_states
[] = {
2178 [CPU_SMT_ENABLED
] = "on",
2179 [CPU_SMT_DISABLED
] = "off",
2180 [CPU_SMT_FORCE_DISABLED
] = "forceoff",
2181 [CPU_SMT_NOT_SUPPORTED
] = "notsupported",
2182 [CPU_SMT_NOT_IMPLEMENTED
] = "notimplemented",
2186 show_smt_control(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2188 const char *state
= smt_states
[cpu_smt_control
];
2190 return snprintf(buf
, PAGE_SIZE
- 2, "%s\n", state
);
2194 store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2195 const char *buf
, size_t count
)
2197 return __store_smt_control(dev
, attr
, buf
, count
);
2199 static DEVICE_ATTR(control
, 0644, show_smt_control
, store_smt_control
);
2202 show_smt_active(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2204 return snprintf(buf
, PAGE_SIZE
- 2, "%d\n", sched_smt_active());
2206 static DEVICE_ATTR(active
, 0444, show_smt_active
, NULL
);
2208 static struct attribute
*cpuhp_smt_attrs
[] = {
2209 &dev_attr_control
.attr
,
2210 &dev_attr_active
.attr
,
2214 static const struct attribute_group cpuhp_smt_attr_group
= {
2215 .attrs
= cpuhp_smt_attrs
,
2220 static int __init
cpu_smt_sysfs_init(void)
2222 return sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2223 &cpuhp_smt_attr_group
);
2226 static int __init
cpuhp_sysfs_init(void)
2230 ret
= cpu_smt_sysfs_init();
2234 ret
= sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2235 &cpuhp_cpu_root_attr_group
);
2239 for_each_possible_cpu(cpu
) {
2240 struct device
*dev
= get_cpu_device(cpu
);
2244 ret
= sysfs_create_group(&dev
->kobj
, &cpuhp_cpu_attr_group
);
2250 device_initcall(cpuhp_sysfs_init
);
2251 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2254 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2255 * represents all NR_CPUS bits binary values of 1<<nr.
2257 * It is used by cpumask_of() to get a constant address to a CPU
2258 * mask value that has a single bit set only.
2261 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2262 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2263 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2264 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2265 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2267 const unsigned long cpu_bit_bitmap
[BITS_PER_LONG
+1][BITS_TO_LONGS(NR_CPUS
)] = {
2269 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2270 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2271 #if BITS_PER_LONG > 32
2272 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2273 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2276 EXPORT_SYMBOL_GPL(cpu_bit_bitmap
);
2278 const DECLARE_BITMAP(cpu_all_bits
, NR_CPUS
) = CPU_BITS_ALL
;
2279 EXPORT_SYMBOL(cpu_all_bits
);
2281 #ifdef CONFIG_INIT_ALL_POSSIBLE
2282 struct cpumask __cpu_possible_mask __read_mostly
2285 struct cpumask __cpu_possible_mask __read_mostly
;
2287 EXPORT_SYMBOL(__cpu_possible_mask
);
2289 struct cpumask __cpu_online_mask __read_mostly
;
2290 EXPORT_SYMBOL(__cpu_online_mask
);
2292 struct cpumask __cpu_present_mask __read_mostly
;
2293 EXPORT_SYMBOL(__cpu_present_mask
);
2295 struct cpumask __cpu_active_mask __read_mostly
;
2296 EXPORT_SYMBOL(__cpu_active_mask
);
2298 void init_cpu_present(const struct cpumask
*src
)
2300 cpumask_copy(&__cpu_present_mask
, src
);
2303 void init_cpu_possible(const struct cpumask
*src
)
2305 cpumask_copy(&__cpu_possible_mask
, src
);
2308 void init_cpu_online(const struct cpumask
*src
)
2310 cpumask_copy(&__cpu_online_mask
, src
);
2314 * Activate the first processor.
2316 void __init
boot_cpu_init(void)
2318 int cpu
= smp_processor_id();
2320 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2321 set_cpu_online(cpu
, true);
2322 set_cpu_active(cpu
, true);
2323 set_cpu_present(cpu
, true);
2324 set_cpu_possible(cpu
, true);
2327 __boot_cpu_id
= cpu
;
2332 * Must be called _AFTER_ setting up the per_cpu areas
2334 void __init
boot_cpu_hotplug_init(void)
2337 this_cpu_write(cpuhp_state
.booted_once
, true);
2339 this_cpu_write(cpuhp_state
.state
, CPUHP_ONLINE
);
2342 enum cpu_mitigations cpu_mitigations __ro_after_init
= CPU_MITIGATIONS_AUTO
;
2344 static int __init
mitigations_parse_cmdline(char *arg
)
2346 if (!strcmp(arg
, "off"))
2347 cpu_mitigations
= CPU_MITIGATIONS_OFF
;
2348 else if (!strcmp(arg
, "auto"))
2349 cpu_mitigations
= CPU_MITIGATIONS_AUTO
;
2350 else if (!strcmp(arg
, "auto,nosmt"))
2351 cpu_mitigations
= CPU_MITIGATIONS_AUTO_NOSMT
;
2353 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2358 early_param("mitigations", mitigations_parse_cmdline
);