1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H
3 #define _ASM_POWERPC_NOHASH_32_PGTABLE_H
5 #define __ARCH_USE_5LEVEL_HACK
6 #include <asm-generic/pgtable-nopmd.h>
9 #include <linux/sched.h>
10 #include <linux/threads.h>
11 #include <asm/mmu.h> /* For sub-arch specific PPC_PIN_SIZE */
12 #include <asm/asm-405.h>
14 extern unsigned long ioremap_bot
;
17 extern int icache_44x_need_flush
;
20 #endif /* __ASSEMBLY__ */
22 #define PTE_INDEX_SIZE PTE_SHIFT
23 #define PMD_INDEX_SIZE 0
24 #define PUD_INDEX_SIZE 0
25 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
27 #define PMD_CACHE_INDEX PMD_INDEX_SIZE
28 #define PUD_CACHE_INDEX PUD_INDEX_SIZE
31 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
32 #define PMD_TABLE_SIZE 0
33 #define PUD_TABLE_SIZE 0
34 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
35 #endif /* __ASSEMBLY__ */
37 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
38 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
41 * The normal case is that PTEs are 32-bits and we have a 1-page
42 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
44 * For any >32-bit physical address platform, we can use the following
45 * two level page table layout where the pgdir is 8KB and the MS 13 bits
46 * are an index to the second level table. The combined pgdir/pmd first
47 * level has 2048 entries and the second level has 512 64-bit PTE entries.
50 /* PGDIR_SHIFT determines what a top-level page table entry can map */
51 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
52 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
53 #define PGDIR_MASK (~(PGDIR_SIZE-1))
55 /* Bits to mask out from a PGD to get to the PUD page */
56 #define PGD_MASKED_BITS 0
58 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
59 #define FIRST_USER_ADDRESS 0UL
61 #define pte_ERROR(e) \
62 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
63 (unsigned long long)pte_val(e))
64 #define pgd_ERROR(e) \
65 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
68 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
69 * value (for now) on others, from where we can start layout kernel
70 * virtual space that goes below PKMAP and FIXMAP
73 #define KVIRT_TOP PKMAP_BASE
75 #define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */
79 * ioremap_bot starts at that address. Early ioremaps move down from there,
80 * until mem_init() at which point this becomes the top of the vmalloc
83 #ifdef CONFIG_NOT_COHERENT_CACHE
84 #define IOREMAP_TOP ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK)
86 #define IOREMAP_TOP KVIRT_TOP
90 * Just any arbitrary offset to the start of the vmalloc VM area: the
91 * current 16MB value just means that there will be a 64MB "hole" after the
92 * physical memory until the kernel virtual memory starts. That means that
93 * any out-of-bounds memory accesses will hopefully be caught.
94 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
95 * area for the same reason. ;)
97 * We no longer map larger than phys RAM with the BATs so we don't have
98 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
99 * about clashes between our early calls to ioremap() that start growing down
100 * from IOREMAP_TOP being run into the VM area allocations (growing upwards
101 * from VMALLOC_START). For this reason we have ioremap_bot to check when
102 * we actually run into our mappings setup in the early boot with the VM
103 * system. This really does become a problem for machines with good amounts
106 #define VMALLOC_OFFSET (0x1000000) /* 16M */
108 #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
110 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
112 #define VMALLOC_END ioremap_bot
115 * Bits in a linux-style PTE. These match the bits in the
116 * (hardware-defined) PowerPC PTE as closely as possible.
119 #if defined(CONFIG_40x)
120 #include <asm/nohash/32/pte-40x.h>
121 #elif defined(CONFIG_44x)
122 #include <asm/nohash/32/pte-44x.h>
123 #elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
124 #include <asm/nohash/pte-book3e.h>
125 #elif defined(CONFIG_FSL_BOOKE)
126 #include <asm/nohash/32/pte-fsl-booke.h>
127 #elif defined(CONFIG_PPC_8xx)
128 #include <asm/nohash/32/pte-8xx.h>
132 * Location of the PFN in the PTE. Most 32-bit platforms use the same
133 * as _PAGE_SHIFT here (ie, naturally aligned).
134 * Platform who don't just pre-define the value so we don't override it here.
136 #ifndef PTE_RPN_SHIFT
137 #define PTE_RPN_SHIFT (PAGE_SHIFT)
141 * The mask covered by the RPN must be a ULL on 32-bit platforms with
144 #if defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
145 #define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1))
147 #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
151 * _PAGE_CHG_MASK masks of bits that are to be preserved across
154 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
158 #define pte_clear(mm, addr, ptep) \
159 do { pte_update(ptep, ~0, 0); } while (0)
162 static inline pte_t
pte_mkwrite(pte_t pte
)
164 return __pte(pte_val(pte
) | _PAGE_RW
);
168 static inline pte_t
pte_mkdirty(pte_t pte
)
170 return __pte(pte_val(pte
) | _PAGE_DIRTY
);
173 static inline pte_t
pte_mkyoung(pte_t pte
)
175 return __pte(pte_val(pte
) | _PAGE_ACCESSED
);
178 #ifndef pte_wrprotect
179 static inline pte_t
pte_wrprotect(pte_t pte
)
181 return __pte(pte_val(pte
) & ~_PAGE_RW
);
185 static inline pte_t
pte_mkexec(pte_t pte
)
187 return __pte(pte_val(pte
) | _PAGE_EXEC
);
190 #define pmd_none(pmd) (!pmd_val(pmd))
191 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
192 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
193 static inline void pmd_clear(pmd_t
*pmdp
)
201 * PTE updates. This function is called whenever an existing
202 * valid PTE is updated. This does -not- include set_pte_at()
203 * which nowadays only sets a new PTE.
205 * Depending on the type of MMU, we may need to use atomic updates
206 * and the PTE may be either 32 or 64 bit wide. In the later case,
207 * when using atomic updates, only the low part of the PTE is
208 * accessed atomically.
210 * In addition, on 44x, we also maintain a global flag indicating
211 * that an executable user mapping was modified, which is needed
212 * to properly flush the virtually tagged instruction cache of
213 * those implementations.
215 #ifndef CONFIG_PTE_64BIT
216 static inline unsigned long pte_update(pte_t
*p
,
220 #ifdef PTE_ATOMIC_UPDATES
221 unsigned long old
, tmp
;
223 __asm__
__volatile__("\
230 : "=&r" (old
), "=&r" (tmp
), "=m" (*p
)
231 : "r" (p
), "r" (clr
), "r" (set
), "m" (*p
)
233 #else /* PTE_ATOMIC_UPDATES */
234 unsigned long old
= pte_val(*p
);
235 *p
= __pte((old
& ~clr
) | set
);
236 #endif /* !PTE_ATOMIC_UPDATES */
239 if ((old
& _PAGE_USER
) && (old
& _PAGE_EXEC
))
240 icache_44x_need_flush
= 1;
244 #else /* CONFIG_PTE_64BIT */
245 static inline unsigned long long pte_update(pte_t
*p
,
249 #ifdef PTE_ATOMIC_UPDATES
250 unsigned long long old
;
253 __asm__
__volatile__("\
261 : "=&r" (old
), "=&r" (tmp
), "=m" (*p
)
262 : "r" (p
), "r" ((unsigned long)(p
) + 4), "r" (clr
), "r" (set
), "m" (*p
)
264 #else /* PTE_ATOMIC_UPDATES */
265 unsigned long long old
= pte_val(*p
);
266 *p
= __pte((old
& ~(unsigned long long)clr
) | set
);
267 #endif /* !PTE_ATOMIC_UPDATES */
270 if ((old
& _PAGE_USER
) && (old
& _PAGE_EXEC
))
271 icache_44x_need_flush
= 1;
275 #endif /* CONFIG_PTE_64BIT */
277 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
278 static inline int __ptep_test_and_clear_young(unsigned int context
, unsigned long addr
, pte_t
*ptep
)
281 old
= pte_update(ptep
, _PAGE_ACCESSED
, 0);
282 return (old
& _PAGE_ACCESSED
) != 0;
284 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
285 __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
287 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
288 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
,
291 return __pte(pte_update(ptep
, ~0, 0));
294 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
295 static inline void ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long addr
,
298 unsigned long clr
= ~pte_val(pte_wrprotect(__pte(~0)));
299 unsigned long set
= pte_val(pte_wrprotect(__pte(0)));
301 pte_update(ptep
, clr
, set
);
304 static inline void __ptep_set_access_flags(struct vm_area_struct
*vma
,
305 pte_t
*ptep
, pte_t entry
,
306 unsigned long address
,
309 pte_t pte_set
= pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(0)))));
310 pte_t pte_clr
= pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(~0)))));
311 unsigned long set
= pte_val(entry
) & pte_val(pte_set
);
312 unsigned long clr
= ~pte_val(entry
) & ~pte_val(pte_clr
);
314 pte_update(ptep
, clr
, set
);
316 flush_tlb_page(vma
, address
);
319 static inline int pte_young(pte_t pte
)
321 return pte_val(pte
) & _PAGE_ACCESSED
;
324 #define __HAVE_ARCH_PTE_SAME
325 #define pte_same(A,B) ((pte_val(A) ^ pte_val(B)) == 0)
328 * Note that on Book E processors, the pmd contains the kernel virtual
329 * (lowmem) address of the pte page. The physical address is less useful
330 * because everything runs with translation enabled (even the TLB miss
331 * handler). On everything else the pmd contains the physical address
332 * of the pte page. -- paulus
335 #define pmd_page_vaddr(pmd) \
336 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
337 #define pmd_page(pmd) \
338 pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
340 #define pmd_page_vaddr(pmd) \
341 ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
342 #define pmd_page(pmd) \
343 pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
346 /* to find an entry in a kernel page-table-directory */
347 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
349 /* to find an entry in a page-table-directory */
350 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
351 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
353 /* Find an entry in the third-level page table.. */
354 #define pte_index(address) \
355 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
356 #define pte_offset_kernel(dir, addr) \
357 (pmd_bad(*(dir)) ? NULL : (pte_t *)pmd_page_vaddr(*(dir)) + \
359 #define pte_offset_map(dir, addr) \
360 ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
361 #define pte_unmap(pte) kunmap_atomic(pte)
364 * Encode and decode a swap entry.
365 * Note that the bits we use in a PTE for representing a swap entry
366 * must not include the _PAGE_PRESENT bit.
369 #define __swp_type(entry) ((entry).val & 0x1f)
370 #define __swp_offset(entry) ((entry).val >> 5)
371 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
372 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
373 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
375 int map_kernel_page(unsigned long va
, phys_addr_t pa
, pgprot_t prot
);
377 #endif /* !__ASSEMBLY__ */
379 #endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */