2 * Driver for Broadcom BRCMSTB, NSP, NS2, Cygnus SPI Controllers
4 * Copyright 2016 Broadcom
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation (the "GPL").
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 (GPLv2) for more details.
15 * You should have received a copy of the GNU General Public License
16 * version 2 (GPLv2) along with this source code.
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
25 #include <linux/ioport.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/mtd/spi-nor.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/spi/spi.h>
34 #include <linux/sysfs.h>
35 #include <linux/types.h>
36 #include "spi-bcm-qspi.h"
38 #define DRIVER_NAME "bcm_qspi"
41 /* BSPI register offsets */
42 #define BSPI_REVISION_ID 0x000
43 #define BSPI_SCRATCH 0x004
44 #define BSPI_MAST_N_BOOT_CTRL 0x008
45 #define BSPI_BUSY_STATUS 0x00c
46 #define BSPI_INTR_STATUS 0x010
47 #define BSPI_B0_STATUS 0x014
48 #define BSPI_B0_CTRL 0x018
49 #define BSPI_B1_STATUS 0x01c
50 #define BSPI_B1_CTRL 0x020
51 #define BSPI_STRAP_OVERRIDE_CTRL 0x024
52 #define BSPI_FLEX_MODE_ENABLE 0x028
53 #define BSPI_BITS_PER_CYCLE 0x02c
54 #define BSPI_BITS_PER_PHASE 0x030
55 #define BSPI_CMD_AND_MODE_BYTE 0x034
56 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
57 #define BSPI_BSPI_XOR_VALUE 0x03c
58 #define BSPI_BSPI_XOR_ENABLE 0x040
59 #define BSPI_BSPI_PIO_MODE_ENABLE 0x044
60 #define BSPI_BSPI_PIO_IODIR 0x048
61 #define BSPI_BSPI_PIO_DATA 0x04c
63 /* RAF register offsets */
64 #define BSPI_RAF_START_ADDR 0x100
65 #define BSPI_RAF_NUM_WORDS 0x104
66 #define BSPI_RAF_CTRL 0x108
67 #define BSPI_RAF_FULLNESS 0x10c
68 #define BSPI_RAF_WATERMARK 0x110
69 #define BSPI_RAF_STATUS 0x114
70 #define BSPI_RAF_READ_DATA 0x118
71 #define BSPI_RAF_WORD_CNT 0x11c
72 #define BSPI_RAF_CURR_ADDR 0x120
74 /* Override mode masks */
75 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE BIT(0)
76 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL BIT(1)
77 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE BIT(2)
78 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD BIT(3)
79 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE BIT(4)
81 #define BSPI_ADDRLEN_3BYTES 3
82 #define BSPI_ADDRLEN_4BYTES 4
84 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
86 #define BSPI_RAF_CTRL_START_MASK BIT(0)
87 #define BSPI_RAF_CTRL_CLEAR_MASK BIT(1)
89 #define BSPI_BPP_MODE_SELECT_MASK BIT(8)
90 #define BSPI_BPP_ADDR_SELECT_MASK BIT(16)
92 #define BSPI_READ_LENGTH 256
94 /* MSPI register offsets */
95 #define MSPI_SPCR0_LSB 0x000
96 #define MSPI_SPCR0_MSB 0x004
97 #define MSPI_SPCR1_LSB 0x008
98 #define MSPI_SPCR1_MSB 0x00c
99 #define MSPI_NEWQP 0x010
100 #define MSPI_ENDQP 0x014
101 #define MSPI_SPCR2 0x018
102 #define MSPI_MSPI_STATUS 0x020
103 #define MSPI_CPTQP 0x024
104 #define MSPI_SPCR3 0x028
105 #define MSPI_TXRAM 0x040
106 #define MSPI_RXRAM 0x0c0
107 #define MSPI_CDRAM 0x140
108 #define MSPI_WRITE_LOCK 0x180
110 #define MSPI_MASTER_BIT BIT(7)
112 #define MSPI_NUM_CDRAM 16
113 #define MSPI_CDRAM_CONT_BIT BIT(7)
114 #define MSPI_CDRAM_BITSE_BIT BIT(6)
115 #define MSPI_CDRAM_PCS 0xf
117 #define MSPI_SPCR2_SPE BIT(6)
118 #define MSPI_SPCR2_CONT_AFTER_CMD BIT(7)
120 #define MSPI_MSPI_STATUS_SPIF BIT(0)
122 #define INTR_BASE_BIT_SHIFT 0x02
123 #define INTR_COUNT 0x07
125 #define NUM_CHIPSELECT 4
126 #define QSPI_SPBR_MIN 8U
127 #define QSPI_SPBR_MAX 255U
129 #define OPCODE_DIOR 0xBB
130 #define OPCODE_QIOR 0xEB
131 #define OPCODE_DIOR_4B 0xBC
132 #define OPCODE_QIOR_4B 0xEC
134 #define MAX_CMD_SIZE 6
136 #define ADDR_4MB_MASK GENMASK(22, 0)
138 /* stop at end of transfer, no other reason */
139 #define TRANS_STATUS_BREAK_NONE 0
140 /* stop at end of spi_message */
141 #define TRANS_STATUS_BREAK_EOM 1
142 /* stop at end of spi_transfer if delay */
143 #define TRANS_STATUS_BREAK_DELAY 2
144 /* stop at end of spi_transfer if cs_change */
145 #define TRANS_STATUS_BREAK_CS_CHANGE 4
146 /* stop if we run out of bytes */
147 #define TRANS_STATUS_BREAK_NO_BYTES 8
149 /* events that make us stop filling TX slots */
150 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM | \
151 TRANS_STATUS_BREAK_DELAY | \
152 TRANS_STATUS_BREAK_CS_CHANGE)
154 /* events that make us deassert CS */
155 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \
156 TRANS_STATUS_BREAK_CS_CHANGE)
158 struct bcm_qspi_parms
{
164 struct bcm_xfer_mode
{
167 unsigned int addrlen
;
183 struct bcm_qspi_irq
{
184 const char *irq_name
;
185 const irq_handler_t irq_handler
;
190 struct bcm_qspi_dev_id
{
191 const struct bcm_qspi_irq
*irqp
;
196 struct spi_transfer
*trans
;
201 struct platform_device
*pdev
;
202 struct spi_master
*master
;
206 void __iomem
*base
[BASEMAX
];
208 /* Some SoCs provide custom interrupt status register(s) */
209 struct bcm_qspi_soc_intc
*soc_intc
;
211 struct bcm_qspi_parms last_parms
;
212 struct qspi_trans trans_pos
;
217 struct spi_flash_read_message
*bspi_rf_msg
;
220 u32 bspi_rf_msg_status
;
221 struct bcm_xfer_mode xfer_mode
;
222 u32 s3_strap_override_ctrl
;
226 struct bcm_qspi_dev_id
*dev_ids
;
227 struct completion mspi_done
;
228 struct completion bspi_done
;
231 static inline bool has_bspi(struct bcm_qspi
*qspi
)
233 return qspi
->bspi_mode
;
236 /* Read qspi controller register*/
237 static inline u32
bcm_qspi_read(struct bcm_qspi
*qspi
, enum base_type type
,
240 return bcm_qspi_readl(qspi
->big_endian
, qspi
->base
[type
] + offset
);
243 /* Write qspi controller register*/
244 static inline void bcm_qspi_write(struct bcm_qspi
*qspi
, enum base_type type
,
245 unsigned int offset
, unsigned int data
)
247 bcm_qspi_writel(qspi
->big_endian
, data
, qspi
->base
[type
] + offset
);
251 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi
*qspi
)
255 /* this should normally finish within 10us */
256 for (i
= 0; i
< 1000; i
++) {
257 if (!(bcm_qspi_read(qspi
, BSPI
, BSPI_BUSY_STATUS
) & 1))
261 dev_warn(&qspi
->pdev
->dev
, "timeout waiting for !busy_status\n");
265 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi
*qspi
)
267 if (qspi
->bspi_maj_rev
< 4)
272 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi
*qspi
)
274 bcm_qspi_bspi_busy_poll(qspi
);
275 /* Force rising edge for the b0/b1 'flush' field */
276 bcm_qspi_write(qspi
, BSPI
, BSPI_B0_CTRL
, 1);
277 bcm_qspi_write(qspi
, BSPI
, BSPI_B1_CTRL
, 1);
278 bcm_qspi_write(qspi
, BSPI
, BSPI_B0_CTRL
, 0);
279 bcm_qspi_write(qspi
, BSPI
, BSPI_B1_CTRL
, 0);
282 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi
*qspi
)
284 return (bcm_qspi_read(qspi
, BSPI
, BSPI_RAF_STATUS
) &
285 BSPI_RAF_STATUS_FIFO_EMPTY_MASK
);
288 static inline u32
bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi
*qspi
)
290 u32 data
= bcm_qspi_read(qspi
, BSPI
, BSPI_RAF_READ_DATA
);
292 /* BSPI v3 LR is LE only, convert data to host endianness */
293 if (bcm_qspi_bspi_ver_three(qspi
))
294 data
= le32_to_cpu(data
);
299 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi
*qspi
)
301 bcm_qspi_bspi_busy_poll(qspi
);
302 bcm_qspi_write(qspi
, BSPI
, BSPI_RAF_CTRL
,
303 BSPI_RAF_CTRL_START_MASK
);
306 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi
*qspi
)
308 bcm_qspi_write(qspi
, BSPI
, BSPI_RAF_CTRL
,
309 BSPI_RAF_CTRL_CLEAR_MASK
);
310 bcm_qspi_bspi_flush_prefetch_buffers(qspi
);
313 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi
*qspi
)
315 u32
*buf
= (u32
*)qspi
->bspi_rf_msg
->buf
;
318 dev_dbg(&qspi
->pdev
->dev
, "xfer %p rx %p rxlen %d\n", qspi
->bspi_rf_msg
,
319 qspi
->bspi_rf_msg
->buf
, qspi
->bspi_rf_msg_len
);
320 while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi
)) {
321 data
= bcm_qspi_bspi_lr_read_fifo(qspi
);
322 if (likely(qspi
->bspi_rf_msg_len
>= 4) &&
323 IS_ALIGNED((uintptr_t)buf
, 4)) {
324 buf
[qspi
->bspi_rf_msg_idx
++] = data
;
325 qspi
->bspi_rf_msg_len
-= 4;
327 /* Read out remaining bytes, make sure*/
328 u8
*cbuf
= (u8
*)&buf
[qspi
->bspi_rf_msg_idx
];
330 data
= cpu_to_le32(data
);
331 while (qspi
->bspi_rf_msg_len
) {
334 qspi
->bspi_rf_msg_len
--;
340 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi
*qspi
, u8 cmd_byte
,
341 int bpp
, int bpc
, int flex_mode
)
343 bcm_qspi_write(qspi
, BSPI
, BSPI_FLEX_MODE_ENABLE
, 0);
344 bcm_qspi_write(qspi
, BSPI
, BSPI_BITS_PER_CYCLE
, bpc
);
345 bcm_qspi_write(qspi
, BSPI
, BSPI_BITS_PER_PHASE
, bpp
);
346 bcm_qspi_write(qspi
, BSPI
, BSPI_CMD_AND_MODE_BYTE
, cmd_byte
);
347 bcm_qspi_write(qspi
, BSPI
, BSPI_FLEX_MODE_ENABLE
, flex_mode
);
350 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi
*qspi
, int width
,
353 int bpc
= 0, bpp
= 0;
354 u8 command
= SPINOR_OP_READ_FAST
;
355 int flex_mode
= 1, rv
= 0;
356 bool spans_4byte
= false;
358 dev_dbg(&qspi
->pdev
->dev
, "set flex mode w %x addrlen %x hp %d\n",
361 if (addrlen
== BSPI_ADDRLEN_4BYTES
) {
362 bpp
= BSPI_BPP_ADDR_SELECT_MASK
;
369 case SPI_NBITS_SINGLE
:
370 if (addrlen
== BSPI_ADDRLEN_3BYTES
)
371 /* default mode, does not need flex_cmd */
374 command
= SPINOR_OP_READ4_FAST
;
379 bpc
|= 0x00010100; /* address and mode are 2-bit */
380 bpp
= BSPI_BPP_MODE_SELECT_MASK
;
381 command
= OPCODE_DIOR
;
383 command
= OPCODE_DIOR_4B
;
385 command
= SPINOR_OP_READ_1_1_2
;
387 command
= SPINOR_OP_READ4_1_1_2
;
393 bpc
|= 0x00020200; /* address and mode are 4-bit */
394 bpp
= 4; /* dummy cycles */
395 bpp
|= BSPI_BPP_ADDR_SELECT_MASK
;
396 command
= OPCODE_QIOR
;
398 command
= OPCODE_QIOR_4B
;
400 command
= SPINOR_OP_READ_1_1_4
;
402 command
= SPINOR_OP_READ4_1_1_4
;
411 bcm_qspi_bspi_set_xfer_params(qspi
, command
, bpp
, bpc
,
417 static int bcm_qspi_bspi_set_override(struct bcm_qspi
*qspi
, int width
,
420 u32 data
= bcm_qspi_read(qspi
, BSPI
, BSPI_STRAP_OVERRIDE_CTRL
);
422 dev_dbg(&qspi
->pdev
->dev
, "set override mode w %x addrlen %x hp %d\n",
426 case SPI_NBITS_SINGLE
:
427 /* clear quad/dual mode */
428 data
&= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD
|
429 BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL
);
433 /* clear dual mode and set quad mode */
434 data
&= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL
;
435 data
|= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD
;
438 /* clear quad mode set dual mode */
439 data
&= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD
;
440 data
|= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL
;
446 if (addrlen
== BSPI_ADDRLEN_4BYTES
)
448 data
|= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE
;
450 /* clear 4 byte mode */
451 data
&= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE
;
453 /* set the override mode */
454 data
|= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE
;
455 bcm_qspi_write(qspi
, BSPI
, BSPI_STRAP_OVERRIDE_CTRL
, data
);
456 bcm_qspi_bspi_set_xfer_params(qspi
, SPINOR_OP_READ_FAST
, 0, 0, 0);
461 static int bcm_qspi_bspi_set_mode(struct bcm_qspi
*qspi
,
462 int width
, int addrlen
, int hp
)
467 qspi
->xfer_mode
.flex_mode
= true;
469 if (!bcm_qspi_bspi_ver_three(qspi
)) {
472 val
= bcm_qspi_read(qspi
, BSPI
, BSPI_STRAP_OVERRIDE_CTRL
);
473 mask
= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE
;
474 if (val
& mask
|| qspi
->s3_strap_override_ctrl
& mask
) {
475 qspi
->xfer_mode
.flex_mode
= false;
476 bcm_qspi_write(qspi
, BSPI
, BSPI_FLEX_MODE_ENABLE
,
479 if ((val
| qspi
->s3_strap_override_ctrl
) &
480 BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL
)
481 width
= SPI_NBITS_DUAL
;
482 else if ((val
| qspi
->s3_strap_override_ctrl
) &
483 BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD
)
484 width
= SPI_NBITS_QUAD
;
486 error
= bcm_qspi_bspi_set_override(qspi
, width
, addrlen
,
491 if (qspi
->xfer_mode
.flex_mode
)
492 error
= bcm_qspi_bspi_set_flex_mode(qspi
, width
, addrlen
, hp
);
495 dev_warn(&qspi
->pdev
->dev
,
496 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
498 } else if (qspi
->xfer_mode
.width
!= width
||
499 qspi
->xfer_mode
.addrlen
!= addrlen
||
500 qspi
->xfer_mode
.hp
!= hp
) {
501 qspi
->xfer_mode
.width
= width
;
502 qspi
->xfer_mode
.addrlen
= addrlen
;
503 qspi
->xfer_mode
.hp
= hp
;
504 dev_dbg(&qspi
->pdev
->dev
,
505 "cs:%d %d-lane output, %d-byte address%s\n",
507 qspi
->xfer_mode
.width
,
508 qspi
->xfer_mode
.addrlen
,
509 qspi
->xfer_mode
.hp
!= -1 ? ", hp mode" : "");
515 static void bcm_qspi_enable_bspi(struct bcm_qspi
*qspi
)
517 if (!has_bspi(qspi
) || (qspi
->bspi_enabled
))
520 qspi
->bspi_enabled
= 1;
521 if ((bcm_qspi_read(qspi
, BSPI
, BSPI_MAST_N_BOOT_CTRL
) & 1) == 0)
524 bcm_qspi_bspi_flush_prefetch_buffers(qspi
);
526 bcm_qspi_write(qspi
, BSPI
, BSPI_MAST_N_BOOT_CTRL
, 0);
530 static void bcm_qspi_disable_bspi(struct bcm_qspi
*qspi
)
532 if (!has_bspi(qspi
) || (!qspi
->bspi_enabled
))
535 qspi
->bspi_enabled
= 0;
536 if ((bcm_qspi_read(qspi
, BSPI
, BSPI_MAST_N_BOOT_CTRL
) & 1))
539 bcm_qspi_bspi_busy_poll(qspi
);
540 bcm_qspi_write(qspi
, BSPI
, BSPI_MAST_N_BOOT_CTRL
, 1);
544 static void bcm_qspi_chip_select(struct bcm_qspi
*qspi
, int cs
)
548 if (qspi
->curr_cs
== cs
)
550 if (qspi
->base
[CHIP_SELECT
]) {
551 data
= bcm_qspi_read(qspi
, CHIP_SELECT
, 0);
552 data
= (data
& ~0xff) | (1 << cs
);
553 bcm_qspi_write(qspi
, CHIP_SELECT
, 0, data
);
554 usleep_range(10, 20);
560 static void bcm_qspi_hw_set_parms(struct bcm_qspi
*qspi
,
561 const struct bcm_qspi_parms
*xp
)
566 spbr
= qspi
->base_clk
/ (2 * xp
->speed_hz
);
568 spcr
= clamp_val(spbr
, QSPI_SPBR_MIN
, QSPI_SPBR_MAX
);
569 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR0_LSB
, spcr
);
571 spcr
= MSPI_MASTER_BIT
;
572 /* for 16 bit the data should be zero */
573 if (xp
->bits_per_word
!= 16)
574 spcr
|= xp
->bits_per_word
<< 2;
575 spcr
|= xp
->mode
& 3;
576 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR0_MSB
, spcr
);
578 qspi
->last_parms
= *xp
;
581 static void bcm_qspi_update_parms(struct bcm_qspi
*qspi
,
582 struct spi_device
*spi
,
583 struct spi_transfer
*trans
)
585 struct bcm_qspi_parms xp
;
587 xp
.speed_hz
= trans
->speed_hz
;
588 xp
.bits_per_word
= trans
->bits_per_word
;
591 bcm_qspi_hw_set_parms(qspi
, &xp
);
594 static int bcm_qspi_setup(struct spi_device
*spi
)
596 struct bcm_qspi_parms
*xp
;
598 if (spi
->bits_per_word
> 16)
601 xp
= spi_get_ctldata(spi
);
603 xp
= kzalloc(sizeof(*xp
), GFP_KERNEL
);
606 spi_set_ctldata(spi
, xp
);
608 xp
->speed_hz
= spi
->max_speed_hz
;
609 xp
->mode
= spi
->mode
;
611 if (spi
->bits_per_word
)
612 xp
->bits_per_word
= spi
->bits_per_word
;
614 xp
->bits_per_word
= 8;
619 static int update_qspi_trans_byte_count(struct bcm_qspi
*qspi
,
620 struct qspi_trans
*qt
, int flags
)
622 int ret
= TRANS_STATUS_BREAK_NONE
;
624 /* count the last transferred bytes */
625 if (qt
->trans
->bits_per_word
<= 8)
630 if (qt
->byte
>= qt
->trans
->len
) {
631 /* we're at the end of the spi_transfer */
633 /* in TX mode, need to pause for a delay or CS change */
634 if (qt
->trans
->delay_usecs
&&
635 (flags
& TRANS_STATUS_BREAK_DELAY
))
636 ret
|= TRANS_STATUS_BREAK_DELAY
;
637 if (qt
->trans
->cs_change
&&
638 (flags
& TRANS_STATUS_BREAK_CS_CHANGE
))
639 ret
|= TRANS_STATUS_BREAK_CS_CHANGE
;
643 dev_dbg(&qspi
->pdev
->dev
, "advance msg exit\n");
644 if (spi_transfer_is_last(qspi
->master
, qt
->trans
))
645 ret
= TRANS_STATUS_BREAK_EOM
;
647 ret
= TRANS_STATUS_BREAK_NO_BYTES
;
653 dev_dbg(&qspi
->pdev
->dev
, "trans %p len %d byte %d ret %x\n",
654 qt
->trans
, qt
->trans
? qt
->trans
->len
: 0, qt
->byte
, ret
);
658 static inline u8
read_rxram_slot_u8(struct bcm_qspi
*qspi
, int slot
)
660 u32 slot_offset
= MSPI_RXRAM
+ (slot
<< 3) + 0x4;
662 /* mask out reserved bits */
663 return bcm_qspi_read(qspi
, MSPI
, slot_offset
) & 0xff;
666 static inline u16
read_rxram_slot_u16(struct bcm_qspi
*qspi
, int slot
)
668 u32 reg_offset
= MSPI_RXRAM
;
669 u32 lsb_offset
= reg_offset
+ (slot
<< 3) + 0x4;
670 u32 msb_offset
= reg_offset
+ (slot
<< 3);
672 return (bcm_qspi_read(qspi
, MSPI
, lsb_offset
) & 0xff) |
673 ((bcm_qspi_read(qspi
, MSPI
, msb_offset
) & 0xff) << 8);
676 static void read_from_hw(struct bcm_qspi
*qspi
, int slots
)
678 struct qspi_trans tp
;
681 bcm_qspi_disable_bspi(qspi
);
683 if (slots
> MSPI_NUM_CDRAM
) {
684 /* should never happen */
685 dev_err(&qspi
->pdev
->dev
, "%s: too many slots!\n", __func__
);
689 tp
= qspi
->trans_pos
;
691 for (slot
= 0; slot
< slots
; slot
++) {
692 if (tp
.trans
->bits_per_word
<= 8) {
693 u8
*buf
= tp
.trans
->rx_buf
;
696 buf
[tp
.byte
] = read_rxram_slot_u8(qspi
, slot
);
697 dev_dbg(&qspi
->pdev
->dev
, "RD %02x\n",
698 buf
? buf
[tp
.byte
] : 0xff);
700 u16
*buf
= tp
.trans
->rx_buf
;
703 buf
[tp
.byte
/ 2] = read_rxram_slot_u16(qspi
,
705 dev_dbg(&qspi
->pdev
->dev
, "RD %04x\n",
706 buf
? buf
[tp
.byte
] : 0xffff);
709 update_qspi_trans_byte_count(qspi
, &tp
,
710 TRANS_STATUS_BREAK_NONE
);
713 qspi
->trans_pos
= tp
;
716 static inline void write_txram_slot_u8(struct bcm_qspi
*qspi
, int slot
,
719 u32 reg_offset
= MSPI_TXRAM
+ (slot
<< 3);
721 /* mask out reserved bits */
722 bcm_qspi_write(qspi
, MSPI
, reg_offset
, val
);
725 static inline void write_txram_slot_u16(struct bcm_qspi
*qspi
, int slot
,
728 u32 reg_offset
= MSPI_TXRAM
;
729 u32 msb_offset
= reg_offset
+ (slot
<< 3);
730 u32 lsb_offset
= reg_offset
+ (slot
<< 3) + 0x4;
732 bcm_qspi_write(qspi
, MSPI
, msb_offset
, (val
>> 8));
733 bcm_qspi_write(qspi
, MSPI
, lsb_offset
, (val
& 0xff));
736 static inline u32
read_cdram_slot(struct bcm_qspi
*qspi
, int slot
)
738 return bcm_qspi_read(qspi
, MSPI
, MSPI_CDRAM
+ (slot
<< 2));
741 static inline void write_cdram_slot(struct bcm_qspi
*qspi
, int slot
, u32 val
)
743 bcm_qspi_write(qspi
, MSPI
, (MSPI_CDRAM
+ (slot
<< 2)), val
);
746 /* Return number of slots written */
747 static int write_to_hw(struct bcm_qspi
*qspi
, struct spi_device
*spi
)
749 struct qspi_trans tp
;
750 int slot
= 0, tstatus
= 0;
753 bcm_qspi_disable_bspi(qspi
);
754 tp
= qspi
->trans_pos
;
755 bcm_qspi_update_parms(qspi
, spi
, tp
.trans
);
757 /* Run until end of transfer or reached the max data */
758 while (!tstatus
&& slot
< MSPI_NUM_CDRAM
) {
759 if (tp
.trans
->bits_per_word
<= 8) {
760 const u8
*buf
= tp
.trans
->tx_buf
;
761 u8 val
= buf
? buf
[tp
.byte
] : 0xff;
763 write_txram_slot_u8(qspi
, slot
, val
);
764 dev_dbg(&qspi
->pdev
->dev
, "WR %02x\n", val
);
766 const u16
*buf
= tp
.trans
->tx_buf
;
767 u16 val
= buf
? buf
[tp
.byte
/ 2] : 0xffff;
769 write_txram_slot_u16(qspi
, slot
, val
);
770 dev_dbg(&qspi
->pdev
->dev
, "WR %04x\n", val
);
772 mspi_cdram
= MSPI_CDRAM_CONT_BIT
;
773 mspi_cdram
|= (~(1 << spi
->chip_select
) &
775 mspi_cdram
|= ((tp
.trans
->bits_per_word
<= 8) ? 0 :
776 MSPI_CDRAM_BITSE_BIT
);
778 write_cdram_slot(qspi
, slot
, mspi_cdram
);
780 tstatus
= update_qspi_trans_byte_count(qspi
, &tp
,
781 TRANS_STATUS_BREAK_TX
);
786 dev_err(&qspi
->pdev
->dev
, "%s: no data to send?", __func__
);
790 dev_dbg(&qspi
->pdev
->dev
, "submitting %d slots\n", slot
);
791 bcm_qspi_write(qspi
, MSPI
, MSPI_NEWQP
, 0);
792 bcm_qspi_write(qspi
, MSPI
, MSPI_ENDQP
, slot
- 1);
794 if (tstatus
& TRANS_STATUS_BREAK_DESELECT
) {
795 mspi_cdram
= read_cdram_slot(qspi
, slot
- 1) &
796 ~MSPI_CDRAM_CONT_BIT
;
797 write_cdram_slot(qspi
, slot
- 1, mspi_cdram
);
801 bcm_qspi_write(qspi
, MSPI
, MSPI_WRITE_LOCK
, 1);
803 /* Must flush previous writes before starting MSPI operation */
805 /* Set cont | spe | spifie */
806 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR2
, 0xe0);
812 static int bcm_qspi_bspi_flash_read(struct spi_device
*spi
,
813 struct spi_flash_read_message
*msg
)
815 struct bcm_qspi
*qspi
= spi_master_get_devdata(spi
->master
);
816 u32 addr
= 0, len
, len_words
;
818 unsigned long timeo
= msecs_to_jiffies(100);
819 struct bcm_qspi_soc_intc
*soc_intc
= qspi
->soc_intc
;
821 if (bcm_qspi_bspi_ver_three(qspi
))
822 if (msg
->addr_width
== BSPI_ADDRLEN_4BYTES
)
825 bcm_qspi_chip_select(qspi
, spi
->chip_select
);
826 bcm_qspi_write(qspi
, MSPI
, MSPI_WRITE_LOCK
, 0);
829 * when using flex mode mode we need to send
830 * the upper address byte to bspi
832 if (bcm_qspi_bspi_ver_three(qspi
) == false) {
833 addr
= msg
->from
& 0xff000000;
834 bcm_qspi_write(qspi
, BSPI
,
835 BSPI_BSPI_FLASH_UPPER_ADDR_BYTE
, addr
);
838 if (!qspi
->xfer_mode
.flex_mode
)
841 addr
= msg
->from
& 0x00ffffff;
843 /* set BSPI RAF buffer max read length */
845 if (len
> BSPI_READ_LENGTH
)
846 len
= BSPI_READ_LENGTH
;
848 if (bcm_qspi_bspi_ver_three(qspi
) == true)
849 addr
= (addr
+ 0xc00000) & 0xffffff;
851 reinit_completion(&qspi
->bspi_done
);
852 bcm_qspi_enable_bspi(qspi
);
853 len_words
= (len
+ 3) >> 2;
854 qspi
->bspi_rf_msg
= msg
;
855 qspi
->bspi_rf_msg_status
= 0;
856 qspi
->bspi_rf_msg_idx
= 0;
857 qspi
->bspi_rf_msg_len
= len
;
858 dev_dbg(&qspi
->pdev
->dev
, "bspi xfr addr 0x%x len 0x%x", addr
, len
);
860 bcm_qspi_write(qspi
, BSPI
, BSPI_RAF_START_ADDR
, addr
);
861 bcm_qspi_write(qspi
, BSPI
, BSPI_RAF_NUM_WORDS
, len_words
);
862 bcm_qspi_write(qspi
, BSPI
, BSPI_RAF_WATERMARK
, 0);
864 if (qspi
->soc_intc
) {
866 * clear soc MSPI and BSPI interrupts and enable
869 soc_intc
->bcm_qspi_int_ack(soc_intc
, MSPI_BSPI_DONE
);
870 soc_intc
->bcm_qspi_int_set(soc_intc
, BSPI_DONE
, true);
873 /* Must flush previous writes before starting BSPI operation */
876 bcm_qspi_bspi_lr_start(qspi
);
877 if (!wait_for_completion_timeout(&qspi
->bspi_done
, timeo
)) {
878 dev_err(&qspi
->pdev
->dev
, "timeout waiting for BSPI\n");
881 /* set the return length for the caller */
888 static int bcm_qspi_flash_read(struct spi_device
*spi
,
889 struct spi_flash_read_message
*msg
)
891 struct bcm_qspi
*qspi
= spi_master_get_devdata(spi
->master
);
893 bool mspi_read
= false;
894 u32 io_width
, addrlen
, addr
, len
;
901 if (bcm_qspi_bspi_ver_three(qspi
) == true) {
903 * The address coming into this function is a raw flash offset.
904 * But for BSPI <= V3, we need to convert it to a remapped BSPI
905 * address. If it crosses a 4MB boundary, just revert back to
908 addr
= (addr
+ 0xc00000) & 0xffffff;
910 if ((~ADDR_4MB_MASK
& addr
) ^
911 (~ADDR_4MB_MASK
& (addr
+ len
- 1)))
915 /* non-aligned and very short transfers are handled by MSPI */
916 if (!IS_ALIGNED((uintptr_t)addr
, 4) || !IS_ALIGNED((uintptr_t)buf
, 4) ||
921 /* this will make the m25p80 read to fallback to mspi read */
924 io_width
= msg
->data_nbits
? msg
->data_nbits
: SPI_NBITS_SINGLE
;
925 addrlen
= msg
->addr_width
;
926 ret
= bcm_qspi_bspi_set_mode(qspi
, io_width
, addrlen
, -1);
929 ret
= bcm_qspi_bspi_flash_read(spi
, msg
);
934 static int bcm_qspi_transfer_one(struct spi_master
*master
,
935 struct spi_device
*spi
,
936 struct spi_transfer
*trans
)
938 struct bcm_qspi
*qspi
= spi_master_get_devdata(master
);
940 unsigned long timeo
= msecs_to_jiffies(100);
942 bcm_qspi_chip_select(qspi
, spi
->chip_select
);
943 qspi
->trans_pos
.trans
= trans
;
944 qspi
->trans_pos
.byte
= 0;
946 while (qspi
->trans_pos
.byte
< trans
->len
) {
947 reinit_completion(&qspi
->mspi_done
);
949 slots
= write_to_hw(qspi
, spi
);
950 if (!wait_for_completion_timeout(&qspi
->mspi_done
, timeo
)) {
951 dev_err(&qspi
->pdev
->dev
, "timeout waiting for MSPI\n");
955 read_from_hw(qspi
, slots
);
961 static void bcm_qspi_cleanup(struct spi_device
*spi
)
963 struct bcm_qspi_parms
*xp
= spi_get_ctldata(spi
);
968 static irqreturn_t
bcm_qspi_mspi_l2_isr(int irq
, void *dev_id
)
970 struct bcm_qspi_dev_id
*qspi_dev_id
= dev_id
;
971 struct bcm_qspi
*qspi
= qspi_dev_id
->dev
;
972 u32 status
= bcm_qspi_read(qspi
, MSPI
, MSPI_MSPI_STATUS
);
974 if (status
& MSPI_MSPI_STATUS_SPIF
) {
975 struct bcm_qspi_soc_intc
*soc_intc
= qspi
->soc_intc
;
976 /* clear interrupt */
977 status
&= ~MSPI_MSPI_STATUS_SPIF
;
978 bcm_qspi_write(qspi
, MSPI
, MSPI_MSPI_STATUS
, status
);
980 soc_intc
->bcm_qspi_int_ack(soc_intc
, MSPI_DONE
);
981 complete(&qspi
->mspi_done
);
988 static irqreturn_t
bcm_qspi_bspi_lr_l2_isr(int irq
, void *dev_id
)
990 struct bcm_qspi_dev_id
*qspi_dev_id
= dev_id
;
991 struct bcm_qspi
*qspi
= qspi_dev_id
->dev
;
992 struct bcm_qspi_soc_intc
*soc_intc
= qspi
->soc_intc
;
993 u32 status
= qspi_dev_id
->irqp
->mask
;
995 if (qspi
->bspi_enabled
&& qspi
->bspi_rf_msg
) {
996 bcm_qspi_bspi_lr_data_read(qspi
);
997 if (qspi
->bspi_rf_msg_len
== 0) {
998 qspi
->bspi_rf_msg
= NULL
;
999 if (qspi
->soc_intc
) {
1000 /* disable soc BSPI interrupt */
1001 soc_intc
->bcm_qspi_int_set(soc_intc
, BSPI_DONE
,
1004 status
= INTR_BSPI_LR_SESSION_DONE_MASK
;
1007 if (qspi
->bspi_rf_msg_status
)
1008 bcm_qspi_bspi_lr_clear(qspi
);
1010 bcm_qspi_bspi_flush_prefetch_buffers(qspi
);
1014 /* clear soc BSPI interrupt */
1015 soc_intc
->bcm_qspi_int_ack(soc_intc
, BSPI_DONE
);
1018 status
&= INTR_BSPI_LR_SESSION_DONE_MASK
;
1019 if (qspi
->bspi_enabled
&& status
&& qspi
->bspi_rf_msg_len
== 0)
1020 complete(&qspi
->bspi_done
);
1025 static irqreturn_t
bcm_qspi_bspi_lr_err_l2_isr(int irq
, void *dev_id
)
1027 struct bcm_qspi_dev_id
*qspi_dev_id
= dev_id
;
1028 struct bcm_qspi
*qspi
= qspi_dev_id
->dev
;
1029 struct bcm_qspi_soc_intc
*soc_intc
= qspi
->soc_intc
;
1031 dev_err(&qspi
->pdev
->dev
, "BSPI INT error\n");
1032 qspi
->bspi_rf_msg_status
= -EIO
;
1034 /* clear soc interrupt */
1035 soc_intc
->bcm_qspi_int_ack(soc_intc
, BSPI_ERR
);
1037 complete(&qspi
->bspi_done
);
1041 static irqreturn_t
bcm_qspi_l1_isr(int irq
, void *dev_id
)
1043 struct bcm_qspi_dev_id
*qspi_dev_id
= dev_id
;
1044 struct bcm_qspi
*qspi
= qspi_dev_id
->dev
;
1045 struct bcm_qspi_soc_intc
*soc_intc
= qspi
->soc_intc
;
1046 irqreturn_t ret
= IRQ_NONE
;
1049 u32 status
= soc_intc
->bcm_qspi_get_int_status(soc_intc
);
1051 if (status
& MSPI_DONE
)
1052 ret
= bcm_qspi_mspi_l2_isr(irq
, dev_id
);
1053 else if (status
& BSPI_DONE
)
1054 ret
= bcm_qspi_bspi_lr_l2_isr(irq
, dev_id
);
1055 else if (status
& BSPI_ERR
)
1056 ret
= bcm_qspi_bspi_lr_err_l2_isr(irq
, dev_id
);
1062 static const struct bcm_qspi_irq qspi_irq_tab
[] = {
1064 .irq_name
= "spi_lr_fullness_reached",
1065 .irq_handler
= bcm_qspi_bspi_lr_l2_isr
,
1066 .mask
= INTR_BSPI_LR_FULLNESS_REACHED_MASK
,
1069 .irq_name
= "spi_lr_session_aborted",
1070 .irq_handler
= bcm_qspi_bspi_lr_err_l2_isr
,
1071 .mask
= INTR_BSPI_LR_SESSION_ABORTED_MASK
,
1074 .irq_name
= "spi_lr_impatient",
1075 .irq_handler
= bcm_qspi_bspi_lr_err_l2_isr
,
1076 .mask
= INTR_BSPI_LR_IMPATIENT_MASK
,
1079 .irq_name
= "spi_lr_session_done",
1080 .irq_handler
= bcm_qspi_bspi_lr_l2_isr
,
1081 .mask
= INTR_BSPI_LR_SESSION_DONE_MASK
,
1083 #ifdef QSPI_INT_DEBUG
1084 /* this interrupt is for debug purposes only, dont request irq */
1086 .irq_name
= "spi_lr_overread",
1087 .irq_handler
= bcm_qspi_bspi_lr_err_l2_isr
,
1088 .mask
= INTR_BSPI_LR_OVERREAD_MASK
,
1092 .irq_name
= "mspi_done",
1093 .irq_handler
= bcm_qspi_mspi_l2_isr
,
1094 .mask
= INTR_MSPI_DONE_MASK
,
1097 .irq_name
= "mspi_halted",
1098 .irq_handler
= bcm_qspi_mspi_l2_isr
,
1099 .mask
= INTR_MSPI_HALTED_MASK
,
1102 /* single muxed L1 interrupt source */
1103 .irq_name
= "spi_l1_intr",
1104 .irq_handler
= bcm_qspi_l1_isr
,
1105 .irq_source
= MUXED_L1
,
1106 .mask
= QSPI_INTERRUPTS_ALL
,
1110 static void bcm_qspi_bspi_init(struct bcm_qspi
*qspi
)
1114 val
= bcm_qspi_read(qspi
, BSPI
, BSPI_REVISION_ID
);
1115 qspi
->bspi_maj_rev
= (val
>> 8) & 0xff;
1116 qspi
->bspi_min_rev
= val
& 0xff;
1117 if (!(bcm_qspi_bspi_ver_three(qspi
))) {
1118 /* Force mapping of BSPI address -> flash offset */
1119 bcm_qspi_write(qspi
, BSPI
, BSPI_BSPI_XOR_VALUE
, 0);
1120 bcm_qspi_write(qspi
, BSPI
, BSPI_BSPI_XOR_ENABLE
, 1);
1122 qspi
->bspi_enabled
= 1;
1123 bcm_qspi_disable_bspi(qspi
);
1124 bcm_qspi_write(qspi
, BSPI
, BSPI_B0_CTRL
, 0);
1125 bcm_qspi_write(qspi
, BSPI
, BSPI_B1_CTRL
, 0);
1128 static void bcm_qspi_hw_init(struct bcm_qspi
*qspi
)
1130 struct bcm_qspi_parms parms
;
1132 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR1_LSB
, 0);
1133 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR1_MSB
, 0);
1134 bcm_qspi_write(qspi
, MSPI
, MSPI_NEWQP
, 0);
1135 bcm_qspi_write(qspi
, MSPI
, MSPI_ENDQP
, 0);
1136 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR2
, 0x20);
1138 parms
.mode
= SPI_MODE_3
;
1139 parms
.bits_per_word
= 8;
1140 parms
.speed_hz
= qspi
->max_speed_hz
;
1141 bcm_qspi_hw_set_parms(qspi
, &parms
);
1144 bcm_qspi_bspi_init(qspi
);
1147 static void bcm_qspi_hw_uninit(struct bcm_qspi
*qspi
)
1149 bcm_qspi_write(qspi
, MSPI
, MSPI_SPCR2
, 0);
1151 bcm_qspi_write(qspi
, MSPI
, MSPI_WRITE_LOCK
, 0);
1155 static const struct of_device_id bcm_qspi_of_match
[] = {
1156 { .compatible
= "brcm,spi-bcm-qspi" },
1159 MODULE_DEVICE_TABLE(of
, bcm_qspi_of_match
);
1161 int bcm_qspi_probe(struct platform_device
*pdev
,
1162 struct bcm_qspi_soc_intc
*soc_intc
)
1164 struct device
*dev
= &pdev
->dev
;
1165 struct bcm_qspi
*qspi
;
1166 struct spi_master
*master
;
1167 struct resource
*res
;
1168 int irq
, ret
= 0, num_ints
= 0;
1170 const char *name
= NULL
;
1171 int num_irqs
= ARRAY_SIZE(qspi_irq_tab
);
1173 /* We only support device-tree instantiation */
1177 if (!of_match_node(bcm_qspi_of_match
, dev
->of_node
))
1180 master
= spi_alloc_master(dev
, sizeof(struct bcm_qspi
));
1182 dev_err(dev
, "error allocating spi_master\n");
1186 qspi
= spi_master_get_devdata(master
);
1188 qspi
->trans_pos
.trans
= NULL
;
1189 qspi
->trans_pos
.byte
= 0;
1190 qspi
->master
= master
;
1192 master
->bus_num
= -1;
1193 master
->mode_bits
= SPI_CPHA
| SPI_CPOL
| SPI_RX_DUAL
| SPI_RX_QUAD
;
1194 master
->setup
= bcm_qspi_setup
;
1195 master
->transfer_one
= bcm_qspi_transfer_one
;
1196 master
->spi_flash_read
= bcm_qspi_flash_read
;
1197 master
->cleanup
= bcm_qspi_cleanup
;
1198 master
->dev
.of_node
= dev
->of_node
;
1199 master
->num_chipselect
= NUM_CHIPSELECT
;
1201 qspi
->big_endian
= of_device_is_big_endian(dev
->of_node
);
1203 if (!of_property_read_u32(dev
->of_node
, "num-cs", &val
))
1204 master
->num_chipselect
= val
;
1206 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "hif_mspi");
1208 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
1212 qspi
->base
[MSPI
] = devm_ioremap_resource(dev
, res
);
1213 if (IS_ERR(qspi
->base
[MSPI
])) {
1214 ret
= PTR_ERR(qspi
->base
[MSPI
]);
1215 goto qspi_probe_err
;
1218 goto qspi_probe_err
;
1221 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "bspi");
1223 qspi
->base
[BSPI
] = devm_ioremap_resource(dev
, res
);
1224 if (IS_ERR(qspi
->base
[BSPI
])) {
1225 ret
= PTR_ERR(qspi
->base
[BSPI
]);
1226 goto qspi_probe_err
;
1228 qspi
->bspi_mode
= true;
1230 qspi
->bspi_mode
= false;
1233 dev_info(dev
, "using %smspi mode\n", qspi
->bspi_mode
? "bspi-" : "");
1235 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "cs_reg");
1237 qspi
->base
[CHIP_SELECT
] = devm_ioremap_resource(dev
, res
);
1238 if (IS_ERR(qspi
->base
[CHIP_SELECT
])) {
1239 ret
= PTR_ERR(qspi
->base
[CHIP_SELECT
]);
1240 goto qspi_probe_err
;
1244 qspi
->dev_ids
= kcalloc(num_irqs
, sizeof(struct bcm_qspi_dev_id
),
1246 if (!qspi
->dev_ids
) {
1248 goto qspi_probe_err
;
1251 for (val
= 0; val
< num_irqs
; val
++) {
1253 name
= qspi_irq_tab
[val
].irq_name
;
1254 if (qspi_irq_tab
[val
].irq_source
== SINGLE_L2
) {
1255 /* get the l2 interrupts */
1256 irq
= platform_get_irq_byname(pdev
, name
);
1257 } else if (!num_ints
&& soc_intc
) {
1258 /* all mspi, bspi intrs muxed to one L1 intr */
1259 irq
= platform_get_irq(pdev
, 0);
1263 ret
= devm_request_irq(&pdev
->dev
, irq
,
1264 qspi_irq_tab
[val
].irq_handler
, 0,
1266 &qspi
->dev_ids
[val
]);
1268 dev_err(&pdev
->dev
, "IRQ %s not found\n", name
);
1269 goto qspi_probe_err
;
1272 qspi
->dev_ids
[val
].dev
= qspi
;
1273 qspi
->dev_ids
[val
].irqp
= &qspi_irq_tab
[val
];
1275 dev_dbg(&pdev
->dev
, "registered IRQ %s %d\n",
1276 qspi_irq_tab
[val
].irq_name
,
1282 dev_err(&pdev
->dev
, "no IRQs registered, cannot init driver\n");
1284 goto qspi_probe_err
;
1288 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1292 qspi
->soc_intc
= soc_intc
;
1293 soc_intc
->bcm_qspi_int_set(soc_intc
, MSPI_DONE
, true);
1295 qspi
->soc_intc
= NULL
;
1298 qspi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1299 if (IS_ERR(qspi
->clk
)) {
1300 dev_warn(dev
, "unable to get clock\n");
1301 ret
= PTR_ERR(qspi
->clk
);
1302 goto qspi_probe_err
;
1305 ret
= clk_prepare_enable(qspi
->clk
);
1307 dev_err(dev
, "failed to prepare clock\n");
1308 goto qspi_probe_err
;
1311 qspi
->base_clk
= clk_get_rate(qspi
->clk
);
1312 qspi
->max_speed_hz
= qspi
->base_clk
/ (QSPI_SPBR_MIN
* 2);
1314 bcm_qspi_hw_init(qspi
);
1315 init_completion(&qspi
->mspi_done
);
1316 init_completion(&qspi
->bspi_done
);
1319 platform_set_drvdata(pdev
, qspi
);
1321 qspi
->xfer_mode
.width
= -1;
1322 qspi
->xfer_mode
.addrlen
= -1;
1323 qspi
->xfer_mode
.hp
= -1;
1325 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1327 dev_err(dev
, "can't register master\n");
1334 bcm_qspi_hw_uninit(qspi
);
1335 clk_disable_unprepare(qspi
->clk
);
1337 spi_master_put(master
);
1338 kfree(qspi
->dev_ids
);
1341 /* probe function to be called by SoC specific platform driver probe */
1342 EXPORT_SYMBOL_GPL(bcm_qspi_probe
);
1344 int bcm_qspi_remove(struct platform_device
*pdev
)
1346 struct bcm_qspi
*qspi
= platform_get_drvdata(pdev
);
1348 platform_set_drvdata(pdev
, NULL
);
1349 bcm_qspi_hw_uninit(qspi
);
1350 clk_disable_unprepare(qspi
->clk
);
1351 kfree(qspi
->dev_ids
);
1352 spi_unregister_master(qspi
->master
);
1356 /* function to be called by SoC specific platform driver remove() */
1357 EXPORT_SYMBOL_GPL(bcm_qspi_remove
);
1359 static int __maybe_unused
bcm_qspi_suspend(struct device
*dev
)
1361 struct bcm_qspi
*qspi
= dev_get_drvdata(dev
);
1363 spi_master_suspend(qspi
->master
);
1364 clk_disable(qspi
->clk
);
1365 bcm_qspi_hw_uninit(qspi
);
1370 static int __maybe_unused
bcm_qspi_resume(struct device
*dev
)
1372 struct bcm_qspi
*qspi
= dev_get_drvdata(dev
);
1375 bcm_qspi_hw_init(qspi
);
1376 bcm_qspi_chip_select(qspi
, qspi
->curr_cs
);
1378 /* enable MSPI interrupt */
1379 qspi
->soc_intc
->bcm_qspi_int_set(qspi
->soc_intc
, MSPI_DONE
,
1382 ret
= clk_enable(qspi
->clk
);
1384 spi_master_resume(qspi
->master
);
1389 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops
, bcm_qspi_suspend
, bcm_qspi_resume
);
1391 /* pm_ops to be called by SoC specific platform driver */
1392 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops
);
1394 MODULE_AUTHOR("Kamal Dasu");
1395 MODULE_DESCRIPTION("Broadcom QSPI driver");
1396 MODULE_LICENSE("GPL v2");
1397 MODULE_ALIAS("platform:" DRIVER_NAME
);