perf bench futex: Cache align the worker struct
[linux/fpc-iii.git] / drivers / spi / spi-bcm63xx-hsspi.c
blob55789f7cda9280b2f0d21b65b6a7f3c019780047
1 /*
2 * Broadcom BCM63XX High Speed SPI Controller driver
4 * Copyright 2000-2010 Broadcom Corporation
5 * Copyright 2012-2013 Jonas Gorski <jogo@openwrt.org>
7 * Licensed under the GNU/GPL. See COPYING for details.
8 */
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/mutex.h>
23 #define HSSPI_GLOBAL_CTRL_REG 0x0
24 #define GLOBAL_CTRL_CS_POLARITY_SHIFT 0
25 #define GLOBAL_CTRL_CS_POLARITY_MASK 0x000000ff
26 #define GLOBAL_CTRL_PLL_CLK_CTRL_SHIFT 8
27 #define GLOBAL_CTRL_PLL_CLK_CTRL_MASK 0x0000ff00
28 #define GLOBAL_CTRL_CLK_GATE_SSOFF BIT(16)
29 #define GLOBAL_CTRL_CLK_POLARITY BIT(17)
30 #define GLOBAL_CTRL_MOSI_IDLE BIT(18)
32 #define HSSPI_GLOBAL_EXT_TRIGGER_REG 0x4
34 #define HSSPI_INT_STATUS_REG 0x8
35 #define HSSPI_INT_STATUS_MASKED_REG 0xc
36 #define HSSPI_INT_MASK_REG 0x10
38 #define HSSPI_PINGx_CMD_DONE(i) BIT((i * 8) + 0)
39 #define HSSPI_PINGx_RX_OVER(i) BIT((i * 8) + 1)
40 #define HSSPI_PINGx_TX_UNDER(i) BIT((i * 8) + 2)
41 #define HSSPI_PINGx_POLL_TIMEOUT(i) BIT((i * 8) + 3)
42 #define HSSPI_PINGx_CTRL_INVAL(i) BIT((i * 8) + 4)
44 #define HSSPI_INT_CLEAR_ALL 0xff001f1f
46 #define HSSPI_PINGPONG_COMMAND_REG(x) (0x80 + (x) * 0x40)
47 #define PINGPONG_CMD_COMMAND_MASK 0xf
48 #define PINGPONG_COMMAND_NOOP 0
49 #define PINGPONG_COMMAND_START_NOW 1
50 #define PINGPONG_COMMAND_START_TRIGGER 2
51 #define PINGPONG_COMMAND_HALT 3
52 #define PINGPONG_COMMAND_FLUSH 4
53 #define PINGPONG_CMD_PROFILE_SHIFT 8
54 #define PINGPONG_CMD_SS_SHIFT 12
56 #define HSSPI_PINGPONG_STATUS_REG(x) (0x84 + (x) * 0x40)
58 #define HSSPI_PROFILE_CLK_CTRL_REG(x) (0x100 + (x) * 0x20)
59 #define CLK_CTRL_FREQ_CTRL_MASK 0x0000ffff
60 #define CLK_CTRL_SPI_CLK_2X_SEL BIT(14)
61 #define CLK_CTRL_ACCUM_RST_ON_LOOP BIT(15)
63 #define HSSPI_PROFILE_SIGNAL_CTRL_REG(x) (0x104 + (x) * 0x20)
64 #define SIGNAL_CTRL_LATCH_RISING BIT(12)
65 #define SIGNAL_CTRL_LAUNCH_RISING BIT(13)
66 #define SIGNAL_CTRL_ASYNC_INPUT_PATH BIT(16)
68 #define HSSPI_PROFILE_MODE_CTRL_REG(x) (0x108 + (x) * 0x20)
69 #define MODE_CTRL_MULTIDATA_RD_STRT_SHIFT 8
70 #define MODE_CTRL_MULTIDATA_WR_STRT_SHIFT 12
71 #define MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT 16
72 #define MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT 18
73 #define MODE_CTRL_MODE_3WIRE BIT(20)
74 #define MODE_CTRL_PREPENDBYTE_CNT_SHIFT 24
76 #define HSSPI_FIFO_REG(x) (0x200 + (x) * 0x200)
79 #define HSSPI_OP_MULTIBIT BIT(11)
80 #define HSSPI_OP_CODE_SHIFT 13
81 #define HSSPI_OP_SLEEP (0 << HSSPI_OP_CODE_SHIFT)
82 #define HSSPI_OP_READ_WRITE (1 << HSSPI_OP_CODE_SHIFT)
83 #define HSSPI_OP_WRITE (2 << HSSPI_OP_CODE_SHIFT)
84 #define HSSPI_OP_READ (3 << HSSPI_OP_CODE_SHIFT)
85 #define HSSPI_OP_SETIRQ (4 << HSSPI_OP_CODE_SHIFT)
87 #define HSSPI_BUFFER_LEN 512
88 #define HSSPI_OPCODE_LEN 2
90 #define HSSPI_MAX_PREPEND_LEN 15
92 #define HSSPI_MAX_SYNC_CLOCK 30000000
94 #define HSSPI_BUS_NUM 1 /* 0 is legacy SPI */
96 struct bcm63xx_hsspi {
97 struct completion done;
98 struct mutex bus_mutex;
100 struct platform_device *pdev;
101 struct clk *clk;
102 void __iomem *regs;
103 u8 __iomem *fifo;
105 u32 speed_hz;
106 u8 cs_polarity;
109 static void bcm63xx_hsspi_set_cs(struct bcm63xx_hsspi *bs, unsigned cs,
110 bool active)
112 u32 reg;
114 mutex_lock(&bs->bus_mutex);
115 reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
117 reg &= ~BIT(cs);
118 if (active == !(bs->cs_polarity & BIT(cs)))
119 reg |= BIT(cs);
121 __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG);
122 mutex_unlock(&bs->bus_mutex);
125 static void bcm63xx_hsspi_set_clk(struct bcm63xx_hsspi *bs,
126 struct spi_device *spi, int hz)
128 unsigned profile = spi->chip_select;
129 u32 reg;
131 reg = DIV_ROUND_UP(2048, DIV_ROUND_UP(bs->speed_hz, hz));
132 __raw_writel(CLK_CTRL_ACCUM_RST_ON_LOOP | reg,
133 bs->regs + HSSPI_PROFILE_CLK_CTRL_REG(profile));
135 reg = __raw_readl(bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile));
136 if (hz > HSSPI_MAX_SYNC_CLOCK)
137 reg |= SIGNAL_CTRL_ASYNC_INPUT_PATH;
138 else
139 reg &= ~SIGNAL_CTRL_ASYNC_INPUT_PATH;
140 __raw_writel(reg, bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile));
142 mutex_lock(&bs->bus_mutex);
143 /* setup clock polarity */
144 reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
145 reg &= ~GLOBAL_CTRL_CLK_POLARITY;
146 if (spi->mode & SPI_CPOL)
147 reg |= GLOBAL_CTRL_CLK_POLARITY;
148 __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG);
149 mutex_unlock(&bs->bus_mutex);
152 static int bcm63xx_hsspi_do_txrx(struct spi_device *spi, struct spi_transfer *t)
154 struct bcm63xx_hsspi *bs = spi_master_get_devdata(spi->master);
155 unsigned chip_select = spi->chip_select;
156 u16 opcode = 0;
157 int pending = t->len;
158 int step_size = HSSPI_BUFFER_LEN;
159 const u8 *tx = t->tx_buf;
160 u8 *rx = t->rx_buf;
162 bcm63xx_hsspi_set_clk(bs, spi, t->speed_hz);
163 bcm63xx_hsspi_set_cs(bs, spi->chip_select, true);
165 if (tx && rx)
166 opcode = HSSPI_OP_READ_WRITE;
167 else if (tx)
168 opcode = HSSPI_OP_WRITE;
169 else if (rx)
170 opcode = HSSPI_OP_READ;
172 if (opcode != HSSPI_OP_READ)
173 step_size -= HSSPI_OPCODE_LEN;
175 if ((opcode == HSSPI_OP_READ && t->rx_nbits == SPI_NBITS_DUAL) ||
176 (opcode == HSSPI_OP_WRITE && t->tx_nbits == SPI_NBITS_DUAL))
177 opcode |= HSSPI_OP_MULTIBIT;
179 __raw_writel(1 << MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT |
180 1 << MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT | 0xff,
181 bs->regs + HSSPI_PROFILE_MODE_CTRL_REG(chip_select));
183 while (pending > 0) {
184 int curr_step = min_t(int, step_size, pending);
186 reinit_completion(&bs->done);
187 if (tx) {
188 memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN, tx, curr_step);
189 tx += curr_step;
192 __raw_writew(opcode | curr_step, bs->fifo);
194 /* enable interrupt */
195 __raw_writel(HSSPI_PINGx_CMD_DONE(0),
196 bs->regs + HSSPI_INT_MASK_REG);
198 /* start the transfer */
199 __raw_writel(!chip_select << PINGPONG_CMD_SS_SHIFT |
200 chip_select << PINGPONG_CMD_PROFILE_SHIFT |
201 PINGPONG_COMMAND_START_NOW,
202 bs->regs + HSSPI_PINGPONG_COMMAND_REG(0));
204 if (wait_for_completion_timeout(&bs->done, HZ) == 0) {
205 dev_err(&bs->pdev->dev, "transfer timed out!\n");
206 return -ETIMEDOUT;
209 if (rx) {
210 memcpy_fromio(rx, bs->fifo, curr_step);
211 rx += curr_step;
214 pending -= curr_step;
217 return 0;
220 static int bcm63xx_hsspi_setup(struct spi_device *spi)
222 struct bcm63xx_hsspi *bs = spi_master_get_devdata(spi->master);
223 u32 reg;
225 reg = __raw_readl(bs->regs +
226 HSSPI_PROFILE_SIGNAL_CTRL_REG(spi->chip_select));
227 reg &= ~(SIGNAL_CTRL_LAUNCH_RISING | SIGNAL_CTRL_LATCH_RISING);
228 if (spi->mode & SPI_CPHA)
229 reg |= SIGNAL_CTRL_LAUNCH_RISING;
230 else
231 reg |= SIGNAL_CTRL_LATCH_RISING;
232 __raw_writel(reg, bs->regs +
233 HSSPI_PROFILE_SIGNAL_CTRL_REG(spi->chip_select));
235 mutex_lock(&bs->bus_mutex);
236 reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
238 /* only change actual polarities if there is no transfer */
239 if ((reg & GLOBAL_CTRL_CS_POLARITY_MASK) == bs->cs_polarity) {
240 if (spi->mode & SPI_CS_HIGH)
241 reg |= BIT(spi->chip_select);
242 else
243 reg &= ~BIT(spi->chip_select);
244 __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG);
247 if (spi->mode & SPI_CS_HIGH)
248 bs->cs_polarity |= BIT(spi->chip_select);
249 else
250 bs->cs_polarity &= ~BIT(spi->chip_select);
252 mutex_unlock(&bs->bus_mutex);
254 return 0;
257 static int bcm63xx_hsspi_transfer_one(struct spi_master *master,
258 struct spi_message *msg)
260 struct bcm63xx_hsspi *bs = spi_master_get_devdata(master);
261 struct spi_transfer *t;
262 struct spi_device *spi = msg->spi;
263 int status = -EINVAL;
264 int dummy_cs;
265 u32 reg;
267 /* This controller does not support keeping CS active during idle.
268 * To work around this, we use the following ugly hack:
270 * a. Invert the target chip select's polarity so it will be active.
271 * b. Select a "dummy" chip select to use as the hardware target.
272 * c. Invert the dummy chip select's polarity so it will be inactive
273 * during the actual transfers.
274 * d. Tell the hardware to send to the dummy chip select. Thanks to
275 * the multiplexed nature of SPI the actual target will receive
276 * the transfer and we see its response.
278 * e. At the end restore the polarities again to their default values.
281 dummy_cs = !spi->chip_select;
282 bcm63xx_hsspi_set_cs(bs, dummy_cs, true);
284 list_for_each_entry(t, &msg->transfers, transfer_list) {
285 status = bcm63xx_hsspi_do_txrx(spi, t);
286 if (status)
287 break;
289 msg->actual_length += t->len;
291 if (t->delay_usecs)
292 udelay(t->delay_usecs);
294 if (t->cs_change)
295 bcm63xx_hsspi_set_cs(bs, spi->chip_select, false);
298 mutex_lock(&bs->bus_mutex);
299 reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
300 reg &= ~GLOBAL_CTRL_CS_POLARITY_MASK;
301 reg |= bs->cs_polarity;
302 __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG);
303 mutex_unlock(&bs->bus_mutex);
305 msg->status = status;
306 spi_finalize_current_message(master);
308 return 0;
311 static irqreturn_t bcm63xx_hsspi_interrupt(int irq, void *dev_id)
313 struct bcm63xx_hsspi *bs = (struct bcm63xx_hsspi *)dev_id;
315 if (__raw_readl(bs->regs + HSSPI_INT_STATUS_MASKED_REG) == 0)
316 return IRQ_NONE;
318 __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG);
319 __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG);
321 complete(&bs->done);
323 return IRQ_HANDLED;
326 static int bcm63xx_hsspi_probe(struct platform_device *pdev)
328 struct spi_master *master;
329 struct bcm63xx_hsspi *bs;
330 struct resource *res_mem;
331 void __iomem *regs;
332 struct device *dev = &pdev->dev;
333 struct clk *clk;
334 int irq, ret;
335 u32 reg, rate;
337 irq = platform_get_irq(pdev, 0);
338 if (irq < 0) {
339 dev_err(dev, "no irq\n");
340 return -ENXIO;
343 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
344 regs = devm_ioremap_resource(dev, res_mem);
345 if (IS_ERR(regs))
346 return PTR_ERR(regs);
348 clk = devm_clk_get(dev, "hsspi");
350 if (IS_ERR(clk))
351 return PTR_ERR(clk);
353 rate = clk_get_rate(clk);
354 if (!rate)
355 return -EINVAL;
357 ret = clk_prepare_enable(clk);
358 if (ret)
359 return ret;
361 master = spi_alloc_master(&pdev->dev, sizeof(*bs));
362 if (!master) {
363 ret = -ENOMEM;
364 goto out_disable_clk;
367 bs = spi_master_get_devdata(master);
368 bs->pdev = pdev;
369 bs->clk = clk;
370 bs->regs = regs;
371 bs->speed_hz = rate;
372 bs->fifo = (u8 __iomem *)(bs->regs + HSSPI_FIFO_REG(0));
374 mutex_init(&bs->bus_mutex);
375 init_completion(&bs->done);
377 master->bus_num = HSSPI_BUS_NUM;
378 master->num_chipselect = 8;
379 master->setup = bcm63xx_hsspi_setup;
380 master->transfer_one_message = bcm63xx_hsspi_transfer_one;
381 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
382 SPI_RX_DUAL | SPI_TX_DUAL;
383 master->bits_per_word_mask = SPI_BPW_MASK(8);
384 master->auto_runtime_pm = true;
386 platform_set_drvdata(pdev, master);
388 /* Initialize the hardware */
389 __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG);
391 /* clean up any pending interrupts */
392 __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG);
394 /* read out default CS polarities */
395 reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
396 bs->cs_polarity = reg & GLOBAL_CTRL_CS_POLARITY_MASK;
397 __raw_writel(reg | GLOBAL_CTRL_CLK_GATE_SSOFF,
398 bs->regs + HSSPI_GLOBAL_CTRL_REG);
400 ret = devm_request_irq(dev, irq, bcm63xx_hsspi_interrupt, IRQF_SHARED,
401 pdev->name, bs);
403 if (ret)
404 goto out_put_master;
406 /* register and we are done */
407 ret = devm_spi_register_master(dev, master);
408 if (ret)
409 goto out_put_master;
411 return 0;
413 out_put_master:
414 spi_master_put(master);
415 out_disable_clk:
416 clk_disable_unprepare(clk);
417 return ret;
421 static int bcm63xx_hsspi_remove(struct platform_device *pdev)
423 struct spi_master *master = platform_get_drvdata(pdev);
424 struct bcm63xx_hsspi *bs = spi_master_get_devdata(master);
426 /* reset the hardware and block queue progress */
427 __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG);
428 clk_disable_unprepare(bs->clk);
430 return 0;
433 #ifdef CONFIG_PM_SLEEP
434 static int bcm63xx_hsspi_suspend(struct device *dev)
436 struct spi_master *master = dev_get_drvdata(dev);
437 struct bcm63xx_hsspi *bs = spi_master_get_devdata(master);
439 spi_master_suspend(master);
440 clk_disable_unprepare(bs->clk);
442 return 0;
445 static int bcm63xx_hsspi_resume(struct device *dev)
447 struct spi_master *master = dev_get_drvdata(dev);
448 struct bcm63xx_hsspi *bs = spi_master_get_devdata(master);
449 int ret;
451 ret = clk_prepare_enable(bs->clk);
452 if (ret)
453 return ret;
455 spi_master_resume(master);
457 return 0;
459 #endif
461 static SIMPLE_DEV_PM_OPS(bcm63xx_hsspi_pm_ops, bcm63xx_hsspi_suspend,
462 bcm63xx_hsspi_resume);
464 static struct platform_driver bcm63xx_hsspi_driver = {
465 .driver = {
466 .name = "bcm63xx-hsspi",
467 .pm = &bcm63xx_hsspi_pm_ops,
469 .probe = bcm63xx_hsspi_probe,
470 .remove = bcm63xx_hsspi_remove,
473 module_platform_driver(bcm63xx_hsspi_driver);
475 MODULE_ALIAS("platform:bcm63xx_hsspi");
476 MODULE_DESCRIPTION("Broadcom BCM63xx High Speed SPI Controller driver");
477 MODULE_AUTHOR("Jonas Gorski <jogo@openwrt.org>");
478 MODULE_LICENSE("GPL");