perf bench futex: Cache align the worker struct
[linux/fpc-iii.git] / drivers / spi / spi-sun6i.c
blob9918a57a6a6e643456d95dfaf53a6d85e428cbac
1 /*
2 * Copyright (C) 2012 - 2014 Allwinner Tech
3 * Pan Nan <pannan@allwinnertech.com>
5 * Copyright (C) 2014 Maxime Ripard
6 * Maxime Ripard <maxime.ripard@free-electrons.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
24 #include <linux/spi/spi.h>
26 #define SUN6I_FIFO_DEPTH 128
28 #define SUN6I_GBL_CTL_REG 0x04
29 #define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
30 #define SUN6I_GBL_CTL_MASTER BIT(1)
31 #define SUN6I_GBL_CTL_TP BIT(7)
32 #define SUN6I_GBL_CTL_RST BIT(31)
34 #define SUN6I_TFR_CTL_REG 0x08
35 #define SUN6I_TFR_CTL_CPHA BIT(0)
36 #define SUN6I_TFR_CTL_CPOL BIT(1)
37 #define SUN6I_TFR_CTL_SPOL BIT(2)
38 #define SUN6I_TFR_CTL_CS_MASK 0x30
39 #define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
40 #define SUN6I_TFR_CTL_CS_MANUAL BIT(6)
41 #define SUN6I_TFR_CTL_CS_LEVEL BIT(7)
42 #define SUN6I_TFR_CTL_DHB BIT(8)
43 #define SUN6I_TFR_CTL_FBS BIT(12)
44 #define SUN6I_TFR_CTL_XCH BIT(31)
46 #define SUN6I_INT_CTL_REG 0x10
47 #define SUN6I_INT_CTL_RF_OVF BIT(8)
48 #define SUN6I_INT_CTL_TC BIT(12)
50 #define SUN6I_INT_STA_REG 0x14
52 #define SUN6I_FIFO_CTL_REG 0x18
53 #define SUN6I_FIFO_CTL_RF_RST BIT(15)
54 #define SUN6I_FIFO_CTL_TF_RST BIT(31)
56 #define SUN6I_FIFO_STA_REG 0x1c
57 #define SUN6I_FIFO_STA_RF_CNT_MASK 0x7f
58 #define SUN6I_FIFO_STA_RF_CNT_BITS 0
59 #define SUN6I_FIFO_STA_TF_CNT_MASK 0x7f
60 #define SUN6I_FIFO_STA_TF_CNT_BITS 16
62 #define SUN6I_CLK_CTL_REG 0x24
63 #define SUN6I_CLK_CTL_CDR2_MASK 0xff
64 #define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
65 #define SUN6I_CLK_CTL_CDR1_MASK 0xf
66 #define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
67 #define SUN6I_CLK_CTL_DRS BIT(12)
69 #define SUN6I_BURST_CNT_REG 0x30
70 #define SUN6I_BURST_CNT(cnt) ((cnt) & 0xffffff)
72 #define SUN6I_XMIT_CNT_REG 0x34
73 #define SUN6I_XMIT_CNT(cnt) ((cnt) & 0xffffff)
75 #define SUN6I_BURST_CTL_CNT_REG 0x38
76 #define SUN6I_BURST_CTL_CNT_STC(cnt) ((cnt) & 0xffffff)
78 #define SUN6I_TXDATA_REG 0x200
79 #define SUN6I_RXDATA_REG 0x300
81 struct sun6i_spi {
82 struct spi_master *master;
83 void __iomem *base_addr;
84 struct clk *hclk;
85 struct clk *mclk;
86 struct reset_control *rstc;
88 struct completion done;
90 const u8 *tx_buf;
91 u8 *rx_buf;
92 int len;
95 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
97 return readl(sspi->base_addr + reg);
100 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
102 writel(value, sspi->base_addr + reg);
105 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
107 u32 reg, cnt;
108 u8 byte;
110 /* See how much data is available */
111 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
112 reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
113 cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
115 if (len > cnt)
116 len = cnt;
118 while (len--) {
119 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
120 if (sspi->rx_buf)
121 *sspi->rx_buf++ = byte;
125 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
127 u8 byte;
129 if (len > sspi->len)
130 len = sspi->len;
132 while (len--) {
133 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
134 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
135 sspi->len--;
139 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
141 struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
142 u32 reg;
144 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
145 reg &= ~SUN6I_TFR_CTL_CS_MASK;
146 reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
148 if (enable)
149 reg |= SUN6I_TFR_CTL_CS_LEVEL;
150 else
151 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
153 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
156 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
158 return SUN6I_FIFO_DEPTH - 1;
161 static int sun6i_spi_transfer_one(struct spi_master *master,
162 struct spi_device *spi,
163 struct spi_transfer *tfr)
165 struct sun6i_spi *sspi = spi_master_get_devdata(master);
166 unsigned int mclk_rate, div, timeout;
167 unsigned int start, end, tx_time;
168 unsigned int tx_len = 0;
169 int ret = 0;
170 u32 reg;
172 /* We don't support transfer larger than the FIFO */
173 if (tfr->len > SUN6I_FIFO_DEPTH)
174 return -EINVAL;
176 reinit_completion(&sspi->done);
177 sspi->tx_buf = tfr->tx_buf;
178 sspi->rx_buf = tfr->rx_buf;
179 sspi->len = tfr->len;
181 /* Clear pending interrupts */
182 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
184 /* Reset FIFO */
185 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
186 SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
189 * Setup the transfer control register: Chip Select,
190 * polarities, etc.
192 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
194 if (spi->mode & SPI_CPOL)
195 reg |= SUN6I_TFR_CTL_CPOL;
196 else
197 reg &= ~SUN6I_TFR_CTL_CPOL;
199 if (spi->mode & SPI_CPHA)
200 reg |= SUN6I_TFR_CTL_CPHA;
201 else
202 reg &= ~SUN6I_TFR_CTL_CPHA;
204 if (spi->mode & SPI_LSB_FIRST)
205 reg |= SUN6I_TFR_CTL_FBS;
206 else
207 reg &= ~SUN6I_TFR_CTL_FBS;
210 * If it's a TX only transfer, we don't want to fill the RX
211 * FIFO with bogus data
213 if (sspi->rx_buf)
214 reg &= ~SUN6I_TFR_CTL_DHB;
215 else
216 reg |= SUN6I_TFR_CTL_DHB;
218 /* We want to control the chip select manually */
219 reg |= SUN6I_TFR_CTL_CS_MANUAL;
221 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
223 /* Ensure that we have a parent clock fast enough */
224 mclk_rate = clk_get_rate(sspi->mclk);
225 if (mclk_rate < (2 * tfr->speed_hz)) {
226 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
227 mclk_rate = clk_get_rate(sspi->mclk);
231 * Setup clock divider.
233 * We have two choices there. Either we can use the clock
234 * divide rate 1, which is calculated thanks to this formula:
235 * SPI_CLK = MOD_CLK / (2 ^ cdr)
236 * Or we can use CDR2, which is calculated with the formula:
237 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
238 * Wether we use the former or the latter is set through the
239 * DRS bit.
241 * First try CDR2, and if we can't reach the expected
242 * frequency, fall back to CDR1.
244 div = mclk_rate / (2 * tfr->speed_hz);
245 if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
246 if (div > 0)
247 div--;
249 reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
250 } else {
251 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
252 reg = SUN6I_CLK_CTL_CDR1(div);
255 sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
257 /* Setup the transfer now... */
258 if (sspi->tx_buf)
259 tx_len = tfr->len;
261 /* Setup the counters */
262 sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
263 sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
264 sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
265 SUN6I_BURST_CTL_CNT_STC(tx_len));
267 /* Fill the TX FIFO */
268 sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
270 /* Enable the interrupts */
271 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
273 /* Start the transfer */
274 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
275 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
277 tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
278 start = jiffies;
279 timeout = wait_for_completion_timeout(&sspi->done,
280 msecs_to_jiffies(tx_time));
281 end = jiffies;
282 if (!timeout) {
283 dev_warn(&master->dev,
284 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
285 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
286 jiffies_to_msecs(end - start), tx_time);
287 ret = -ETIMEDOUT;
288 goto out;
291 sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
293 out:
294 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
296 return ret;
299 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
301 struct sun6i_spi *sspi = dev_id;
302 u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
304 /* Transfer complete */
305 if (status & SUN6I_INT_CTL_TC) {
306 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
307 complete(&sspi->done);
308 return IRQ_HANDLED;
311 return IRQ_NONE;
314 static int sun6i_spi_runtime_resume(struct device *dev)
316 struct spi_master *master = dev_get_drvdata(dev);
317 struct sun6i_spi *sspi = spi_master_get_devdata(master);
318 int ret;
320 ret = clk_prepare_enable(sspi->hclk);
321 if (ret) {
322 dev_err(dev, "Couldn't enable AHB clock\n");
323 goto out;
326 ret = clk_prepare_enable(sspi->mclk);
327 if (ret) {
328 dev_err(dev, "Couldn't enable module clock\n");
329 goto err;
332 ret = reset_control_deassert(sspi->rstc);
333 if (ret) {
334 dev_err(dev, "Couldn't deassert the device from reset\n");
335 goto err2;
338 sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
339 SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
341 return 0;
343 err2:
344 clk_disable_unprepare(sspi->mclk);
345 err:
346 clk_disable_unprepare(sspi->hclk);
347 out:
348 return ret;
351 static int sun6i_spi_runtime_suspend(struct device *dev)
353 struct spi_master *master = dev_get_drvdata(dev);
354 struct sun6i_spi *sspi = spi_master_get_devdata(master);
356 reset_control_assert(sspi->rstc);
357 clk_disable_unprepare(sspi->mclk);
358 clk_disable_unprepare(sspi->hclk);
360 return 0;
363 static int sun6i_spi_probe(struct platform_device *pdev)
365 struct spi_master *master;
366 struct sun6i_spi *sspi;
367 struct resource *res;
368 int ret = 0, irq;
370 master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
371 if (!master) {
372 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
373 return -ENOMEM;
376 platform_set_drvdata(pdev, master);
377 sspi = spi_master_get_devdata(master);
379 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
380 sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
381 if (IS_ERR(sspi->base_addr)) {
382 ret = PTR_ERR(sspi->base_addr);
383 goto err_free_master;
386 irq = platform_get_irq(pdev, 0);
387 if (irq < 0) {
388 dev_err(&pdev->dev, "No spi IRQ specified\n");
389 ret = -ENXIO;
390 goto err_free_master;
393 ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
394 0, "sun6i-spi", sspi);
395 if (ret) {
396 dev_err(&pdev->dev, "Cannot request IRQ\n");
397 goto err_free_master;
400 sspi->master = master;
401 master->max_speed_hz = 100 * 1000 * 1000;
402 master->min_speed_hz = 3 * 1000;
403 master->set_cs = sun6i_spi_set_cs;
404 master->transfer_one = sun6i_spi_transfer_one;
405 master->num_chipselect = 4;
406 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
407 master->bits_per_word_mask = SPI_BPW_MASK(8);
408 master->dev.of_node = pdev->dev.of_node;
409 master->auto_runtime_pm = true;
410 master->max_transfer_size = sun6i_spi_max_transfer_size;
412 sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
413 if (IS_ERR(sspi->hclk)) {
414 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
415 ret = PTR_ERR(sspi->hclk);
416 goto err_free_master;
419 sspi->mclk = devm_clk_get(&pdev->dev, "mod");
420 if (IS_ERR(sspi->mclk)) {
421 dev_err(&pdev->dev, "Unable to acquire module clock\n");
422 ret = PTR_ERR(sspi->mclk);
423 goto err_free_master;
426 init_completion(&sspi->done);
428 sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
429 if (IS_ERR(sspi->rstc)) {
430 dev_err(&pdev->dev, "Couldn't get reset controller\n");
431 ret = PTR_ERR(sspi->rstc);
432 goto err_free_master;
436 * This wake-up/shutdown pattern is to be able to have the
437 * device woken up, even if runtime_pm is disabled
439 ret = sun6i_spi_runtime_resume(&pdev->dev);
440 if (ret) {
441 dev_err(&pdev->dev, "Couldn't resume the device\n");
442 goto err_free_master;
445 pm_runtime_set_active(&pdev->dev);
446 pm_runtime_enable(&pdev->dev);
447 pm_runtime_idle(&pdev->dev);
449 ret = devm_spi_register_master(&pdev->dev, master);
450 if (ret) {
451 dev_err(&pdev->dev, "cannot register SPI master\n");
452 goto err_pm_disable;
455 return 0;
457 err_pm_disable:
458 pm_runtime_disable(&pdev->dev);
459 sun6i_spi_runtime_suspend(&pdev->dev);
460 err_free_master:
461 spi_master_put(master);
462 return ret;
465 static int sun6i_spi_remove(struct platform_device *pdev)
467 pm_runtime_disable(&pdev->dev);
469 return 0;
472 static const struct of_device_id sun6i_spi_match[] = {
473 { .compatible = "allwinner,sun6i-a31-spi", },
476 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
478 static const struct dev_pm_ops sun6i_spi_pm_ops = {
479 .runtime_resume = sun6i_spi_runtime_resume,
480 .runtime_suspend = sun6i_spi_runtime_suspend,
483 static struct platform_driver sun6i_spi_driver = {
484 .probe = sun6i_spi_probe,
485 .remove = sun6i_spi_remove,
486 .driver = {
487 .name = "sun6i-spi",
488 .of_match_table = sun6i_spi_match,
489 .pm = &sun6i_spi_pm_ops,
492 module_platform_driver(sun6i_spi_driver);
494 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
495 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
496 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
497 MODULE_LICENSE("GPL");