x86, numa: Reduce minimum fake node size to 32M
[linux/fpc-iii.git] / drivers / mtd / nand / au1550nd.c
blob3ffe05db4923b662f51adcddb0e62cd1af09a5c8
1 /*
2 * drivers/mtd/nand/au1550nd.c
4 * Copyright (C) 2004 Embedded Edge, LLC
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
12 #include <linux/slab.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/partitions.h>
19 #include <asm/io.h>
21 #include <asm/mach-au1x00/au1xxx.h>
22 #include <asm/mach-db1x00/bcsr.h>
25 * MTD structure for NAND controller
27 static struct mtd_info *au1550_mtd = NULL;
28 static void __iomem *p_nand;
29 static int nand_width = 1; /* default x8 */
30 static void (*au1550_write_byte)(struct mtd_info *, u_char);
33 * Define partitions for flash device
35 static const struct mtd_partition partition_info[] = {
37 .name = "NAND FS 0",
38 .offset = 0,
39 .size = 8 * 1024 * 1024},
41 .name = "NAND FS 1",
42 .offset = MTDPART_OFS_APPEND,
43 .size = MTDPART_SIZ_FULL}
46 /**
47 * au_read_byte - read one byte from the chip
48 * @mtd: MTD device structure
50 * read function for 8bit buswith
52 static u_char au_read_byte(struct mtd_info *mtd)
54 struct nand_chip *this = mtd->priv;
55 u_char ret = readb(this->IO_ADDR_R);
56 au_sync();
57 return ret;
60 /**
61 * au_write_byte - write one byte to the chip
62 * @mtd: MTD device structure
63 * @byte: pointer to data byte to write
65 * write function for 8it buswith
67 static void au_write_byte(struct mtd_info *mtd, u_char byte)
69 struct nand_chip *this = mtd->priv;
70 writeb(byte, this->IO_ADDR_W);
71 au_sync();
74 /**
75 * au_read_byte16 - read one byte endianess aware from the chip
76 * @mtd: MTD device structure
78 * read function for 16bit buswith with
79 * endianess conversion
81 static u_char au_read_byte16(struct mtd_info *mtd)
83 struct nand_chip *this = mtd->priv;
84 u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
85 au_sync();
86 return ret;
89 /**
90 * au_write_byte16 - write one byte endianess aware to the chip
91 * @mtd: MTD device structure
92 * @byte: pointer to data byte to write
94 * write function for 16bit buswith with
95 * endianess conversion
97 static void au_write_byte16(struct mtd_info *mtd, u_char byte)
99 struct nand_chip *this = mtd->priv;
100 writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
101 au_sync();
105 * au_read_word - read one word from the chip
106 * @mtd: MTD device structure
108 * read function for 16bit buswith without
109 * endianess conversion
111 static u16 au_read_word(struct mtd_info *mtd)
113 struct nand_chip *this = mtd->priv;
114 u16 ret = readw(this->IO_ADDR_R);
115 au_sync();
116 return ret;
120 * au_write_buf - write buffer to chip
121 * @mtd: MTD device structure
122 * @buf: data buffer
123 * @len: number of bytes to write
125 * write function for 8bit buswith
127 static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
129 int i;
130 struct nand_chip *this = mtd->priv;
132 for (i = 0; i < len; i++) {
133 writeb(buf[i], this->IO_ADDR_W);
134 au_sync();
139 * au_read_buf - read chip data into buffer
140 * @mtd: MTD device structure
141 * @buf: buffer to store date
142 * @len: number of bytes to read
144 * read function for 8bit buswith
146 static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
148 int i;
149 struct nand_chip *this = mtd->priv;
151 for (i = 0; i < len; i++) {
152 buf[i] = readb(this->IO_ADDR_R);
153 au_sync();
158 * au_verify_buf - Verify chip data against buffer
159 * @mtd: MTD device structure
160 * @buf: buffer containing the data to compare
161 * @len: number of bytes to compare
163 * verify function for 8bit buswith
165 static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
167 int i;
168 struct nand_chip *this = mtd->priv;
170 for (i = 0; i < len; i++) {
171 if (buf[i] != readb(this->IO_ADDR_R))
172 return -EFAULT;
173 au_sync();
176 return 0;
180 * au_write_buf16 - write buffer to chip
181 * @mtd: MTD device structure
182 * @buf: data buffer
183 * @len: number of bytes to write
185 * write function for 16bit buswith
187 static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
189 int i;
190 struct nand_chip *this = mtd->priv;
191 u16 *p = (u16 *) buf;
192 len >>= 1;
194 for (i = 0; i < len; i++) {
195 writew(p[i], this->IO_ADDR_W);
196 au_sync();
202 * au_read_buf16 - read chip data into buffer
203 * @mtd: MTD device structure
204 * @buf: buffer to store date
205 * @len: number of bytes to read
207 * read function for 16bit buswith
209 static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
211 int i;
212 struct nand_chip *this = mtd->priv;
213 u16 *p = (u16 *) buf;
214 len >>= 1;
216 for (i = 0; i < len; i++) {
217 p[i] = readw(this->IO_ADDR_R);
218 au_sync();
223 * au_verify_buf16 - Verify chip data against buffer
224 * @mtd: MTD device structure
225 * @buf: buffer containing the data to compare
226 * @len: number of bytes to compare
228 * verify function for 16bit buswith
230 static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
232 int i;
233 struct nand_chip *this = mtd->priv;
234 u16 *p = (u16 *) buf;
235 len >>= 1;
237 for (i = 0; i < len; i++) {
238 if (p[i] != readw(this->IO_ADDR_R))
239 return -EFAULT;
240 au_sync();
242 return 0;
245 /* Select the chip by setting nCE to low */
246 #define NAND_CTL_SETNCE 1
247 /* Deselect the chip by setting nCE to high */
248 #define NAND_CTL_CLRNCE 2
249 /* Select the command latch by setting CLE to high */
250 #define NAND_CTL_SETCLE 3
251 /* Deselect the command latch by setting CLE to low */
252 #define NAND_CTL_CLRCLE 4
253 /* Select the address latch by setting ALE to high */
254 #define NAND_CTL_SETALE 5
255 /* Deselect the address latch by setting ALE to low */
256 #define NAND_CTL_CLRALE 6
258 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
260 register struct nand_chip *this = mtd->priv;
262 switch (cmd) {
264 case NAND_CTL_SETCLE:
265 this->IO_ADDR_W = p_nand + MEM_STNAND_CMD;
266 break;
268 case NAND_CTL_CLRCLE:
269 this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;
270 break;
272 case NAND_CTL_SETALE:
273 this->IO_ADDR_W = p_nand + MEM_STNAND_ADDR;
274 break;
276 case NAND_CTL_CLRALE:
277 this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;
278 /* FIXME: Nobody knows why this is necessary,
279 * but it works only that way */
280 udelay(1);
281 break;
283 case NAND_CTL_SETNCE:
284 /* assert (force assert) chip enable */
285 au_writel((1 << (4 + NAND_CS)), MEM_STNDCTL);
286 break;
288 case NAND_CTL_CLRNCE:
289 /* deassert chip enable */
290 au_writel(0, MEM_STNDCTL);
291 break;
294 this->IO_ADDR_R = this->IO_ADDR_W;
296 /* Drain the writebuffer */
297 au_sync();
300 int au1550_device_ready(struct mtd_info *mtd)
302 int ret = (au_readl(MEM_STSTAT) & 0x1) ? 1 : 0;
303 au_sync();
304 return ret;
308 * au1550_select_chip - control -CE line
309 * Forbid driving -CE manually permitting the NAND controller to do this.
310 * Keeping -CE asserted during the whole sector reads interferes with the
311 * NOR flash and PCMCIA drivers as it causes contention on the static bus.
312 * We only have to hold -CE low for the NAND read commands since the flash
313 * chip needs it to be asserted during chip not ready time but the NAND
314 * controller keeps it released.
316 * @mtd: MTD device structure
317 * @chip: chipnumber to select, -1 for deselect
319 static void au1550_select_chip(struct mtd_info *mtd, int chip)
324 * au1550_command - Send command to NAND device
325 * @mtd: MTD device structure
326 * @command: the command to be sent
327 * @column: the column address for this command, -1 if none
328 * @page_addr: the page address for this command, -1 if none
330 static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
332 register struct nand_chip *this = mtd->priv;
333 int ce_override = 0, i;
334 ulong flags;
336 /* Begin command latch cycle */
337 au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
339 * Write out the command to the device.
341 if (command == NAND_CMD_SEQIN) {
342 int readcmd;
344 if (column >= mtd->writesize) {
345 /* OOB area */
346 column -= mtd->writesize;
347 readcmd = NAND_CMD_READOOB;
348 } else if (column < 256) {
349 /* First 256 bytes --> READ0 */
350 readcmd = NAND_CMD_READ0;
351 } else {
352 column -= 256;
353 readcmd = NAND_CMD_READ1;
355 au1550_write_byte(mtd, readcmd);
357 au1550_write_byte(mtd, command);
359 /* Set ALE and clear CLE to start address cycle */
360 au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
362 if (column != -1 || page_addr != -1) {
363 au1550_hwcontrol(mtd, NAND_CTL_SETALE);
365 /* Serially input address */
366 if (column != -1) {
367 /* Adjust columns for 16 bit buswidth */
368 if (this->options & NAND_BUSWIDTH_16)
369 column >>= 1;
370 au1550_write_byte(mtd, column);
372 if (page_addr != -1) {
373 au1550_write_byte(mtd, (u8)(page_addr & 0xff));
375 if (command == NAND_CMD_READ0 ||
376 command == NAND_CMD_READ1 ||
377 command == NAND_CMD_READOOB) {
379 * NAND controller will release -CE after
380 * the last address byte is written, so we'll
381 * have to forcibly assert it. No interrupts
382 * are allowed while we do this as we don't
383 * want the NOR flash or PCMCIA drivers to
384 * steal our precious bytes of data...
386 ce_override = 1;
387 local_irq_save(flags);
388 au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
391 au1550_write_byte(mtd, (u8)(page_addr >> 8));
393 /* One more address cycle for devices > 32MiB */
394 if (this->chipsize > (32 << 20))
395 au1550_write_byte(mtd, (u8)((page_addr >> 16) & 0x0f));
397 /* Latch in address */
398 au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
402 * Program and erase have their own busy handlers.
403 * Status and sequential in need no delay.
405 switch (command) {
407 case NAND_CMD_PAGEPROG:
408 case NAND_CMD_ERASE1:
409 case NAND_CMD_ERASE2:
410 case NAND_CMD_SEQIN:
411 case NAND_CMD_STATUS:
412 return;
414 case NAND_CMD_RESET:
415 break;
417 case NAND_CMD_READ0:
418 case NAND_CMD_READ1:
419 case NAND_CMD_READOOB:
420 /* Check if we're really driving -CE low (just in case) */
421 if (unlikely(!ce_override))
422 break;
424 /* Apply a short delay always to ensure that we do wait tWB. */
425 ndelay(100);
426 /* Wait for a chip to become ready... */
427 for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
428 udelay(1);
430 /* Release -CE and re-enable interrupts. */
431 au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
432 local_irq_restore(flags);
433 return;
435 /* Apply this short delay always to ensure that we do wait tWB. */
436 ndelay(100);
438 while(!this->dev_ready(mtd));
443 * Main initialization routine
445 static int __init au1xxx_nand_init(void)
447 struct nand_chip *this;
448 u16 boot_swapboot = 0; /* default value */
449 int retval;
450 u32 mem_staddr;
451 u32 nand_phys;
453 /* Allocate memory for MTD device structure and private data */
454 au1550_mtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
455 if (!au1550_mtd) {
456 printk("Unable to allocate NAND MTD dev structure.\n");
457 return -ENOMEM;
460 /* Get pointer to private data */
461 this = (struct nand_chip *)(&au1550_mtd[1]);
463 /* Link the private data with the MTD structure */
464 au1550_mtd->priv = this;
465 au1550_mtd->owner = THIS_MODULE;
468 /* MEM_STNDCTL: disable ints, disable nand boot */
469 au_writel(0, MEM_STNDCTL);
471 #ifdef CONFIG_MIPS_PB1550
472 /* set gpio206 high */
473 au_writel(au_readl(GPIO2_DIR) & ~(1 << 6), GPIO2_DIR);
475 boot_swapboot = (au_readl(MEM_STSTAT) & (0x7 << 1)) | ((bcsr_read(BCSR_STATUS) >> 6) & 0x1);
477 switch (boot_swapboot) {
478 case 0:
479 case 2:
480 case 8:
481 case 0xC:
482 case 0xD:
483 /* x16 NAND Flash */
484 nand_width = 0;
485 break;
486 case 1:
487 case 9:
488 case 3:
489 case 0xE:
490 case 0xF:
491 /* x8 NAND Flash */
492 nand_width = 1;
493 break;
494 default:
495 printk("Pb1550 NAND: bad boot:swap\n");
496 retval = -EINVAL;
497 goto outmem;
499 #endif
501 /* Configure chip-select; normally done by boot code, e.g. YAMON */
502 #ifdef NAND_STCFG
503 if (NAND_CS == 0) {
504 au_writel(NAND_STCFG, MEM_STCFG0);
505 au_writel(NAND_STTIME, MEM_STTIME0);
506 au_writel(NAND_STADDR, MEM_STADDR0);
508 if (NAND_CS == 1) {
509 au_writel(NAND_STCFG, MEM_STCFG1);
510 au_writel(NAND_STTIME, MEM_STTIME1);
511 au_writel(NAND_STADDR, MEM_STADDR1);
513 if (NAND_CS == 2) {
514 au_writel(NAND_STCFG, MEM_STCFG2);
515 au_writel(NAND_STTIME, MEM_STTIME2);
516 au_writel(NAND_STADDR, MEM_STADDR2);
518 if (NAND_CS == 3) {
519 au_writel(NAND_STCFG, MEM_STCFG3);
520 au_writel(NAND_STTIME, MEM_STTIME3);
521 au_writel(NAND_STADDR, MEM_STADDR3);
523 #endif
525 /* Locate NAND chip-select in order to determine NAND phys address */
526 mem_staddr = 0x00000000;
527 if (((au_readl(MEM_STCFG0) & 0x7) == 0x5) && (NAND_CS == 0))
528 mem_staddr = au_readl(MEM_STADDR0);
529 else if (((au_readl(MEM_STCFG1) & 0x7) == 0x5) && (NAND_CS == 1))
530 mem_staddr = au_readl(MEM_STADDR1);
531 else if (((au_readl(MEM_STCFG2) & 0x7) == 0x5) && (NAND_CS == 2))
532 mem_staddr = au_readl(MEM_STADDR2);
533 else if (((au_readl(MEM_STCFG3) & 0x7) == 0x5) && (NAND_CS == 3))
534 mem_staddr = au_readl(MEM_STADDR3);
536 if (mem_staddr == 0x00000000) {
537 printk("Au1xxx NAND: ERROR WITH NAND CHIP-SELECT\n");
538 kfree(au1550_mtd);
539 return 1;
541 nand_phys = (mem_staddr << 4) & 0xFFFC0000;
543 p_nand = ioremap(nand_phys, 0x1000);
545 /* make controller and MTD agree */
546 if (NAND_CS == 0)
547 nand_width = au_readl(MEM_STCFG0) & (1 << 22);
548 if (NAND_CS == 1)
549 nand_width = au_readl(MEM_STCFG1) & (1 << 22);
550 if (NAND_CS == 2)
551 nand_width = au_readl(MEM_STCFG2) & (1 << 22);
552 if (NAND_CS == 3)
553 nand_width = au_readl(MEM_STCFG3) & (1 << 22);
555 /* Set address of hardware control function */
556 this->dev_ready = au1550_device_ready;
557 this->select_chip = au1550_select_chip;
558 this->cmdfunc = au1550_command;
560 /* 30 us command delay time */
561 this->chip_delay = 30;
562 this->ecc.mode = NAND_ECC_SOFT;
564 this->options = NAND_NO_AUTOINCR;
566 if (!nand_width)
567 this->options |= NAND_BUSWIDTH_16;
569 this->read_byte = (!nand_width) ? au_read_byte16 : au_read_byte;
570 au1550_write_byte = (!nand_width) ? au_write_byte16 : au_write_byte;
571 this->read_word = au_read_word;
572 this->write_buf = (!nand_width) ? au_write_buf16 : au_write_buf;
573 this->read_buf = (!nand_width) ? au_read_buf16 : au_read_buf;
574 this->verify_buf = (!nand_width) ? au_verify_buf16 : au_verify_buf;
576 /* Scan to find existence of the device */
577 if (nand_scan(au1550_mtd, 1)) {
578 retval = -ENXIO;
579 goto outio;
582 /* Register the partitions */
583 add_mtd_partitions(au1550_mtd, partition_info, ARRAY_SIZE(partition_info));
585 return 0;
587 outio:
588 iounmap(p_nand);
590 outmem:
591 kfree(au1550_mtd);
592 return retval;
595 module_init(au1xxx_nand_init);
598 * Clean up routine
600 static void __exit au1550_cleanup(void)
602 /* Release resources, unregister device */
603 nand_release(au1550_mtd);
605 /* Free the MTD device structure */
606 kfree(au1550_mtd);
608 /* Unmap */
609 iounmap(p_nand);
612 module_exit(au1550_cleanup);
614 MODULE_LICENSE("GPL");
615 MODULE_AUTHOR("Embedded Edge, LLC");
616 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");