x86, numa: Reduce minimum fake node size to 32M
[linux/fpc-iii.git] / drivers / rtc / rtc-bfin.c
blobb4b6087f22343ac66727090356d9abedabd91d42
1 /*
2 * Blackfin On-Chip Real Time Clock Driver
3 * Supports BF51x/BF52x/BF53[123]/BF53[467]/BF54x
5 * Copyright 2004-2010 Analog Devices Inc.
7 * Enter bugs at http://blackfin.uclinux.org/
9 * Licensed under the GPL-2 or later.
12 /* The biggest issue we deal with in this driver is that register writes are
13 * synced to the RTC frequency of 1Hz. So if you write to a register and
14 * attempt to write again before the first write has completed, the new write
15 * is simply discarded. This can easily be troublesome if userspace disables
16 * one event (say periodic) and then right after enables an event (say alarm).
17 * Since all events are maintained in the same interrupt mask register, if
18 * we wrote to it to disable the first event and then wrote to it again to
19 * enable the second event, that second event would not be enabled as the
20 * write would be discarded and things quickly fall apart.
22 * To keep this delay from significantly degrading performance (we, in theory,
23 * would have to sleep for up to 1 second everytime we wanted to write a
24 * register), we only check the write pending status before we start to issue
25 * a new write. We bank on the idea that it doesnt matter when the sync
26 * happens so long as we don't attempt another write before it does. The only
27 * time userspace would take this penalty is when they try and do multiple
28 * operations right after another ... but in this case, they need to take the
29 * sync penalty, so we should be OK.
31 * Also note that the RTC_ISTAT register does not suffer this penalty; its
32 * writes to clear status registers complete immediately.
35 /* It may seem odd that there is no SWCNT code in here (which would be exposed
36 * via the periodic interrupt event, or PIE). Since the Blackfin RTC peripheral
37 * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ
38 * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs.
39 * The same exact behavior can be accomplished by using the update interrupt
40 * event (UIE). Maybe down the line the RTC peripheral will suck less in which
41 * case we can re-introduce PIE support.
44 #include <linux/bcd.h>
45 #include <linux/completion.h>
46 #include <linux/delay.h>
47 #include <linux/init.h>
48 #include <linux/interrupt.h>
49 #include <linux/kernel.h>
50 #include <linux/module.h>
51 #include <linux/platform_device.h>
52 #include <linux/rtc.h>
53 #include <linux/seq_file.h>
54 #include <linux/slab.h>
56 #include <asm/blackfin.h>
58 #define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__)
60 struct bfin_rtc {
61 struct rtc_device *rtc_dev;
62 struct rtc_time rtc_alarm;
63 u16 rtc_wrote_regs;
66 /* Bit values for the ISTAT / ICTL registers */
67 #define RTC_ISTAT_WRITE_COMPLETE 0x8000
68 #define RTC_ISTAT_WRITE_PENDING 0x4000
69 #define RTC_ISTAT_ALARM_DAY 0x0040
70 #define RTC_ISTAT_24HR 0x0020
71 #define RTC_ISTAT_HOUR 0x0010
72 #define RTC_ISTAT_MIN 0x0008
73 #define RTC_ISTAT_SEC 0x0004
74 #define RTC_ISTAT_ALARM 0x0002
75 #define RTC_ISTAT_STOPWATCH 0x0001
77 /* Shift values for RTC_STAT register */
78 #define DAY_BITS_OFF 17
79 #define HOUR_BITS_OFF 12
80 #define MIN_BITS_OFF 6
81 #define SEC_BITS_OFF 0
83 /* Some helper functions to convert between the common RTC notion of time
84 * and the internal Blackfin notion that is encoded in 32bits.
86 static inline u32 rtc_time_to_bfin(unsigned long now)
88 u32 sec = (now % 60);
89 u32 min = (now % (60 * 60)) / 60;
90 u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
91 u32 days = (now / (60 * 60 * 24));
92 return (sec << SEC_BITS_OFF) +
93 (min << MIN_BITS_OFF) +
94 (hour << HOUR_BITS_OFF) +
95 (days << DAY_BITS_OFF);
97 static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
99 return (((rtc_bfin >> SEC_BITS_OFF) & 0x003F)) +
100 (((rtc_bfin >> MIN_BITS_OFF) & 0x003F) * 60) +
101 (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
102 (((rtc_bfin >> DAY_BITS_OFF) & 0x7FFF) * 60 * 60 * 24);
104 static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
106 rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
110 * bfin_rtc_sync_pending - make sure pending writes have complete
112 * Wait for the previous write to a RTC register to complete.
113 * Unfortunately, we can't sleep here as that introduces a race condition when
114 * turning on interrupt events. Consider this:
115 * - process sets alarm
116 * - process enables alarm
117 * - process sleeps while waiting for rtc write to sync
118 * - interrupt fires while process is sleeping
119 * - interrupt acks the event by writing to ISTAT
120 * - interrupt sets the WRITE PENDING bit
121 * - interrupt handler finishes
122 * - process wakes up, sees WRITE PENDING bit set, goes to sleep
123 * - interrupt fires while process is sleeping
124 * If anyone can point out the obvious solution here, i'm listening :). This
125 * shouldn't be an issue on an SMP or preempt system as this function should
126 * only be called with the rtc lock held.
128 * Other options:
129 * - disable PREN so the sync happens at 32.768kHZ ... but this changes the
130 * inc rate for all RTC registers from 1HZ to 32.768kHZ ...
131 * - use the write complete IRQ
134 static void bfin_rtc_sync_pending_polled(void)
136 while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE))
137 if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
138 break;
139 bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
142 static DECLARE_COMPLETION(bfin_write_complete);
143 static void bfin_rtc_sync_pending(struct device *dev)
145 dev_dbg_stamp(dev);
146 while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
147 wait_for_completion_timeout(&bfin_write_complete, HZ * 5);
148 dev_dbg_stamp(dev);
152 * bfin_rtc_reset - set RTC to sane/known state
154 * Initialize the RTC. Enable pre-scaler to scale RTC clock
155 * to 1Hz and clear interrupt/status registers.
157 static void bfin_rtc_reset(struct device *dev, u16 rtc_ictl)
159 struct bfin_rtc *rtc = dev_get_drvdata(dev);
160 dev_dbg_stamp(dev);
161 bfin_rtc_sync_pending(dev);
162 bfin_write_RTC_PREN(0x1);
163 bfin_write_RTC_ICTL(rtc_ictl);
164 bfin_write_RTC_ALARM(0);
165 bfin_write_RTC_ISTAT(0xFFFF);
166 rtc->rtc_wrote_regs = 0;
170 * bfin_rtc_interrupt - handle interrupt from RTC
172 * Since we handle all RTC events here, we have to make sure the requested
173 * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT)
174 * always gets updated regardless of the interrupt being enabled. So when one
175 * even we care about (e.g. stopwatch) goes off, we don't want to turn around
176 * and say that other events have happened as well (e.g. second). We do not
177 * have to worry about pending writes to the RTC_ICTL register as interrupts
178 * only fire if they are enabled in the RTC_ICTL register.
180 static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
182 struct device *dev = dev_id;
183 struct bfin_rtc *rtc = dev_get_drvdata(dev);
184 unsigned long events = 0;
185 bool write_complete = false;
186 u16 rtc_istat, rtc_istat_clear, rtc_ictl, bits;
188 dev_dbg_stamp(dev);
190 rtc_istat = bfin_read_RTC_ISTAT();
191 rtc_ictl = bfin_read_RTC_ICTL();
192 rtc_istat_clear = 0;
194 bits = RTC_ISTAT_WRITE_COMPLETE;
195 if (rtc_istat & bits) {
196 rtc_istat_clear |= bits;
197 write_complete = true;
198 complete(&bfin_write_complete);
201 bits = (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
202 if (rtc_ictl & bits) {
203 if (rtc_istat & bits) {
204 rtc_istat_clear |= bits;
205 events |= RTC_AF | RTC_IRQF;
209 bits = RTC_ISTAT_SEC;
210 if (rtc_ictl & bits) {
211 if (rtc_istat & bits) {
212 rtc_istat_clear |= bits;
213 events |= RTC_UF | RTC_IRQF;
217 if (events)
218 rtc_update_irq(rtc->rtc_dev, 1, events);
220 if (write_complete || events) {
221 bfin_write_RTC_ISTAT(rtc_istat_clear);
222 return IRQ_HANDLED;
223 } else
224 return IRQ_NONE;
227 static void bfin_rtc_int_set(u16 rtc_int)
229 bfin_write_RTC_ISTAT(rtc_int);
230 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int);
232 static void bfin_rtc_int_clear(u16 rtc_int)
234 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int);
236 static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc)
238 /* Blackfin has different bits for whether the alarm is
239 * more than 24 hours away.
241 bfin_rtc_int_set(rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY);
243 static int bfin_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
245 struct bfin_rtc *rtc = dev_get_drvdata(dev);
246 int ret = 0;
248 dev_dbg_stamp(dev);
250 bfin_rtc_sync_pending(dev);
252 switch (cmd) {
253 case RTC_UIE_ON:
254 dev_dbg_stamp(dev);
255 bfin_rtc_int_set(RTC_ISTAT_SEC);
256 break;
257 case RTC_UIE_OFF:
258 dev_dbg_stamp(dev);
259 bfin_rtc_int_clear(~RTC_ISTAT_SEC);
260 break;
262 case RTC_AIE_ON:
263 dev_dbg_stamp(dev);
264 bfin_rtc_int_set_alarm(rtc);
265 break;
266 case RTC_AIE_OFF:
267 dev_dbg_stamp(dev);
268 bfin_rtc_int_clear(~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
269 break;
271 default:
272 dev_dbg_stamp(dev);
273 ret = -ENOIOCTLCMD;
276 return ret;
279 static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
281 struct bfin_rtc *rtc = dev_get_drvdata(dev);
283 dev_dbg_stamp(dev);
285 if (rtc->rtc_wrote_regs & 0x1)
286 bfin_rtc_sync_pending(dev);
288 rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);
290 return 0;
293 static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
295 struct bfin_rtc *rtc = dev_get_drvdata(dev);
296 int ret;
297 unsigned long now;
299 dev_dbg_stamp(dev);
301 ret = rtc_tm_to_time(tm, &now);
302 if (ret == 0) {
303 if (rtc->rtc_wrote_regs & 0x1)
304 bfin_rtc_sync_pending(dev);
305 bfin_write_RTC_STAT(rtc_time_to_bfin(now));
306 rtc->rtc_wrote_regs = 0x1;
309 return ret;
312 static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
314 struct bfin_rtc *rtc = dev_get_drvdata(dev);
315 dev_dbg_stamp(dev);
316 alrm->time = rtc->rtc_alarm;
317 bfin_rtc_sync_pending(dev);
318 alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
319 return 0;
322 static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
324 struct bfin_rtc *rtc = dev_get_drvdata(dev);
325 unsigned long rtc_alarm;
327 dev_dbg_stamp(dev);
329 if (rtc_tm_to_time(&alrm->time, &rtc_alarm))
330 return -EINVAL;
332 rtc->rtc_alarm = alrm->time;
334 bfin_rtc_sync_pending(dev);
335 bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
336 if (alrm->enabled)
337 bfin_rtc_int_set_alarm(rtc);
339 return 0;
342 static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
344 #define yesno(x) ((x) ? "yes" : "no")
345 u16 ictl = bfin_read_RTC_ICTL();
346 dev_dbg_stamp(dev);
347 seq_printf(seq,
348 "alarm_IRQ\t: %s\n"
349 "wkalarm_IRQ\t: %s\n"
350 "seconds_IRQ\t: %s\n",
351 yesno(ictl & RTC_ISTAT_ALARM),
352 yesno(ictl & RTC_ISTAT_ALARM_DAY),
353 yesno(ictl & RTC_ISTAT_SEC));
354 return 0;
355 #undef yesno
358 static struct rtc_class_ops bfin_rtc_ops = {
359 .ioctl = bfin_rtc_ioctl,
360 .read_time = bfin_rtc_read_time,
361 .set_time = bfin_rtc_set_time,
362 .read_alarm = bfin_rtc_read_alarm,
363 .set_alarm = bfin_rtc_set_alarm,
364 .proc = bfin_rtc_proc,
367 static int __devinit bfin_rtc_probe(struct platform_device *pdev)
369 struct bfin_rtc *rtc;
370 struct device *dev = &pdev->dev;
371 int ret = 0;
372 unsigned long timeout = jiffies + HZ;
374 dev_dbg_stamp(dev);
376 /* Allocate memory for our RTC struct */
377 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
378 if (unlikely(!rtc))
379 return -ENOMEM;
380 platform_set_drvdata(pdev, rtc);
381 device_init_wakeup(dev, 1);
383 /* Register our RTC with the RTC framework */
384 rtc->rtc_dev = rtc_device_register(pdev->name, dev, &bfin_rtc_ops,
385 THIS_MODULE);
386 if (unlikely(IS_ERR(rtc->rtc_dev))) {
387 ret = PTR_ERR(rtc->rtc_dev);
388 goto err;
391 /* Grab the IRQ and init the hardware */
392 ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, 0, pdev->name, dev);
393 if (unlikely(ret))
394 goto err_reg;
395 /* sometimes the bootloader touched things, but the write complete was not
396 * enabled, so let's just do a quick timeout here since the IRQ will not fire ...
398 while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
399 if (time_after(jiffies, timeout))
400 break;
401 bfin_rtc_reset(dev, RTC_ISTAT_WRITE_COMPLETE);
402 bfin_write_RTC_SWCNT(0);
404 return 0;
406 err_reg:
407 rtc_device_unregister(rtc->rtc_dev);
408 err:
409 kfree(rtc);
410 return ret;
413 static int __devexit bfin_rtc_remove(struct platform_device *pdev)
415 struct bfin_rtc *rtc = platform_get_drvdata(pdev);
416 struct device *dev = &pdev->dev;
418 bfin_rtc_reset(dev, 0);
419 free_irq(IRQ_RTC, dev);
420 rtc_device_unregister(rtc->rtc_dev);
421 platform_set_drvdata(pdev, NULL);
422 kfree(rtc);
424 return 0;
427 #ifdef CONFIG_PM
428 static int bfin_rtc_suspend(struct platform_device *pdev, pm_message_t state)
430 struct device *dev = &pdev->dev;
432 dev_dbg_stamp(dev);
434 if (device_may_wakeup(dev)) {
435 enable_irq_wake(IRQ_RTC);
436 bfin_rtc_sync_pending(dev);
437 } else
438 bfin_rtc_int_clear(0);
440 return 0;
443 static int bfin_rtc_resume(struct platform_device *pdev)
445 struct device *dev = &pdev->dev;
447 dev_dbg_stamp(dev);
449 if (device_may_wakeup(dev))
450 disable_irq_wake(IRQ_RTC);
453 * Since only some of the RTC bits are maintained externally in the
454 * Vbat domain, we need to wait for the RTC MMRs to be synced into
455 * the core after waking up. This happens every RTC 1HZ. Once that
456 * has happened, we can go ahead and re-enable the important write
457 * complete interrupt event.
459 while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_SEC))
460 continue;
461 bfin_rtc_int_set(RTC_ISTAT_WRITE_COMPLETE);
463 return 0;
465 #else
466 # define bfin_rtc_suspend NULL
467 # define bfin_rtc_resume NULL
468 #endif
470 static struct platform_driver bfin_rtc_driver = {
471 .driver = {
472 .name = "rtc-bfin",
473 .owner = THIS_MODULE,
475 .probe = bfin_rtc_probe,
476 .remove = __devexit_p(bfin_rtc_remove),
477 .suspend = bfin_rtc_suspend,
478 .resume = bfin_rtc_resume,
481 static int __init bfin_rtc_init(void)
483 return platform_driver_register(&bfin_rtc_driver);
486 static void __exit bfin_rtc_exit(void)
488 platform_driver_unregister(&bfin_rtc_driver);
491 module_init(bfin_rtc_init);
492 module_exit(bfin_rtc_exit);
494 MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
495 MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
496 MODULE_LICENSE("GPL");
497 MODULE_ALIAS("platform:rtc-bfin");