media: vicodec: add V4L2_CID_MIN_BUFFERS_FOR_OUTPUT
[linux/fpc-iii.git] / lib / logic_pio.c
blobfeea48fd1a0dd6ae7913b6fad19cc52e20664785
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2017 HiSilicon Limited, All Rights Reserved.
4 * Author: Gabriele Paoloni <gabriele.paoloni@huawei.com>
5 * Author: Zhichang Yuan <yuanzhichang@hisilicon.com>
6 */
8 #define pr_fmt(fmt) "LOGIC PIO: " fmt
10 #include <linux/of.h>
11 #include <linux/io.h>
12 #include <linux/logic_pio.h>
13 #include <linux/mm.h>
14 #include <linux/rculist.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
18 /* The unique hardware address list */
19 static LIST_HEAD(io_range_list);
20 static DEFINE_MUTEX(io_range_mutex);
22 /* Consider a kernel general helper for this */
23 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
25 /**
26 * logic_pio_register_range - register logical PIO range for a host
27 * @new_range: pointer to the IO range to be registered.
29 * Returns 0 on success, the error code in case of failure.
31 * Register a new IO range node in the IO range list.
33 int logic_pio_register_range(struct logic_pio_hwaddr *new_range)
35 struct logic_pio_hwaddr *range;
36 resource_size_t start;
37 resource_size_t end;
38 resource_size_t mmio_sz = 0;
39 resource_size_t iio_sz = MMIO_UPPER_LIMIT;
40 int ret = 0;
42 if (!new_range || !new_range->fwnode || !new_range->size)
43 return -EINVAL;
45 start = new_range->hw_start;
46 end = new_range->hw_start + new_range->size;
48 mutex_lock(&io_range_mutex);
49 list_for_each_entry_rcu(range, &io_range_list, list) {
50 if (range->fwnode == new_range->fwnode) {
51 /* range already there */
52 goto end_register;
54 if (range->flags == LOGIC_PIO_CPU_MMIO &&
55 new_range->flags == LOGIC_PIO_CPU_MMIO) {
56 /* for MMIO ranges we need to check for overlap */
57 if (start >= range->hw_start + range->size ||
58 end < range->hw_start) {
59 mmio_sz += range->size;
60 } else {
61 ret = -EFAULT;
62 goto end_register;
64 } else if (range->flags == LOGIC_PIO_INDIRECT &&
65 new_range->flags == LOGIC_PIO_INDIRECT) {
66 iio_sz += range->size;
70 /* range not registered yet, check for available space */
71 if (new_range->flags == LOGIC_PIO_CPU_MMIO) {
72 if (mmio_sz + new_range->size - 1 > MMIO_UPPER_LIMIT) {
73 /* if it's too big check if 64K space can be reserved */
74 if (mmio_sz + SZ_64K - 1 > MMIO_UPPER_LIMIT) {
75 ret = -E2BIG;
76 goto end_register;
78 new_range->size = SZ_64K;
79 pr_warn("Requested IO range too big, new size set to 64K\n");
81 new_range->io_start = mmio_sz;
82 } else if (new_range->flags == LOGIC_PIO_INDIRECT) {
83 if (iio_sz + new_range->size - 1 > IO_SPACE_LIMIT) {
84 ret = -E2BIG;
85 goto end_register;
87 new_range->io_start = iio_sz;
88 } else {
89 /* invalid flag */
90 ret = -EINVAL;
91 goto end_register;
94 list_add_tail_rcu(&new_range->list, &io_range_list);
96 end_register:
97 mutex_unlock(&io_range_mutex);
98 return ret;
102 * find_io_range_by_fwnode - find logical PIO range for given FW node
103 * @fwnode: FW node handle associated with logical PIO range
105 * Returns pointer to node on success, NULL otherwise.
107 * Traverse the io_range_list to find the registered node for @fwnode.
109 struct logic_pio_hwaddr *find_io_range_by_fwnode(struct fwnode_handle *fwnode)
111 struct logic_pio_hwaddr *range;
113 list_for_each_entry_rcu(range, &io_range_list, list) {
114 if (range->fwnode == fwnode)
115 return range;
117 return NULL;
120 /* Return a registered range given an input PIO token */
121 static struct logic_pio_hwaddr *find_io_range(unsigned long pio)
123 struct logic_pio_hwaddr *range;
125 list_for_each_entry_rcu(range, &io_range_list, list) {
126 if (in_range(pio, range->io_start, range->size))
127 return range;
129 pr_err("PIO entry token %lx invalid\n", pio);
130 return NULL;
134 * logic_pio_to_hwaddr - translate logical PIO to HW address
135 * @pio: logical PIO value
137 * Returns HW address if valid, ~0 otherwise.
139 * Translate the input logical PIO to the corresponding hardware address.
140 * The input PIO should be unique in the whole logical PIO space.
142 resource_size_t logic_pio_to_hwaddr(unsigned long pio)
144 struct logic_pio_hwaddr *range;
146 range = find_io_range(pio);
147 if (range)
148 return range->hw_start + pio - range->io_start;
150 return (resource_size_t)~0;
154 * logic_pio_trans_hwaddr - translate HW address to logical PIO
155 * @fwnode: FW node reference for the host
156 * @addr: Host-relative HW address
157 * @size: size to translate
159 * Returns Logical PIO value if successful, ~0UL otherwise
161 unsigned long logic_pio_trans_hwaddr(struct fwnode_handle *fwnode,
162 resource_size_t addr, resource_size_t size)
164 struct logic_pio_hwaddr *range;
166 range = find_io_range_by_fwnode(fwnode);
167 if (!range || range->flags == LOGIC_PIO_CPU_MMIO) {
168 pr_err("IO range not found or invalid\n");
169 return ~0UL;
171 if (range->size < size) {
172 pr_err("resource size %pa cannot fit in IO range size %pa\n",
173 &size, &range->size);
174 return ~0UL;
176 return addr - range->hw_start + range->io_start;
179 unsigned long logic_pio_trans_cpuaddr(resource_size_t addr)
181 struct logic_pio_hwaddr *range;
183 list_for_each_entry_rcu(range, &io_range_list, list) {
184 if (range->flags != LOGIC_PIO_CPU_MMIO)
185 continue;
186 if (in_range(addr, range->hw_start, range->size))
187 return addr - range->hw_start + range->io_start;
189 pr_err("addr %llx not registered in io_range_list\n",
190 (unsigned long long) addr);
191 return ~0UL;
194 #if defined(CONFIG_INDIRECT_PIO) && defined(PCI_IOBASE)
195 #define BUILD_LOGIC_IO(bw, type) \
196 type logic_in##bw(unsigned long addr) \
198 type ret = (type)~0; \
200 if (addr < MMIO_UPPER_LIMIT) { \
201 ret = read##bw(PCI_IOBASE + addr); \
202 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
203 struct logic_pio_hwaddr *entry = find_io_range(addr); \
205 if (entry && entry->ops) \
206 ret = entry->ops->in(entry->hostdata, \
207 addr, sizeof(type)); \
208 else \
209 WARN_ON_ONCE(1); \
211 return ret; \
214 void logic_out##bw(type value, unsigned long addr) \
216 if (addr < MMIO_UPPER_LIMIT) { \
217 write##bw(value, PCI_IOBASE + addr); \
218 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
219 struct logic_pio_hwaddr *entry = find_io_range(addr); \
221 if (entry && entry->ops) \
222 entry->ops->out(entry->hostdata, \
223 addr, value, sizeof(type)); \
224 else \
225 WARN_ON_ONCE(1); \
229 void logic_ins##bw(unsigned long addr, void *buffer, \
230 unsigned int count) \
232 if (addr < MMIO_UPPER_LIMIT) { \
233 reads##bw(PCI_IOBASE + addr, buffer, count); \
234 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
235 struct logic_pio_hwaddr *entry = find_io_range(addr); \
237 if (entry && entry->ops) \
238 entry->ops->ins(entry->hostdata, \
239 addr, buffer, sizeof(type), count); \
240 else \
241 WARN_ON_ONCE(1); \
246 void logic_outs##bw(unsigned long addr, const void *buffer, \
247 unsigned int count) \
249 if (addr < MMIO_UPPER_LIMIT) { \
250 writes##bw(PCI_IOBASE + addr, buffer, count); \
251 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
252 struct logic_pio_hwaddr *entry = find_io_range(addr); \
254 if (entry && entry->ops) \
255 entry->ops->outs(entry->hostdata, \
256 addr, buffer, sizeof(type), count); \
257 else \
258 WARN_ON_ONCE(1); \
262 BUILD_LOGIC_IO(b, u8)
263 EXPORT_SYMBOL(logic_inb);
264 EXPORT_SYMBOL(logic_insb);
265 EXPORT_SYMBOL(logic_outb);
266 EXPORT_SYMBOL(logic_outsb);
268 BUILD_LOGIC_IO(w, u16)
269 EXPORT_SYMBOL(logic_inw);
270 EXPORT_SYMBOL(logic_insw);
271 EXPORT_SYMBOL(logic_outw);
272 EXPORT_SYMBOL(logic_outsw);
274 BUILD_LOGIC_IO(l, u32)
275 EXPORT_SYMBOL(logic_inl);
276 EXPORT_SYMBOL(logic_insl);
277 EXPORT_SYMBOL(logic_outl);
278 EXPORT_SYMBOL(logic_outsl);
280 #endif /* CONFIG_INDIRECT_PIO && PCI_IOBASE */