rt2x00: Simplify rt2x00_check_rev
[linux/fpc-iii.git] / drivers / input / input.c
blobd44065d2e662d7fc6757986c4c91b89b5b7b8ebd
1 /*
2 * The input core
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/poll.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/rcupdate.h>
24 #include <linux/smp_lock.h>
26 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
27 MODULE_DESCRIPTION("Input core");
28 MODULE_LICENSE("GPL");
30 #define INPUT_DEVICES 256
32 static LIST_HEAD(input_dev_list);
33 static LIST_HEAD(input_handler_list);
36 * input_mutex protects access to both input_dev_list and input_handler_list.
37 * This also causes input_[un]register_device and input_[un]register_handler
38 * be mutually exclusive which simplifies locking in drivers implementing
39 * input handlers.
41 static DEFINE_MUTEX(input_mutex);
43 static struct input_handler *input_table[8];
45 static inline int is_event_supported(unsigned int code,
46 unsigned long *bm, unsigned int max)
48 return code <= max && test_bit(code, bm);
51 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
53 if (fuzz) {
54 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
55 return old_val;
57 if (value > old_val - fuzz && value < old_val + fuzz)
58 return (old_val * 3 + value) / 4;
60 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
61 return (old_val + value) / 2;
64 return value;
68 * Pass event through all open handles. This function is called with
69 * dev->event_lock held and interrupts disabled.
71 static void input_pass_event(struct input_dev *dev,
72 unsigned int type, unsigned int code, int value)
74 struct input_handle *handle;
76 rcu_read_lock();
78 handle = rcu_dereference(dev->grab);
79 if (handle)
80 handle->handler->event(handle, type, code, value);
81 else
82 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
83 if (handle->open)
84 handle->handler->event(handle,
85 type, code, value);
86 rcu_read_unlock();
90 * Generate software autorepeat event. Note that we take
91 * dev->event_lock here to avoid racing with input_event
92 * which may cause keys get "stuck".
94 static void input_repeat_key(unsigned long data)
96 struct input_dev *dev = (void *) data;
97 unsigned long flags;
99 spin_lock_irqsave(&dev->event_lock, flags);
101 if (test_bit(dev->repeat_key, dev->key) &&
102 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
104 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
106 if (dev->sync) {
108 * Only send SYN_REPORT if we are not in a middle
109 * of driver parsing a new hardware packet.
110 * Otherwise assume that the driver will send
111 * SYN_REPORT once it's done.
113 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
116 if (dev->rep[REP_PERIOD])
117 mod_timer(&dev->timer, jiffies +
118 msecs_to_jiffies(dev->rep[REP_PERIOD]));
121 spin_unlock_irqrestore(&dev->event_lock, flags);
124 static void input_start_autorepeat(struct input_dev *dev, int code)
126 if (test_bit(EV_REP, dev->evbit) &&
127 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
128 dev->timer.data) {
129 dev->repeat_key = code;
130 mod_timer(&dev->timer,
131 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
135 static void input_stop_autorepeat(struct input_dev *dev)
137 del_timer(&dev->timer);
140 #define INPUT_IGNORE_EVENT 0
141 #define INPUT_PASS_TO_HANDLERS 1
142 #define INPUT_PASS_TO_DEVICE 2
143 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
145 static void input_handle_event(struct input_dev *dev,
146 unsigned int type, unsigned int code, int value)
148 int disposition = INPUT_IGNORE_EVENT;
150 switch (type) {
152 case EV_SYN:
153 switch (code) {
154 case SYN_CONFIG:
155 disposition = INPUT_PASS_TO_ALL;
156 break;
158 case SYN_REPORT:
159 if (!dev->sync) {
160 dev->sync = 1;
161 disposition = INPUT_PASS_TO_HANDLERS;
163 break;
165 break;
167 case EV_KEY:
168 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
169 !!test_bit(code, dev->key) != value) {
171 if (value != 2) {
172 __change_bit(code, dev->key);
173 if (value)
174 input_start_autorepeat(dev, code);
175 else
176 input_stop_autorepeat(dev);
179 disposition = INPUT_PASS_TO_HANDLERS;
181 break;
183 case EV_SW:
184 if (is_event_supported(code, dev->swbit, SW_MAX) &&
185 !!test_bit(code, dev->sw) != value) {
187 __change_bit(code, dev->sw);
188 disposition = INPUT_PASS_TO_HANDLERS;
190 break;
192 case EV_ABS:
193 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
195 value = input_defuzz_abs_event(value,
196 dev->abs[code], dev->absfuzz[code]);
198 if (dev->abs[code] != value) {
199 dev->abs[code] = value;
200 disposition = INPUT_PASS_TO_HANDLERS;
203 break;
205 case EV_REL:
206 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
207 disposition = INPUT_PASS_TO_HANDLERS;
209 break;
211 case EV_MSC:
212 if (is_event_supported(code, dev->mscbit, MSC_MAX))
213 disposition = INPUT_PASS_TO_ALL;
215 break;
217 case EV_LED:
218 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
219 !!test_bit(code, dev->led) != value) {
221 __change_bit(code, dev->led);
222 disposition = INPUT_PASS_TO_ALL;
224 break;
226 case EV_SND:
227 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
229 if (!!test_bit(code, dev->snd) != !!value)
230 __change_bit(code, dev->snd);
231 disposition = INPUT_PASS_TO_ALL;
233 break;
235 case EV_REP:
236 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
237 dev->rep[code] = value;
238 disposition = INPUT_PASS_TO_ALL;
240 break;
242 case EV_FF:
243 if (value >= 0)
244 disposition = INPUT_PASS_TO_ALL;
245 break;
247 case EV_PWR:
248 disposition = INPUT_PASS_TO_ALL;
249 break;
252 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
253 dev->sync = 0;
255 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
256 dev->event(dev, type, code, value);
258 if (disposition & INPUT_PASS_TO_HANDLERS)
259 input_pass_event(dev, type, code, value);
263 * input_event() - report new input event
264 * @dev: device that generated the event
265 * @type: type of the event
266 * @code: event code
267 * @value: value of the event
269 * This function should be used by drivers implementing various input
270 * devices. See also input_inject_event().
273 void input_event(struct input_dev *dev,
274 unsigned int type, unsigned int code, int value)
276 unsigned long flags;
278 if (is_event_supported(type, dev->evbit, EV_MAX)) {
280 spin_lock_irqsave(&dev->event_lock, flags);
281 add_input_randomness(type, code, value);
282 input_handle_event(dev, type, code, value);
283 spin_unlock_irqrestore(&dev->event_lock, flags);
286 EXPORT_SYMBOL(input_event);
289 * input_inject_event() - send input event from input handler
290 * @handle: input handle to send event through
291 * @type: type of the event
292 * @code: event code
293 * @value: value of the event
295 * Similar to input_event() but will ignore event if device is
296 * "grabbed" and handle injecting event is not the one that owns
297 * the device.
299 void input_inject_event(struct input_handle *handle,
300 unsigned int type, unsigned int code, int value)
302 struct input_dev *dev = handle->dev;
303 struct input_handle *grab;
304 unsigned long flags;
306 if (is_event_supported(type, dev->evbit, EV_MAX)) {
307 spin_lock_irqsave(&dev->event_lock, flags);
309 rcu_read_lock();
310 grab = rcu_dereference(dev->grab);
311 if (!grab || grab == handle)
312 input_handle_event(dev, type, code, value);
313 rcu_read_unlock();
315 spin_unlock_irqrestore(&dev->event_lock, flags);
318 EXPORT_SYMBOL(input_inject_event);
321 * input_grab_device - grabs device for exclusive use
322 * @handle: input handle that wants to own the device
324 * When a device is grabbed by an input handle all events generated by
325 * the device are delivered only to this handle. Also events injected
326 * by other input handles are ignored while device is grabbed.
328 int input_grab_device(struct input_handle *handle)
330 struct input_dev *dev = handle->dev;
331 int retval;
333 retval = mutex_lock_interruptible(&dev->mutex);
334 if (retval)
335 return retval;
337 if (dev->grab) {
338 retval = -EBUSY;
339 goto out;
342 rcu_assign_pointer(dev->grab, handle);
343 synchronize_rcu();
345 out:
346 mutex_unlock(&dev->mutex);
347 return retval;
349 EXPORT_SYMBOL(input_grab_device);
351 static void __input_release_device(struct input_handle *handle)
353 struct input_dev *dev = handle->dev;
355 if (dev->grab == handle) {
356 rcu_assign_pointer(dev->grab, NULL);
357 /* Make sure input_pass_event() notices that grab is gone */
358 synchronize_rcu();
360 list_for_each_entry(handle, &dev->h_list, d_node)
361 if (handle->open && handle->handler->start)
362 handle->handler->start(handle);
367 * input_release_device - release previously grabbed device
368 * @handle: input handle that owns the device
370 * Releases previously grabbed device so that other input handles can
371 * start receiving input events. Upon release all handlers attached
372 * to the device have their start() method called so they have a change
373 * to synchronize device state with the rest of the system.
375 void input_release_device(struct input_handle *handle)
377 struct input_dev *dev = handle->dev;
379 mutex_lock(&dev->mutex);
380 __input_release_device(handle);
381 mutex_unlock(&dev->mutex);
383 EXPORT_SYMBOL(input_release_device);
386 * input_open_device - open input device
387 * @handle: handle through which device is being accessed
389 * This function should be called by input handlers when they
390 * want to start receive events from given input device.
392 int input_open_device(struct input_handle *handle)
394 struct input_dev *dev = handle->dev;
395 int retval;
397 retval = mutex_lock_interruptible(&dev->mutex);
398 if (retval)
399 return retval;
401 if (dev->going_away) {
402 retval = -ENODEV;
403 goto out;
406 handle->open++;
408 if (!dev->users++ && dev->open)
409 retval = dev->open(dev);
411 if (retval) {
412 dev->users--;
413 if (!--handle->open) {
415 * Make sure we are not delivering any more events
416 * through this handle
418 synchronize_rcu();
422 out:
423 mutex_unlock(&dev->mutex);
424 return retval;
426 EXPORT_SYMBOL(input_open_device);
428 int input_flush_device(struct input_handle *handle, struct file *file)
430 struct input_dev *dev = handle->dev;
431 int retval;
433 retval = mutex_lock_interruptible(&dev->mutex);
434 if (retval)
435 return retval;
437 if (dev->flush)
438 retval = dev->flush(dev, file);
440 mutex_unlock(&dev->mutex);
441 return retval;
443 EXPORT_SYMBOL(input_flush_device);
446 * input_close_device - close input device
447 * @handle: handle through which device is being accessed
449 * This function should be called by input handlers when they
450 * want to stop receive events from given input device.
452 void input_close_device(struct input_handle *handle)
454 struct input_dev *dev = handle->dev;
456 mutex_lock(&dev->mutex);
458 __input_release_device(handle);
460 if (!--dev->users && dev->close)
461 dev->close(dev);
463 if (!--handle->open) {
465 * synchronize_rcu() makes sure that input_pass_event()
466 * completed and that no more input events are delivered
467 * through this handle
469 synchronize_rcu();
472 mutex_unlock(&dev->mutex);
474 EXPORT_SYMBOL(input_close_device);
477 * Prepare device for unregistering
479 static void input_disconnect_device(struct input_dev *dev)
481 struct input_handle *handle;
482 int code;
485 * Mark device as going away. Note that we take dev->mutex here
486 * not to protect access to dev->going_away but rather to ensure
487 * that there are no threads in the middle of input_open_device()
489 mutex_lock(&dev->mutex);
490 dev->going_away = 1;
491 mutex_unlock(&dev->mutex);
493 spin_lock_irq(&dev->event_lock);
496 * Simulate keyup events for all pressed keys so that handlers
497 * are not left with "stuck" keys. The driver may continue
498 * generate events even after we done here but they will not
499 * reach any handlers.
501 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
502 for (code = 0; code <= KEY_MAX; code++) {
503 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
504 __test_and_clear_bit(code, dev->key)) {
505 input_pass_event(dev, EV_KEY, code, 0);
508 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
511 list_for_each_entry(handle, &dev->h_list, d_node)
512 handle->open = 0;
514 spin_unlock_irq(&dev->event_lock);
517 static int input_fetch_keycode(struct input_dev *dev, int scancode)
519 switch (dev->keycodesize) {
520 case 1:
521 return ((u8 *)dev->keycode)[scancode];
523 case 2:
524 return ((u16 *)dev->keycode)[scancode];
526 default:
527 return ((u32 *)dev->keycode)[scancode];
531 static int input_default_getkeycode(struct input_dev *dev,
532 int scancode, int *keycode)
534 if (!dev->keycodesize)
535 return -EINVAL;
537 if (scancode >= dev->keycodemax)
538 return -EINVAL;
540 *keycode = input_fetch_keycode(dev, scancode);
542 return 0;
545 static int input_default_setkeycode(struct input_dev *dev,
546 int scancode, int keycode)
548 int old_keycode;
549 int i;
551 if (scancode >= dev->keycodemax)
552 return -EINVAL;
554 if (!dev->keycodesize)
555 return -EINVAL;
557 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
558 return -EINVAL;
560 switch (dev->keycodesize) {
561 case 1: {
562 u8 *k = (u8 *)dev->keycode;
563 old_keycode = k[scancode];
564 k[scancode] = keycode;
565 break;
567 case 2: {
568 u16 *k = (u16 *)dev->keycode;
569 old_keycode = k[scancode];
570 k[scancode] = keycode;
571 break;
573 default: {
574 u32 *k = (u32 *)dev->keycode;
575 old_keycode = k[scancode];
576 k[scancode] = keycode;
577 break;
581 clear_bit(old_keycode, dev->keybit);
582 set_bit(keycode, dev->keybit);
584 for (i = 0; i < dev->keycodemax; i++) {
585 if (input_fetch_keycode(dev, i) == old_keycode) {
586 set_bit(old_keycode, dev->keybit);
587 break; /* Setting the bit twice is useless, so break */
591 return 0;
595 * input_get_keycode - retrieve keycode currently mapped to a given scancode
596 * @dev: input device which keymap is being queried
597 * @scancode: scancode (or its equivalent for device in question) for which
598 * keycode is needed
599 * @keycode: result
601 * This function should be called by anyone interested in retrieving current
602 * keymap. Presently keyboard and evdev handlers use it.
604 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
606 if (scancode < 0)
607 return -EINVAL;
609 return dev->getkeycode(dev, scancode, keycode);
611 EXPORT_SYMBOL(input_get_keycode);
614 * input_get_keycode - assign new keycode to a given scancode
615 * @dev: input device which keymap is being updated
616 * @scancode: scancode (or its equivalent for device in question)
617 * @keycode: new keycode to be assigned to the scancode
619 * This function should be called by anyone needing to update current
620 * keymap. Presently keyboard and evdev handlers use it.
622 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
624 unsigned long flags;
625 int old_keycode;
626 int retval;
628 if (scancode < 0)
629 return -EINVAL;
631 if (keycode < 0 || keycode > KEY_MAX)
632 return -EINVAL;
634 spin_lock_irqsave(&dev->event_lock, flags);
636 retval = dev->getkeycode(dev, scancode, &old_keycode);
637 if (retval)
638 goto out;
640 retval = dev->setkeycode(dev, scancode, keycode);
641 if (retval)
642 goto out;
645 * Simulate keyup event if keycode is not present
646 * in the keymap anymore
648 if (test_bit(EV_KEY, dev->evbit) &&
649 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
650 __test_and_clear_bit(old_keycode, dev->key)) {
652 input_pass_event(dev, EV_KEY, old_keycode, 0);
653 if (dev->sync)
654 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
657 out:
658 spin_unlock_irqrestore(&dev->event_lock, flags);
660 return retval;
662 EXPORT_SYMBOL(input_set_keycode);
664 #define MATCH_BIT(bit, max) \
665 for (i = 0; i < BITS_TO_LONGS(max); i++) \
666 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
667 break; \
668 if (i != BITS_TO_LONGS(max)) \
669 continue;
671 static const struct input_device_id *input_match_device(const struct input_device_id *id,
672 struct input_dev *dev)
674 int i;
676 for (; id->flags || id->driver_info; id++) {
678 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
679 if (id->bustype != dev->id.bustype)
680 continue;
682 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
683 if (id->vendor != dev->id.vendor)
684 continue;
686 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
687 if (id->product != dev->id.product)
688 continue;
690 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
691 if (id->version != dev->id.version)
692 continue;
694 MATCH_BIT(evbit, EV_MAX);
695 MATCH_BIT(keybit, KEY_MAX);
696 MATCH_BIT(relbit, REL_MAX);
697 MATCH_BIT(absbit, ABS_MAX);
698 MATCH_BIT(mscbit, MSC_MAX);
699 MATCH_BIT(ledbit, LED_MAX);
700 MATCH_BIT(sndbit, SND_MAX);
701 MATCH_BIT(ffbit, FF_MAX);
702 MATCH_BIT(swbit, SW_MAX);
704 return id;
707 return NULL;
710 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
712 const struct input_device_id *id;
713 int error;
715 if (handler->blacklist && input_match_device(handler->blacklist, dev))
716 return -ENODEV;
718 id = input_match_device(handler->id_table, dev);
719 if (!id)
720 return -ENODEV;
722 error = handler->connect(handler, dev, id);
723 if (error && error != -ENODEV)
724 printk(KERN_ERR
725 "input: failed to attach handler %s to device %s, "
726 "error: %d\n",
727 handler->name, kobject_name(&dev->dev.kobj), error);
729 return error;
733 #ifdef CONFIG_PROC_FS
735 static struct proc_dir_entry *proc_bus_input_dir;
736 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
737 static int input_devices_state;
739 static inline void input_wakeup_procfs_readers(void)
741 input_devices_state++;
742 wake_up(&input_devices_poll_wait);
745 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
747 poll_wait(file, &input_devices_poll_wait, wait);
748 if (file->f_version != input_devices_state) {
749 file->f_version = input_devices_state;
750 return POLLIN | POLLRDNORM;
753 return 0;
756 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
758 if (mutex_lock_interruptible(&input_mutex))
759 return NULL;
761 return seq_list_start(&input_dev_list, *pos);
764 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
766 return seq_list_next(v, &input_dev_list, pos);
769 static void input_devices_seq_stop(struct seq_file *seq, void *v)
771 mutex_unlock(&input_mutex);
774 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
775 unsigned long *bitmap, int max)
777 int i;
779 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
780 if (bitmap[i])
781 break;
783 seq_printf(seq, "B: %s=", name);
784 for (; i >= 0; i--)
785 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
786 seq_putc(seq, '\n');
789 static int input_devices_seq_show(struct seq_file *seq, void *v)
791 struct input_dev *dev = container_of(v, struct input_dev, node);
792 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
793 struct input_handle *handle;
795 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
796 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
798 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
799 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
800 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
801 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
802 seq_printf(seq, "H: Handlers=");
804 list_for_each_entry(handle, &dev->h_list, d_node)
805 seq_printf(seq, "%s ", handle->name);
806 seq_putc(seq, '\n');
808 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
809 if (test_bit(EV_KEY, dev->evbit))
810 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
811 if (test_bit(EV_REL, dev->evbit))
812 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
813 if (test_bit(EV_ABS, dev->evbit))
814 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
815 if (test_bit(EV_MSC, dev->evbit))
816 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
817 if (test_bit(EV_LED, dev->evbit))
818 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
819 if (test_bit(EV_SND, dev->evbit))
820 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
821 if (test_bit(EV_FF, dev->evbit))
822 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
823 if (test_bit(EV_SW, dev->evbit))
824 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
826 seq_putc(seq, '\n');
828 kfree(path);
829 return 0;
832 static const struct seq_operations input_devices_seq_ops = {
833 .start = input_devices_seq_start,
834 .next = input_devices_seq_next,
835 .stop = input_devices_seq_stop,
836 .show = input_devices_seq_show,
839 static int input_proc_devices_open(struct inode *inode, struct file *file)
841 return seq_open(file, &input_devices_seq_ops);
844 static const struct file_operations input_devices_fileops = {
845 .owner = THIS_MODULE,
846 .open = input_proc_devices_open,
847 .poll = input_proc_devices_poll,
848 .read = seq_read,
849 .llseek = seq_lseek,
850 .release = seq_release,
853 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
855 if (mutex_lock_interruptible(&input_mutex))
856 return NULL;
858 seq->private = (void *)(unsigned long)*pos;
859 return seq_list_start(&input_handler_list, *pos);
862 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
864 seq->private = (void *)(unsigned long)(*pos + 1);
865 return seq_list_next(v, &input_handler_list, pos);
868 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
870 mutex_unlock(&input_mutex);
873 static int input_handlers_seq_show(struct seq_file *seq, void *v)
875 struct input_handler *handler = container_of(v, struct input_handler, node);
877 seq_printf(seq, "N: Number=%ld Name=%s",
878 (unsigned long)seq->private, handler->name);
879 if (handler->fops)
880 seq_printf(seq, " Minor=%d", handler->minor);
881 seq_putc(seq, '\n');
883 return 0;
885 static const struct seq_operations input_handlers_seq_ops = {
886 .start = input_handlers_seq_start,
887 .next = input_handlers_seq_next,
888 .stop = input_handlers_seq_stop,
889 .show = input_handlers_seq_show,
892 static int input_proc_handlers_open(struct inode *inode, struct file *file)
894 return seq_open(file, &input_handlers_seq_ops);
897 static const struct file_operations input_handlers_fileops = {
898 .owner = THIS_MODULE,
899 .open = input_proc_handlers_open,
900 .read = seq_read,
901 .llseek = seq_lseek,
902 .release = seq_release,
905 static int __init input_proc_init(void)
907 struct proc_dir_entry *entry;
909 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
910 if (!proc_bus_input_dir)
911 return -ENOMEM;
913 entry = proc_create("devices", 0, proc_bus_input_dir,
914 &input_devices_fileops);
915 if (!entry)
916 goto fail1;
918 entry = proc_create("handlers", 0, proc_bus_input_dir,
919 &input_handlers_fileops);
920 if (!entry)
921 goto fail2;
923 return 0;
925 fail2: remove_proc_entry("devices", proc_bus_input_dir);
926 fail1: remove_proc_entry("bus/input", NULL);
927 return -ENOMEM;
930 static void input_proc_exit(void)
932 remove_proc_entry("devices", proc_bus_input_dir);
933 remove_proc_entry("handlers", proc_bus_input_dir);
934 remove_proc_entry("bus/input", NULL);
937 #else /* !CONFIG_PROC_FS */
938 static inline void input_wakeup_procfs_readers(void) { }
939 static inline int input_proc_init(void) { return 0; }
940 static inline void input_proc_exit(void) { }
941 #endif
943 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
944 static ssize_t input_dev_show_##name(struct device *dev, \
945 struct device_attribute *attr, \
946 char *buf) \
948 struct input_dev *input_dev = to_input_dev(dev); \
950 return scnprintf(buf, PAGE_SIZE, "%s\n", \
951 input_dev->name ? input_dev->name : ""); \
953 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
955 INPUT_DEV_STRING_ATTR_SHOW(name);
956 INPUT_DEV_STRING_ATTR_SHOW(phys);
957 INPUT_DEV_STRING_ATTR_SHOW(uniq);
959 static int input_print_modalias_bits(char *buf, int size,
960 char name, unsigned long *bm,
961 unsigned int min_bit, unsigned int max_bit)
963 int len = 0, i;
965 len += snprintf(buf, max(size, 0), "%c", name);
966 for (i = min_bit; i < max_bit; i++)
967 if (bm[BIT_WORD(i)] & BIT_MASK(i))
968 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
969 return len;
972 static int input_print_modalias(char *buf, int size, struct input_dev *id,
973 int add_cr)
975 int len;
977 len = snprintf(buf, max(size, 0),
978 "input:b%04Xv%04Xp%04Xe%04X-",
979 id->id.bustype, id->id.vendor,
980 id->id.product, id->id.version);
982 len += input_print_modalias_bits(buf + len, size - len,
983 'e', id->evbit, 0, EV_MAX);
984 len += input_print_modalias_bits(buf + len, size - len,
985 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
986 len += input_print_modalias_bits(buf + len, size - len,
987 'r', id->relbit, 0, REL_MAX);
988 len += input_print_modalias_bits(buf + len, size - len,
989 'a', id->absbit, 0, ABS_MAX);
990 len += input_print_modalias_bits(buf + len, size - len,
991 'm', id->mscbit, 0, MSC_MAX);
992 len += input_print_modalias_bits(buf + len, size - len,
993 'l', id->ledbit, 0, LED_MAX);
994 len += input_print_modalias_bits(buf + len, size - len,
995 's', id->sndbit, 0, SND_MAX);
996 len += input_print_modalias_bits(buf + len, size - len,
997 'f', id->ffbit, 0, FF_MAX);
998 len += input_print_modalias_bits(buf + len, size - len,
999 'w', id->swbit, 0, SW_MAX);
1001 if (add_cr)
1002 len += snprintf(buf + len, max(size - len, 0), "\n");
1004 return len;
1007 static ssize_t input_dev_show_modalias(struct device *dev,
1008 struct device_attribute *attr,
1009 char *buf)
1011 struct input_dev *id = to_input_dev(dev);
1012 ssize_t len;
1014 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1016 return min_t(int, len, PAGE_SIZE);
1018 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1020 static struct attribute *input_dev_attrs[] = {
1021 &dev_attr_name.attr,
1022 &dev_attr_phys.attr,
1023 &dev_attr_uniq.attr,
1024 &dev_attr_modalias.attr,
1025 NULL
1028 static struct attribute_group input_dev_attr_group = {
1029 .attrs = input_dev_attrs,
1032 #define INPUT_DEV_ID_ATTR(name) \
1033 static ssize_t input_dev_show_id_##name(struct device *dev, \
1034 struct device_attribute *attr, \
1035 char *buf) \
1037 struct input_dev *input_dev = to_input_dev(dev); \
1038 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1040 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1042 INPUT_DEV_ID_ATTR(bustype);
1043 INPUT_DEV_ID_ATTR(vendor);
1044 INPUT_DEV_ID_ATTR(product);
1045 INPUT_DEV_ID_ATTR(version);
1047 static struct attribute *input_dev_id_attrs[] = {
1048 &dev_attr_bustype.attr,
1049 &dev_attr_vendor.attr,
1050 &dev_attr_product.attr,
1051 &dev_attr_version.attr,
1052 NULL
1055 static struct attribute_group input_dev_id_attr_group = {
1056 .name = "id",
1057 .attrs = input_dev_id_attrs,
1060 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1061 int max, int add_cr)
1063 int i;
1064 int len = 0;
1066 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1067 if (bitmap[i])
1068 break;
1070 for (; i >= 0; i--)
1071 len += snprintf(buf + len, max(buf_size - len, 0),
1072 "%lx%s", bitmap[i], i > 0 ? " " : "");
1074 if (add_cr)
1075 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1077 return len;
1080 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1081 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1082 struct device_attribute *attr, \
1083 char *buf) \
1085 struct input_dev *input_dev = to_input_dev(dev); \
1086 int len = input_print_bitmap(buf, PAGE_SIZE, \
1087 input_dev->bm##bit, ev##_MAX, 1); \
1088 return min_t(int, len, PAGE_SIZE); \
1090 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1092 INPUT_DEV_CAP_ATTR(EV, ev);
1093 INPUT_DEV_CAP_ATTR(KEY, key);
1094 INPUT_DEV_CAP_ATTR(REL, rel);
1095 INPUT_DEV_CAP_ATTR(ABS, abs);
1096 INPUT_DEV_CAP_ATTR(MSC, msc);
1097 INPUT_DEV_CAP_ATTR(LED, led);
1098 INPUT_DEV_CAP_ATTR(SND, snd);
1099 INPUT_DEV_CAP_ATTR(FF, ff);
1100 INPUT_DEV_CAP_ATTR(SW, sw);
1102 static struct attribute *input_dev_caps_attrs[] = {
1103 &dev_attr_ev.attr,
1104 &dev_attr_key.attr,
1105 &dev_attr_rel.attr,
1106 &dev_attr_abs.attr,
1107 &dev_attr_msc.attr,
1108 &dev_attr_led.attr,
1109 &dev_attr_snd.attr,
1110 &dev_attr_ff.attr,
1111 &dev_attr_sw.attr,
1112 NULL
1115 static struct attribute_group input_dev_caps_attr_group = {
1116 .name = "capabilities",
1117 .attrs = input_dev_caps_attrs,
1120 static struct attribute_group *input_dev_attr_groups[] = {
1121 &input_dev_attr_group,
1122 &input_dev_id_attr_group,
1123 &input_dev_caps_attr_group,
1124 NULL
1127 static void input_dev_release(struct device *device)
1129 struct input_dev *dev = to_input_dev(device);
1131 input_ff_destroy(dev);
1132 kfree(dev);
1134 module_put(THIS_MODULE);
1138 * Input uevent interface - loading event handlers based on
1139 * device bitfields.
1141 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1142 const char *name, unsigned long *bitmap, int max)
1144 int len;
1146 if (add_uevent_var(env, "%s=", name))
1147 return -ENOMEM;
1149 len = input_print_bitmap(&env->buf[env->buflen - 1],
1150 sizeof(env->buf) - env->buflen,
1151 bitmap, max, 0);
1152 if (len >= (sizeof(env->buf) - env->buflen))
1153 return -ENOMEM;
1155 env->buflen += len;
1156 return 0;
1159 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1160 struct input_dev *dev)
1162 int len;
1164 if (add_uevent_var(env, "MODALIAS="))
1165 return -ENOMEM;
1167 len = input_print_modalias(&env->buf[env->buflen - 1],
1168 sizeof(env->buf) - env->buflen,
1169 dev, 0);
1170 if (len >= (sizeof(env->buf) - env->buflen))
1171 return -ENOMEM;
1173 env->buflen += len;
1174 return 0;
1177 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1178 do { \
1179 int err = add_uevent_var(env, fmt, val); \
1180 if (err) \
1181 return err; \
1182 } while (0)
1184 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1185 do { \
1186 int err = input_add_uevent_bm_var(env, name, bm, max); \
1187 if (err) \
1188 return err; \
1189 } while (0)
1191 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1192 do { \
1193 int err = input_add_uevent_modalias_var(env, dev); \
1194 if (err) \
1195 return err; \
1196 } while (0)
1198 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1200 struct input_dev *dev = to_input_dev(device);
1202 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1203 dev->id.bustype, dev->id.vendor,
1204 dev->id.product, dev->id.version);
1205 if (dev->name)
1206 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1207 if (dev->phys)
1208 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1209 if (dev->uniq)
1210 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1212 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1213 if (test_bit(EV_KEY, dev->evbit))
1214 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1215 if (test_bit(EV_REL, dev->evbit))
1216 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1217 if (test_bit(EV_ABS, dev->evbit))
1218 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1219 if (test_bit(EV_MSC, dev->evbit))
1220 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1221 if (test_bit(EV_LED, dev->evbit))
1222 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1223 if (test_bit(EV_SND, dev->evbit))
1224 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1225 if (test_bit(EV_FF, dev->evbit))
1226 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1227 if (test_bit(EV_SW, dev->evbit))
1228 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1230 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1232 return 0;
1235 static struct device_type input_dev_type = {
1236 .groups = input_dev_attr_groups,
1237 .release = input_dev_release,
1238 .uevent = input_dev_uevent,
1241 struct class input_class = {
1242 .name = "input",
1244 EXPORT_SYMBOL_GPL(input_class);
1247 * input_allocate_device - allocate memory for new input device
1249 * Returns prepared struct input_dev or NULL.
1251 * NOTE: Use input_free_device() to free devices that have not been
1252 * registered; input_unregister_device() should be used for already
1253 * registered devices.
1255 struct input_dev *input_allocate_device(void)
1257 struct input_dev *dev;
1259 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1260 if (dev) {
1261 dev->dev.type = &input_dev_type;
1262 dev->dev.class = &input_class;
1263 device_initialize(&dev->dev);
1264 mutex_init(&dev->mutex);
1265 spin_lock_init(&dev->event_lock);
1266 INIT_LIST_HEAD(&dev->h_list);
1267 INIT_LIST_HEAD(&dev->node);
1269 __module_get(THIS_MODULE);
1272 return dev;
1274 EXPORT_SYMBOL(input_allocate_device);
1277 * input_free_device - free memory occupied by input_dev structure
1278 * @dev: input device to free
1280 * This function should only be used if input_register_device()
1281 * was not called yet or if it failed. Once device was registered
1282 * use input_unregister_device() and memory will be freed once last
1283 * reference to the device is dropped.
1285 * Device should be allocated by input_allocate_device().
1287 * NOTE: If there are references to the input device then memory
1288 * will not be freed until last reference is dropped.
1290 void input_free_device(struct input_dev *dev)
1292 if (dev)
1293 input_put_device(dev);
1295 EXPORT_SYMBOL(input_free_device);
1298 * input_set_capability - mark device as capable of a certain event
1299 * @dev: device that is capable of emitting or accepting event
1300 * @type: type of the event (EV_KEY, EV_REL, etc...)
1301 * @code: event code
1303 * In addition to setting up corresponding bit in appropriate capability
1304 * bitmap the function also adjusts dev->evbit.
1306 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1308 switch (type) {
1309 case EV_KEY:
1310 __set_bit(code, dev->keybit);
1311 break;
1313 case EV_REL:
1314 __set_bit(code, dev->relbit);
1315 break;
1317 case EV_ABS:
1318 __set_bit(code, dev->absbit);
1319 break;
1321 case EV_MSC:
1322 __set_bit(code, dev->mscbit);
1323 break;
1325 case EV_SW:
1326 __set_bit(code, dev->swbit);
1327 break;
1329 case EV_LED:
1330 __set_bit(code, dev->ledbit);
1331 break;
1333 case EV_SND:
1334 __set_bit(code, dev->sndbit);
1335 break;
1337 case EV_FF:
1338 __set_bit(code, dev->ffbit);
1339 break;
1341 case EV_PWR:
1342 /* do nothing */
1343 break;
1345 default:
1346 printk(KERN_ERR
1347 "input_set_capability: unknown type %u (code %u)\n",
1348 type, code);
1349 dump_stack();
1350 return;
1353 __set_bit(type, dev->evbit);
1355 EXPORT_SYMBOL(input_set_capability);
1358 * input_register_device - register device with input core
1359 * @dev: device to be registered
1361 * This function registers device with input core. The device must be
1362 * allocated with input_allocate_device() and all it's capabilities
1363 * set up before registering.
1364 * If function fails the device must be freed with input_free_device().
1365 * Once device has been successfully registered it can be unregistered
1366 * with input_unregister_device(); input_free_device() should not be
1367 * called in this case.
1369 int input_register_device(struct input_dev *dev)
1371 static atomic_t input_no = ATOMIC_INIT(0);
1372 struct input_handler *handler;
1373 const char *path;
1374 int error;
1376 __set_bit(EV_SYN, dev->evbit);
1379 * If delay and period are pre-set by the driver, then autorepeating
1380 * is handled by the driver itself and we don't do it in input.c.
1383 init_timer(&dev->timer);
1384 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1385 dev->timer.data = (long) dev;
1386 dev->timer.function = input_repeat_key;
1387 dev->rep[REP_DELAY] = 250;
1388 dev->rep[REP_PERIOD] = 33;
1391 if (!dev->getkeycode)
1392 dev->getkeycode = input_default_getkeycode;
1394 if (!dev->setkeycode)
1395 dev->setkeycode = input_default_setkeycode;
1397 dev_set_name(&dev->dev, "input%ld",
1398 (unsigned long) atomic_inc_return(&input_no) - 1);
1400 error = device_add(&dev->dev);
1401 if (error)
1402 return error;
1404 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1405 printk(KERN_INFO "input: %s as %s\n",
1406 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1407 kfree(path);
1409 error = mutex_lock_interruptible(&input_mutex);
1410 if (error) {
1411 device_del(&dev->dev);
1412 return error;
1415 list_add_tail(&dev->node, &input_dev_list);
1417 list_for_each_entry(handler, &input_handler_list, node)
1418 input_attach_handler(dev, handler);
1420 input_wakeup_procfs_readers();
1422 mutex_unlock(&input_mutex);
1424 return 0;
1426 EXPORT_SYMBOL(input_register_device);
1429 * input_unregister_device - unregister previously registered device
1430 * @dev: device to be unregistered
1432 * This function unregisters an input device. Once device is unregistered
1433 * the caller should not try to access it as it may get freed at any moment.
1435 void input_unregister_device(struct input_dev *dev)
1437 struct input_handle *handle, *next;
1439 input_disconnect_device(dev);
1441 mutex_lock(&input_mutex);
1443 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1444 handle->handler->disconnect(handle);
1445 WARN_ON(!list_empty(&dev->h_list));
1447 del_timer_sync(&dev->timer);
1448 list_del_init(&dev->node);
1450 input_wakeup_procfs_readers();
1452 mutex_unlock(&input_mutex);
1454 device_unregister(&dev->dev);
1456 EXPORT_SYMBOL(input_unregister_device);
1459 * input_register_handler - register a new input handler
1460 * @handler: handler to be registered
1462 * This function registers a new input handler (interface) for input
1463 * devices in the system and attaches it to all input devices that
1464 * are compatible with the handler.
1466 int input_register_handler(struct input_handler *handler)
1468 struct input_dev *dev;
1469 int retval;
1471 retval = mutex_lock_interruptible(&input_mutex);
1472 if (retval)
1473 return retval;
1475 INIT_LIST_HEAD(&handler->h_list);
1477 if (handler->fops != NULL) {
1478 if (input_table[handler->minor >> 5]) {
1479 retval = -EBUSY;
1480 goto out;
1482 input_table[handler->minor >> 5] = handler;
1485 list_add_tail(&handler->node, &input_handler_list);
1487 list_for_each_entry(dev, &input_dev_list, node)
1488 input_attach_handler(dev, handler);
1490 input_wakeup_procfs_readers();
1492 out:
1493 mutex_unlock(&input_mutex);
1494 return retval;
1496 EXPORT_SYMBOL(input_register_handler);
1499 * input_unregister_handler - unregisters an input handler
1500 * @handler: handler to be unregistered
1502 * This function disconnects a handler from its input devices and
1503 * removes it from lists of known handlers.
1505 void input_unregister_handler(struct input_handler *handler)
1507 struct input_handle *handle, *next;
1509 mutex_lock(&input_mutex);
1511 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1512 handler->disconnect(handle);
1513 WARN_ON(!list_empty(&handler->h_list));
1515 list_del_init(&handler->node);
1517 if (handler->fops != NULL)
1518 input_table[handler->minor >> 5] = NULL;
1520 input_wakeup_procfs_readers();
1522 mutex_unlock(&input_mutex);
1524 EXPORT_SYMBOL(input_unregister_handler);
1527 * input_register_handle - register a new input handle
1528 * @handle: handle to register
1530 * This function puts a new input handle onto device's
1531 * and handler's lists so that events can flow through
1532 * it once it is opened using input_open_device().
1534 * This function is supposed to be called from handler's
1535 * connect() method.
1537 int input_register_handle(struct input_handle *handle)
1539 struct input_handler *handler = handle->handler;
1540 struct input_dev *dev = handle->dev;
1541 int error;
1544 * We take dev->mutex here to prevent race with
1545 * input_release_device().
1547 error = mutex_lock_interruptible(&dev->mutex);
1548 if (error)
1549 return error;
1550 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1551 mutex_unlock(&dev->mutex);
1552 synchronize_rcu();
1555 * Since we are supposed to be called from ->connect()
1556 * which is mutually exclusive with ->disconnect()
1557 * we can't be racing with input_unregister_handle()
1558 * and so separate lock is not needed here.
1560 list_add_tail(&handle->h_node, &handler->h_list);
1562 if (handler->start)
1563 handler->start(handle);
1565 return 0;
1567 EXPORT_SYMBOL(input_register_handle);
1570 * input_unregister_handle - unregister an input handle
1571 * @handle: handle to unregister
1573 * This function removes input handle from device's
1574 * and handler's lists.
1576 * This function is supposed to be called from handler's
1577 * disconnect() method.
1579 void input_unregister_handle(struct input_handle *handle)
1581 struct input_dev *dev = handle->dev;
1583 list_del_init(&handle->h_node);
1586 * Take dev->mutex to prevent race with input_release_device().
1588 mutex_lock(&dev->mutex);
1589 list_del_rcu(&handle->d_node);
1590 mutex_unlock(&dev->mutex);
1591 synchronize_rcu();
1593 EXPORT_SYMBOL(input_unregister_handle);
1595 static int input_open_file(struct inode *inode, struct file *file)
1597 struct input_handler *handler;
1598 const struct file_operations *old_fops, *new_fops = NULL;
1599 int err;
1601 lock_kernel();
1602 /* No load-on-demand here? */
1603 handler = input_table[iminor(inode) >> 5];
1604 if (!handler || !(new_fops = fops_get(handler->fops))) {
1605 err = -ENODEV;
1606 goto out;
1610 * That's _really_ odd. Usually NULL ->open means "nothing special",
1611 * not "no device". Oh, well...
1613 if (!new_fops->open) {
1614 fops_put(new_fops);
1615 err = -ENODEV;
1616 goto out;
1618 old_fops = file->f_op;
1619 file->f_op = new_fops;
1621 err = new_fops->open(inode, file);
1623 if (err) {
1624 fops_put(file->f_op);
1625 file->f_op = fops_get(old_fops);
1627 fops_put(old_fops);
1628 out:
1629 unlock_kernel();
1630 return err;
1633 static const struct file_operations input_fops = {
1634 .owner = THIS_MODULE,
1635 .open = input_open_file,
1638 static int __init input_init(void)
1640 int err;
1642 err = class_register(&input_class);
1643 if (err) {
1644 printk(KERN_ERR "input: unable to register input_dev class\n");
1645 return err;
1648 err = input_proc_init();
1649 if (err)
1650 goto fail1;
1652 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1653 if (err) {
1654 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1655 goto fail2;
1658 return 0;
1660 fail2: input_proc_exit();
1661 fail1: class_unregister(&input_class);
1662 return err;
1665 static void __exit input_exit(void)
1667 input_proc_exit();
1668 unregister_chrdev(INPUT_MAJOR, "input");
1669 class_unregister(&input_class);
1672 subsys_initcall(input_init);
1673 module_exit(input_exit);