2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 * --> Develop a low-power-consumption strategy, and implement it.
33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
44 * 80x1-B2 errata PCI#11:
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/phy/phy.h>
64 #include <linux/platform_device.h>
65 #include <linux/ata_platform.h>
66 #include <linux/mbus.h>
67 #include <linux/bitops.h>
68 #include <linux/gfp.h>
70 #include <linux/of_irq.h>
71 #include <scsi/scsi_host.h>
72 #include <scsi/scsi_cmnd.h>
73 #include <scsi/scsi_device.h>
74 #include <linux/libata.h>
76 #define DRV_NAME "sata_mv"
77 #define DRV_VERSION "1.28"
85 module_param(msi
, int, S_IRUGO
);
86 MODULE_PARM_DESC(msi
, "Enable use of PCI MSI (0=off, 1=on)");
89 static int irq_coalescing_io_count
;
90 module_param(irq_coalescing_io_count
, int, S_IRUGO
);
91 MODULE_PARM_DESC(irq_coalescing_io_count
,
92 "IRQ coalescing I/O count threshold (0..255)");
94 static int irq_coalescing_usecs
;
95 module_param(irq_coalescing_usecs
, int, S_IRUGO
);
96 MODULE_PARM_DESC(irq_coalescing_usecs
,
97 "IRQ coalescing time threshold in usecs");
100 /* BAR's are enumerated in terms of pci_resource_start() terms */
101 MV_PRIMARY_BAR
= 0, /* offset 0x10: memory space */
102 MV_IO_BAR
= 2, /* offset 0x18: IO space */
103 MV_MISC_BAR
= 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
105 MV_MAJOR_REG_AREA_SZ
= 0x10000, /* 64KB */
106 MV_MINOR_REG_AREA_SZ
= 0x2000, /* 8KB */
108 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
109 COAL_CLOCKS_PER_USEC
= 150, /* for calculating COAL_TIMEs */
110 MAX_COAL_TIME_THRESHOLD
= ((1 << 24) - 1), /* internal clocks count */
111 MAX_COAL_IO_COUNT
= 255, /* completed I/O count */
116 * Per-chip ("all ports") interrupt coalescing feature.
117 * This is only for GEN_II / GEN_IIE hardware.
119 * Coalescing defers the interrupt until either the IO_THRESHOLD
120 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
122 COAL_REG_BASE
= 0x18000,
123 IRQ_COAL_CAUSE
= (COAL_REG_BASE
+ 0x08),
124 ALL_PORTS_COAL_IRQ
= (1 << 4), /* all ports irq event */
126 IRQ_COAL_IO_THRESHOLD
= (COAL_REG_BASE
+ 0xcc),
127 IRQ_COAL_TIME_THRESHOLD
= (COAL_REG_BASE
+ 0xd0),
130 * Registers for the (unused here) transaction coalescing feature:
132 TRAN_COAL_CAUSE_LO
= (COAL_REG_BASE
+ 0x88),
133 TRAN_COAL_CAUSE_HI
= (COAL_REG_BASE
+ 0x8c),
135 SATAHC0_REG_BASE
= 0x20000,
137 GPIO_PORT_CTL
= 0x104f0,
140 MV_PCI_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
141 MV_SATAHC_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
142 MV_SATAHC_ARBTR_REG_SZ
= MV_MINOR_REG_AREA_SZ
, /* arbiter */
143 MV_PORT_REG_SZ
= MV_MINOR_REG_AREA_SZ
,
146 MV_MAX_Q_DEPTH_MASK
= MV_MAX_Q_DEPTH
- 1,
148 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
149 * CRPB needs alignment on a 256B boundary. Size == 256B
150 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
152 MV_CRQB_Q_SZ
= (32 * MV_MAX_Q_DEPTH
),
153 MV_CRPB_Q_SZ
= (8 * MV_MAX_Q_DEPTH
),
155 MV_SG_TBL_SZ
= (16 * MV_MAX_SG_CT
),
157 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
158 MV_PORT_HC_SHIFT
= 2,
159 MV_PORTS_PER_HC
= (1 << MV_PORT_HC_SHIFT
), /* 4 */
160 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
161 MV_PORT_MASK
= (MV_PORTS_PER_HC
- 1), /* 3 */
164 MV_FLAG_DUAL_HC
= (1 << 30), /* two SATA Host Controllers */
166 MV_COMMON_FLAGS
= ATA_FLAG_SATA
| ATA_FLAG_PIO_POLLING
,
168 MV_GEN_I_FLAGS
= MV_COMMON_FLAGS
| ATA_FLAG_NO_ATAPI
,
170 MV_GEN_II_FLAGS
= MV_COMMON_FLAGS
| ATA_FLAG_NCQ
|
171 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
,
173 MV_GEN_IIE_FLAGS
= MV_GEN_II_FLAGS
| ATA_FLAG_AN
,
175 CRQB_FLAG_READ
= (1 << 0),
177 CRQB_IOID_SHIFT
= 6, /* CRQB Gen-II/IIE IO Id shift */
178 CRQB_PMP_SHIFT
= 12, /* CRQB Gen-II/IIE PMP shift */
179 CRQB_HOSTQ_SHIFT
= 17, /* CRQB Gen-II/IIE HostQueTag shift */
180 CRQB_CMD_ADDR_SHIFT
= 8,
181 CRQB_CMD_CS
= (0x2 << 11),
182 CRQB_CMD_LAST
= (1 << 15),
184 CRPB_FLAG_STATUS_SHIFT
= 8,
185 CRPB_IOID_SHIFT_6
= 5, /* CRPB Gen-II IO Id shift */
186 CRPB_IOID_SHIFT_7
= 7, /* CRPB Gen-IIE IO Id shift */
188 EPRD_FLAG_END_OF_TBL
= (1 << 31),
190 /* PCI interface registers */
192 MV_PCI_COMMAND
= 0xc00,
193 MV_PCI_COMMAND_MWRCOM
= (1 << 4), /* PCI Master Write Combining */
194 MV_PCI_COMMAND_MRDTRIG
= (1 << 7), /* PCI Master Read Trigger */
196 PCI_MAIN_CMD_STS
= 0xd30,
197 STOP_PCI_MASTER
= (1 << 2),
198 PCI_MASTER_EMPTY
= (1 << 3),
199 GLOB_SFT_RST
= (1 << 4),
202 MV_PCI_MODE_MASK
= 0x30,
204 MV_PCI_EXP_ROM_BAR_CTL
= 0xd2c,
205 MV_PCI_DISC_TIMER
= 0xd04,
206 MV_PCI_MSI_TRIGGER
= 0xc38,
207 MV_PCI_SERR_MASK
= 0xc28,
208 MV_PCI_XBAR_TMOUT
= 0x1d04,
209 MV_PCI_ERR_LOW_ADDRESS
= 0x1d40,
210 MV_PCI_ERR_HIGH_ADDRESS
= 0x1d44,
211 MV_PCI_ERR_ATTRIBUTE
= 0x1d48,
212 MV_PCI_ERR_COMMAND
= 0x1d50,
214 PCI_IRQ_CAUSE
= 0x1d58,
215 PCI_IRQ_MASK
= 0x1d5c,
216 PCI_UNMASK_ALL_IRQS
= 0x7fffff, /* bits 22-0 */
218 PCIE_IRQ_CAUSE
= 0x1900,
219 PCIE_IRQ_MASK
= 0x1910,
220 PCIE_UNMASK_ALL_IRQS
= 0x40a, /* assorted bits */
222 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
223 PCI_HC_MAIN_IRQ_CAUSE
= 0x1d60,
224 PCI_HC_MAIN_IRQ_MASK
= 0x1d64,
225 SOC_HC_MAIN_IRQ_CAUSE
= 0x20020,
226 SOC_HC_MAIN_IRQ_MASK
= 0x20024,
227 ERR_IRQ
= (1 << 0), /* shift by (2 * port #) */
228 DONE_IRQ
= (1 << 1), /* shift by (2 * port #) */
229 HC0_IRQ_PEND
= 0x1ff, /* bits 0-8 = HC0's ports */
230 HC_SHIFT
= 9, /* bits 9-17 = HC1's ports */
231 DONE_IRQ_0_3
= 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
232 DONE_IRQ_4_7
= (DONE_IRQ_0_3
<< HC_SHIFT
), /* 4,5,6,7 */
234 TRAN_COAL_LO_DONE
= (1 << 19), /* transaction coalescing */
235 TRAN_COAL_HI_DONE
= (1 << 20), /* transaction coalescing */
236 PORTS_0_3_COAL_DONE
= (1 << 8), /* HC0 IRQ coalescing */
237 PORTS_4_7_COAL_DONE
= (1 << 17), /* HC1 IRQ coalescing */
238 ALL_PORTS_COAL_DONE
= (1 << 21), /* GEN_II(E) IRQ coalescing */
239 GPIO_INT
= (1 << 22),
240 SELF_INT
= (1 << 23),
241 TWSI_INT
= (1 << 24),
242 HC_MAIN_RSVD
= (0x7f << 25), /* bits 31-25 */
243 HC_MAIN_RSVD_5
= (0x1fff << 19), /* bits 31-19 */
244 HC_MAIN_RSVD_SOC
= (0x3fffffb << 6), /* bits 31-9, 7-6 */
246 /* SATAHC registers */
250 DMA_IRQ
= (1 << 0), /* shift by port # */
251 HC_COAL_IRQ
= (1 << 4), /* IRQ coalescing */
252 DEV_IRQ
= (1 << 8), /* shift by port # */
255 * Per-HC (Host-Controller) interrupt coalescing feature.
256 * This is present on all chip generations.
258 * Coalescing defers the interrupt until either the IO_THRESHOLD
259 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
261 HC_IRQ_COAL_IO_THRESHOLD
= 0x000c,
262 HC_IRQ_COAL_TIME_THRESHOLD
= 0x0010,
265 SOC_LED_CTRL_BLINK
= (1 << 0), /* Active LED blink */
266 SOC_LED_CTRL_ACT_PRESENCE
= (1 << 2), /* Multiplex dev presence */
267 /* with dev activity LED */
269 /* Shadow block registers */
271 SHD_CTL_AST
= 0x20, /* ofs from SHD_BLK */
274 SATA_STATUS
= 0x300, /* ctrl, err regs follow status */
276 FIS_IRQ_CAUSE
= 0x364,
277 FIS_IRQ_CAUSE_AN
= (1 << 9), /* async notification */
279 LTMODE
= 0x30c, /* requires read-after-write */
280 LTMODE_BIT8
= (1 << 8), /* unknown, but necessary */
285 PHY_MODE4
= 0x314, /* requires read-after-write */
286 PHY_MODE4_CFG_MASK
= 0x00000003, /* phy internal config field */
287 PHY_MODE4_CFG_VALUE
= 0x00000001, /* phy internal config field */
288 PHY_MODE4_RSVD_ZEROS
= 0x5de3fffa, /* Gen2e always write zeros */
289 PHY_MODE4_RSVD_ONES
= 0x00000005, /* Gen2e always write ones */
292 SATA_TESTCTL
= 0x348,
294 VENDOR_UNIQUE_FIS
= 0x35c,
297 FISCFG_WAIT_DEV_ERR
= (1 << 8), /* wait for host on DevErr */
298 FISCFG_SINGLE_SYNC
= (1 << 16), /* SYNC on DMA activation */
300 PHY_MODE9_GEN2
= 0x398,
301 PHY_MODE9_GEN1
= 0x39c,
302 PHYCFG_OFS
= 0x3a0, /* only in 65n devices */
309 LP_PHY_CTL_PIN_PU_PLL
= (1 << 0),
310 LP_PHY_CTL_PIN_PU_RX
= (1 << 1),
311 LP_PHY_CTL_PIN_PU_TX
= (1 << 2),
312 LP_PHY_CTL_GEN_TX_3G
= (1 << 5),
313 LP_PHY_CTL_GEN_RX_3G
= (1 << 9),
315 MV_M2_PREAMP_MASK
= 0x7e0,
319 EDMA_CFG_Q_DEPTH
= 0x1f, /* max device queue depth */
320 EDMA_CFG_NCQ
= (1 << 5), /* for R/W FPDMA queued */
321 EDMA_CFG_NCQ_GO_ON_ERR
= (1 << 14), /* continue on error */
322 EDMA_CFG_RD_BRST_EXT
= (1 << 11), /* read burst 512B */
323 EDMA_CFG_WR_BUFF_LEN
= (1 << 13), /* write buffer 512B */
324 EDMA_CFG_EDMA_FBS
= (1 << 16), /* EDMA FIS-Based Switching */
325 EDMA_CFG_FBS
= (1 << 26), /* FIS-Based Switching */
327 EDMA_ERR_IRQ_CAUSE
= 0x8,
328 EDMA_ERR_IRQ_MASK
= 0xc,
329 EDMA_ERR_D_PAR
= (1 << 0), /* UDMA data parity err */
330 EDMA_ERR_PRD_PAR
= (1 << 1), /* UDMA PRD parity err */
331 EDMA_ERR_DEV
= (1 << 2), /* device error */
332 EDMA_ERR_DEV_DCON
= (1 << 3), /* device disconnect */
333 EDMA_ERR_DEV_CON
= (1 << 4), /* device connected */
334 EDMA_ERR_SERR
= (1 << 5), /* SError bits [WBDST] raised */
335 EDMA_ERR_SELF_DIS
= (1 << 7), /* Gen II/IIE self-disable */
336 EDMA_ERR_SELF_DIS_5
= (1 << 8), /* Gen I self-disable */
337 EDMA_ERR_BIST_ASYNC
= (1 << 8), /* BIST FIS or Async Notify */
338 EDMA_ERR_TRANS_IRQ_7
= (1 << 8), /* Gen IIE transprt layer irq */
339 EDMA_ERR_CRQB_PAR
= (1 << 9), /* CRQB parity error */
340 EDMA_ERR_CRPB_PAR
= (1 << 10), /* CRPB parity error */
341 EDMA_ERR_INTRL_PAR
= (1 << 11), /* internal parity error */
342 EDMA_ERR_IORDY
= (1 << 12), /* IORdy timeout */
344 EDMA_ERR_LNK_CTRL_RX
= (0xf << 13), /* link ctrl rx error */
345 EDMA_ERR_LNK_CTRL_RX_0
= (1 << 13), /* transient: CRC err */
346 EDMA_ERR_LNK_CTRL_RX_1
= (1 << 14), /* transient: FIFO err */
347 EDMA_ERR_LNK_CTRL_RX_2
= (1 << 15), /* fatal: caught SYNC */
348 EDMA_ERR_LNK_CTRL_RX_3
= (1 << 16), /* transient: FIS rx err */
350 EDMA_ERR_LNK_DATA_RX
= (0xf << 17), /* link data rx error */
352 EDMA_ERR_LNK_CTRL_TX
= (0x1f << 21), /* link ctrl tx error */
353 EDMA_ERR_LNK_CTRL_TX_0
= (1 << 21), /* transient: CRC err */
354 EDMA_ERR_LNK_CTRL_TX_1
= (1 << 22), /* transient: FIFO err */
355 EDMA_ERR_LNK_CTRL_TX_2
= (1 << 23), /* transient: caught SYNC */
356 EDMA_ERR_LNK_CTRL_TX_3
= (1 << 24), /* transient: caught DMAT */
357 EDMA_ERR_LNK_CTRL_TX_4
= (1 << 25), /* transient: FIS collision */
359 EDMA_ERR_LNK_DATA_TX
= (0x1f << 26), /* link data tx error */
361 EDMA_ERR_TRANS_PROTO
= (1 << 31), /* transport protocol error */
362 EDMA_ERR_OVERRUN_5
= (1 << 5),
363 EDMA_ERR_UNDERRUN_5
= (1 << 6),
365 EDMA_ERR_IRQ_TRANSIENT
= EDMA_ERR_LNK_CTRL_RX_0
|
366 EDMA_ERR_LNK_CTRL_RX_1
|
367 EDMA_ERR_LNK_CTRL_RX_3
|
368 EDMA_ERR_LNK_CTRL_TX
,
370 EDMA_EH_FREEZE
= EDMA_ERR_D_PAR
|
380 EDMA_ERR_LNK_CTRL_RX_2
|
381 EDMA_ERR_LNK_DATA_RX
|
382 EDMA_ERR_LNK_DATA_TX
|
383 EDMA_ERR_TRANS_PROTO
,
385 EDMA_EH_FREEZE_5
= EDMA_ERR_D_PAR
|
390 EDMA_ERR_UNDERRUN_5
|
391 EDMA_ERR_SELF_DIS_5
|
397 EDMA_REQ_Q_BASE_HI
= 0x10,
398 EDMA_REQ_Q_IN_PTR
= 0x14, /* also contains BASE_LO */
400 EDMA_REQ_Q_OUT_PTR
= 0x18,
401 EDMA_REQ_Q_PTR_SHIFT
= 5,
403 EDMA_RSP_Q_BASE_HI
= 0x1c,
404 EDMA_RSP_Q_IN_PTR
= 0x20,
405 EDMA_RSP_Q_OUT_PTR
= 0x24, /* also contains BASE_LO */
406 EDMA_RSP_Q_PTR_SHIFT
= 3,
408 EDMA_CMD
= 0x28, /* EDMA command register */
409 EDMA_EN
= (1 << 0), /* enable EDMA */
410 EDMA_DS
= (1 << 1), /* disable EDMA; self-negated */
411 EDMA_RESET
= (1 << 2), /* reset eng/trans/link/phy */
413 EDMA_STATUS
= 0x30, /* EDMA engine status */
414 EDMA_STATUS_CACHE_EMPTY
= (1 << 6), /* GenIIe command cache empty */
415 EDMA_STATUS_IDLE
= (1 << 7), /* GenIIe EDMA enabled/idle */
417 EDMA_IORDY_TMOUT
= 0x34,
420 EDMA_HALTCOND
= 0x60, /* GenIIe halt conditions */
421 EDMA_UNKNOWN_RSVD
= 0x6C, /* GenIIe unknown/reserved */
423 BMDMA_CMD
= 0x224, /* bmdma command register */
424 BMDMA_STATUS
= 0x228, /* bmdma status register */
425 BMDMA_PRD_LOW
= 0x22c, /* bmdma PRD addr 31:0 */
426 BMDMA_PRD_HIGH
= 0x230, /* bmdma PRD addr 63:32 */
428 /* Host private flags (hp_flags) */
429 MV_HP_FLAG_MSI
= (1 << 0),
430 MV_HP_ERRATA_50XXB0
= (1 << 1),
431 MV_HP_ERRATA_50XXB2
= (1 << 2),
432 MV_HP_ERRATA_60X1B2
= (1 << 3),
433 MV_HP_ERRATA_60X1C0
= (1 << 4),
434 MV_HP_GEN_I
= (1 << 6), /* Generation I: 50xx */
435 MV_HP_GEN_II
= (1 << 7), /* Generation II: 60xx */
436 MV_HP_GEN_IIE
= (1 << 8), /* Generation IIE: 6042/7042 */
437 MV_HP_PCIE
= (1 << 9), /* PCIe bus/regs: 7042 */
438 MV_HP_CUT_THROUGH
= (1 << 10), /* can use EDMA cut-through */
439 MV_HP_FLAG_SOC
= (1 << 11), /* SystemOnChip, no PCI */
440 MV_HP_QUIRK_LED_BLINK_EN
= (1 << 12), /* is led blinking enabled? */
441 MV_HP_FIX_LP_PHY_CTL
= (1 << 13), /* fix speed in LP_PHY_CTL ? */
443 /* Port private flags (pp_flags) */
444 MV_PP_FLAG_EDMA_EN
= (1 << 0), /* is EDMA engine enabled? */
445 MV_PP_FLAG_NCQ_EN
= (1 << 1), /* is EDMA set up for NCQ? */
446 MV_PP_FLAG_FBS_EN
= (1 << 2), /* is EDMA set up for FBS? */
447 MV_PP_FLAG_DELAYED_EH
= (1 << 3), /* delayed dev err handling */
448 MV_PP_FLAG_FAKE_ATA_BUSY
= (1 << 4), /* ignore initial ATA_DRDY */
451 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
452 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
453 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
454 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
455 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
457 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
458 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
461 /* DMA boundary 0xffff is required by the s/g splitting
462 * we need on /length/ in mv_fill-sg().
464 MV_DMA_BOUNDARY
= 0xffffU
,
466 /* mask of register bits containing lower 32 bits
467 * of EDMA request queue DMA address
469 EDMA_REQ_Q_BASE_LO_MASK
= 0xfffffc00U
,
471 /* ditto, for response queue */
472 EDMA_RSP_Q_BASE_LO_MASK
= 0xffffff00U
,
486 /* Command ReQuest Block: 32B */
502 /* Command ResPonse Block: 8B */
509 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
518 * We keep a local cache of a few frequently accessed port
519 * registers here, to avoid having to read them (very slow)
520 * when switching between EDMA and non-EDMA modes.
522 struct mv_cached_regs
{
529 struct mv_port_priv
{
530 struct mv_crqb
*crqb
;
532 struct mv_crpb
*crpb
;
534 struct mv_sg
*sg_tbl
[MV_MAX_Q_DEPTH
];
535 dma_addr_t sg_tbl_dma
[MV_MAX_Q_DEPTH
];
537 unsigned int req_idx
;
538 unsigned int resp_idx
;
541 struct mv_cached_regs cached
;
542 unsigned int delayed_eh_pmp_map
;
545 struct mv_port_signal
{
550 struct mv_host_priv
{
552 unsigned int board_idx
;
554 struct mv_port_signal signal
[8];
555 const struct mv_hw_ops
*ops
;
558 void __iomem
*main_irq_cause_addr
;
559 void __iomem
*main_irq_mask_addr
;
560 u32 irq_cause_offset
;
565 * Needed on some devices that require their clocks to be enabled.
566 * These are optional: if the platform device does not have any
567 * clocks, they won't be used. Also, if the underlying hardware
568 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
569 * all the clock operations become no-ops (see clk.h).
572 struct clk
**port_clks
;
574 * Some devices have a SATA PHY which can be enabled/disabled
575 * in order to save power. These are optional: if the platform
576 * devices does not have any phy, they won't be used.
578 struct phy
**port_phys
;
580 * These consistent DMA memory pools give us guaranteed
581 * alignment for hardware-accessed data structures,
582 * and less memory waste in accomplishing the alignment.
584 struct dma_pool
*crqb_pool
;
585 struct dma_pool
*crpb_pool
;
586 struct dma_pool
*sg_tbl_pool
;
590 void (*phy_errata
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
592 void (*enable_leds
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
593 void (*read_preamp
)(struct mv_host_priv
*hpriv
, int idx
,
595 int (*reset_hc
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
597 void (*reset_flash
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
598 void (*reset_bus
)(struct ata_host
*host
, void __iomem
*mmio
);
601 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
602 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
603 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
604 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
605 static int mv_port_start(struct ata_port
*ap
);
606 static void mv_port_stop(struct ata_port
*ap
);
607 static int mv_qc_defer(struct ata_queued_cmd
*qc
);
608 static void mv_qc_prep(struct ata_queued_cmd
*qc
);
609 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
);
610 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
);
611 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
612 unsigned long deadline
);
613 static void mv_eh_freeze(struct ata_port
*ap
);
614 static void mv_eh_thaw(struct ata_port
*ap
);
615 static void mv6_dev_config(struct ata_device
*dev
);
617 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
619 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
620 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
622 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
624 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
625 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
627 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
629 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
630 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
632 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
634 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
635 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
637 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
639 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
640 void __iomem
*mmio
, unsigned int n_hc
);
641 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
643 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
644 static void mv_soc_65n_phy_errata(struct mv_host_priv
*hpriv
,
645 void __iomem
*mmio
, unsigned int port
);
646 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
);
647 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
648 unsigned int port_no
);
649 static int mv_stop_edma(struct ata_port
*ap
);
650 static int mv_stop_edma_engine(void __iomem
*port_mmio
);
651 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
, int want_edma
);
653 static void mv_pmp_select(struct ata_port
*ap
, int pmp
);
654 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
655 unsigned long deadline
);
656 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
657 unsigned long deadline
);
658 static void mv_pmp_error_handler(struct ata_port
*ap
);
659 static void mv_process_crpb_entries(struct ata_port
*ap
,
660 struct mv_port_priv
*pp
);
662 static void mv_sff_irq_clear(struct ata_port
*ap
);
663 static int mv_check_atapi_dma(struct ata_queued_cmd
*qc
);
664 static void mv_bmdma_setup(struct ata_queued_cmd
*qc
);
665 static void mv_bmdma_start(struct ata_queued_cmd
*qc
);
666 static void mv_bmdma_stop(struct ata_queued_cmd
*qc
);
667 static u8
mv_bmdma_status(struct ata_port
*ap
);
668 static u8
mv_sff_check_status(struct ata_port
*ap
);
670 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
671 * because we have to allow room for worst case splitting of
672 * PRDs for 64K boundaries in mv_fill_sg().
675 static struct scsi_host_template mv5_sht
= {
676 ATA_BASE_SHT(DRV_NAME
),
677 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
678 .dma_boundary
= MV_DMA_BOUNDARY
,
681 static struct scsi_host_template mv6_sht
= {
682 ATA_NCQ_SHT(DRV_NAME
),
683 .can_queue
= MV_MAX_Q_DEPTH
- 1,
684 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
685 .dma_boundary
= MV_DMA_BOUNDARY
,
688 static struct ata_port_operations mv5_ops
= {
689 .inherits
= &ata_sff_port_ops
,
691 .lost_interrupt
= ATA_OP_NULL
,
693 .qc_defer
= mv_qc_defer
,
694 .qc_prep
= mv_qc_prep
,
695 .qc_issue
= mv_qc_issue
,
697 .freeze
= mv_eh_freeze
,
699 .hardreset
= mv_hardreset
,
701 .scr_read
= mv5_scr_read
,
702 .scr_write
= mv5_scr_write
,
704 .port_start
= mv_port_start
,
705 .port_stop
= mv_port_stop
,
708 static struct ata_port_operations mv6_ops
= {
709 .inherits
= &ata_bmdma_port_ops
,
711 .lost_interrupt
= ATA_OP_NULL
,
713 .qc_defer
= mv_qc_defer
,
714 .qc_prep
= mv_qc_prep
,
715 .qc_issue
= mv_qc_issue
,
717 .dev_config
= mv6_dev_config
,
719 .freeze
= mv_eh_freeze
,
721 .hardreset
= mv_hardreset
,
722 .softreset
= mv_softreset
,
723 .pmp_hardreset
= mv_pmp_hardreset
,
724 .pmp_softreset
= mv_softreset
,
725 .error_handler
= mv_pmp_error_handler
,
727 .scr_read
= mv_scr_read
,
728 .scr_write
= mv_scr_write
,
730 .sff_check_status
= mv_sff_check_status
,
731 .sff_irq_clear
= mv_sff_irq_clear
,
732 .check_atapi_dma
= mv_check_atapi_dma
,
733 .bmdma_setup
= mv_bmdma_setup
,
734 .bmdma_start
= mv_bmdma_start
,
735 .bmdma_stop
= mv_bmdma_stop
,
736 .bmdma_status
= mv_bmdma_status
,
738 .port_start
= mv_port_start
,
739 .port_stop
= mv_port_stop
,
742 static struct ata_port_operations mv_iie_ops
= {
743 .inherits
= &mv6_ops
,
744 .dev_config
= ATA_OP_NULL
,
745 .qc_prep
= mv_qc_prep_iie
,
748 static const struct ata_port_info mv_port_info
[] = {
750 .flags
= MV_GEN_I_FLAGS
,
751 .pio_mask
= ATA_PIO4
,
752 .udma_mask
= ATA_UDMA6
,
753 .port_ops
= &mv5_ops
,
756 .flags
= MV_GEN_I_FLAGS
| MV_FLAG_DUAL_HC
,
757 .pio_mask
= ATA_PIO4
,
758 .udma_mask
= ATA_UDMA6
,
759 .port_ops
= &mv5_ops
,
762 .flags
= MV_GEN_I_FLAGS
| MV_FLAG_DUAL_HC
,
763 .pio_mask
= ATA_PIO4
,
764 .udma_mask
= ATA_UDMA6
,
765 .port_ops
= &mv5_ops
,
768 .flags
= MV_GEN_II_FLAGS
,
769 .pio_mask
= ATA_PIO4
,
770 .udma_mask
= ATA_UDMA6
,
771 .port_ops
= &mv6_ops
,
774 .flags
= MV_GEN_II_FLAGS
| MV_FLAG_DUAL_HC
,
775 .pio_mask
= ATA_PIO4
,
776 .udma_mask
= ATA_UDMA6
,
777 .port_ops
= &mv6_ops
,
780 .flags
= MV_GEN_IIE_FLAGS
,
781 .pio_mask
= ATA_PIO4
,
782 .udma_mask
= ATA_UDMA6
,
783 .port_ops
= &mv_iie_ops
,
786 .flags
= MV_GEN_IIE_FLAGS
,
787 .pio_mask
= ATA_PIO4
,
788 .udma_mask
= ATA_UDMA6
,
789 .port_ops
= &mv_iie_ops
,
792 .flags
= MV_GEN_IIE_FLAGS
,
793 .pio_mask
= ATA_PIO4
,
794 .udma_mask
= ATA_UDMA6
,
795 .port_ops
= &mv_iie_ops
,
799 static const struct pci_device_id mv_pci_tbl
[] = {
800 { PCI_VDEVICE(MARVELL
, 0x5040), chip_504x
},
801 { PCI_VDEVICE(MARVELL
, 0x5041), chip_504x
},
802 { PCI_VDEVICE(MARVELL
, 0x5080), chip_5080
},
803 { PCI_VDEVICE(MARVELL
, 0x5081), chip_508x
},
804 /* RocketRAID 1720/174x have different identifiers */
805 { PCI_VDEVICE(TTI
, 0x1720), chip_6042
},
806 { PCI_VDEVICE(TTI
, 0x1740), chip_6042
},
807 { PCI_VDEVICE(TTI
, 0x1742), chip_6042
},
809 { PCI_VDEVICE(MARVELL
, 0x6040), chip_604x
},
810 { PCI_VDEVICE(MARVELL
, 0x6041), chip_604x
},
811 { PCI_VDEVICE(MARVELL
, 0x6042), chip_6042
},
812 { PCI_VDEVICE(MARVELL
, 0x6080), chip_608x
},
813 { PCI_VDEVICE(MARVELL
, 0x6081), chip_608x
},
815 { PCI_VDEVICE(ADAPTEC2
, 0x0241), chip_604x
},
818 { PCI_VDEVICE(ADAPTEC2
, 0x0243), chip_7042
},
820 /* Marvell 7042 support */
821 { PCI_VDEVICE(MARVELL
, 0x7042), chip_7042
},
823 /* Highpoint RocketRAID PCIe series */
824 { PCI_VDEVICE(TTI
, 0x2300), chip_7042
},
825 { PCI_VDEVICE(TTI
, 0x2310), chip_7042
},
827 { } /* terminate list */
830 static const struct mv_hw_ops mv5xxx_ops
= {
831 .phy_errata
= mv5_phy_errata
,
832 .enable_leds
= mv5_enable_leds
,
833 .read_preamp
= mv5_read_preamp
,
834 .reset_hc
= mv5_reset_hc
,
835 .reset_flash
= mv5_reset_flash
,
836 .reset_bus
= mv5_reset_bus
,
839 static const struct mv_hw_ops mv6xxx_ops
= {
840 .phy_errata
= mv6_phy_errata
,
841 .enable_leds
= mv6_enable_leds
,
842 .read_preamp
= mv6_read_preamp
,
843 .reset_hc
= mv6_reset_hc
,
844 .reset_flash
= mv6_reset_flash
,
845 .reset_bus
= mv_reset_pci_bus
,
848 static const struct mv_hw_ops mv_soc_ops
= {
849 .phy_errata
= mv6_phy_errata
,
850 .enable_leds
= mv_soc_enable_leds
,
851 .read_preamp
= mv_soc_read_preamp
,
852 .reset_hc
= mv_soc_reset_hc
,
853 .reset_flash
= mv_soc_reset_flash
,
854 .reset_bus
= mv_soc_reset_bus
,
857 static const struct mv_hw_ops mv_soc_65n_ops
= {
858 .phy_errata
= mv_soc_65n_phy_errata
,
859 .enable_leds
= mv_soc_enable_leds
,
860 .reset_hc
= mv_soc_reset_hc
,
861 .reset_flash
= mv_soc_reset_flash
,
862 .reset_bus
= mv_soc_reset_bus
,
869 static inline void writelfl(unsigned long data
, void __iomem
*addr
)
872 (void) readl(addr
); /* flush to avoid PCI posted write */
875 static inline unsigned int mv_hc_from_port(unsigned int port
)
877 return port
>> MV_PORT_HC_SHIFT
;
880 static inline unsigned int mv_hardport_from_port(unsigned int port
)
882 return port
& MV_PORT_MASK
;
886 * Consolidate some rather tricky bit shift calculations.
887 * This is hot-path stuff, so not a function.
888 * Simple code, with two return values, so macro rather than inline.
890 * port is the sole input, in range 0..7.
891 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
892 * hardport is the other output, in range 0..3.
894 * Note that port and hardport may be the same variable in some cases.
896 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
898 shift = mv_hc_from_port(port) * HC_SHIFT; \
899 hardport = mv_hardport_from_port(port); \
900 shift += hardport * 2; \
903 static inline void __iomem
*mv_hc_base(void __iomem
*base
, unsigned int hc
)
905 return (base
+ SATAHC0_REG_BASE
+ (hc
* MV_SATAHC_REG_SZ
));
908 static inline void __iomem
*mv_hc_base_from_port(void __iomem
*base
,
911 return mv_hc_base(base
, mv_hc_from_port(port
));
914 static inline void __iomem
*mv_port_base(void __iomem
*base
, unsigned int port
)
916 return mv_hc_base_from_port(base
, port
) +
917 MV_SATAHC_ARBTR_REG_SZ
+
918 (mv_hardport_from_port(port
) * MV_PORT_REG_SZ
);
921 static void __iomem
*mv5_phy_base(void __iomem
*mmio
, unsigned int port
)
923 void __iomem
*hc_mmio
= mv_hc_base_from_port(mmio
, port
);
924 unsigned long ofs
= (mv_hardport_from_port(port
) + 1) * 0x100UL
;
926 return hc_mmio
+ ofs
;
929 static inline void __iomem
*mv_host_base(struct ata_host
*host
)
931 struct mv_host_priv
*hpriv
= host
->private_data
;
935 static inline void __iomem
*mv_ap_base(struct ata_port
*ap
)
937 return mv_port_base(mv_host_base(ap
->host
), ap
->port_no
);
940 static inline int mv_get_hc_count(unsigned long port_flags
)
942 return ((port_flags
& MV_FLAG_DUAL_HC
) ? 2 : 1);
946 * mv_save_cached_regs - (re-)initialize cached port registers
947 * @ap: the port whose registers we are caching
949 * Initialize the local cache of port registers,
950 * so that reading them over and over again can
951 * be avoided on the hotter paths of this driver.
952 * This saves a few microseconds each time we switch
953 * to/from EDMA mode to perform (eg.) a drive cache flush.
955 static void mv_save_cached_regs(struct ata_port
*ap
)
957 void __iomem
*port_mmio
= mv_ap_base(ap
);
958 struct mv_port_priv
*pp
= ap
->private_data
;
960 pp
->cached
.fiscfg
= readl(port_mmio
+ FISCFG
);
961 pp
->cached
.ltmode
= readl(port_mmio
+ LTMODE
);
962 pp
->cached
.haltcond
= readl(port_mmio
+ EDMA_HALTCOND
);
963 pp
->cached
.unknown_rsvd
= readl(port_mmio
+ EDMA_UNKNOWN_RSVD
);
967 * mv_write_cached_reg - write to a cached port register
968 * @addr: hardware address of the register
969 * @old: pointer to cached value of the register
970 * @new: new value for the register
972 * Write a new value to a cached register,
973 * but only if the value is different from before.
975 static inline void mv_write_cached_reg(void __iomem
*addr
, u32
*old
, u32
new)
981 * Workaround for 88SX60x1-B2 FEr SATA#13:
982 * Read-after-write is needed to prevent generating 64-bit
983 * write cycles on the PCI bus for SATA interface registers
984 * at offsets ending in 0x4 or 0xc.
986 * Looks like a lot of fuss, but it avoids an unnecessary
987 * +1 usec read-after-write delay for unaffected registers.
989 laddr
= (long)addr
& 0xffff;
990 if (laddr
>= 0x300 && laddr
<= 0x33c) {
992 if (laddr
== 0x4 || laddr
== 0xc) {
993 writelfl(new, addr
); /* read after write */
997 writel(new, addr
); /* unaffected by the errata */
1001 static void mv_set_edma_ptrs(void __iomem
*port_mmio
,
1002 struct mv_host_priv
*hpriv
,
1003 struct mv_port_priv
*pp
)
1008 * initialize request queue
1010 pp
->req_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
1011 index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
1013 WARN_ON(pp
->crqb_dma
& 0x3ff);
1014 writel((pp
->crqb_dma
>> 16) >> 16, port_mmio
+ EDMA_REQ_Q_BASE_HI
);
1015 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | index
,
1016 port_mmio
+ EDMA_REQ_Q_IN_PTR
);
1017 writelfl(index
, port_mmio
+ EDMA_REQ_Q_OUT_PTR
);
1020 * initialize response queue
1022 pp
->resp_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
1023 index
= pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
;
1025 WARN_ON(pp
->crpb_dma
& 0xff);
1026 writel((pp
->crpb_dma
>> 16) >> 16, port_mmio
+ EDMA_RSP_Q_BASE_HI
);
1027 writelfl(index
, port_mmio
+ EDMA_RSP_Q_IN_PTR
);
1028 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) | index
,
1029 port_mmio
+ EDMA_RSP_Q_OUT_PTR
);
1032 static void mv_write_main_irq_mask(u32 mask
, struct mv_host_priv
*hpriv
)
1035 * When writing to the main_irq_mask in hardware,
1036 * we must ensure exclusivity between the interrupt coalescing bits
1037 * and the corresponding individual port DONE_IRQ bits.
1039 * Note that this register is really an "IRQ enable" register,
1040 * not an "IRQ mask" register as Marvell's naming might suggest.
1042 if (mask
& (ALL_PORTS_COAL_DONE
| PORTS_0_3_COAL_DONE
))
1043 mask
&= ~DONE_IRQ_0_3
;
1044 if (mask
& (ALL_PORTS_COAL_DONE
| PORTS_4_7_COAL_DONE
))
1045 mask
&= ~DONE_IRQ_4_7
;
1046 writelfl(mask
, hpriv
->main_irq_mask_addr
);
1049 static void mv_set_main_irq_mask(struct ata_host
*host
,
1050 u32 disable_bits
, u32 enable_bits
)
1052 struct mv_host_priv
*hpriv
= host
->private_data
;
1053 u32 old_mask
, new_mask
;
1055 old_mask
= hpriv
->main_irq_mask
;
1056 new_mask
= (old_mask
& ~disable_bits
) | enable_bits
;
1057 if (new_mask
!= old_mask
) {
1058 hpriv
->main_irq_mask
= new_mask
;
1059 mv_write_main_irq_mask(new_mask
, hpriv
);
1063 static void mv_enable_port_irqs(struct ata_port
*ap
,
1064 unsigned int port_bits
)
1066 unsigned int shift
, hardport
, port
= ap
->port_no
;
1067 u32 disable_bits
, enable_bits
;
1069 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
1071 disable_bits
= (DONE_IRQ
| ERR_IRQ
) << shift
;
1072 enable_bits
= port_bits
<< shift
;
1073 mv_set_main_irq_mask(ap
->host
, disable_bits
, enable_bits
);
1076 static void mv_clear_and_enable_port_irqs(struct ata_port
*ap
,
1077 void __iomem
*port_mmio
,
1078 unsigned int port_irqs
)
1080 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1081 int hardport
= mv_hardport_from_port(ap
->port_no
);
1082 void __iomem
*hc_mmio
= mv_hc_base_from_port(
1083 mv_host_base(ap
->host
), ap
->port_no
);
1086 /* clear EDMA event indicators, if any */
1087 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
1089 /* clear pending irq events */
1090 hc_irq_cause
= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
1091 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE
);
1093 /* clear FIS IRQ Cause */
1094 if (IS_GEN_IIE(hpriv
))
1095 writelfl(0, port_mmio
+ FIS_IRQ_CAUSE
);
1097 mv_enable_port_irqs(ap
, port_irqs
);
1100 static void mv_set_irq_coalescing(struct ata_host
*host
,
1101 unsigned int count
, unsigned int usecs
)
1103 struct mv_host_priv
*hpriv
= host
->private_data
;
1104 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
1105 u32 coal_enable
= 0;
1106 unsigned long flags
;
1107 unsigned int clks
, is_dual_hc
= hpriv
->n_ports
> MV_PORTS_PER_HC
;
1108 const u32 coal_disable
= PORTS_0_3_COAL_DONE
| PORTS_4_7_COAL_DONE
|
1109 ALL_PORTS_COAL_DONE
;
1111 /* Disable IRQ coalescing if either threshold is zero */
1112 if (!usecs
|| !count
) {
1115 /* Respect maximum limits of the hardware */
1116 clks
= usecs
* COAL_CLOCKS_PER_USEC
;
1117 if (clks
> MAX_COAL_TIME_THRESHOLD
)
1118 clks
= MAX_COAL_TIME_THRESHOLD
;
1119 if (count
> MAX_COAL_IO_COUNT
)
1120 count
= MAX_COAL_IO_COUNT
;
1123 spin_lock_irqsave(&host
->lock
, flags
);
1124 mv_set_main_irq_mask(host
, coal_disable
, 0);
1126 if (is_dual_hc
&& !IS_GEN_I(hpriv
)) {
1128 * GEN_II/GEN_IIE with dual host controllers:
1129 * one set of global thresholds for the entire chip.
1131 writel(clks
, mmio
+ IRQ_COAL_TIME_THRESHOLD
);
1132 writel(count
, mmio
+ IRQ_COAL_IO_THRESHOLD
);
1133 /* clear leftover coal IRQ bit */
1134 writel(~ALL_PORTS_COAL_IRQ
, mmio
+ IRQ_COAL_CAUSE
);
1136 coal_enable
= ALL_PORTS_COAL_DONE
;
1137 clks
= count
= 0; /* force clearing of regular regs below */
1141 * All chips: independent thresholds for each HC on the chip.
1143 hc_mmio
= mv_hc_base_from_port(mmio
, 0);
1144 writel(clks
, hc_mmio
+ HC_IRQ_COAL_TIME_THRESHOLD
);
1145 writel(count
, hc_mmio
+ HC_IRQ_COAL_IO_THRESHOLD
);
1146 writel(~HC_COAL_IRQ
, hc_mmio
+ HC_IRQ_CAUSE
);
1148 coal_enable
|= PORTS_0_3_COAL_DONE
;
1150 hc_mmio
= mv_hc_base_from_port(mmio
, MV_PORTS_PER_HC
);
1151 writel(clks
, hc_mmio
+ HC_IRQ_COAL_TIME_THRESHOLD
);
1152 writel(count
, hc_mmio
+ HC_IRQ_COAL_IO_THRESHOLD
);
1153 writel(~HC_COAL_IRQ
, hc_mmio
+ HC_IRQ_CAUSE
);
1155 coal_enable
|= PORTS_4_7_COAL_DONE
;
1158 mv_set_main_irq_mask(host
, 0, coal_enable
);
1159 spin_unlock_irqrestore(&host
->lock
, flags
);
1163 * mv_start_edma - Enable eDMA engine
1164 * @base: port base address
1165 * @pp: port private data
1167 * Verify the local cache of the eDMA state is accurate with a
1171 * Inherited from caller.
1173 static void mv_start_edma(struct ata_port
*ap
, void __iomem
*port_mmio
,
1174 struct mv_port_priv
*pp
, u8 protocol
)
1176 int want_ncq
= (protocol
== ATA_PROT_NCQ
);
1178 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
1179 int using_ncq
= ((pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) != 0);
1180 if (want_ncq
!= using_ncq
)
1183 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
)) {
1184 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1186 mv_edma_cfg(ap
, want_ncq
, 1);
1188 mv_set_edma_ptrs(port_mmio
, hpriv
, pp
);
1189 mv_clear_and_enable_port_irqs(ap
, port_mmio
, DONE_IRQ
|ERR_IRQ
);
1191 writelfl(EDMA_EN
, port_mmio
+ EDMA_CMD
);
1192 pp
->pp_flags
|= MV_PP_FLAG_EDMA_EN
;
1196 static void mv_wait_for_edma_empty_idle(struct ata_port
*ap
)
1198 void __iomem
*port_mmio
= mv_ap_base(ap
);
1199 const u32 empty_idle
= (EDMA_STATUS_CACHE_EMPTY
| EDMA_STATUS_IDLE
);
1200 const int per_loop
= 5, timeout
= (15 * 1000 / per_loop
);
1204 * Wait for the EDMA engine to finish transactions in progress.
1205 * No idea what a good "timeout" value might be, but measurements
1206 * indicate that it often requires hundreds of microseconds
1207 * with two drives in-use. So we use the 15msec value above
1208 * as a rough guess at what even more drives might require.
1210 for (i
= 0; i
< timeout
; ++i
) {
1211 u32 edma_stat
= readl(port_mmio
+ EDMA_STATUS
);
1212 if ((edma_stat
& empty_idle
) == empty_idle
)
1216 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1220 * mv_stop_edma_engine - Disable eDMA engine
1221 * @port_mmio: io base address
1224 * Inherited from caller.
1226 static int mv_stop_edma_engine(void __iomem
*port_mmio
)
1230 /* Disable eDMA. The disable bit auto clears. */
1231 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD
);
1233 /* Wait for the chip to confirm eDMA is off. */
1234 for (i
= 10000; i
> 0; i
--) {
1235 u32 reg
= readl(port_mmio
+ EDMA_CMD
);
1236 if (!(reg
& EDMA_EN
))
1243 static int mv_stop_edma(struct ata_port
*ap
)
1245 void __iomem
*port_mmio
= mv_ap_base(ap
);
1246 struct mv_port_priv
*pp
= ap
->private_data
;
1249 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
1251 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1252 mv_wait_for_edma_empty_idle(ap
);
1253 if (mv_stop_edma_engine(port_mmio
)) {
1254 ata_port_err(ap
, "Unable to stop eDMA\n");
1257 mv_edma_cfg(ap
, 0, 0);
1262 static void mv_dump_mem(void __iomem
*start
, unsigned bytes
)
1265 for (b
= 0; b
< bytes
; ) {
1266 DPRINTK("%p: ", start
+ b
);
1267 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
1268 printk("%08x ", readl(start
+ b
));
1275 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1276 static void mv_dump_pci_cfg(struct pci_dev
*pdev
, unsigned bytes
)
1281 for (b
= 0; b
< bytes
; ) {
1282 DPRINTK("%02x: ", b
);
1283 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
1284 (void) pci_read_config_dword(pdev
, b
, &dw
);
1285 printk("%08x ", dw
);
1293 static void mv_dump_all_regs(void __iomem
*mmio_base
, int port
,
1294 struct pci_dev
*pdev
)
1297 void __iomem
*hc_base
= mv_hc_base(mmio_base
,
1298 port
>> MV_PORT_HC_SHIFT
);
1299 void __iomem
*port_base
;
1300 int start_port
, num_ports
, p
, start_hc
, num_hcs
, hc
;
1303 start_hc
= start_port
= 0;
1304 num_ports
= 8; /* shld be benign for 4 port devs */
1307 start_hc
= port
>> MV_PORT_HC_SHIFT
;
1309 num_ports
= num_hcs
= 1;
1311 DPRINTK("All registers for port(s) %u-%u:\n", start_port
,
1312 num_ports
> 1 ? num_ports
- 1 : start_port
);
1315 DPRINTK("PCI config space regs:\n");
1316 mv_dump_pci_cfg(pdev
, 0x68);
1318 DPRINTK("PCI regs:\n");
1319 mv_dump_mem(mmio_base
+0xc00, 0x3c);
1320 mv_dump_mem(mmio_base
+0xd00, 0x34);
1321 mv_dump_mem(mmio_base
+0xf00, 0x4);
1322 mv_dump_mem(mmio_base
+0x1d00, 0x6c);
1323 for (hc
= start_hc
; hc
< start_hc
+ num_hcs
; hc
++) {
1324 hc_base
= mv_hc_base(mmio_base
, hc
);
1325 DPRINTK("HC regs (HC %i):\n", hc
);
1326 mv_dump_mem(hc_base
, 0x1c);
1328 for (p
= start_port
; p
< start_port
+ num_ports
; p
++) {
1329 port_base
= mv_port_base(mmio_base
, p
);
1330 DPRINTK("EDMA regs (port %i):\n", p
);
1331 mv_dump_mem(port_base
, 0x54);
1332 DPRINTK("SATA regs (port %i):\n", p
);
1333 mv_dump_mem(port_base
+0x300, 0x60);
1338 static unsigned int mv_scr_offset(unsigned int sc_reg_in
)
1342 switch (sc_reg_in
) {
1346 ofs
= SATA_STATUS
+ (sc_reg_in
* sizeof(u32
));
1349 ofs
= SATA_ACTIVE
; /* active is not with the others */
1358 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
1360 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1362 if (ofs
!= 0xffffffffU
) {
1363 *val
= readl(mv_ap_base(link
->ap
) + ofs
);
1369 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
1371 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1373 if (ofs
!= 0xffffffffU
) {
1374 void __iomem
*addr
= mv_ap_base(link
->ap
) + ofs
;
1375 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
1376 if (sc_reg_in
== SCR_CONTROL
) {
1378 * Workaround for 88SX60x1 FEr SATA#26:
1380 * COMRESETs have to take care not to accidentally
1381 * put the drive to sleep when writing SCR_CONTROL.
1382 * Setting bits 12..15 prevents this problem.
1384 * So if we see an outbound COMMRESET, set those bits.
1385 * Ditto for the followup write that clears the reset.
1387 * The proprietary driver does this for
1388 * all chip versions, and so do we.
1390 if ((val
& 0xf) == 1 || (readl(addr
) & 0xf) == 1)
1393 if (hpriv
->hp_flags
& MV_HP_FIX_LP_PHY_CTL
) {
1394 void __iomem
*lp_phy_addr
=
1395 mv_ap_base(link
->ap
) + LP_PHY_CTL
;
1397 * Set PHY speed according to SControl speed.
1400 LP_PHY_CTL_PIN_PU_PLL
|
1401 LP_PHY_CTL_PIN_PU_RX
|
1402 LP_PHY_CTL_PIN_PU_TX
;
1404 if ((val
& 0xf0) != 0x10)
1406 LP_PHY_CTL_GEN_TX_3G
|
1407 LP_PHY_CTL_GEN_RX_3G
;
1409 writelfl(lp_phy_val
, lp_phy_addr
);
1412 writelfl(val
, addr
);
1418 static void mv6_dev_config(struct ata_device
*adev
)
1421 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1423 * Gen-II does not support NCQ over a port multiplier
1424 * (no FIS-based switching).
1426 if (adev
->flags
& ATA_DFLAG_NCQ
) {
1427 if (sata_pmp_attached(adev
->link
->ap
)) {
1428 adev
->flags
&= ~ATA_DFLAG_NCQ
;
1430 "NCQ disabled for command-based switching\n");
1435 static int mv_qc_defer(struct ata_queued_cmd
*qc
)
1437 struct ata_link
*link
= qc
->dev
->link
;
1438 struct ata_port
*ap
= link
->ap
;
1439 struct mv_port_priv
*pp
= ap
->private_data
;
1442 * Don't allow new commands if we're in a delayed EH state
1443 * for NCQ and/or FIS-based switching.
1445 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
1446 return ATA_DEFER_PORT
;
1448 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1449 * can run concurrently.
1450 * set excl_link when we want to send a PIO command in DMA mode
1451 * or a non-NCQ command in NCQ mode.
1452 * When we receive a command from that link, and there are no
1453 * outstanding commands, mark a flag to clear excl_link and let
1454 * the command go through.
1456 if (unlikely(ap
->excl_link
)) {
1457 if (link
== ap
->excl_link
) {
1458 if (ap
->nr_active_links
)
1459 return ATA_DEFER_PORT
;
1460 qc
->flags
|= ATA_QCFLAG_CLEAR_EXCL
;
1463 return ATA_DEFER_PORT
;
1467 * If the port is completely idle, then allow the new qc.
1469 if (ap
->nr_active_links
== 0)
1473 * The port is operating in host queuing mode (EDMA) with NCQ
1474 * enabled, allow multiple NCQ commands. EDMA also allows
1475 * queueing multiple DMA commands but libata core currently
1478 if ((pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) &&
1479 (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)) {
1480 if (ata_is_ncq(qc
->tf
.protocol
))
1483 ap
->excl_link
= link
;
1484 return ATA_DEFER_PORT
;
1488 return ATA_DEFER_PORT
;
1491 static void mv_config_fbs(struct ata_port
*ap
, int want_ncq
, int want_fbs
)
1493 struct mv_port_priv
*pp
= ap
->private_data
;
1494 void __iomem
*port_mmio
;
1496 u32 fiscfg
, *old_fiscfg
= &pp
->cached
.fiscfg
;
1497 u32 ltmode
, *old_ltmode
= &pp
->cached
.ltmode
;
1498 u32 haltcond
, *old_haltcond
= &pp
->cached
.haltcond
;
1500 ltmode
= *old_ltmode
& ~LTMODE_BIT8
;
1501 haltcond
= *old_haltcond
| EDMA_ERR_DEV
;
1504 fiscfg
= *old_fiscfg
| FISCFG_SINGLE_SYNC
;
1505 ltmode
= *old_ltmode
| LTMODE_BIT8
;
1507 haltcond
&= ~EDMA_ERR_DEV
;
1509 fiscfg
|= FISCFG_WAIT_DEV_ERR
;
1511 fiscfg
= *old_fiscfg
& ~(FISCFG_SINGLE_SYNC
| FISCFG_WAIT_DEV_ERR
);
1514 port_mmio
= mv_ap_base(ap
);
1515 mv_write_cached_reg(port_mmio
+ FISCFG
, old_fiscfg
, fiscfg
);
1516 mv_write_cached_reg(port_mmio
+ LTMODE
, old_ltmode
, ltmode
);
1517 mv_write_cached_reg(port_mmio
+ EDMA_HALTCOND
, old_haltcond
, haltcond
);
1520 static void mv_60x1_errata_sata25(struct ata_port
*ap
, int want_ncq
)
1522 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1525 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1526 old
= readl(hpriv
->base
+ GPIO_PORT_CTL
);
1528 new = old
| (1 << 22);
1530 new = old
& ~(1 << 22);
1532 writel(new, hpriv
->base
+ GPIO_PORT_CTL
);
1536 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1537 * @ap: Port being initialized
1539 * There are two DMA modes on these chips: basic DMA, and EDMA.
1541 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1542 * of basic DMA on the GEN_IIE versions of the chips.
1544 * This bit survives EDMA resets, and must be set for basic DMA
1545 * to function, and should be cleared when EDMA is active.
1547 static void mv_bmdma_enable_iie(struct ata_port
*ap
, int enable_bmdma
)
1549 struct mv_port_priv
*pp
= ap
->private_data
;
1550 u32
new, *old
= &pp
->cached
.unknown_rsvd
;
1556 mv_write_cached_reg(mv_ap_base(ap
) + EDMA_UNKNOWN_RSVD
, old
, new);
1560 * SOC chips have an issue whereby the HDD LEDs don't always blink
1561 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1562 * of the SOC takes care of it, generating a steady blink rate when
1563 * any drive on the chip is active.
1565 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1566 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1568 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1569 * LED operation works then, and provides better (more accurate) feedback.
1571 * Note that this code assumes that an SOC never has more than one HC onboard.
1573 static void mv_soc_led_blink_enable(struct ata_port
*ap
)
1575 struct ata_host
*host
= ap
->host
;
1576 struct mv_host_priv
*hpriv
= host
->private_data
;
1577 void __iomem
*hc_mmio
;
1580 if (hpriv
->hp_flags
& MV_HP_QUIRK_LED_BLINK_EN
)
1582 hpriv
->hp_flags
|= MV_HP_QUIRK_LED_BLINK_EN
;
1583 hc_mmio
= mv_hc_base_from_port(mv_host_base(host
), ap
->port_no
);
1584 led_ctrl
= readl(hc_mmio
+ SOC_LED_CTRL
);
1585 writel(led_ctrl
| SOC_LED_CTRL_BLINK
, hc_mmio
+ SOC_LED_CTRL
);
1588 static void mv_soc_led_blink_disable(struct ata_port
*ap
)
1590 struct ata_host
*host
= ap
->host
;
1591 struct mv_host_priv
*hpriv
= host
->private_data
;
1592 void __iomem
*hc_mmio
;
1596 if (!(hpriv
->hp_flags
& MV_HP_QUIRK_LED_BLINK_EN
))
1599 /* disable led-blink only if no ports are using NCQ */
1600 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
1601 struct ata_port
*this_ap
= host
->ports
[port
];
1602 struct mv_port_priv
*pp
= this_ap
->private_data
;
1604 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
1608 hpriv
->hp_flags
&= ~MV_HP_QUIRK_LED_BLINK_EN
;
1609 hc_mmio
= mv_hc_base_from_port(mv_host_base(host
), ap
->port_no
);
1610 led_ctrl
= readl(hc_mmio
+ SOC_LED_CTRL
);
1611 writel(led_ctrl
& ~SOC_LED_CTRL_BLINK
, hc_mmio
+ SOC_LED_CTRL
);
1614 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
, int want_edma
)
1617 struct mv_port_priv
*pp
= ap
->private_data
;
1618 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1619 void __iomem
*port_mmio
= mv_ap_base(ap
);
1621 /* set up non-NCQ EDMA configuration */
1622 cfg
= EDMA_CFG_Q_DEPTH
; /* always 0x1f for *all* chips */
1624 ~(MV_PP_FLAG_FBS_EN
| MV_PP_FLAG_NCQ_EN
| MV_PP_FLAG_FAKE_ATA_BUSY
);
1626 if (IS_GEN_I(hpriv
))
1627 cfg
|= (1 << 8); /* enab config burst size mask */
1629 else if (IS_GEN_II(hpriv
)) {
1630 cfg
|= EDMA_CFG_RD_BRST_EXT
| EDMA_CFG_WR_BUFF_LEN
;
1631 mv_60x1_errata_sata25(ap
, want_ncq
);
1633 } else if (IS_GEN_IIE(hpriv
)) {
1634 int want_fbs
= sata_pmp_attached(ap
);
1636 * Possible future enhancement:
1638 * The chip can use FBS with non-NCQ, if we allow it,
1639 * But first we need to have the error handling in place
1640 * for this mode (datasheet section 7.3.15.4.2.3).
1641 * So disallow non-NCQ FBS for now.
1643 want_fbs
&= want_ncq
;
1645 mv_config_fbs(ap
, want_ncq
, want_fbs
);
1648 pp
->pp_flags
|= MV_PP_FLAG_FBS_EN
;
1649 cfg
|= EDMA_CFG_EDMA_FBS
; /* FIS-based switching */
1652 cfg
|= (1 << 23); /* do not mask PM field in rx'd FIS */
1654 cfg
|= (1 << 22); /* enab 4-entry host queue cache */
1656 cfg
|= (1 << 18); /* enab early completion */
1658 if (hpriv
->hp_flags
& MV_HP_CUT_THROUGH
)
1659 cfg
|= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1660 mv_bmdma_enable_iie(ap
, !want_edma
);
1662 if (IS_SOC(hpriv
)) {
1664 mv_soc_led_blink_enable(ap
);
1666 mv_soc_led_blink_disable(ap
);
1671 cfg
|= EDMA_CFG_NCQ
;
1672 pp
->pp_flags
|= MV_PP_FLAG_NCQ_EN
;
1675 writelfl(cfg
, port_mmio
+ EDMA_CFG
);
1678 static void mv_port_free_dma_mem(struct ata_port
*ap
)
1680 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1681 struct mv_port_priv
*pp
= ap
->private_data
;
1685 dma_pool_free(hpriv
->crqb_pool
, pp
->crqb
, pp
->crqb_dma
);
1689 dma_pool_free(hpriv
->crpb_pool
, pp
->crpb
, pp
->crpb_dma
);
1693 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1694 * For later hardware, we have one unique sg_tbl per NCQ tag.
1696 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1697 if (pp
->sg_tbl
[tag
]) {
1698 if (tag
== 0 || !IS_GEN_I(hpriv
))
1699 dma_pool_free(hpriv
->sg_tbl_pool
,
1701 pp
->sg_tbl_dma
[tag
]);
1702 pp
->sg_tbl
[tag
] = NULL
;
1708 * mv_port_start - Port specific init/start routine.
1709 * @ap: ATA channel to manipulate
1711 * Allocate and point to DMA memory, init port private memory,
1715 * Inherited from caller.
1717 static int mv_port_start(struct ata_port
*ap
)
1719 struct device
*dev
= ap
->host
->dev
;
1720 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1721 struct mv_port_priv
*pp
;
1722 unsigned long flags
;
1725 pp
= devm_kzalloc(dev
, sizeof(*pp
), GFP_KERNEL
);
1728 ap
->private_data
= pp
;
1730 pp
->crqb
= dma_pool_alloc(hpriv
->crqb_pool
, GFP_KERNEL
, &pp
->crqb_dma
);
1733 memset(pp
->crqb
, 0, MV_CRQB_Q_SZ
);
1735 pp
->crpb
= dma_pool_alloc(hpriv
->crpb_pool
, GFP_KERNEL
, &pp
->crpb_dma
);
1737 goto out_port_free_dma_mem
;
1738 memset(pp
->crpb
, 0, MV_CRPB_Q_SZ
);
1740 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1741 if (hpriv
->hp_flags
& MV_HP_ERRATA_60X1C0
)
1742 ap
->flags
|= ATA_FLAG_AN
;
1744 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1745 * For later hardware, we need one unique sg_tbl per NCQ tag.
1747 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1748 if (tag
== 0 || !IS_GEN_I(hpriv
)) {
1749 pp
->sg_tbl
[tag
] = dma_pool_alloc(hpriv
->sg_tbl_pool
,
1750 GFP_KERNEL
, &pp
->sg_tbl_dma
[tag
]);
1751 if (!pp
->sg_tbl
[tag
])
1752 goto out_port_free_dma_mem
;
1754 pp
->sg_tbl
[tag
] = pp
->sg_tbl
[0];
1755 pp
->sg_tbl_dma
[tag
] = pp
->sg_tbl_dma
[0];
1759 spin_lock_irqsave(ap
->lock
, flags
);
1760 mv_save_cached_regs(ap
);
1761 mv_edma_cfg(ap
, 0, 0);
1762 spin_unlock_irqrestore(ap
->lock
, flags
);
1766 out_port_free_dma_mem
:
1767 mv_port_free_dma_mem(ap
);
1772 * mv_port_stop - Port specific cleanup/stop routine.
1773 * @ap: ATA channel to manipulate
1775 * Stop DMA, cleanup port memory.
1778 * This routine uses the host lock to protect the DMA stop.
1780 static void mv_port_stop(struct ata_port
*ap
)
1782 unsigned long flags
;
1784 spin_lock_irqsave(ap
->lock
, flags
);
1786 mv_enable_port_irqs(ap
, 0);
1787 spin_unlock_irqrestore(ap
->lock
, flags
);
1788 mv_port_free_dma_mem(ap
);
1792 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1793 * @qc: queued command whose SG list to source from
1795 * Populate the SG list and mark the last entry.
1798 * Inherited from caller.
1800 static void mv_fill_sg(struct ata_queued_cmd
*qc
)
1802 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
1803 struct scatterlist
*sg
;
1804 struct mv_sg
*mv_sg
, *last_sg
= NULL
;
1807 mv_sg
= pp
->sg_tbl
[qc
->tag
];
1808 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
1809 dma_addr_t addr
= sg_dma_address(sg
);
1810 u32 sg_len
= sg_dma_len(sg
);
1813 u32 offset
= addr
& 0xffff;
1816 if (offset
+ len
> 0x10000)
1817 len
= 0x10000 - offset
;
1819 mv_sg
->addr
= cpu_to_le32(addr
& 0xffffffff);
1820 mv_sg
->addr_hi
= cpu_to_le32((addr
>> 16) >> 16);
1821 mv_sg
->flags_size
= cpu_to_le32(len
& 0xffff);
1822 mv_sg
->reserved
= 0;
1832 if (likely(last_sg
))
1833 last_sg
->flags_size
|= cpu_to_le32(EPRD_FLAG_END_OF_TBL
);
1834 mb(); /* ensure data structure is visible to the chipset */
1837 static void mv_crqb_pack_cmd(__le16
*cmdw
, u8 data
, u8 addr
, unsigned last
)
1839 u16 tmp
= data
| (addr
<< CRQB_CMD_ADDR_SHIFT
) | CRQB_CMD_CS
|
1840 (last
? CRQB_CMD_LAST
: 0);
1841 *cmdw
= cpu_to_le16(tmp
);
1845 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1846 * @ap: Port associated with this ATA transaction.
1848 * We need this only for ATAPI bmdma transactions,
1849 * as otherwise we experience spurious interrupts
1850 * after libata-sff handles the bmdma interrupts.
1852 static void mv_sff_irq_clear(struct ata_port
*ap
)
1854 mv_clear_and_enable_port_irqs(ap
, mv_ap_base(ap
), ERR_IRQ
);
1858 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1859 * @qc: queued command to check for chipset/DMA compatibility.
1861 * The bmdma engines cannot handle speculative data sizes
1862 * (bytecount under/over flow). So only allow DMA for
1863 * data transfer commands with known data sizes.
1866 * Inherited from caller.
1868 static int mv_check_atapi_dma(struct ata_queued_cmd
*qc
)
1870 struct scsi_cmnd
*scmd
= qc
->scsicmd
;
1873 switch (scmd
->cmnd
[0]) {
1881 case GPCMD_SEND_DVD_STRUCTURE
:
1882 case GPCMD_SEND_CUE_SHEET
:
1883 return 0; /* DMA is safe */
1886 return -EOPNOTSUPP
; /* use PIO instead */
1890 * mv_bmdma_setup - Set up BMDMA transaction
1891 * @qc: queued command to prepare DMA for.
1894 * Inherited from caller.
1896 static void mv_bmdma_setup(struct ata_queued_cmd
*qc
)
1898 struct ata_port
*ap
= qc
->ap
;
1899 void __iomem
*port_mmio
= mv_ap_base(ap
);
1900 struct mv_port_priv
*pp
= ap
->private_data
;
1904 /* clear all DMA cmd bits */
1905 writel(0, port_mmio
+ BMDMA_CMD
);
1907 /* load PRD table addr. */
1908 writel((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16,
1909 port_mmio
+ BMDMA_PRD_HIGH
);
1910 writelfl(pp
->sg_tbl_dma
[qc
->tag
],
1911 port_mmio
+ BMDMA_PRD_LOW
);
1913 /* issue r/w command */
1914 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
1918 * mv_bmdma_start - Start a BMDMA transaction
1919 * @qc: queued command to start DMA on.
1922 * Inherited from caller.
1924 static void mv_bmdma_start(struct ata_queued_cmd
*qc
)
1926 struct ata_port
*ap
= qc
->ap
;
1927 void __iomem
*port_mmio
= mv_ap_base(ap
);
1928 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
1929 u32 cmd
= (rw
? 0 : ATA_DMA_WR
) | ATA_DMA_START
;
1931 /* start host DMA transaction */
1932 writelfl(cmd
, port_mmio
+ BMDMA_CMD
);
1936 * mv_bmdma_stop - Stop BMDMA transfer
1937 * @qc: queued command to stop DMA on.
1939 * Clears the ATA_DMA_START flag in the bmdma control register
1942 * Inherited from caller.
1944 static void mv_bmdma_stop_ap(struct ata_port
*ap
)
1946 void __iomem
*port_mmio
= mv_ap_base(ap
);
1949 /* clear start/stop bit */
1950 cmd
= readl(port_mmio
+ BMDMA_CMD
);
1951 if (cmd
& ATA_DMA_START
) {
1952 cmd
&= ~ATA_DMA_START
;
1953 writelfl(cmd
, port_mmio
+ BMDMA_CMD
);
1955 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1956 ata_sff_dma_pause(ap
);
1960 static void mv_bmdma_stop(struct ata_queued_cmd
*qc
)
1962 mv_bmdma_stop_ap(qc
->ap
);
1966 * mv_bmdma_status - Read BMDMA status
1967 * @ap: port for which to retrieve DMA status.
1969 * Read and return equivalent of the sff BMDMA status register.
1972 * Inherited from caller.
1974 static u8
mv_bmdma_status(struct ata_port
*ap
)
1976 void __iomem
*port_mmio
= mv_ap_base(ap
);
1980 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1981 * and the ATA_DMA_INTR bit doesn't exist.
1983 reg
= readl(port_mmio
+ BMDMA_STATUS
);
1984 if (reg
& ATA_DMA_ACTIVE
)
1985 status
= ATA_DMA_ACTIVE
;
1986 else if (reg
& ATA_DMA_ERR
)
1987 status
= (reg
& ATA_DMA_ERR
) | ATA_DMA_INTR
;
1990 * Just because DMA_ACTIVE is 0 (DMA completed),
1991 * this does _not_ mean the device is "done".
1992 * So we should not yet be signalling ATA_DMA_INTR
1993 * in some cases. Eg. DSM/TRIM, and perhaps others.
1995 mv_bmdma_stop_ap(ap
);
1996 if (ioread8(ap
->ioaddr
.altstatus_addr
) & ATA_BUSY
)
1999 status
= ATA_DMA_INTR
;
2004 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd
*qc
)
2006 struct ata_taskfile
*tf
= &qc
->tf
;
2008 * Workaround for 88SX60x1 FEr SATA#24.
2010 * Chip may corrupt WRITEs if multi_count >= 4kB.
2011 * Note that READs are unaffected.
2013 * It's not clear if this errata really means "4K bytes",
2014 * or if it always happens for multi_count > 7
2015 * regardless of device sector_size.
2017 * So, for safety, any write with multi_count > 7
2018 * gets converted here into a regular PIO write instead:
2020 if ((tf
->flags
& ATA_TFLAG_WRITE
) && is_multi_taskfile(tf
)) {
2021 if (qc
->dev
->multi_count
> 7) {
2022 switch (tf
->command
) {
2023 case ATA_CMD_WRITE_MULTI
:
2024 tf
->command
= ATA_CMD_PIO_WRITE
;
2026 case ATA_CMD_WRITE_MULTI_FUA_EXT
:
2027 tf
->flags
&= ~ATA_TFLAG_FUA
; /* ugh */
2029 case ATA_CMD_WRITE_MULTI_EXT
:
2030 tf
->command
= ATA_CMD_PIO_WRITE_EXT
;
2038 * mv_qc_prep - Host specific command preparation.
2039 * @qc: queued command to prepare
2041 * This routine simply redirects to the general purpose routine
2042 * if command is not DMA. Else, it handles prep of the CRQB
2043 * (command request block), does some sanity checking, and calls
2044 * the SG load routine.
2047 * Inherited from caller.
2049 static void mv_qc_prep(struct ata_queued_cmd
*qc
)
2051 struct ata_port
*ap
= qc
->ap
;
2052 struct mv_port_priv
*pp
= ap
->private_data
;
2054 struct ata_taskfile
*tf
= &qc
->tf
;
2058 switch (tf
->protocol
) {
2060 if (tf
->command
== ATA_CMD_DSM
)
2064 break; /* continue below */
2066 mv_rw_multi_errata_sata24(qc
);
2072 /* Fill in command request block
2074 if (!(tf
->flags
& ATA_TFLAG_WRITE
))
2075 flags
|= CRQB_FLAG_READ
;
2076 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
2077 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
2078 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
2080 /* get current queue index from software */
2081 in_index
= pp
->req_idx
;
2083 pp
->crqb
[in_index
].sg_addr
=
2084 cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
2085 pp
->crqb
[in_index
].sg_addr_hi
=
2086 cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
2087 pp
->crqb
[in_index
].ctrl_flags
= cpu_to_le16(flags
);
2089 cw
= &pp
->crqb
[in_index
].ata_cmd
[0];
2091 /* Sadly, the CRQB cannot accommodate all registers--there are
2092 * only 11 bytes...so we must pick and choose required
2093 * registers based on the command. So, we drop feature and
2094 * hob_feature for [RW] DMA commands, but they are needed for
2095 * NCQ. NCQ will drop hob_nsect, which is not needed there
2096 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2098 switch (tf
->command
) {
2100 case ATA_CMD_READ_EXT
:
2102 case ATA_CMD_WRITE_EXT
:
2103 case ATA_CMD_WRITE_FUA_EXT
:
2104 mv_crqb_pack_cmd(cw
++, tf
->hob_nsect
, ATA_REG_NSECT
, 0);
2106 case ATA_CMD_FPDMA_READ
:
2107 case ATA_CMD_FPDMA_WRITE
:
2108 mv_crqb_pack_cmd(cw
++, tf
->hob_feature
, ATA_REG_FEATURE
, 0);
2109 mv_crqb_pack_cmd(cw
++, tf
->feature
, ATA_REG_FEATURE
, 0);
2112 /* The only other commands EDMA supports in non-queued and
2113 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2114 * of which are defined/used by Linux. If we get here, this
2115 * driver needs work.
2117 * FIXME: modify libata to give qc_prep a return value and
2118 * return error here.
2120 BUG_ON(tf
->command
);
2123 mv_crqb_pack_cmd(cw
++, tf
->nsect
, ATA_REG_NSECT
, 0);
2124 mv_crqb_pack_cmd(cw
++, tf
->hob_lbal
, ATA_REG_LBAL
, 0);
2125 mv_crqb_pack_cmd(cw
++, tf
->lbal
, ATA_REG_LBAL
, 0);
2126 mv_crqb_pack_cmd(cw
++, tf
->hob_lbam
, ATA_REG_LBAM
, 0);
2127 mv_crqb_pack_cmd(cw
++, tf
->lbam
, ATA_REG_LBAM
, 0);
2128 mv_crqb_pack_cmd(cw
++, tf
->hob_lbah
, ATA_REG_LBAH
, 0);
2129 mv_crqb_pack_cmd(cw
++, tf
->lbah
, ATA_REG_LBAH
, 0);
2130 mv_crqb_pack_cmd(cw
++, tf
->device
, ATA_REG_DEVICE
, 0);
2131 mv_crqb_pack_cmd(cw
++, tf
->command
, ATA_REG_CMD
, 1); /* last */
2133 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2139 * mv_qc_prep_iie - Host specific command preparation.
2140 * @qc: queued command to prepare
2142 * This routine simply redirects to the general purpose routine
2143 * if command is not DMA. Else, it handles prep of the CRQB
2144 * (command request block), does some sanity checking, and calls
2145 * the SG load routine.
2148 * Inherited from caller.
2150 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
)
2152 struct ata_port
*ap
= qc
->ap
;
2153 struct mv_port_priv
*pp
= ap
->private_data
;
2154 struct mv_crqb_iie
*crqb
;
2155 struct ata_taskfile
*tf
= &qc
->tf
;
2159 if ((tf
->protocol
!= ATA_PROT_DMA
) &&
2160 (tf
->protocol
!= ATA_PROT_NCQ
))
2162 if (tf
->command
== ATA_CMD_DSM
)
2163 return; /* use bmdma for this */
2165 /* Fill in Gen IIE command request block */
2166 if (!(tf
->flags
& ATA_TFLAG_WRITE
))
2167 flags
|= CRQB_FLAG_READ
;
2169 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
2170 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
2171 flags
|= qc
->tag
<< CRQB_HOSTQ_SHIFT
;
2172 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
2174 /* get current queue index from software */
2175 in_index
= pp
->req_idx
;
2177 crqb
= (struct mv_crqb_iie
*) &pp
->crqb
[in_index
];
2178 crqb
->addr
= cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
2179 crqb
->addr_hi
= cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
2180 crqb
->flags
= cpu_to_le32(flags
);
2182 crqb
->ata_cmd
[0] = cpu_to_le32(
2183 (tf
->command
<< 16) |
2186 crqb
->ata_cmd
[1] = cpu_to_le32(
2192 crqb
->ata_cmd
[2] = cpu_to_le32(
2193 (tf
->hob_lbal
<< 0) |
2194 (tf
->hob_lbam
<< 8) |
2195 (tf
->hob_lbah
<< 16) |
2196 (tf
->hob_feature
<< 24)
2198 crqb
->ata_cmd
[3] = cpu_to_le32(
2200 (tf
->hob_nsect
<< 8)
2203 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2209 * mv_sff_check_status - fetch device status, if valid
2210 * @ap: ATA port to fetch status from
2212 * When using command issue via mv_qc_issue_fis(),
2213 * the initial ATA_BUSY state does not show up in the
2214 * ATA status (shadow) register. This can confuse libata!
2216 * So we have a hook here to fake ATA_BUSY for that situation,
2217 * until the first time a BUSY, DRQ, or ERR bit is seen.
2219 * The rest of the time, it simply returns the ATA status register.
2221 static u8
mv_sff_check_status(struct ata_port
*ap
)
2223 u8 stat
= ioread8(ap
->ioaddr
.status_addr
);
2224 struct mv_port_priv
*pp
= ap
->private_data
;
2226 if (pp
->pp_flags
& MV_PP_FLAG_FAKE_ATA_BUSY
) {
2227 if (stat
& (ATA_BUSY
| ATA_DRQ
| ATA_ERR
))
2228 pp
->pp_flags
&= ~MV_PP_FLAG_FAKE_ATA_BUSY
;
2236 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2237 * @fis: fis to be sent
2238 * @nwords: number of 32-bit words in the fis
2240 static unsigned int mv_send_fis(struct ata_port
*ap
, u32
*fis
, int nwords
)
2242 void __iomem
*port_mmio
= mv_ap_base(ap
);
2243 u32 ifctl
, old_ifctl
, ifstat
;
2244 int i
, timeout
= 200, final_word
= nwords
- 1;
2246 /* Initiate FIS transmission mode */
2247 old_ifctl
= readl(port_mmio
+ SATA_IFCTL
);
2248 ifctl
= 0x100 | (old_ifctl
& 0xf);
2249 writelfl(ifctl
, port_mmio
+ SATA_IFCTL
);
2251 /* Send all words of the FIS except for the final word */
2252 for (i
= 0; i
< final_word
; ++i
)
2253 writel(fis
[i
], port_mmio
+ VENDOR_UNIQUE_FIS
);
2255 /* Flag end-of-transmission, and then send the final word */
2256 writelfl(ifctl
| 0x200, port_mmio
+ SATA_IFCTL
);
2257 writelfl(fis
[final_word
], port_mmio
+ VENDOR_UNIQUE_FIS
);
2260 * Wait for FIS transmission to complete.
2261 * This typically takes just a single iteration.
2264 ifstat
= readl(port_mmio
+ SATA_IFSTAT
);
2265 } while (!(ifstat
& 0x1000) && --timeout
);
2267 /* Restore original port configuration */
2268 writelfl(old_ifctl
, port_mmio
+ SATA_IFCTL
);
2270 /* See if it worked */
2271 if ((ifstat
& 0x3000) != 0x1000) {
2272 ata_port_warn(ap
, "%s transmission error, ifstat=%08x\n",
2274 return AC_ERR_OTHER
;
2280 * mv_qc_issue_fis - Issue a command directly as a FIS
2281 * @qc: queued command to start
2283 * Note that the ATA shadow registers are not updated
2284 * after command issue, so the device will appear "READY"
2285 * if polled, even while it is BUSY processing the command.
2287 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2289 * Note: we don't get updated shadow regs on *completion*
2290 * of non-data commands. So avoid sending them via this function,
2291 * as they will appear to have completed immediately.
2293 * GEN_IIE has special registers that we could get the result tf from,
2294 * but earlier chipsets do not. For now, we ignore those registers.
2296 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd
*qc
)
2298 struct ata_port
*ap
= qc
->ap
;
2299 struct mv_port_priv
*pp
= ap
->private_data
;
2300 struct ata_link
*link
= qc
->dev
->link
;
2304 ata_tf_to_fis(&qc
->tf
, link
->pmp
, 1, (void *)fis
);
2305 err
= mv_send_fis(ap
, fis
, ARRAY_SIZE(fis
));
2309 switch (qc
->tf
.protocol
) {
2310 case ATAPI_PROT_PIO
:
2311 pp
->pp_flags
|= MV_PP_FLAG_FAKE_ATA_BUSY
;
2313 case ATAPI_PROT_NODATA
:
2314 ap
->hsm_task_state
= HSM_ST_FIRST
;
2317 pp
->pp_flags
|= MV_PP_FLAG_FAKE_ATA_BUSY
;
2318 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
2319 ap
->hsm_task_state
= HSM_ST_FIRST
;
2321 ap
->hsm_task_state
= HSM_ST
;
2324 ap
->hsm_task_state
= HSM_ST_LAST
;
2328 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
2329 ata_sff_queue_pio_task(link
, 0);
2334 * mv_qc_issue - Initiate a command to the host
2335 * @qc: queued command to start
2337 * This routine simply redirects to the general purpose routine
2338 * if command is not DMA. Else, it sanity checks our local
2339 * caches of the request producer/consumer indices then enables
2340 * DMA and bumps the request producer index.
2343 * Inherited from caller.
2345 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
)
2347 static int limit_warnings
= 10;
2348 struct ata_port
*ap
= qc
->ap
;
2349 void __iomem
*port_mmio
= mv_ap_base(ap
);
2350 struct mv_port_priv
*pp
= ap
->private_data
;
2352 unsigned int port_irqs
;
2354 pp
->pp_flags
&= ~MV_PP_FLAG_FAKE_ATA_BUSY
; /* paranoia */
2356 switch (qc
->tf
.protocol
) {
2358 if (qc
->tf
.command
== ATA_CMD_DSM
) {
2359 if (!ap
->ops
->bmdma_setup
) /* no bmdma on GEN_I */
2360 return AC_ERR_OTHER
;
2361 break; /* use bmdma for this */
2365 mv_start_edma(ap
, port_mmio
, pp
, qc
->tf
.protocol
);
2366 pp
->req_idx
= (pp
->req_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2367 in_index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
2369 /* Write the request in pointer to kick the EDMA to life */
2370 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | in_index
,
2371 port_mmio
+ EDMA_REQ_Q_IN_PTR
);
2376 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2378 * Someday, we might implement special polling workarounds
2379 * for these, but it all seems rather unnecessary since we
2380 * normally use only DMA for commands which transfer more
2381 * than a single block of data.
2383 * Much of the time, this could just work regardless.
2384 * So for now, just log the incident, and allow the attempt.
2386 if (limit_warnings
> 0 && (qc
->nbytes
/ qc
->sect_size
) > 1) {
2388 ata_link_warn(qc
->dev
->link
, DRV_NAME
2389 ": attempting PIO w/multiple DRQ: "
2390 "this may fail due to h/w errata\n");
2393 case ATA_PROT_NODATA
:
2394 case ATAPI_PROT_PIO
:
2395 case ATAPI_PROT_NODATA
:
2396 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
2397 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
2401 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
2402 port_irqs
= ERR_IRQ
; /* mask device interrupt when polling */
2404 port_irqs
= ERR_IRQ
| DONE_IRQ
; /* unmask all interrupts */
2407 * We're about to send a non-EDMA capable command to the
2408 * port. Turn off EDMA so there won't be problems accessing
2409 * shadow block, etc registers.
2412 mv_clear_and_enable_port_irqs(ap
, mv_ap_base(ap
), port_irqs
);
2413 mv_pmp_select(ap
, qc
->dev
->link
->pmp
);
2415 if (qc
->tf
.command
== ATA_CMD_READ_LOG_EXT
) {
2416 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2418 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2420 * After any NCQ error, the READ_LOG_EXT command
2421 * from libata-eh *must* use mv_qc_issue_fis().
2422 * Otherwise it might fail, due to chip errata.
2424 * Rather than special-case it, we'll just *always*
2425 * use this method here for READ_LOG_EXT, making for
2428 if (IS_GEN_II(hpriv
))
2429 return mv_qc_issue_fis(qc
);
2431 return ata_bmdma_qc_issue(qc
);
2434 static struct ata_queued_cmd
*mv_get_active_qc(struct ata_port
*ap
)
2436 struct mv_port_priv
*pp
= ap
->private_data
;
2437 struct ata_queued_cmd
*qc
;
2439 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
2441 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2442 if (qc
&& !(qc
->tf
.flags
& ATA_TFLAG_POLLING
))
2447 static void mv_pmp_error_handler(struct ata_port
*ap
)
2449 unsigned int pmp
, pmp_map
;
2450 struct mv_port_priv
*pp
= ap
->private_data
;
2452 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
) {
2454 * Perform NCQ error analysis on failed PMPs
2455 * before we freeze the port entirely.
2457 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2459 pmp_map
= pp
->delayed_eh_pmp_map
;
2460 pp
->pp_flags
&= ~MV_PP_FLAG_DELAYED_EH
;
2461 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
2462 unsigned int this_pmp
= (1 << pmp
);
2463 if (pmp_map
& this_pmp
) {
2464 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
2465 pmp_map
&= ~this_pmp
;
2466 ata_eh_analyze_ncq_error(link
);
2469 ata_port_freeze(ap
);
2471 sata_pmp_error_handler(ap
);
2474 static unsigned int mv_get_err_pmp_map(struct ata_port
*ap
)
2476 void __iomem
*port_mmio
= mv_ap_base(ap
);
2478 return readl(port_mmio
+ SATA_TESTCTL
) >> 16;
2481 static void mv_pmp_eh_prep(struct ata_port
*ap
, unsigned int pmp_map
)
2483 struct ata_eh_info
*ehi
;
2487 * Initialize EH info for PMPs which saw device errors
2489 ehi
= &ap
->link
.eh_info
;
2490 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
2491 unsigned int this_pmp
= (1 << pmp
);
2492 if (pmp_map
& this_pmp
) {
2493 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
2495 pmp_map
&= ~this_pmp
;
2496 ehi
= &link
->eh_info
;
2497 ata_ehi_clear_desc(ehi
);
2498 ata_ehi_push_desc(ehi
, "dev err");
2499 ehi
->err_mask
|= AC_ERR_DEV
;
2500 ehi
->action
|= ATA_EH_RESET
;
2501 ata_link_abort(link
);
2506 static int mv_req_q_empty(struct ata_port
*ap
)
2508 void __iomem
*port_mmio
= mv_ap_base(ap
);
2509 u32 in_ptr
, out_ptr
;
2511 in_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_IN_PTR
)
2512 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2513 out_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_OUT_PTR
)
2514 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2515 return (in_ptr
== out_ptr
); /* 1 == queue_is_empty */
2518 static int mv_handle_fbs_ncq_dev_err(struct ata_port
*ap
)
2520 struct mv_port_priv
*pp
= ap
->private_data
;
2522 unsigned int old_map
, new_map
;
2525 * Device error during FBS+NCQ operation:
2527 * Set a port flag to prevent further I/O being enqueued.
2528 * Leave the EDMA running to drain outstanding commands from this port.
2529 * Perform the post-mortem/EH only when all responses are complete.
2530 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2532 if (!(pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)) {
2533 pp
->pp_flags
|= MV_PP_FLAG_DELAYED_EH
;
2534 pp
->delayed_eh_pmp_map
= 0;
2536 old_map
= pp
->delayed_eh_pmp_map
;
2537 new_map
= old_map
| mv_get_err_pmp_map(ap
);
2539 if (old_map
!= new_map
) {
2540 pp
->delayed_eh_pmp_map
= new_map
;
2541 mv_pmp_eh_prep(ap
, new_map
& ~old_map
);
2543 failed_links
= hweight16(new_map
);
2546 "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2547 __func__
, pp
->delayed_eh_pmp_map
,
2548 ap
->qc_active
, failed_links
,
2549 ap
->nr_active_links
);
2551 if (ap
->nr_active_links
<= failed_links
&& mv_req_q_empty(ap
)) {
2552 mv_process_crpb_entries(ap
, pp
);
2555 ata_port_info(ap
, "%s: done\n", __func__
);
2556 return 1; /* handled */
2558 ata_port_info(ap
, "%s: waiting\n", __func__
);
2559 return 1; /* handled */
2562 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port
*ap
)
2565 * Possible future enhancement:
2567 * FBS+non-NCQ operation is not yet implemented.
2568 * See related notes in mv_edma_cfg().
2570 * Device error during FBS+non-NCQ operation:
2572 * We need to snapshot the shadow registers for each failed command.
2573 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2575 return 0; /* not handled */
2578 static int mv_handle_dev_err(struct ata_port
*ap
, u32 edma_err_cause
)
2580 struct mv_port_priv
*pp
= ap
->private_data
;
2582 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
2583 return 0; /* EDMA was not active: not handled */
2584 if (!(pp
->pp_flags
& MV_PP_FLAG_FBS_EN
))
2585 return 0; /* FBS was not active: not handled */
2587 if (!(edma_err_cause
& EDMA_ERR_DEV
))
2588 return 0; /* non DEV error: not handled */
2589 edma_err_cause
&= ~EDMA_ERR_IRQ_TRANSIENT
;
2590 if (edma_err_cause
& ~(EDMA_ERR_DEV
| EDMA_ERR_SELF_DIS
))
2591 return 0; /* other problems: not handled */
2593 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) {
2595 * EDMA should NOT have self-disabled for this case.
2596 * If it did, then something is wrong elsewhere,
2597 * and we cannot handle it here.
2599 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
2600 ata_port_warn(ap
, "%s: err_cause=0x%x pp_flags=0x%x\n",
2601 __func__
, edma_err_cause
, pp
->pp_flags
);
2602 return 0; /* not handled */
2604 return mv_handle_fbs_ncq_dev_err(ap
);
2607 * EDMA should have self-disabled for this case.
2608 * If it did not, then something is wrong elsewhere,
2609 * and we cannot handle it here.
2611 if (!(edma_err_cause
& EDMA_ERR_SELF_DIS
)) {
2612 ata_port_warn(ap
, "%s: err_cause=0x%x pp_flags=0x%x\n",
2613 __func__
, edma_err_cause
, pp
->pp_flags
);
2614 return 0; /* not handled */
2616 return mv_handle_fbs_non_ncq_dev_err(ap
);
2618 return 0; /* not handled */
2621 static void mv_unexpected_intr(struct ata_port
*ap
, int edma_was_enabled
)
2623 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2624 char *when
= "idle";
2626 ata_ehi_clear_desc(ehi
);
2627 if (edma_was_enabled
) {
2628 when
= "EDMA enabled";
2630 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2631 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
2634 ata_ehi_push_desc(ehi
, "unexpected device interrupt while %s", when
);
2635 ehi
->err_mask
|= AC_ERR_OTHER
;
2636 ehi
->action
|= ATA_EH_RESET
;
2637 ata_port_freeze(ap
);
2641 * mv_err_intr - Handle error interrupts on the port
2642 * @ap: ATA channel to manipulate
2644 * Most cases require a full reset of the chip's state machine,
2645 * which also performs a COMRESET.
2646 * Also, if the port disabled DMA, update our cached copy to match.
2649 * Inherited from caller.
2651 static void mv_err_intr(struct ata_port
*ap
)
2653 void __iomem
*port_mmio
= mv_ap_base(ap
);
2654 u32 edma_err_cause
, eh_freeze_mask
, serr
= 0;
2656 struct mv_port_priv
*pp
= ap
->private_data
;
2657 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2658 unsigned int action
= 0, err_mask
= 0;
2659 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2660 struct ata_queued_cmd
*qc
;
2664 * Read and clear the SError and err_cause bits.
2665 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2666 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2668 sata_scr_read(&ap
->link
, SCR_ERROR
, &serr
);
2669 sata_scr_write_flush(&ap
->link
, SCR_ERROR
, serr
);
2671 edma_err_cause
= readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
2672 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
2673 fis_cause
= readl(port_mmio
+ FIS_IRQ_CAUSE
);
2674 writelfl(~fis_cause
, port_mmio
+ FIS_IRQ_CAUSE
);
2676 writelfl(~edma_err_cause
, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
2678 if (edma_err_cause
& EDMA_ERR_DEV
) {
2680 * Device errors during FIS-based switching operation
2681 * require special handling.
2683 if (mv_handle_dev_err(ap
, edma_err_cause
))
2687 qc
= mv_get_active_qc(ap
);
2688 ata_ehi_clear_desc(ehi
);
2689 ata_ehi_push_desc(ehi
, "edma_err_cause=%08x pp_flags=%08x",
2690 edma_err_cause
, pp
->pp_flags
);
2692 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
2693 ata_ehi_push_desc(ehi
, "fis_cause=%08x", fis_cause
);
2694 if (fis_cause
& FIS_IRQ_CAUSE_AN
) {
2695 u32 ec
= edma_err_cause
&
2696 ~(EDMA_ERR_TRANS_IRQ_7
| EDMA_ERR_IRQ_TRANSIENT
);
2697 sata_async_notification(ap
);
2699 return; /* Just an AN; no need for the nukes */
2700 ata_ehi_push_desc(ehi
, "SDB notify");
2704 * All generations share these EDMA error cause bits:
2706 if (edma_err_cause
& EDMA_ERR_DEV
) {
2707 err_mask
|= AC_ERR_DEV
;
2708 action
|= ATA_EH_RESET
;
2709 ata_ehi_push_desc(ehi
, "dev error");
2711 if (edma_err_cause
& (EDMA_ERR_D_PAR
| EDMA_ERR_PRD_PAR
|
2712 EDMA_ERR_CRQB_PAR
| EDMA_ERR_CRPB_PAR
|
2713 EDMA_ERR_INTRL_PAR
)) {
2714 err_mask
|= AC_ERR_ATA_BUS
;
2715 action
|= ATA_EH_RESET
;
2716 ata_ehi_push_desc(ehi
, "parity error");
2718 if (edma_err_cause
& (EDMA_ERR_DEV_DCON
| EDMA_ERR_DEV_CON
)) {
2719 ata_ehi_hotplugged(ehi
);
2720 ata_ehi_push_desc(ehi
, edma_err_cause
& EDMA_ERR_DEV_DCON
?
2721 "dev disconnect" : "dev connect");
2722 action
|= ATA_EH_RESET
;
2726 * Gen-I has a different SELF_DIS bit,
2727 * different FREEZE bits, and no SERR bit:
2729 if (IS_GEN_I(hpriv
)) {
2730 eh_freeze_mask
= EDMA_EH_FREEZE_5
;
2731 if (edma_err_cause
& EDMA_ERR_SELF_DIS_5
) {
2732 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2733 ata_ehi_push_desc(ehi
, "EDMA self-disable");
2736 eh_freeze_mask
= EDMA_EH_FREEZE
;
2737 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
2738 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2739 ata_ehi_push_desc(ehi
, "EDMA self-disable");
2741 if (edma_err_cause
& EDMA_ERR_SERR
) {
2742 ata_ehi_push_desc(ehi
, "SError=%08x", serr
);
2743 err_mask
|= AC_ERR_ATA_BUS
;
2744 action
|= ATA_EH_RESET
;
2749 err_mask
= AC_ERR_OTHER
;
2750 action
|= ATA_EH_RESET
;
2753 ehi
->serror
|= serr
;
2754 ehi
->action
|= action
;
2757 qc
->err_mask
|= err_mask
;
2759 ehi
->err_mask
|= err_mask
;
2761 if (err_mask
== AC_ERR_DEV
) {
2763 * Cannot do ata_port_freeze() here,
2764 * because it would kill PIO access,
2765 * which is needed for further diagnosis.
2769 } else if (edma_err_cause
& eh_freeze_mask
) {
2771 * Note to self: ata_port_freeze() calls ata_port_abort()
2773 ata_port_freeze(ap
);
2780 ata_link_abort(qc
->dev
->link
);
2786 static bool mv_process_crpb_response(struct ata_port
*ap
,
2787 struct mv_crpb
*response
, unsigned int tag
, int ncq_enabled
)
2790 u16 edma_status
= le16_to_cpu(response
->flags
);
2793 * edma_status from a response queue entry:
2794 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2795 * MSB is saved ATA status from command completion.
2798 u8 err_cause
= edma_status
& 0xff & ~EDMA_ERR_DEV
;
2801 * Error will be seen/handled by
2802 * mv_err_intr(). So do nothing at all here.
2807 ata_status
= edma_status
>> CRPB_FLAG_STATUS_SHIFT
;
2808 if (!ac_err_mask(ata_status
))
2810 /* else: leave it for mv_err_intr() */
2814 static void mv_process_crpb_entries(struct ata_port
*ap
, struct mv_port_priv
*pp
)
2816 void __iomem
*port_mmio
= mv_ap_base(ap
);
2817 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2819 bool work_done
= false;
2821 int ncq_enabled
= (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
);
2823 /* Get the hardware queue position index */
2824 in_index
= (readl(port_mmio
+ EDMA_RSP_Q_IN_PTR
)
2825 >> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2827 /* Process new responses from since the last time we looked */
2828 while (in_index
!= pp
->resp_idx
) {
2830 struct mv_crpb
*response
= &pp
->crpb
[pp
->resp_idx
];
2832 pp
->resp_idx
= (pp
->resp_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2834 if (IS_GEN_I(hpriv
)) {
2835 /* 50xx: no NCQ, only one command active at a time */
2836 tag
= ap
->link
.active_tag
;
2838 /* Gen II/IIE: get command tag from CRPB entry */
2839 tag
= le16_to_cpu(response
->id
) & 0x1f;
2841 if (mv_process_crpb_response(ap
, response
, tag
, ncq_enabled
))
2842 done_mask
|= 1 << tag
;
2847 ata_qc_complete_multiple(ap
, ap
->qc_active
^ done_mask
);
2849 /* Update the software queue position index in hardware */
2850 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) |
2851 (pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
),
2852 port_mmio
+ EDMA_RSP_Q_OUT_PTR
);
2856 static void mv_port_intr(struct ata_port
*ap
, u32 port_cause
)
2858 struct mv_port_priv
*pp
;
2859 int edma_was_enabled
;
2862 * Grab a snapshot of the EDMA_EN flag setting,
2863 * so that we have a consistent view for this port,
2864 * even if something we call of our routines changes it.
2866 pp
= ap
->private_data
;
2867 edma_was_enabled
= (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
);
2869 * Process completed CRPB response(s) before other events.
2871 if (edma_was_enabled
&& (port_cause
& DONE_IRQ
)) {
2872 mv_process_crpb_entries(ap
, pp
);
2873 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
2874 mv_handle_fbs_ncq_dev_err(ap
);
2877 * Handle chip-reported errors, or continue on to handle PIO.
2879 if (unlikely(port_cause
& ERR_IRQ
)) {
2881 } else if (!edma_was_enabled
) {
2882 struct ata_queued_cmd
*qc
= mv_get_active_qc(ap
);
2884 ata_bmdma_port_intr(ap
, qc
);
2886 mv_unexpected_intr(ap
, edma_was_enabled
);
2891 * mv_host_intr - Handle all interrupts on the given host controller
2892 * @host: host specific structure
2893 * @main_irq_cause: Main interrupt cause register for the chip.
2896 * Inherited from caller.
2898 static int mv_host_intr(struct ata_host
*host
, u32 main_irq_cause
)
2900 struct mv_host_priv
*hpriv
= host
->private_data
;
2901 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
2902 unsigned int handled
= 0, port
;
2904 /* If asserted, clear the "all ports" IRQ coalescing bit */
2905 if (main_irq_cause
& ALL_PORTS_COAL_DONE
)
2906 writel(~ALL_PORTS_COAL_IRQ
, mmio
+ IRQ_COAL_CAUSE
);
2908 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
2909 struct ata_port
*ap
= host
->ports
[port
];
2910 unsigned int p
, shift
, hardport
, port_cause
;
2912 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
2914 * Each hc within the host has its own hc_irq_cause register,
2915 * where the interrupting ports bits get ack'd.
2917 if (hardport
== 0) { /* first port on this hc ? */
2918 u32 hc_cause
= (main_irq_cause
>> shift
) & HC0_IRQ_PEND
;
2919 u32 port_mask
, ack_irqs
;
2921 * Skip this entire hc if nothing pending for any ports
2924 port
+= MV_PORTS_PER_HC
- 1;
2928 * We don't need/want to read the hc_irq_cause register,
2929 * because doing so hurts performance, and
2930 * main_irq_cause already gives us everything we need.
2932 * But we do have to *write* to the hc_irq_cause to ack
2933 * the ports that we are handling this time through.
2935 * This requires that we create a bitmap for those
2936 * ports which interrupted us, and use that bitmap
2937 * to ack (only) those ports via hc_irq_cause.
2940 if (hc_cause
& PORTS_0_3_COAL_DONE
)
2941 ack_irqs
= HC_COAL_IRQ
;
2942 for (p
= 0; p
< MV_PORTS_PER_HC
; ++p
) {
2943 if ((port
+ p
) >= hpriv
->n_ports
)
2945 port_mask
= (DONE_IRQ
| ERR_IRQ
) << (p
* 2);
2946 if (hc_cause
& port_mask
)
2947 ack_irqs
|= (DMA_IRQ
| DEV_IRQ
) << p
;
2949 hc_mmio
= mv_hc_base_from_port(mmio
, port
);
2950 writelfl(~ack_irqs
, hc_mmio
+ HC_IRQ_CAUSE
);
2954 * Handle interrupts signalled for this port:
2956 port_cause
= (main_irq_cause
>> shift
) & (DONE_IRQ
| ERR_IRQ
);
2958 mv_port_intr(ap
, port_cause
);
2963 static int mv_pci_error(struct ata_host
*host
, void __iomem
*mmio
)
2965 struct mv_host_priv
*hpriv
= host
->private_data
;
2966 struct ata_port
*ap
;
2967 struct ata_queued_cmd
*qc
;
2968 struct ata_eh_info
*ehi
;
2969 unsigned int i
, err_mask
, printed
= 0;
2972 err_cause
= readl(mmio
+ hpriv
->irq_cause_offset
);
2974 dev_err(host
->dev
, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause
);
2976 DPRINTK("All regs @ PCI error\n");
2977 mv_dump_all_regs(mmio
, -1, to_pci_dev(host
->dev
));
2979 writelfl(0, mmio
+ hpriv
->irq_cause_offset
);
2981 for (i
= 0; i
< host
->n_ports
; i
++) {
2982 ap
= host
->ports
[i
];
2983 if (!ata_link_offline(&ap
->link
)) {
2984 ehi
= &ap
->link
.eh_info
;
2985 ata_ehi_clear_desc(ehi
);
2987 ata_ehi_push_desc(ehi
,
2988 "PCI err cause 0x%08x", err_cause
);
2989 err_mask
= AC_ERR_HOST_BUS
;
2990 ehi
->action
= ATA_EH_RESET
;
2991 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2993 qc
->err_mask
|= err_mask
;
2995 ehi
->err_mask
|= err_mask
;
2997 ata_port_freeze(ap
);
3000 return 1; /* handled */
3004 * mv_interrupt - Main interrupt event handler
3006 * @dev_instance: private data; in this case the host structure
3008 * Read the read only register to determine if any host
3009 * controllers have pending interrupts. If so, call lower level
3010 * routine to handle. Also check for PCI errors which are only
3014 * This routine holds the host lock while processing pending
3017 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
)
3019 struct ata_host
*host
= dev_instance
;
3020 struct mv_host_priv
*hpriv
= host
->private_data
;
3021 unsigned int handled
= 0;
3022 int using_msi
= hpriv
->hp_flags
& MV_HP_FLAG_MSI
;
3023 u32 main_irq_cause
, pending_irqs
;
3025 spin_lock(&host
->lock
);
3027 /* for MSI: block new interrupts while in here */
3029 mv_write_main_irq_mask(0, hpriv
);
3031 main_irq_cause
= readl(hpriv
->main_irq_cause_addr
);
3032 pending_irqs
= main_irq_cause
& hpriv
->main_irq_mask
;
3034 * Deal with cases where we either have nothing pending, or have read
3035 * a bogus register value which can indicate HW removal or PCI fault.
3037 if (pending_irqs
&& main_irq_cause
!= 0xffffffffU
) {
3038 if (unlikely((pending_irqs
& PCI_ERR
) && !IS_SOC(hpriv
)))
3039 handled
= mv_pci_error(host
, hpriv
->base
);
3041 handled
= mv_host_intr(host
, pending_irqs
);
3044 /* for MSI: unmask; interrupt cause bits will retrigger now */
3046 mv_write_main_irq_mask(hpriv
->main_irq_mask
, hpriv
);
3048 spin_unlock(&host
->lock
);
3050 return IRQ_RETVAL(handled
);
3053 static unsigned int mv5_scr_offset(unsigned int sc_reg_in
)
3057 switch (sc_reg_in
) {
3061 ofs
= sc_reg_in
* sizeof(u32
);
3070 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
3072 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
3073 void __iomem
*mmio
= hpriv
->base
;
3074 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
3075 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
3077 if (ofs
!= 0xffffffffU
) {
3078 *val
= readl(addr
+ ofs
);
3084 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
3086 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
3087 void __iomem
*mmio
= hpriv
->base
;
3088 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
3089 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
3091 if (ofs
!= 0xffffffffU
) {
3092 writelfl(val
, addr
+ ofs
);
3098 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
3100 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3103 early_5080
= (pdev
->device
== 0x5080) && (pdev
->revision
== 0);
3106 u32 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3108 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3111 mv_reset_pci_bus(host
, mmio
);
3114 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3116 writel(0x0fcfffff, mmio
+ FLASH_CTL
);
3119 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3122 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, idx
);
3125 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
3127 hpriv
->signal
[idx
].pre
= tmp
& 0x1800; /* bits 12:11 */
3128 hpriv
->signal
[idx
].amps
= tmp
& 0xe0; /* bits 7:5 */
3131 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3135 writel(0, mmio
+ GPIO_PORT_CTL
);
3137 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3139 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3141 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3144 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3147 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, port
);
3148 const u32 mask
= (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3150 int fix_apm_sq
= (hpriv
->hp_flags
& MV_HP_ERRATA_50XXB0
);
3153 tmp
= readl(phy_mmio
+ MV5_LTMODE
);
3155 writel(tmp
, phy_mmio
+ MV5_LTMODE
);
3157 tmp
= readl(phy_mmio
+ MV5_PHY_CTL
);
3160 writel(tmp
, phy_mmio
+ MV5_PHY_CTL
);
3163 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
3165 tmp
|= hpriv
->signal
[port
].pre
;
3166 tmp
|= hpriv
->signal
[port
].amps
;
3167 writel(tmp
, phy_mmio
+ MV5_PHY_MODE
);
3172 #define ZERO(reg) writel(0, port_mmio + (reg))
3173 static void mv5_reset_hc_port(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3176 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3178 mv_reset_channel(hpriv
, mmio
, port
);
3180 ZERO(0x028); /* command */
3181 writel(0x11f, port_mmio
+ EDMA_CFG
);
3182 ZERO(0x004); /* timer */
3183 ZERO(0x008); /* irq err cause */
3184 ZERO(0x00c); /* irq err mask */
3185 ZERO(0x010); /* rq bah */
3186 ZERO(0x014); /* rq inp */
3187 ZERO(0x018); /* rq outp */
3188 ZERO(0x01c); /* respq bah */
3189 ZERO(0x024); /* respq outp */
3190 ZERO(0x020); /* respq inp */
3191 ZERO(0x02c); /* test control */
3192 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT
);
3196 #define ZERO(reg) writel(0, hc_mmio + (reg))
3197 static void mv5_reset_one_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3200 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3208 tmp
= readl(hc_mmio
+ 0x20);
3211 writel(tmp
, hc_mmio
+ 0x20);
3215 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3218 unsigned int hc
, port
;
3220 for (hc
= 0; hc
< n_hc
; hc
++) {
3221 for (port
= 0; port
< MV_PORTS_PER_HC
; port
++)
3222 mv5_reset_hc_port(hpriv
, mmio
,
3223 (hc
* MV_PORTS_PER_HC
) + port
);
3225 mv5_reset_one_hc(hpriv
, mmio
, hc
);
3232 #define ZERO(reg) writel(0, mmio + (reg))
3233 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
)
3235 struct mv_host_priv
*hpriv
= host
->private_data
;
3238 tmp
= readl(mmio
+ MV_PCI_MODE
);
3240 writel(tmp
, mmio
+ MV_PCI_MODE
);
3242 ZERO(MV_PCI_DISC_TIMER
);
3243 ZERO(MV_PCI_MSI_TRIGGER
);
3244 writel(0x000100ff, mmio
+ MV_PCI_XBAR_TMOUT
);
3245 ZERO(MV_PCI_SERR_MASK
);
3246 ZERO(hpriv
->irq_cause_offset
);
3247 ZERO(hpriv
->irq_mask_offset
);
3248 ZERO(MV_PCI_ERR_LOW_ADDRESS
);
3249 ZERO(MV_PCI_ERR_HIGH_ADDRESS
);
3250 ZERO(MV_PCI_ERR_ATTRIBUTE
);
3251 ZERO(MV_PCI_ERR_COMMAND
);
3255 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3259 mv5_reset_flash(hpriv
, mmio
);
3261 tmp
= readl(mmio
+ GPIO_PORT_CTL
);
3263 tmp
|= (1 << 5) | (1 << 6);
3264 writel(tmp
, mmio
+ GPIO_PORT_CTL
);
3268 * mv6_reset_hc - Perform the 6xxx global soft reset
3269 * @mmio: base address of the HBA
3271 * This routine only applies to 6xxx parts.
3274 * Inherited from caller.
3276 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3279 void __iomem
*reg
= mmio
+ PCI_MAIN_CMD_STS
;
3283 /* Following procedure defined in PCI "main command and status
3287 writel(t
| STOP_PCI_MASTER
, reg
);
3289 for (i
= 0; i
< 1000; i
++) {
3292 if (PCI_MASTER_EMPTY
& t
)
3295 if (!(PCI_MASTER_EMPTY
& t
)) {
3296 printk(KERN_ERR DRV_NAME
": PCI master won't flush\n");
3304 writel(t
| GLOB_SFT_RST
, reg
);
3307 } while (!(GLOB_SFT_RST
& t
) && (i
-- > 0));
3309 if (!(GLOB_SFT_RST
& t
)) {
3310 printk(KERN_ERR DRV_NAME
": can't set global reset\n");
3315 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3318 writel(t
& ~(GLOB_SFT_RST
| STOP_PCI_MASTER
), reg
);
3321 } while ((GLOB_SFT_RST
& t
) && (i
-- > 0));
3323 if (GLOB_SFT_RST
& t
) {
3324 printk(KERN_ERR DRV_NAME
": can't clear global reset\n");
3331 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3334 void __iomem
*port_mmio
;
3337 tmp
= readl(mmio
+ RESET_CFG
);
3338 if ((tmp
& (1 << 0)) == 0) {
3339 hpriv
->signal
[idx
].amps
= 0x7 << 8;
3340 hpriv
->signal
[idx
].pre
= 0x1 << 5;
3344 port_mmio
= mv_port_base(mmio
, idx
);
3345 tmp
= readl(port_mmio
+ PHY_MODE2
);
3347 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
3348 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
3351 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3353 writel(0x00000060, mmio
+ GPIO_PORT_CTL
);
3356 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3359 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3361 u32 hp_flags
= hpriv
->hp_flags
;
3363 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
3365 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
3368 if (fix_phy_mode2
) {
3369 m2
= readl(port_mmio
+ PHY_MODE2
);
3372 writel(m2
, port_mmio
+ PHY_MODE2
);
3376 m2
= readl(port_mmio
+ PHY_MODE2
);
3377 m2
&= ~((1 << 16) | (1 << 31));
3378 writel(m2
, port_mmio
+ PHY_MODE2
);
3384 * Gen-II/IIe PHY_MODE3 errata RM#2:
3385 * Achieves better receiver noise performance than the h/w default:
3387 m3
= readl(port_mmio
+ PHY_MODE3
);
3388 m3
= (m3
& 0x1f) | (0x5555601 << 5);
3390 /* Guideline 88F5182 (GL# SATA-S11) */
3394 if (fix_phy_mode4
) {
3395 u32 m4
= readl(port_mmio
+ PHY_MODE4
);
3397 * Enforce reserved-bit restrictions on GenIIe devices only.
3398 * For earlier chipsets, force only the internal config field
3399 * (workaround for errata FEr SATA#10 part 1).
3401 if (IS_GEN_IIE(hpriv
))
3402 m4
= (m4
& ~PHY_MODE4_RSVD_ZEROS
) | PHY_MODE4_RSVD_ONES
;
3404 m4
= (m4
& ~PHY_MODE4_CFG_MASK
) | PHY_MODE4_CFG_VALUE
;
3405 writel(m4
, port_mmio
+ PHY_MODE4
);
3408 * Workaround for 60x1-B2 errata SATA#13:
3409 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3410 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3411 * Or ensure we use writelfl() when writing PHY_MODE4.
3413 writel(m3
, port_mmio
+ PHY_MODE3
);
3415 /* Revert values of pre-emphasis and signal amps to the saved ones */
3416 m2
= readl(port_mmio
+ PHY_MODE2
);
3418 m2
&= ~MV_M2_PREAMP_MASK
;
3419 m2
|= hpriv
->signal
[port
].amps
;
3420 m2
|= hpriv
->signal
[port
].pre
;
3423 /* according to mvSata 3.6.1, some IIE values are fixed */
3424 if (IS_GEN_IIE(hpriv
)) {
3429 writel(m2
, port_mmio
+ PHY_MODE2
);
3432 /* TODO: use the generic LED interface to configure the SATA Presence */
3433 /* & Acitivy LEDs on the board */
3434 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
3440 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3443 void __iomem
*port_mmio
;
3446 port_mmio
= mv_port_base(mmio
, idx
);
3447 tmp
= readl(port_mmio
+ PHY_MODE2
);
3449 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
3450 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
3454 #define ZERO(reg) writel(0, port_mmio + (reg))
3455 static void mv_soc_reset_hc_port(struct mv_host_priv
*hpriv
,
3456 void __iomem
*mmio
, unsigned int port
)
3458 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3460 mv_reset_channel(hpriv
, mmio
, port
);
3462 ZERO(0x028); /* command */
3463 writel(0x101f, port_mmio
+ EDMA_CFG
);
3464 ZERO(0x004); /* timer */
3465 ZERO(0x008); /* irq err cause */
3466 ZERO(0x00c); /* irq err mask */
3467 ZERO(0x010); /* rq bah */
3468 ZERO(0x014); /* rq inp */
3469 ZERO(0x018); /* rq outp */
3470 ZERO(0x01c); /* respq bah */
3471 ZERO(0x024); /* respq outp */
3472 ZERO(0x020); /* respq inp */
3473 ZERO(0x02c); /* test control */
3474 writel(0x800, port_mmio
+ EDMA_IORDY_TMOUT
);
3479 #define ZERO(reg) writel(0, hc_mmio + (reg))
3480 static void mv_soc_reset_one_hc(struct mv_host_priv
*hpriv
,
3483 void __iomem
*hc_mmio
= mv_hc_base(mmio
, 0);
3493 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
3494 void __iomem
*mmio
, unsigned int n_hc
)
3498 for (port
= 0; port
< hpriv
->n_ports
; port
++)
3499 mv_soc_reset_hc_port(hpriv
, mmio
, port
);
3501 mv_soc_reset_one_hc(hpriv
, mmio
);
3506 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
3512 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
3517 static void mv_soc_65n_phy_errata(struct mv_host_priv
*hpriv
,
3518 void __iomem
*mmio
, unsigned int port
)
3520 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3523 reg
= readl(port_mmio
+ PHY_MODE3
);
3524 reg
&= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3526 reg
&= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3528 writel(reg
, port_mmio
+ PHY_MODE3
);
3530 reg
= readl(port_mmio
+ PHY_MODE4
);
3531 reg
&= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3533 writel(reg
, port_mmio
+ PHY_MODE4
);
3535 reg
= readl(port_mmio
+ PHY_MODE9_GEN2
);
3536 reg
&= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3538 reg
&= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3539 writel(reg
, port_mmio
+ PHY_MODE9_GEN2
);
3541 reg
= readl(port_mmio
+ PHY_MODE9_GEN1
);
3542 reg
&= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3544 reg
&= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3545 writel(reg
, port_mmio
+ PHY_MODE9_GEN1
);
3549 * soc_is_65 - check if the soc is 65 nano device
3551 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3552 * register, this register should contain non-zero value and it exists only
3553 * in the 65 nano devices, when reading it from older devices we get 0.
3555 static bool soc_is_65n(struct mv_host_priv
*hpriv
)
3557 void __iomem
*port0_mmio
= mv_port_base(hpriv
->base
, 0);
3559 if (readl(port0_mmio
+ PHYCFG_OFS
))
3564 static void mv_setup_ifcfg(void __iomem
*port_mmio
, int want_gen2i
)
3566 u32 ifcfg
= readl(port_mmio
+ SATA_IFCFG
);
3568 ifcfg
= (ifcfg
& 0xf7f) | 0x9b1000; /* from chip spec */
3570 ifcfg
|= (1 << 7); /* enable gen2i speed */
3571 writelfl(ifcfg
, port_mmio
+ SATA_IFCFG
);
3574 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3575 unsigned int port_no
)
3577 void __iomem
*port_mmio
= mv_port_base(mmio
, port_no
);
3580 * The datasheet warns against setting EDMA_RESET when EDMA is active
3581 * (but doesn't say what the problem might be). So we first try
3582 * to disable the EDMA engine before doing the EDMA_RESET operation.
3584 mv_stop_edma_engine(port_mmio
);
3585 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD
);
3587 if (!IS_GEN_I(hpriv
)) {
3588 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3589 mv_setup_ifcfg(port_mmio
, 1);
3592 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3593 * link, and physical layers. It resets all SATA interface registers
3594 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3596 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD
);
3597 udelay(25); /* allow reset propagation */
3598 writelfl(0, port_mmio
+ EDMA_CMD
);
3600 hpriv
->ops
->phy_errata(hpriv
, mmio
, port_no
);
3602 if (IS_GEN_I(hpriv
))
3606 static void mv_pmp_select(struct ata_port
*ap
, int pmp
)
3608 if (sata_pmp_supported(ap
)) {
3609 void __iomem
*port_mmio
= mv_ap_base(ap
);
3610 u32 reg
= readl(port_mmio
+ SATA_IFCTL
);
3611 int old
= reg
& 0xf;
3614 reg
= (reg
& ~0xf) | pmp
;
3615 writelfl(reg
, port_mmio
+ SATA_IFCTL
);
3620 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
3621 unsigned long deadline
)
3623 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
3624 return sata_std_hardreset(link
, class, deadline
);
3627 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
3628 unsigned long deadline
)
3630 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
3631 return ata_sff_softreset(link
, class, deadline
);
3634 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
3635 unsigned long deadline
)
3637 struct ata_port
*ap
= link
->ap
;
3638 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
3639 struct mv_port_priv
*pp
= ap
->private_data
;
3640 void __iomem
*mmio
= hpriv
->base
;
3641 int rc
, attempts
= 0, extra
= 0;
3645 mv_reset_channel(hpriv
, mmio
, ap
->port_no
);
3646 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
3648 ~(MV_PP_FLAG_FBS_EN
| MV_PP_FLAG_NCQ_EN
| MV_PP_FLAG_FAKE_ATA_BUSY
);
3650 /* Workaround for errata FEr SATA#10 (part 2) */
3652 const unsigned long *timing
=
3653 sata_ehc_deb_timing(&link
->eh_context
);
3655 rc
= sata_link_hardreset(link
, timing
, deadline
+ extra
,
3657 rc
= online
? -EAGAIN
: rc
;
3660 sata_scr_read(link
, SCR_STATUS
, &sstatus
);
3661 if (!IS_GEN_I(hpriv
) && ++attempts
>= 5 && sstatus
== 0x121) {
3662 /* Force 1.5gb/s link speed and try again */
3663 mv_setup_ifcfg(mv_ap_base(ap
), 0);
3664 if (time_after(jiffies
+ HZ
, deadline
))
3665 extra
= HZ
; /* only extend it once, max */
3667 } while (sstatus
!= 0x0 && sstatus
!= 0x113 && sstatus
!= 0x123);
3668 mv_save_cached_regs(ap
);
3669 mv_edma_cfg(ap
, 0, 0);
3674 static void mv_eh_freeze(struct ata_port
*ap
)
3677 mv_enable_port_irqs(ap
, 0);
3680 static void mv_eh_thaw(struct ata_port
*ap
)
3682 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
3683 unsigned int port
= ap
->port_no
;
3684 unsigned int hardport
= mv_hardport_from_port(port
);
3685 void __iomem
*hc_mmio
= mv_hc_base_from_port(hpriv
->base
, port
);
3686 void __iomem
*port_mmio
= mv_ap_base(ap
);
3689 /* clear EDMA errors on this port */
3690 writel(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
3692 /* clear pending irq events */
3693 hc_irq_cause
= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
3694 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE
);
3696 mv_enable_port_irqs(ap
, ERR_IRQ
);
3700 * mv_port_init - Perform some early initialization on a single port.
3701 * @port: libata data structure storing shadow register addresses
3702 * @port_mmio: base address of the port
3704 * Initialize shadow register mmio addresses, clear outstanding
3705 * interrupts on the port, and unmask interrupts for the future
3706 * start of the port.
3709 * Inherited from caller.
3711 static void mv_port_init(struct ata_ioports
*port
, void __iomem
*port_mmio
)
3713 void __iomem
*serr
, *shd_base
= port_mmio
+ SHD_BLK
;
3715 /* PIO related setup
3717 port
->data_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DATA
);
3719 port
->feature_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_ERR
);
3720 port
->nsect_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_NSECT
);
3721 port
->lbal_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAL
);
3722 port
->lbam_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAM
);
3723 port
->lbah_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAH
);
3724 port
->device_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DEVICE
);
3726 port
->command_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_STATUS
);
3727 /* special case: control/altstatus doesn't have ATA_REG_ address */
3728 port
->altstatus_addr
= port
->ctl_addr
= shd_base
+ SHD_CTL_AST
;
3730 /* Clear any currently outstanding port interrupt conditions */
3731 serr
= port_mmio
+ mv_scr_offset(SCR_ERROR
);
3732 writelfl(readl(serr
), serr
);
3733 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
3735 /* unmask all non-transient EDMA error interrupts */
3736 writelfl(~EDMA_ERR_IRQ_TRANSIENT
, port_mmio
+ EDMA_ERR_IRQ_MASK
);
3738 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3739 readl(port_mmio
+ EDMA_CFG
),
3740 readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE
),
3741 readl(port_mmio
+ EDMA_ERR_IRQ_MASK
));
3744 static unsigned int mv_in_pcix_mode(struct ata_host
*host
)
3746 struct mv_host_priv
*hpriv
= host
->private_data
;
3747 void __iomem
*mmio
= hpriv
->base
;
3750 if (IS_SOC(hpriv
) || !IS_PCIE(hpriv
))
3751 return 0; /* not PCI-X capable */
3752 reg
= readl(mmio
+ MV_PCI_MODE
);
3753 if ((reg
& MV_PCI_MODE_MASK
) == 0)
3754 return 0; /* conventional PCI mode */
3755 return 1; /* chip is in PCI-X mode */
3758 static int mv_pci_cut_through_okay(struct ata_host
*host
)
3760 struct mv_host_priv
*hpriv
= host
->private_data
;
3761 void __iomem
*mmio
= hpriv
->base
;
3764 if (!mv_in_pcix_mode(host
)) {
3765 reg
= readl(mmio
+ MV_PCI_COMMAND
);
3766 if (reg
& MV_PCI_COMMAND_MRDTRIG
)
3767 return 0; /* not okay */
3769 return 1; /* okay */
3772 static void mv_60x1b2_errata_pci7(struct ata_host
*host
)
3774 struct mv_host_priv
*hpriv
= host
->private_data
;
3775 void __iomem
*mmio
= hpriv
->base
;
3777 /* workaround for 60x1-B2 errata PCI#7 */
3778 if (mv_in_pcix_mode(host
)) {
3779 u32 reg
= readl(mmio
+ MV_PCI_COMMAND
);
3780 writelfl(reg
& ~MV_PCI_COMMAND_MWRCOM
, mmio
+ MV_PCI_COMMAND
);
3784 static int mv_chip_id(struct ata_host
*host
, unsigned int board_idx
)
3786 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3787 struct mv_host_priv
*hpriv
= host
->private_data
;
3788 u32 hp_flags
= hpriv
->hp_flags
;
3790 switch (board_idx
) {
3792 hpriv
->ops
= &mv5xxx_ops
;
3793 hp_flags
|= MV_HP_GEN_I
;
3795 switch (pdev
->revision
) {
3797 hp_flags
|= MV_HP_ERRATA_50XXB0
;
3800 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3803 dev_warn(&pdev
->dev
,
3804 "Applying 50XXB2 workarounds to unknown rev\n");
3805 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3812 hpriv
->ops
= &mv5xxx_ops
;
3813 hp_flags
|= MV_HP_GEN_I
;
3815 switch (pdev
->revision
) {
3817 hp_flags
|= MV_HP_ERRATA_50XXB0
;
3820 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3823 dev_warn(&pdev
->dev
,
3824 "Applying B2 workarounds to unknown rev\n");
3825 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3832 hpriv
->ops
= &mv6xxx_ops
;
3833 hp_flags
|= MV_HP_GEN_II
;
3835 switch (pdev
->revision
) {
3837 mv_60x1b2_errata_pci7(host
);
3838 hp_flags
|= MV_HP_ERRATA_60X1B2
;
3841 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3844 dev_warn(&pdev
->dev
,
3845 "Applying B2 workarounds to unknown rev\n");
3846 hp_flags
|= MV_HP_ERRATA_60X1B2
;
3852 hp_flags
|= MV_HP_PCIE
| MV_HP_CUT_THROUGH
;
3853 if (pdev
->vendor
== PCI_VENDOR_ID_TTI
&&
3854 (pdev
->device
== 0x2300 || pdev
->device
== 0x2310))
3857 * Highpoint RocketRAID PCIe 23xx series cards:
3859 * Unconfigured drives are treated as "Legacy"
3860 * by the BIOS, and it overwrites sector 8 with
3861 * a "Lgcy" metadata block prior to Linux boot.
3863 * Configured drives (RAID or JBOD) leave sector 8
3864 * alone, but instead overwrite a high numbered
3865 * sector for the RAID metadata. This sector can
3866 * be determined exactly, by truncating the physical
3867 * drive capacity to a nice even GB value.
3869 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3871 * Warn the user, lest they think we're just buggy.
3873 printk(KERN_WARNING DRV_NAME
": Highpoint RocketRAID"
3874 " BIOS CORRUPTS DATA on all attached drives,"
3875 " regardless of if/how they are configured."
3877 printk(KERN_WARNING DRV_NAME
": For data safety, do not"
3878 " use sectors 8-9 on \"Legacy\" drives,"
3879 " and avoid the final two gigabytes on"
3880 " all RocketRAID BIOS initialized drives.\n");
3884 hpriv
->ops
= &mv6xxx_ops
;
3885 hp_flags
|= MV_HP_GEN_IIE
;
3886 if (board_idx
== chip_6042
&& mv_pci_cut_through_okay(host
))
3887 hp_flags
|= MV_HP_CUT_THROUGH
;
3889 switch (pdev
->revision
) {
3890 case 0x2: /* Rev.B0: the first/only public release */
3891 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3894 dev_warn(&pdev
->dev
,
3895 "Applying 60X1C0 workarounds to unknown rev\n");
3896 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3901 if (soc_is_65n(hpriv
))
3902 hpriv
->ops
= &mv_soc_65n_ops
;
3904 hpriv
->ops
= &mv_soc_ops
;
3905 hp_flags
|= MV_HP_FLAG_SOC
| MV_HP_GEN_IIE
|
3906 MV_HP_ERRATA_60X1C0
;
3910 dev_err(host
->dev
, "BUG: invalid board index %u\n", board_idx
);
3914 hpriv
->hp_flags
= hp_flags
;
3915 if (hp_flags
& MV_HP_PCIE
) {
3916 hpriv
->irq_cause_offset
= PCIE_IRQ_CAUSE
;
3917 hpriv
->irq_mask_offset
= PCIE_IRQ_MASK
;
3918 hpriv
->unmask_all_irqs
= PCIE_UNMASK_ALL_IRQS
;
3920 hpriv
->irq_cause_offset
= PCI_IRQ_CAUSE
;
3921 hpriv
->irq_mask_offset
= PCI_IRQ_MASK
;
3922 hpriv
->unmask_all_irqs
= PCI_UNMASK_ALL_IRQS
;
3929 * mv_init_host - Perform some early initialization of the host.
3930 * @host: ATA host to initialize
3932 * If possible, do an early global reset of the host. Then do
3933 * our port init and clear/unmask all/relevant host interrupts.
3936 * Inherited from caller.
3938 static int mv_init_host(struct ata_host
*host
)
3940 int rc
= 0, n_hc
, port
, hc
;
3941 struct mv_host_priv
*hpriv
= host
->private_data
;
3942 void __iomem
*mmio
= hpriv
->base
;
3944 rc
= mv_chip_id(host
, hpriv
->board_idx
);
3948 if (IS_SOC(hpriv
)) {
3949 hpriv
->main_irq_cause_addr
= mmio
+ SOC_HC_MAIN_IRQ_CAUSE
;
3950 hpriv
->main_irq_mask_addr
= mmio
+ SOC_HC_MAIN_IRQ_MASK
;
3952 hpriv
->main_irq_cause_addr
= mmio
+ PCI_HC_MAIN_IRQ_CAUSE
;
3953 hpriv
->main_irq_mask_addr
= mmio
+ PCI_HC_MAIN_IRQ_MASK
;
3956 /* initialize shadow irq mask with register's value */
3957 hpriv
->main_irq_mask
= readl(hpriv
->main_irq_mask_addr
);
3959 /* global interrupt mask: 0 == mask everything */
3960 mv_set_main_irq_mask(host
, ~0, 0);
3962 n_hc
= mv_get_hc_count(host
->ports
[0]->flags
);
3964 for (port
= 0; port
< host
->n_ports
; port
++)
3965 if (hpriv
->ops
->read_preamp
)
3966 hpriv
->ops
->read_preamp(hpriv
, port
, mmio
);
3968 rc
= hpriv
->ops
->reset_hc(hpriv
, mmio
, n_hc
);
3972 hpriv
->ops
->reset_flash(hpriv
, mmio
);
3973 hpriv
->ops
->reset_bus(host
, mmio
);
3974 hpriv
->ops
->enable_leds(hpriv
, mmio
);
3976 for (port
= 0; port
< host
->n_ports
; port
++) {
3977 struct ata_port
*ap
= host
->ports
[port
];
3978 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3980 mv_port_init(&ap
->ioaddr
, port_mmio
);
3983 for (hc
= 0; hc
< n_hc
; hc
++) {
3984 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3986 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3987 "(before clear)=0x%08x\n", hc
,
3988 readl(hc_mmio
+ HC_CFG
),
3989 readl(hc_mmio
+ HC_IRQ_CAUSE
));
3991 /* Clear any currently outstanding hc interrupt conditions */
3992 writelfl(0, hc_mmio
+ HC_IRQ_CAUSE
);
3995 if (!IS_SOC(hpriv
)) {
3996 /* Clear any currently outstanding host interrupt conditions */
3997 writelfl(0, mmio
+ hpriv
->irq_cause_offset
);
3999 /* and unmask interrupt generation for host regs */
4000 writelfl(hpriv
->unmask_all_irqs
, mmio
+ hpriv
->irq_mask_offset
);
4004 * enable only global host interrupts for now.
4005 * The per-port interrupts get done later as ports are set up.
4007 mv_set_main_irq_mask(host
, 0, PCI_ERR
);
4008 mv_set_irq_coalescing(host
, irq_coalescing_io_count
,
4009 irq_coalescing_usecs
);
4014 static int mv_create_dma_pools(struct mv_host_priv
*hpriv
, struct device
*dev
)
4016 hpriv
->crqb_pool
= dmam_pool_create("crqb_q", dev
, MV_CRQB_Q_SZ
,
4018 if (!hpriv
->crqb_pool
)
4021 hpriv
->crpb_pool
= dmam_pool_create("crpb_q", dev
, MV_CRPB_Q_SZ
,
4023 if (!hpriv
->crpb_pool
)
4026 hpriv
->sg_tbl_pool
= dmam_pool_create("sg_tbl", dev
, MV_SG_TBL_SZ
,
4028 if (!hpriv
->sg_tbl_pool
)
4034 static void mv_conf_mbus_windows(struct mv_host_priv
*hpriv
,
4035 const struct mbus_dram_target_info
*dram
)
4039 for (i
= 0; i
< 4; i
++) {
4040 writel(0, hpriv
->base
+ WINDOW_CTRL(i
));
4041 writel(0, hpriv
->base
+ WINDOW_BASE(i
));
4044 for (i
= 0; i
< dram
->num_cs
; i
++) {
4045 const struct mbus_dram_window
*cs
= dram
->cs
+ i
;
4047 writel(((cs
->size
- 1) & 0xffff0000) |
4048 (cs
->mbus_attr
<< 8) |
4049 (dram
->mbus_dram_target_id
<< 4) | 1,
4050 hpriv
->base
+ WINDOW_CTRL(i
));
4051 writel(cs
->base
, hpriv
->base
+ WINDOW_BASE(i
));
4056 * mv_platform_probe - handle a positive probe of an soc Marvell
4058 * @pdev: platform device found
4061 * Inherited from caller.
4063 static int mv_platform_probe(struct platform_device
*pdev
)
4065 const struct mv_sata_platform_data
*mv_platform_data
;
4066 const struct mbus_dram_target_info
*dram
;
4067 const struct ata_port_info
*ppi
[] =
4068 { &mv_port_info
[chip_soc
], NULL
};
4069 struct ata_host
*host
;
4070 struct mv_host_priv
*hpriv
;
4071 struct resource
*res
;
4072 int n_ports
= 0, irq
= 0;
4076 ata_print_version_once(&pdev
->dev
, DRV_VERSION
);
4079 * Simple resource validation ..
4081 if (unlikely(pdev
->num_resources
!= 2)) {
4082 dev_err(&pdev
->dev
, "invalid number of resources\n");
4087 * Get the register base first
4089 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
4094 if (pdev
->dev
.of_node
) {
4095 of_property_read_u32(pdev
->dev
.of_node
, "nr-ports", &n_ports
);
4096 irq
= irq_of_parse_and_map(pdev
->dev
.of_node
, 0);
4098 mv_platform_data
= dev_get_platdata(&pdev
->dev
);
4099 n_ports
= mv_platform_data
->n_ports
;
4100 irq
= platform_get_irq(pdev
, 0);
4103 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
4104 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
4106 if (!host
|| !hpriv
)
4108 hpriv
->port_clks
= devm_kzalloc(&pdev
->dev
,
4109 sizeof(struct clk
*) * n_ports
,
4111 if (!hpriv
->port_clks
)
4113 hpriv
->port_phys
= devm_kzalloc(&pdev
->dev
,
4114 sizeof(struct phy
*) * n_ports
,
4116 if (!hpriv
->port_phys
)
4118 host
->private_data
= hpriv
;
4119 hpriv
->board_idx
= chip_soc
;
4122 hpriv
->base
= devm_ioremap(&pdev
->dev
, res
->start
,
4123 resource_size(res
));
4124 hpriv
->base
-= SATAHC0_REG_BASE
;
4126 hpriv
->clk
= clk_get(&pdev
->dev
, NULL
);
4127 if (IS_ERR(hpriv
->clk
))
4128 dev_notice(&pdev
->dev
, "cannot get optional clkdev\n");
4130 clk_prepare_enable(hpriv
->clk
);
4132 for (port
= 0; port
< n_ports
; port
++) {
4133 char port_number
[16];
4134 sprintf(port_number
, "%d", port
);
4135 hpriv
->port_clks
[port
] = clk_get(&pdev
->dev
, port_number
);
4136 if (!IS_ERR(hpriv
->port_clks
[port
]))
4137 clk_prepare_enable(hpriv
->port_clks
[port
]);
4139 sprintf(port_number
, "port%d", port
);
4140 hpriv
->port_phys
[port
] = devm_phy_optional_get(&pdev
->dev
,
4142 if (IS_ERR(hpriv
->port_phys
[port
])) {
4143 rc
= PTR_ERR(hpriv
->port_phys
[port
]);
4144 hpriv
->port_phys
[port
] = NULL
;
4145 if (rc
!= -EPROBE_DEFER
)
4146 dev_warn(&pdev
->dev
, "error getting phy %d", rc
);
4148 /* Cleanup only the initialized ports */
4149 hpriv
->n_ports
= port
;
4152 phy_power_on(hpriv
->port_phys
[port
]);
4155 /* All the ports have been initialized */
4156 hpriv
->n_ports
= n_ports
;
4159 * (Re-)program MBUS remapping windows if we are asked to.
4161 dram
= mv_mbus_dram_info();
4163 mv_conf_mbus_windows(hpriv
, dram
);
4165 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
4170 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4171 * updated in the LP_PHY_CTL register.
4173 if (pdev
->dev
.of_node
&&
4174 of_device_is_compatible(pdev
->dev
.of_node
,
4175 "marvell,armada-370-sata"))
4176 hpriv
->hp_flags
|= MV_HP_FIX_LP_PHY_CTL
;
4178 /* initialize adapter */
4179 rc
= mv_init_host(host
);
4183 dev_info(&pdev
->dev
, "slots %u ports %d\n",
4184 (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
);
4186 rc
= ata_host_activate(host
, irq
, mv_interrupt
, IRQF_SHARED
, &mv6_sht
);
4191 if (!IS_ERR(hpriv
->clk
)) {
4192 clk_disable_unprepare(hpriv
->clk
);
4193 clk_put(hpriv
->clk
);
4195 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
4196 if (!IS_ERR(hpriv
->port_clks
[port
])) {
4197 clk_disable_unprepare(hpriv
->port_clks
[port
]);
4198 clk_put(hpriv
->port_clks
[port
]);
4200 phy_power_off(hpriv
->port_phys
[port
]);
4208 * mv_platform_remove - unplug a platform interface
4209 * @pdev: platform device
4211 * A platform bus SATA device has been unplugged. Perform the needed
4212 * cleanup. Also called on module unload for any active devices.
4214 static int mv_platform_remove(struct platform_device
*pdev
)
4216 struct ata_host
*host
= platform_get_drvdata(pdev
);
4217 struct mv_host_priv
*hpriv
= host
->private_data
;
4219 ata_host_detach(host
);
4221 if (!IS_ERR(hpriv
->clk
)) {
4222 clk_disable_unprepare(hpriv
->clk
);
4223 clk_put(hpriv
->clk
);
4225 for (port
= 0; port
< host
->n_ports
; port
++) {
4226 if (!IS_ERR(hpriv
->port_clks
[port
])) {
4227 clk_disable_unprepare(hpriv
->port_clks
[port
]);
4228 clk_put(hpriv
->port_clks
[port
]);
4230 phy_power_off(hpriv
->port_phys
[port
]);
4235 #ifdef CONFIG_PM_SLEEP
4236 static int mv_platform_suspend(struct platform_device
*pdev
, pm_message_t state
)
4238 struct ata_host
*host
= platform_get_drvdata(pdev
);
4240 return ata_host_suspend(host
, state
);
4245 static int mv_platform_resume(struct platform_device
*pdev
)
4247 struct ata_host
*host
= platform_get_drvdata(pdev
);
4248 const struct mbus_dram_target_info
*dram
;
4252 struct mv_host_priv
*hpriv
= host
->private_data
;
4255 * (Re-)program MBUS remapping windows if we are asked to.
4257 dram
= mv_mbus_dram_info();
4259 mv_conf_mbus_windows(hpriv
, dram
);
4261 /* initialize adapter */
4262 ret
= mv_init_host(host
);
4264 printk(KERN_ERR DRV_NAME
": Error during HW init\n");
4267 ata_host_resume(host
);
4273 #define mv_platform_suspend NULL
4274 #define mv_platform_resume NULL
4278 static struct of_device_id mv_sata_dt_ids
[] = {
4279 { .compatible
= "marvell,armada-370-sata", },
4280 { .compatible
= "marvell,orion-sata", },
4283 MODULE_DEVICE_TABLE(of
, mv_sata_dt_ids
);
4286 static struct platform_driver mv_platform_driver
= {
4287 .probe
= mv_platform_probe
,
4288 .remove
= mv_platform_remove
,
4289 .suspend
= mv_platform_suspend
,
4290 .resume
= mv_platform_resume
,
4293 .of_match_table
= of_match_ptr(mv_sata_dt_ids
),
4299 static int mv_pci_init_one(struct pci_dev
*pdev
,
4300 const struct pci_device_id
*ent
);
4301 #ifdef CONFIG_PM_SLEEP
4302 static int mv_pci_device_resume(struct pci_dev
*pdev
);
4306 static struct pci_driver mv_pci_driver
= {
4308 .id_table
= mv_pci_tbl
,
4309 .probe
= mv_pci_init_one
,
4310 .remove
= ata_pci_remove_one
,
4311 #ifdef CONFIG_PM_SLEEP
4312 .suspend
= ata_pci_device_suspend
,
4313 .resume
= mv_pci_device_resume
,
4318 /* move to PCI layer or libata core? */
4319 static int pci_go_64(struct pci_dev
*pdev
)
4323 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
4324 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
4326 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4329 "64-bit DMA enable failed\n");
4334 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
4336 dev_err(&pdev
->dev
, "32-bit DMA enable failed\n");
4339 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4342 "32-bit consistent DMA enable failed\n");
4351 * mv_print_info - Dump key info to kernel log for perusal.
4352 * @host: ATA host to print info about
4354 * FIXME: complete this.
4357 * Inherited from caller.
4359 static void mv_print_info(struct ata_host
*host
)
4361 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
4362 struct mv_host_priv
*hpriv
= host
->private_data
;
4364 const char *scc_s
, *gen
;
4366 /* Use this to determine the HW stepping of the chip so we know
4367 * what errata to workaround
4369 pci_read_config_byte(pdev
, PCI_CLASS_DEVICE
, &scc
);
4372 else if (scc
== 0x01)
4377 if (IS_GEN_I(hpriv
))
4379 else if (IS_GEN_II(hpriv
))
4381 else if (IS_GEN_IIE(hpriv
))
4386 dev_info(&pdev
->dev
, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4387 gen
, (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
,
4388 scc_s
, (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) ? "MSI" : "INTx");
4392 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4393 * @pdev: PCI device found
4394 * @ent: PCI device ID entry for the matched host
4397 * Inherited from caller.
4399 static int mv_pci_init_one(struct pci_dev
*pdev
,
4400 const struct pci_device_id
*ent
)
4402 unsigned int board_idx
= (unsigned int)ent
->driver_data
;
4403 const struct ata_port_info
*ppi
[] = { &mv_port_info
[board_idx
], NULL
};
4404 struct ata_host
*host
;
4405 struct mv_host_priv
*hpriv
;
4406 int n_ports
, port
, rc
;
4408 ata_print_version_once(&pdev
->dev
, DRV_VERSION
);
4411 n_ports
= mv_get_hc_count(ppi
[0]->flags
) * MV_PORTS_PER_HC
;
4413 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
4414 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
4415 if (!host
|| !hpriv
)
4417 host
->private_data
= hpriv
;
4418 hpriv
->n_ports
= n_ports
;
4419 hpriv
->board_idx
= board_idx
;
4421 /* acquire resources */
4422 rc
= pcim_enable_device(pdev
);
4426 rc
= pcim_iomap_regions(pdev
, 1 << MV_PRIMARY_BAR
, DRV_NAME
);
4428 pcim_pin_device(pdev
);
4431 host
->iomap
= pcim_iomap_table(pdev
);
4432 hpriv
->base
= host
->iomap
[MV_PRIMARY_BAR
];
4434 rc
= pci_go_64(pdev
);
4438 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
4442 for (port
= 0; port
< host
->n_ports
; port
++) {
4443 struct ata_port
*ap
= host
->ports
[port
];
4444 void __iomem
*port_mmio
= mv_port_base(hpriv
->base
, port
);
4445 unsigned int offset
= port_mmio
- hpriv
->base
;
4447 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, -1, "mmio");
4448 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, offset
, "port");
4451 /* initialize adapter */
4452 rc
= mv_init_host(host
);
4456 /* Enable message-switched interrupts, if requested */
4457 if (msi
&& pci_enable_msi(pdev
) == 0)
4458 hpriv
->hp_flags
|= MV_HP_FLAG_MSI
;
4460 mv_dump_pci_cfg(pdev
, 0x68);
4461 mv_print_info(host
);
4463 pci_set_master(pdev
);
4464 pci_try_set_mwi(pdev
);
4465 return ata_host_activate(host
, pdev
->irq
, mv_interrupt
, IRQF_SHARED
,
4466 IS_GEN_I(hpriv
) ? &mv5_sht
: &mv6_sht
);
4469 #ifdef CONFIG_PM_SLEEP
4470 static int mv_pci_device_resume(struct pci_dev
*pdev
)
4472 struct ata_host
*host
= pci_get_drvdata(pdev
);
4475 rc
= ata_pci_device_do_resume(pdev
);
4479 /* initialize adapter */
4480 rc
= mv_init_host(host
);
4484 ata_host_resume(host
);
4491 static int __init
mv_init(void)
4495 rc
= pci_register_driver(&mv_pci_driver
);
4499 rc
= platform_driver_register(&mv_platform_driver
);
4503 pci_unregister_driver(&mv_pci_driver
);
4508 static void __exit
mv_exit(void)
4511 pci_unregister_driver(&mv_pci_driver
);
4513 platform_driver_unregister(&mv_platform_driver
);
4516 MODULE_AUTHOR("Brett Russ");
4517 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4518 MODULE_LICENSE("GPL");
4519 MODULE_DEVICE_TABLE(pci
, mv_pci_tbl
);
4520 MODULE_VERSION(DRV_VERSION
);
4521 MODULE_ALIAS("platform:" DRV_NAME
);
4523 module_init(mv_init
);
4524 module_exit(mv_exit
);