2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
23 #include "transaction.h"
25 #define BTRFS_DELAYED_WRITEBACK 512
26 #define BTRFS_DELAYED_BACKGROUND 128
27 #define BTRFS_DELAYED_BATCH 16
29 static struct kmem_cache
*delayed_node_cache
;
31 int __init
btrfs_delayed_inode_init(void)
33 delayed_node_cache
= kmem_cache_create("btrfs_delayed_node",
34 sizeof(struct btrfs_delayed_node
),
36 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
38 if (!delayed_node_cache
)
43 void btrfs_delayed_inode_exit(void)
45 if (delayed_node_cache
)
46 kmem_cache_destroy(delayed_node_cache
);
49 static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node
*delayed_node
,
51 struct btrfs_root
*root
, u64 inode_id
)
53 delayed_node
->root
= root
;
54 delayed_node
->inode_id
= inode_id
;
55 atomic_set(&delayed_node
->refs
, 0);
56 delayed_node
->count
= 0;
57 delayed_node
->in_list
= 0;
58 delayed_node
->inode_dirty
= 0;
59 delayed_node
->ins_root
= RB_ROOT
;
60 delayed_node
->del_root
= RB_ROOT
;
61 mutex_init(&delayed_node
->mutex
);
62 delayed_node
->index_cnt
= 0;
63 INIT_LIST_HEAD(&delayed_node
->n_list
);
64 INIT_LIST_HEAD(&delayed_node
->p_list
);
65 delayed_node
->bytes_reserved
= 0;
66 memset(&delayed_node
->inode_item
, 0, sizeof(delayed_node
->inode_item
));
69 static inline int btrfs_is_continuous_delayed_item(
70 struct btrfs_delayed_item
*item1
,
71 struct btrfs_delayed_item
*item2
)
73 if (item1
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
74 item1
->key
.objectid
== item2
->key
.objectid
&&
75 item1
->key
.type
== item2
->key
.type
&&
76 item1
->key
.offset
+ 1 == item2
->key
.offset
)
81 static inline struct btrfs_delayed_root
*btrfs_get_delayed_root(
82 struct btrfs_root
*root
)
84 return root
->fs_info
->delayed_root
;
87 static struct btrfs_delayed_node
*btrfs_get_delayed_node(struct inode
*inode
)
89 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
90 struct btrfs_root
*root
= btrfs_inode
->root
;
91 u64 ino
= btrfs_ino(inode
);
92 struct btrfs_delayed_node
*node
;
94 node
= ACCESS_ONCE(btrfs_inode
->delayed_node
);
96 atomic_inc(&node
->refs
);
100 spin_lock(&root
->inode_lock
);
101 node
= radix_tree_lookup(&root
->delayed_nodes_tree
, ino
);
103 if (btrfs_inode
->delayed_node
) {
104 atomic_inc(&node
->refs
); /* can be accessed */
105 BUG_ON(btrfs_inode
->delayed_node
!= node
);
106 spin_unlock(&root
->inode_lock
);
109 btrfs_inode
->delayed_node
= node
;
110 atomic_inc(&node
->refs
); /* can be accessed */
111 atomic_inc(&node
->refs
); /* cached in the inode */
112 spin_unlock(&root
->inode_lock
);
115 spin_unlock(&root
->inode_lock
);
120 /* Will return either the node or PTR_ERR(-ENOMEM) */
121 static struct btrfs_delayed_node
*btrfs_get_or_create_delayed_node(
124 struct btrfs_delayed_node
*node
;
125 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
126 struct btrfs_root
*root
= btrfs_inode
->root
;
127 u64 ino
= btrfs_ino(inode
);
131 node
= btrfs_get_delayed_node(inode
);
135 node
= kmem_cache_alloc(delayed_node_cache
, GFP_NOFS
);
137 return ERR_PTR(-ENOMEM
);
138 btrfs_init_delayed_node(node
, root
, ino
);
140 atomic_inc(&node
->refs
); /* cached in the btrfs inode */
141 atomic_inc(&node
->refs
); /* can be accessed */
143 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
145 kmem_cache_free(delayed_node_cache
, node
);
149 spin_lock(&root
->inode_lock
);
150 ret
= radix_tree_insert(&root
->delayed_nodes_tree
, ino
, node
);
151 if (ret
== -EEXIST
) {
152 kmem_cache_free(delayed_node_cache
, node
);
153 spin_unlock(&root
->inode_lock
);
154 radix_tree_preload_end();
157 btrfs_inode
->delayed_node
= node
;
158 spin_unlock(&root
->inode_lock
);
159 radix_tree_preload_end();
165 * Call it when holding delayed_node->mutex
167 * If mod = 1, add this node into the prepared list.
169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root
*root
,
170 struct btrfs_delayed_node
*node
,
173 spin_lock(&root
->lock
);
175 if (!list_empty(&node
->p_list
))
176 list_move_tail(&node
->p_list
, &root
->prepare_list
);
178 list_add_tail(&node
->p_list
, &root
->prepare_list
);
180 list_add_tail(&node
->n_list
, &root
->node_list
);
181 list_add_tail(&node
->p_list
, &root
->prepare_list
);
182 atomic_inc(&node
->refs
); /* inserted into list */
186 spin_unlock(&root
->lock
);
189 /* Call it when holding delayed_node->mutex */
190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root
*root
,
191 struct btrfs_delayed_node
*node
)
193 spin_lock(&root
->lock
);
196 atomic_dec(&node
->refs
); /* not in the list */
197 list_del_init(&node
->n_list
);
198 if (!list_empty(&node
->p_list
))
199 list_del_init(&node
->p_list
);
202 spin_unlock(&root
->lock
);
205 static struct btrfs_delayed_node
*btrfs_first_delayed_node(
206 struct btrfs_delayed_root
*delayed_root
)
209 struct btrfs_delayed_node
*node
= NULL
;
211 spin_lock(&delayed_root
->lock
);
212 if (list_empty(&delayed_root
->node_list
))
215 p
= delayed_root
->node_list
.next
;
216 node
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
217 atomic_inc(&node
->refs
);
219 spin_unlock(&delayed_root
->lock
);
224 static struct btrfs_delayed_node
*btrfs_next_delayed_node(
225 struct btrfs_delayed_node
*node
)
227 struct btrfs_delayed_root
*delayed_root
;
229 struct btrfs_delayed_node
*next
= NULL
;
231 delayed_root
= node
->root
->fs_info
->delayed_root
;
232 spin_lock(&delayed_root
->lock
);
233 if (!node
->in_list
) { /* not in the list */
234 if (list_empty(&delayed_root
->node_list
))
236 p
= delayed_root
->node_list
.next
;
237 } else if (list_is_last(&node
->n_list
, &delayed_root
->node_list
))
240 p
= node
->n_list
.next
;
242 next
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
243 atomic_inc(&next
->refs
);
245 spin_unlock(&delayed_root
->lock
);
250 static void __btrfs_release_delayed_node(
251 struct btrfs_delayed_node
*delayed_node
,
254 struct btrfs_delayed_root
*delayed_root
;
259 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
261 mutex_lock(&delayed_node
->mutex
);
262 if (delayed_node
->count
)
263 btrfs_queue_delayed_node(delayed_root
, delayed_node
, mod
);
265 btrfs_dequeue_delayed_node(delayed_root
, delayed_node
);
266 mutex_unlock(&delayed_node
->mutex
);
268 if (atomic_dec_and_test(&delayed_node
->refs
)) {
269 struct btrfs_root
*root
= delayed_node
->root
;
270 spin_lock(&root
->inode_lock
);
271 if (atomic_read(&delayed_node
->refs
) == 0) {
272 radix_tree_delete(&root
->delayed_nodes_tree
,
273 delayed_node
->inode_id
);
274 kmem_cache_free(delayed_node_cache
, delayed_node
);
276 spin_unlock(&root
->inode_lock
);
280 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node
*node
)
282 __btrfs_release_delayed_node(node
, 0);
285 static struct btrfs_delayed_node
*btrfs_first_prepared_delayed_node(
286 struct btrfs_delayed_root
*delayed_root
)
289 struct btrfs_delayed_node
*node
= NULL
;
291 spin_lock(&delayed_root
->lock
);
292 if (list_empty(&delayed_root
->prepare_list
))
295 p
= delayed_root
->prepare_list
.next
;
297 node
= list_entry(p
, struct btrfs_delayed_node
, p_list
);
298 atomic_inc(&node
->refs
);
300 spin_unlock(&delayed_root
->lock
);
305 static inline void btrfs_release_prepared_delayed_node(
306 struct btrfs_delayed_node
*node
)
308 __btrfs_release_delayed_node(node
, 1);
311 static struct btrfs_delayed_item
*btrfs_alloc_delayed_item(u32 data_len
)
313 struct btrfs_delayed_item
*item
;
314 item
= kmalloc(sizeof(*item
) + data_len
, GFP_NOFS
);
316 item
->data_len
= data_len
;
317 item
->ins_or_del
= 0;
318 item
->bytes_reserved
= 0;
319 item
->delayed_node
= NULL
;
320 atomic_set(&item
->refs
, 1);
326 * __btrfs_lookup_delayed_item - look up the delayed item by key
327 * @delayed_node: pointer to the delayed node
328 * @key: the key to look up
329 * @prev: used to store the prev item if the right item isn't found
330 * @next: used to store the next item if the right item isn't found
332 * Note: if we don't find the right item, we will return the prev item and
335 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_item(
336 struct rb_root
*root
,
337 struct btrfs_key
*key
,
338 struct btrfs_delayed_item
**prev
,
339 struct btrfs_delayed_item
**next
)
341 struct rb_node
*node
, *prev_node
= NULL
;
342 struct btrfs_delayed_item
*delayed_item
= NULL
;
345 node
= root
->rb_node
;
348 delayed_item
= rb_entry(node
, struct btrfs_delayed_item
,
351 ret
= btrfs_comp_cpu_keys(&delayed_item
->key
, key
);
353 node
= node
->rb_right
;
355 node
= node
->rb_left
;
364 *prev
= delayed_item
;
365 else if ((node
= rb_prev(prev_node
)) != NULL
) {
366 *prev
= rb_entry(node
, struct btrfs_delayed_item
,
376 *next
= delayed_item
;
377 else if ((node
= rb_next(prev_node
)) != NULL
) {
378 *next
= rb_entry(node
, struct btrfs_delayed_item
,
386 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_insertion_item(
387 struct btrfs_delayed_node
*delayed_node
,
388 struct btrfs_key
*key
)
390 struct btrfs_delayed_item
*item
;
392 item
= __btrfs_lookup_delayed_item(&delayed_node
->ins_root
, key
,
397 static int __btrfs_add_delayed_item(struct btrfs_delayed_node
*delayed_node
,
398 struct btrfs_delayed_item
*ins
,
401 struct rb_node
**p
, *node
;
402 struct rb_node
*parent_node
= NULL
;
403 struct rb_root
*root
;
404 struct btrfs_delayed_item
*item
;
407 if (action
== BTRFS_DELAYED_INSERTION_ITEM
)
408 root
= &delayed_node
->ins_root
;
409 else if (action
== BTRFS_DELAYED_DELETION_ITEM
)
410 root
= &delayed_node
->del_root
;
414 node
= &ins
->rb_node
;
418 item
= rb_entry(parent_node
, struct btrfs_delayed_item
,
421 cmp
= btrfs_comp_cpu_keys(&item
->key
, &ins
->key
);
430 rb_link_node(node
, parent_node
, p
);
431 rb_insert_color(node
, root
);
432 ins
->delayed_node
= delayed_node
;
433 ins
->ins_or_del
= action
;
435 if (ins
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
436 action
== BTRFS_DELAYED_INSERTION_ITEM
&&
437 ins
->key
.offset
>= delayed_node
->index_cnt
)
438 delayed_node
->index_cnt
= ins
->key
.offset
+ 1;
440 delayed_node
->count
++;
441 atomic_inc(&delayed_node
->root
->fs_info
->delayed_root
->items
);
445 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node
*node
,
446 struct btrfs_delayed_item
*item
)
448 return __btrfs_add_delayed_item(node
, item
,
449 BTRFS_DELAYED_INSERTION_ITEM
);
452 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node
*node
,
453 struct btrfs_delayed_item
*item
)
455 return __btrfs_add_delayed_item(node
, item
,
456 BTRFS_DELAYED_DELETION_ITEM
);
459 static void finish_one_item(struct btrfs_delayed_root
*delayed_root
)
461 int seq
= atomic_inc_return(&delayed_root
->items_seq
);
462 if ((atomic_dec_return(&delayed_root
->items
) <
463 BTRFS_DELAYED_BACKGROUND
|| seq
% BTRFS_DELAYED_BATCH
== 0) &&
464 waitqueue_active(&delayed_root
->wait
))
465 wake_up(&delayed_root
->wait
);
468 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item
*delayed_item
)
470 struct rb_root
*root
;
471 struct btrfs_delayed_root
*delayed_root
;
473 delayed_root
= delayed_item
->delayed_node
->root
->fs_info
->delayed_root
;
475 BUG_ON(!delayed_root
);
476 BUG_ON(delayed_item
->ins_or_del
!= BTRFS_DELAYED_DELETION_ITEM
&&
477 delayed_item
->ins_or_del
!= BTRFS_DELAYED_INSERTION_ITEM
);
479 if (delayed_item
->ins_or_del
== BTRFS_DELAYED_INSERTION_ITEM
)
480 root
= &delayed_item
->delayed_node
->ins_root
;
482 root
= &delayed_item
->delayed_node
->del_root
;
484 rb_erase(&delayed_item
->rb_node
, root
);
485 delayed_item
->delayed_node
->count
--;
487 finish_one_item(delayed_root
);
490 static void btrfs_release_delayed_item(struct btrfs_delayed_item
*item
)
493 __btrfs_remove_delayed_item(item
);
494 if (atomic_dec_and_test(&item
->refs
))
499 static struct btrfs_delayed_item
*__btrfs_first_delayed_insertion_item(
500 struct btrfs_delayed_node
*delayed_node
)
503 struct btrfs_delayed_item
*item
= NULL
;
505 p
= rb_first(&delayed_node
->ins_root
);
507 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
512 static struct btrfs_delayed_item
*__btrfs_first_delayed_deletion_item(
513 struct btrfs_delayed_node
*delayed_node
)
516 struct btrfs_delayed_item
*item
= NULL
;
518 p
= rb_first(&delayed_node
->del_root
);
520 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
525 static struct btrfs_delayed_item
*__btrfs_next_delayed_item(
526 struct btrfs_delayed_item
*item
)
529 struct btrfs_delayed_item
*next
= NULL
;
531 p
= rb_next(&item
->rb_node
);
533 next
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
538 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle
*trans
,
539 struct btrfs_root
*root
,
540 struct btrfs_delayed_item
*item
)
542 struct btrfs_block_rsv
*src_rsv
;
543 struct btrfs_block_rsv
*dst_rsv
;
547 if (!trans
->bytes_reserved
)
550 src_rsv
= trans
->block_rsv
;
551 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
553 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
554 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
556 trace_btrfs_space_reservation(root
->fs_info
, "delayed_item",
559 item
->bytes_reserved
= num_bytes
;
565 static void btrfs_delayed_item_release_metadata(struct btrfs_root
*root
,
566 struct btrfs_delayed_item
*item
)
568 struct btrfs_block_rsv
*rsv
;
570 if (!item
->bytes_reserved
)
573 rsv
= &root
->fs_info
->delayed_block_rsv
;
574 trace_btrfs_space_reservation(root
->fs_info
, "delayed_item",
575 item
->key
.objectid
, item
->bytes_reserved
,
577 btrfs_block_rsv_release(root
, rsv
,
578 item
->bytes_reserved
);
581 static int btrfs_delayed_inode_reserve_metadata(
582 struct btrfs_trans_handle
*trans
,
583 struct btrfs_root
*root
,
585 struct btrfs_delayed_node
*node
)
587 struct btrfs_block_rsv
*src_rsv
;
588 struct btrfs_block_rsv
*dst_rsv
;
591 bool release
= false;
593 src_rsv
= trans
->block_rsv
;
594 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
596 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
599 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
600 * which doesn't reserve space for speed. This is a problem since we
601 * still need to reserve space for this update, so try to reserve the
604 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
605 * we're accounted for.
607 if (!src_rsv
|| (!trans
->bytes_reserved
&&
608 src_rsv
->type
!= BTRFS_BLOCK_RSV_DELALLOC
)) {
609 ret
= btrfs_block_rsv_add(root
, dst_rsv
, num_bytes
,
610 BTRFS_RESERVE_NO_FLUSH
);
612 * Since we're under a transaction reserve_metadata_bytes could
613 * try to commit the transaction which will make it return
614 * EAGAIN to make us stop the transaction we have, so return
615 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
620 node
->bytes_reserved
= num_bytes
;
621 trace_btrfs_space_reservation(root
->fs_info
,
627 } else if (src_rsv
->type
== BTRFS_BLOCK_RSV_DELALLOC
) {
628 spin_lock(&BTRFS_I(inode
)->lock
);
629 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
630 &BTRFS_I(inode
)->runtime_flags
)) {
631 spin_unlock(&BTRFS_I(inode
)->lock
);
635 spin_unlock(&BTRFS_I(inode
)->lock
);
637 /* Ok we didn't have space pre-reserved. This shouldn't happen
638 * too often but it can happen if we do delalloc to an existing
639 * inode which gets dirtied because of the time update, and then
640 * isn't touched again until after the transaction commits and
641 * then we try to write out the data. First try to be nice and
642 * reserve something strictly for us. If not be a pain and try
643 * to steal from the delalloc block rsv.
645 ret
= btrfs_block_rsv_add(root
, dst_rsv
, num_bytes
,
646 BTRFS_RESERVE_NO_FLUSH
);
650 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
655 * Ok this is a problem, let's just steal from the global rsv
656 * since this really shouldn't happen that often.
659 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->global_block_rsv
,
665 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
669 * Migrate only takes a reservation, it doesn't touch the size of the
670 * block_rsv. This is to simplify people who don't normally have things
671 * migrated from their block rsv. If they go to release their
672 * reservation, that will decrease the size as well, so if migrate
673 * reduced size we'd end up with a negative size. But for the
674 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
675 * but we could in fact do this reserve/migrate dance several times
676 * between the time we did the original reservation and we'd clean it
677 * up. So to take care of this, release the space for the meta
678 * reservation here. I think it may be time for a documentation page on
679 * how block rsvs. work.
682 trace_btrfs_space_reservation(root
->fs_info
, "delayed_inode",
683 btrfs_ino(inode
), num_bytes
, 1);
684 node
->bytes_reserved
= num_bytes
;
688 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
689 btrfs_ino(inode
), num_bytes
, 0);
690 btrfs_block_rsv_release(root
, src_rsv
, num_bytes
);
696 static void btrfs_delayed_inode_release_metadata(struct btrfs_root
*root
,
697 struct btrfs_delayed_node
*node
)
699 struct btrfs_block_rsv
*rsv
;
701 if (!node
->bytes_reserved
)
704 rsv
= &root
->fs_info
->delayed_block_rsv
;
705 trace_btrfs_space_reservation(root
->fs_info
, "delayed_inode",
706 node
->inode_id
, node
->bytes_reserved
, 0);
707 btrfs_block_rsv_release(root
, rsv
,
708 node
->bytes_reserved
);
709 node
->bytes_reserved
= 0;
713 * This helper will insert some continuous items into the same leaf according
714 * to the free space of the leaf.
716 static int btrfs_batch_insert_items(struct btrfs_root
*root
,
717 struct btrfs_path
*path
,
718 struct btrfs_delayed_item
*item
)
720 struct btrfs_delayed_item
*curr
, *next
;
722 int total_data_size
= 0, total_size
= 0;
723 struct extent_buffer
*leaf
;
725 struct btrfs_key
*keys
;
727 struct list_head head
;
733 BUG_ON(!path
->nodes
[0]);
735 leaf
= path
->nodes
[0];
736 free_space
= btrfs_leaf_free_space(root
, leaf
);
737 INIT_LIST_HEAD(&head
);
743 * count the number of the continuous items that we can insert in batch
745 while (total_size
+ next
->data_len
+ sizeof(struct btrfs_item
) <=
747 total_data_size
+= next
->data_len
;
748 total_size
+= next
->data_len
+ sizeof(struct btrfs_item
);
749 list_add_tail(&next
->tree_list
, &head
);
753 next
= __btrfs_next_delayed_item(curr
);
757 if (!btrfs_is_continuous_delayed_item(curr
, next
))
767 * we need allocate some memory space, but it might cause the task
768 * to sleep, so we set all locked nodes in the path to blocking locks
771 btrfs_set_path_blocking(path
);
773 keys
= kmalloc(sizeof(struct btrfs_key
) * nitems
, GFP_NOFS
);
779 data_size
= kmalloc(sizeof(u32
) * nitems
, GFP_NOFS
);
785 /* get keys of all the delayed items */
787 list_for_each_entry(next
, &head
, tree_list
) {
789 data_size
[i
] = next
->data_len
;
793 /* reset all the locked nodes in the patch to spinning locks. */
794 btrfs_clear_path_blocking(path
, NULL
, 0);
796 /* insert the keys of the items */
797 setup_items_for_insert(root
, path
, keys
, data_size
,
798 total_data_size
, total_size
, nitems
);
800 /* insert the dir index items */
801 slot
= path
->slots
[0];
802 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
803 data_ptr
= btrfs_item_ptr(leaf
, slot
, char);
804 write_extent_buffer(leaf
, &curr
->data
,
805 (unsigned long)data_ptr
,
809 btrfs_delayed_item_release_metadata(root
, curr
);
811 list_del(&curr
->tree_list
);
812 btrfs_release_delayed_item(curr
);
823 * This helper can just do simple insertion that needn't extend item for new
824 * data, such as directory name index insertion, inode insertion.
826 static int btrfs_insert_delayed_item(struct btrfs_trans_handle
*trans
,
827 struct btrfs_root
*root
,
828 struct btrfs_path
*path
,
829 struct btrfs_delayed_item
*delayed_item
)
831 struct extent_buffer
*leaf
;
835 ret
= btrfs_insert_empty_item(trans
, root
, path
, &delayed_item
->key
,
836 delayed_item
->data_len
);
837 if (ret
< 0 && ret
!= -EEXIST
)
840 leaf
= path
->nodes
[0];
842 ptr
= btrfs_item_ptr(leaf
, path
->slots
[0], char);
844 write_extent_buffer(leaf
, delayed_item
->data
, (unsigned long)ptr
,
845 delayed_item
->data_len
);
846 btrfs_mark_buffer_dirty(leaf
);
848 btrfs_delayed_item_release_metadata(root
, delayed_item
);
853 * we insert an item first, then if there are some continuous items, we try
854 * to insert those items into the same leaf.
856 static int btrfs_insert_delayed_items(struct btrfs_trans_handle
*trans
,
857 struct btrfs_path
*path
,
858 struct btrfs_root
*root
,
859 struct btrfs_delayed_node
*node
)
861 struct btrfs_delayed_item
*curr
, *prev
;
865 mutex_lock(&node
->mutex
);
866 curr
= __btrfs_first_delayed_insertion_item(node
);
870 ret
= btrfs_insert_delayed_item(trans
, root
, path
, curr
);
872 btrfs_release_path(path
);
877 curr
= __btrfs_next_delayed_item(prev
);
878 if (curr
&& btrfs_is_continuous_delayed_item(prev
, curr
)) {
879 /* insert the continuous items into the same leaf */
881 btrfs_batch_insert_items(root
, path
, curr
);
883 btrfs_release_delayed_item(prev
);
884 btrfs_mark_buffer_dirty(path
->nodes
[0]);
886 btrfs_release_path(path
);
887 mutex_unlock(&node
->mutex
);
891 mutex_unlock(&node
->mutex
);
895 static int btrfs_batch_delete_items(struct btrfs_trans_handle
*trans
,
896 struct btrfs_root
*root
,
897 struct btrfs_path
*path
,
898 struct btrfs_delayed_item
*item
)
900 struct btrfs_delayed_item
*curr
, *next
;
901 struct extent_buffer
*leaf
;
902 struct btrfs_key key
;
903 struct list_head head
;
904 int nitems
, i
, last_item
;
907 BUG_ON(!path
->nodes
[0]);
909 leaf
= path
->nodes
[0];
912 last_item
= btrfs_header_nritems(leaf
) - 1;
914 return -ENOENT
; /* FIXME: Is errno suitable? */
917 INIT_LIST_HEAD(&head
);
918 btrfs_item_key_to_cpu(leaf
, &key
, i
);
921 * count the number of the dir index items that we can delete in batch
923 while (btrfs_comp_cpu_keys(&next
->key
, &key
) == 0) {
924 list_add_tail(&next
->tree_list
, &head
);
928 next
= __btrfs_next_delayed_item(curr
);
932 if (!btrfs_is_continuous_delayed_item(curr
, next
))
938 btrfs_item_key_to_cpu(leaf
, &key
, i
);
944 ret
= btrfs_del_items(trans
, root
, path
, path
->slots
[0], nitems
);
948 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
949 btrfs_delayed_item_release_metadata(root
, curr
);
950 list_del(&curr
->tree_list
);
951 btrfs_release_delayed_item(curr
);
958 static int btrfs_delete_delayed_items(struct btrfs_trans_handle
*trans
,
959 struct btrfs_path
*path
,
960 struct btrfs_root
*root
,
961 struct btrfs_delayed_node
*node
)
963 struct btrfs_delayed_item
*curr
, *prev
;
967 mutex_lock(&node
->mutex
);
968 curr
= __btrfs_first_delayed_deletion_item(node
);
972 ret
= btrfs_search_slot(trans
, root
, &curr
->key
, path
, -1, 1);
977 * can't find the item which the node points to, so this node
978 * is invalid, just drop it.
981 curr
= __btrfs_next_delayed_item(prev
);
982 btrfs_release_delayed_item(prev
);
984 btrfs_release_path(path
);
986 mutex_unlock(&node
->mutex
);
992 btrfs_batch_delete_items(trans
, root
, path
, curr
);
993 btrfs_release_path(path
);
994 mutex_unlock(&node
->mutex
);
998 btrfs_release_path(path
);
999 mutex_unlock(&node
->mutex
);
1003 static void btrfs_release_delayed_inode(struct btrfs_delayed_node
*delayed_node
)
1005 struct btrfs_delayed_root
*delayed_root
;
1007 if (delayed_node
&& delayed_node
->inode_dirty
) {
1008 BUG_ON(!delayed_node
->root
);
1009 delayed_node
->inode_dirty
= 0;
1010 delayed_node
->count
--;
1012 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
1013 finish_one_item(delayed_root
);
1017 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1018 struct btrfs_root
*root
,
1019 struct btrfs_path
*path
,
1020 struct btrfs_delayed_node
*node
)
1022 struct btrfs_key key
;
1023 struct btrfs_inode_item
*inode_item
;
1024 struct extent_buffer
*leaf
;
1027 key
.objectid
= node
->inode_id
;
1028 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
1031 ret
= btrfs_lookup_inode(trans
, root
, path
, &key
, 1);
1033 btrfs_release_path(path
);
1035 } else if (ret
< 0) {
1039 btrfs_unlock_up_safe(path
, 1);
1040 leaf
= path
->nodes
[0];
1041 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1042 struct btrfs_inode_item
);
1043 write_extent_buffer(leaf
, &node
->inode_item
, (unsigned long)inode_item
,
1044 sizeof(struct btrfs_inode_item
));
1045 btrfs_mark_buffer_dirty(leaf
);
1046 btrfs_release_path(path
);
1048 btrfs_delayed_inode_release_metadata(root
, node
);
1049 btrfs_release_delayed_inode(node
);
1054 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1055 struct btrfs_root
*root
,
1056 struct btrfs_path
*path
,
1057 struct btrfs_delayed_node
*node
)
1061 mutex_lock(&node
->mutex
);
1062 if (!node
->inode_dirty
) {
1063 mutex_unlock(&node
->mutex
);
1067 ret
= __btrfs_update_delayed_inode(trans
, root
, path
, node
);
1068 mutex_unlock(&node
->mutex
);
1073 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1074 struct btrfs_path
*path
,
1075 struct btrfs_delayed_node
*node
)
1079 ret
= btrfs_insert_delayed_items(trans
, path
, node
->root
, node
);
1083 ret
= btrfs_delete_delayed_items(trans
, path
, node
->root
, node
);
1087 ret
= btrfs_update_delayed_inode(trans
, node
->root
, path
, node
);
1092 * Called when committing the transaction.
1093 * Returns 0 on success.
1094 * Returns < 0 on error and returns with an aborted transaction with any
1095 * outstanding delayed items cleaned up.
1097 static int __btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1098 struct btrfs_root
*root
, int nr
)
1100 struct btrfs_delayed_root
*delayed_root
;
1101 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1102 struct btrfs_path
*path
;
1103 struct btrfs_block_rsv
*block_rsv
;
1105 bool count
= (nr
> 0);
1110 path
= btrfs_alloc_path();
1113 path
->leave_spinning
= 1;
1115 block_rsv
= trans
->block_rsv
;
1116 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1118 delayed_root
= btrfs_get_delayed_root(root
);
1120 curr_node
= btrfs_first_delayed_node(delayed_root
);
1121 while (curr_node
&& (!count
|| (count
&& nr
--))) {
1122 ret
= __btrfs_commit_inode_delayed_items(trans
, path
,
1125 btrfs_release_delayed_node(curr_node
);
1127 btrfs_abort_transaction(trans
, root
, ret
);
1131 prev_node
= curr_node
;
1132 curr_node
= btrfs_next_delayed_node(curr_node
);
1133 btrfs_release_delayed_node(prev_node
);
1137 btrfs_release_delayed_node(curr_node
);
1138 btrfs_free_path(path
);
1139 trans
->block_rsv
= block_rsv
;
1144 int btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1145 struct btrfs_root
*root
)
1147 return __btrfs_run_delayed_items(trans
, root
, -1);
1150 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle
*trans
,
1151 struct btrfs_root
*root
, int nr
)
1153 return __btrfs_run_delayed_items(trans
, root
, nr
);
1156 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1157 struct inode
*inode
)
1159 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1160 struct btrfs_path
*path
;
1161 struct btrfs_block_rsv
*block_rsv
;
1167 mutex_lock(&delayed_node
->mutex
);
1168 if (!delayed_node
->count
) {
1169 mutex_unlock(&delayed_node
->mutex
);
1170 btrfs_release_delayed_node(delayed_node
);
1173 mutex_unlock(&delayed_node
->mutex
);
1175 path
= btrfs_alloc_path();
1178 path
->leave_spinning
= 1;
1180 block_rsv
= trans
->block_rsv
;
1181 trans
->block_rsv
= &delayed_node
->root
->fs_info
->delayed_block_rsv
;
1183 ret
= __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1185 btrfs_release_delayed_node(delayed_node
);
1186 btrfs_free_path(path
);
1187 trans
->block_rsv
= block_rsv
;
1192 int btrfs_commit_inode_delayed_inode(struct inode
*inode
)
1194 struct btrfs_trans_handle
*trans
;
1195 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1196 struct btrfs_path
*path
;
1197 struct btrfs_block_rsv
*block_rsv
;
1203 mutex_lock(&delayed_node
->mutex
);
1204 if (!delayed_node
->inode_dirty
) {
1205 mutex_unlock(&delayed_node
->mutex
);
1206 btrfs_release_delayed_node(delayed_node
);
1209 mutex_unlock(&delayed_node
->mutex
);
1211 trans
= btrfs_join_transaction(delayed_node
->root
);
1212 if (IS_ERR(trans
)) {
1213 ret
= PTR_ERR(trans
);
1217 path
= btrfs_alloc_path();
1222 path
->leave_spinning
= 1;
1224 block_rsv
= trans
->block_rsv
;
1225 trans
->block_rsv
= &delayed_node
->root
->fs_info
->delayed_block_rsv
;
1227 mutex_lock(&delayed_node
->mutex
);
1228 if (delayed_node
->inode_dirty
)
1229 ret
= __btrfs_update_delayed_inode(trans
, delayed_node
->root
,
1230 path
, delayed_node
);
1233 mutex_unlock(&delayed_node
->mutex
);
1235 btrfs_free_path(path
);
1236 trans
->block_rsv
= block_rsv
;
1238 btrfs_end_transaction(trans
, delayed_node
->root
);
1239 btrfs_btree_balance_dirty(delayed_node
->root
);
1241 btrfs_release_delayed_node(delayed_node
);
1246 void btrfs_remove_delayed_node(struct inode
*inode
)
1248 struct btrfs_delayed_node
*delayed_node
;
1250 delayed_node
= ACCESS_ONCE(BTRFS_I(inode
)->delayed_node
);
1254 BTRFS_I(inode
)->delayed_node
= NULL
;
1255 btrfs_release_delayed_node(delayed_node
);
1258 struct btrfs_async_delayed_work
{
1259 struct btrfs_delayed_root
*delayed_root
;
1261 struct btrfs_work work
;
1264 static void btrfs_async_run_delayed_root(struct btrfs_work
*work
)
1266 struct btrfs_async_delayed_work
*async_work
;
1267 struct btrfs_delayed_root
*delayed_root
;
1268 struct btrfs_trans_handle
*trans
;
1269 struct btrfs_path
*path
;
1270 struct btrfs_delayed_node
*delayed_node
= NULL
;
1271 struct btrfs_root
*root
;
1272 struct btrfs_block_rsv
*block_rsv
;
1275 async_work
= container_of(work
, struct btrfs_async_delayed_work
, work
);
1276 delayed_root
= async_work
->delayed_root
;
1278 path
= btrfs_alloc_path();
1283 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
/ 2)
1286 delayed_node
= btrfs_first_prepared_delayed_node(delayed_root
);
1290 path
->leave_spinning
= 1;
1291 root
= delayed_node
->root
;
1293 trans
= btrfs_join_transaction(root
);
1297 block_rsv
= trans
->block_rsv
;
1298 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1300 __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1302 * Maybe new delayed items have been inserted, so we need requeue
1303 * the work. Besides that, we must dequeue the empty delayed nodes
1304 * to avoid the race between delayed items balance and the worker.
1305 * The race like this:
1306 * Task1 Worker thread
1307 * count == 0, needn't requeue
1308 * also needn't insert the
1309 * delayed node into prepare
1311 * add lots of delayed items
1312 * queue the delayed node
1313 * already in the list,
1314 * and not in the prepare
1315 * list, it means the delayed
1316 * node is being dealt with
1318 * do delayed items balance
1319 * the delayed node is being
1320 * dealt with by the worker
1322 * the worker goto idle.
1323 * Task1 will sleep until the transaction is commited.
1325 mutex_lock(&delayed_node
->mutex
);
1326 btrfs_dequeue_delayed_node(root
->fs_info
->delayed_root
, delayed_node
);
1327 mutex_unlock(&delayed_node
->mutex
);
1329 trans
->block_rsv
= block_rsv
;
1330 btrfs_end_transaction_dmeta(trans
, root
);
1331 btrfs_btree_balance_dirty_nodelay(root
);
1334 btrfs_release_path(path
);
1337 btrfs_release_prepared_delayed_node(delayed_node
);
1338 if (async_work
->nr
== 0 || total_done
< async_work
->nr
)
1342 btrfs_free_path(path
);
1344 wake_up(&delayed_root
->wait
);
1349 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root
*delayed_root
,
1350 struct btrfs_root
*root
, int nr
)
1352 struct btrfs_async_delayed_work
*async_work
;
1354 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1357 async_work
= kmalloc(sizeof(*async_work
), GFP_NOFS
);
1361 async_work
->delayed_root
= delayed_root
;
1362 async_work
->work
.func
= btrfs_async_run_delayed_root
;
1363 async_work
->work
.flags
= 0;
1364 async_work
->nr
= nr
;
1366 btrfs_queue_worker(&root
->fs_info
->delayed_workers
, &async_work
->work
);
1370 void btrfs_assert_delayed_root_empty(struct btrfs_root
*root
)
1372 struct btrfs_delayed_root
*delayed_root
;
1373 delayed_root
= btrfs_get_delayed_root(root
);
1374 WARN_ON(btrfs_first_delayed_node(delayed_root
));
1377 static int refs_newer(struct btrfs_delayed_root
*delayed_root
,
1380 int val
= atomic_read(&delayed_root
->items_seq
);
1382 if (val
< seq
|| val
>= seq
+ count
)
1387 void btrfs_balance_delayed_items(struct btrfs_root
*root
)
1389 struct btrfs_delayed_root
*delayed_root
;
1392 delayed_root
= btrfs_get_delayed_root(root
);
1394 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1397 seq
= atomic_read(&delayed_root
->items_seq
);
1399 if (atomic_read(&delayed_root
->items
) >= BTRFS_DELAYED_WRITEBACK
) {
1401 DEFINE_WAIT(__wait
);
1403 ret
= btrfs_wq_run_delayed_node(delayed_root
, root
, 0);
1408 prepare_to_wait(&delayed_root
->wait
, &__wait
,
1409 TASK_INTERRUPTIBLE
);
1411 if (refs_newer(delayed_root
, seq
,
1412 BTRFS_DELAYED_BATCH
) ||
1413 atomic_read(&delayed_root
->items
) <
1414 BTRFS_DELAYED_BACKGROUND
) {
1417 if (!signal_pending(current
))
1422 finish_wait(&delayed_root
->wait
, &__wait
);
1425 btrfs_wq_run_delayed_node(delayed_root
, root
, BTRFS_DELAYED_BATCH
);
1428 /* Will return 0 or -ENOMEM */
1429 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1430 struct btrfs_root
*root
, const char *name
,
1431 int name_len
, struct inode
*dir
,
1432 struct btrfs_disk_key
*disk_key
, u8 type
,
1435 struct btrfs_delayed_node
*delayed_node
;
1436 struct btrfs_delayed_item
*delayed_item
;
1437 struct btrfs_dir_item
*dir_item
;
1440 delayed_node
= btrfs_get_or_create_delayed_node(dir
);
1441 if (IS_ERR(delayed_node
))
1442 return PTR_ERR(delayed_node
);
1444 delayed_item
= btrfs_alloc_delayed_item(sizeof(*dir_item
) + name_len
);
1445 if (!delayed_item
) {
1450 delayed_item
->key
.objectid
= btrfs_ino(dir
);
1451 btrfs_set_key_type(&delayed_item
->key
, BTRFS_DIR_INDEX_KEY
);
1452 delayed_item
->key
.offset
= index
;
1454 dir_item
= (struct btrfs_dir_item
*)delayed_item
->data
;
1455 dir_item
->location
= *disk_key
;
1456 dir_item
->transid
= cpu_to_le64(trans
->transid
);
1457 dir_item
->data_len
= 0;
1458 dir_item
->name_len
= cpu_to_le16(name_len
);
1459 dir_item
->type
= type
;
1460 memcpy((char *)(dir_item
+ 1), name
, name_len
);
1462 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, delayed_item
);
1464 * we have reserved enough space when we start a new transaction,
1465 * so reserving metadata failure is impossible
1470 mutex_lock(&delayed_node
->mutex
);
1471 ret
= __btrfs_add_delayed_insertion_item(delayed_node
, delayed_item
);
1472 if (unlikely(ret
)) {
1473 printk(KERN_ERR
"err add delayed dir index item(name: %s) into "
1474 "the insertion tree of the delayed node"
1475 "(root id: %llu, inode id: %llu, errno: %d)\n",
1477 (unsigned long long)delayed_node
->root
->objectid
,
1478 (unsigned long long)delayed_node
->inode_id
,
1482 mutex_unlock(&delayed_node
->mutex
);
1485 btrfs_release_delayed_node(delayed_node
);
1489 static int btrfs_delete_delayed_insertion_item(struct btrfs_root
*root
,
1490 struct btrfs_delayed_node
*node
,
1491 struct btrfs_key
*key
)
1493 struct btrfs_delayed_item
*item
;
1495 mutex_lock(&node
->mutex
);
1496 item
= __btrfs_lookup_delayed_insertion_item(node
, key
);
1498 mutex_unlock(&node
->mutex
);
1502 btrfs_delayed_item_release_metadata(root
, item
);
1503 btrfs_release_delayed_item(item
);
1504 mutex_unlock(&node
->mutex
);
1508 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1509 struct btrfs_root
*root
, struct inode
*dir
,
1512 struct btrfs_delayed_node
*node
;
1513 struct btrfs_delayed_item
*item
;
1514 struct btrfs_key item_key
;
1517 node
= btrfs_get_or_create_delayed_node(dir
);
1519 return PTR_ERR(node
);
1521 item_key
.objectid
= btrfs_ino(dir
);
1522 btrfs_set_key_type(&item_key
, BTRFS_DIR_INDEX_KEY
);
1523 item_key
.offset
= index
;
1525 ret
= btrfs_delete_delayed_insertion_item(root
, node
, &item_key
);
1529 item
= btrfs_alloc_delayed_item(0);
1535 item
->key
= item_key
;
1537 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, item
);
1539 * we have reserved enough space when we start a new transaction,
1540 * so reserving metadata failure is impossible.
1544 mutex_lock(&node
->mutex
);
1545 ret
= __btrfs_add_delayed_deletion_item(node
, item
);
1546 if (unlikely(ret
)) {
1547 printk(KERN_ERR
"err add delayed dir index item(index: %llu) "
1548 "into the deletion tree of the delayed node"
1549 "(root id: %llu, inode id: %llu, errno: %d)\n",
1550 (unsigned long long)index
,
1551 (unsigned long long)node
->root
->objectid
,
1552 (unsigned long long)node
->inode_id
,
1556 mutex_unlock(&node
->mutex
);
1558 btrfs_release_delayed_node(node
);
1562 int btrfs_inode_delayed_dir_index_count(struct inode
*inode
)
1564 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1570 * Since we have held i_mutex of this directory, it is impossible that
1571 * a new directory index is added into the delayed node and index_cnt
1572 * is updated now. So we needn't lock the delayed node.
1574 if (!delayed_node
->index_cnt
) {
1575 btrfs_release_delayed_node(delayed_node
);
1579 BTRFS_I(inode
)->index_cnt
= delayed_node
->index_cnt
;
1580 btrfs_release_delayed_node(delayed_node
);
1584 void btrfs_get_delayed_items(struct inode
*inode
, struct list_head
*ins_list
,
1585 struct list_head
*del_list
)
1587 struct btrfs_delayed_node
*delayed_node
;
1588 struct btrfs_delayed_item
*item
;
1590 delayed_node
= btrfs_get_delayed_node(inode
);
1594 mutex_lock(&delayed_node
->mutex
);
1595 item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1597 atomic_inc(&item
->refs
);
1598 list_add_tail(&item
->readdir_list
, ins_list
);
1599 item
= __btrfs_next_delayed_item(item
);
1602 item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1604 atomic_inc(&item
->refs
);
1605 list_add_tail(&item
->readdir_list
, del_list
);
1606 item
= __btrfs_next_delayed_item(item
);
1608 mutex_unlock(&delayed_node
->mutex
);
1610 * This delayed node is still cached in the btrfs inode, so refs
1611 * must be > 1 now, and we needn't check it is going to be freed
1614 * Besides that, this function is used to read dir, we do not
1615 * insert/delete delayed items in this period. So we also needn't
1616 * requeue or dequeue this delayed node.
1618 atomic_dec(&delayed_node
->refs
);
1621 void btrfs_put_delayed_items(struct list_head
*ins_list
,
1622 struct list_head
*del_list
)
1624 struct btrfs_delayed_item
*curr
, *next
;
1626 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1627 list_del(&curr
->readdir_list
);
1628 if (atomic_dec_and_test(&curr
->refs
))
1632 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1633 list_del(&curr
->readdir_list
);
1634 if (atomic_dec_and_test(&curr
->refs
))
1639 int btrfs_should_delete_dir_index(struct list_head
*del_list
,
1642 struct btrfs_delayed_item
*curr
, *next
;
1645 if (list_empty(del_list
))
1648 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1649 if (curr
->key
.offset
> index
)
1652 list_del(&curr
->readdir_list
);
1653 ret
= (curr
->key
.offset
== index
);
1655 if (atomic_dec_and_test(&curr
->refs
))
1667 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1670 int btrfs_readdir_delayed_dir_index(struct dir_context
*ctx
,
1671 struct list_head
*ins_list
)
1673 struct btrfs_dir_item
*di
;
1674 struct btrfs_delayed_item
*curr
, *next
;
1675 struct btrfs_key location
;
1679 unsigned char d_type
;
1681 if (list_empty(ins_list
))
1685 * Changing the data of the delayed item is impossible. So
1686 * we needn't lock them. And we have held i_mutex of the
1687 * directory, nobody can delete any directory indexes now.
1689 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1690 list_del(&curr
->readdir_list
);
1692 if (curr
->key
.offset
< ctx
->pos
) {
1693 if (atomic_dec_and_test(&curr
->refs
))
1698 ctx
->pos
= curr
->key
.offset
;
1700 di
= (struct btrfs_dir_item
*)curr
->data
;
1701 name
= (char *)(di
+ 1);
1702 name_len
= le16_to_cpu(di
->name_len
);
1704 d_type
= btrfs_filetype_table
[di
->type
];
1705 btrfs_disk_key_to_cpu(&location
, &di
->location
);
1707 over
= !dir_emit(ctx
, name
, name_len
,
1708 location
.objectid
, d_type
);
1710 if (atomic_dec_and_test(&curr
->refs
))
1719 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation
, struct btrfs_inode_item
,
1721 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence
, struct btrfs_inode_item
,
1723 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid
, struct btrfs_inode_item
,
1725 BTRFS_SETGET_STACK_FUNCS(stack_inode_size
, struct btrfs_inode_item
, size
, 64);
1726 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes
, struct btrfs_inode_item
,
1728 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group
, struct btrfs_inode_item
,
1730 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink
, struct btrfs_inode_item
, nlink
, 32);
1731 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid
, struct btrfs_inode_item
, uid
, 32);
1732 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid
, struct btrfs_inode_item
, gid
, 32);
1733 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode
, struct btrfs_inode_item
, mode
, 32);
1734 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev
, struct btrfs_inode_item
, rdev
, 64);
1735 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags
, struct btrfs_inode_item
, flags
, 64);
1737 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec
, struct btrfs_timespec
, sec
, 64);
1738 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec
, struct btrfs_timespec
, nsec
, 32);
1740 static void fill_stack_inode_item(struct btrfs_trans_handle
*trans
,
1741 struct btrfs_inode_item
*inode_item
,
1742 struct inode
*inode
)
1744 btrfs_set_stack_inode_uid(inode_item
, i_uid_read(inode
));
1745 btrfs_set_stack_inode_gid(inode_item
, i_gid_read(inode
));
1746 btrfs_set_stack_inode_size(inode_item
, BTRFS_I(inode
)->disk_i_size
);
1747 btrfs_set_stack_inode_mode(inode_item
, inode
->i_mode
);
1748 btrfs_set_stack_inode_nlink(inode_item
, inode
->i_nlink
);
1749 btrfs_set_stack_inode_nbytes(inode_item
, inode_get_bytes(inode
));
1750 btrfs_set_stack_inode_generation(inode_item
,
1751 BTRFS_I(inode
)->generation
);
1752 btrfs_set_stack_inode_sequence(inode_item
, inode
->i_version
);
1753 btrfs_set_stack_inode_transid(inode_item
, trans
->transid
);
1754 btrfs_set_stack_inode_rdev(inode_item
, inode
->i_rdev
);
1755 btrfs_set_stack_inode_flags(inode_item
, BTRFS_I(inode
)->flags
);
1756 btrfs_set_stack_inode_block_group(inode_item
, 0);
1758 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item
),
1759 inode
->i_atime
.tv_sec
);
1760 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item
),
1761 inode
->i_atime
.tv_nsec
);
1763 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item
),
1764 inode
->i_mtime
.tv_sec
);
1765 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item
),
1766 inode
->i_mtime
.tv_nsec
);
1768 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item
),
1769 inode
->i_ctime
.tv_sec
);
1770 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item
),
1771 inode
->i_ctime
.tv_nsec
);
1774 int btrfs_fill_inode(struct inode
*inode
, u32
*rdev
)
1776 struct btrfs_delayed_node
*delayed_node
;
1777 struct btrfs_inode_item
*inode_item
;
1778 struct btrfs_timespec
*tspec
;
1780 delayed_node
= btrfs_get_delayed_node(inode
);
1784 mutex_lock(&delayed_node
->mutex
);
1785 if (!delayed_node
->inode_dirty
) {
1786 mutex_unlock(&delayed_node
->mutex
);
1787 btrfs_release_delayed_node(delayed_node
);
1791 inode_item
= &delayed_node
->inode_item
;
1793 i_uid_write(inode
, btrfs_stack_inode_uid(inode_item
));
1794 i_gid_write(inode
, btrfs_stack_inode_gid(inode_item
));
1795 btrfs_i_size_write(inode
, btrfs_stack_inode_size(inode_item
));
1796 inode
->i_mode
= btrfs_stack_inode_mode(inode_item
);
1797 set_nlink(inode
, btrfs_stack_inode_nlink(inode_item
));
1798 inode_set_bytes(inode
, btrfs_stack_inode_nbytes(inode_item
));
1799 BTRFS_I(inode
)->generation
= btrfs_stack_inode_generation(inode_item
);
1800 inode
->i_version
= btrfs_stack_inode_sequence(inode_item
);
1802 *rdev
= btrfs_stack_inode_rdev(inode_item
);
1803 BTRFS_I(inode
)->flags
= btrfs_stack_inode_flags(inode_item
);
1805 tspec
= btrfs_inode_atime(inode_item
);
1806 inode
->i_atime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1807 inode
->i_atime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1809 tspec
= btrfs_inode_mtime(inode_item
);
1810 inode
->i_mtime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1811 inode
->i_mtime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1813 tspec
= btrfs_inode_ctime(inode_item
);
1814 inode
->i_ctime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1815 inode
->i_ctime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1817 inode
->i_generation
= BTRFS_I(inode
)->generation
;
1818 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1820 mutex_unlock(&delayed_node
->mutex
);
1821 btrfs_release_delayed_node(delayed_node
);
1825 int btrfs_delayed_update_inode(struct btrfs_trans_handle
*trans
,
1826 struct btrfs_root
*root
, struct inode
*inode
)
1828 struct btrfs_delayed_node
*delayed_node
;
1831 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1832 if (IS_ERR(delayed_node
))
1833 return PTR_ERR(delayed_node
);
1835 mutex_lock(&delayed_node
->mutex
);
1836 if (delayed_node
->inode_dirty
) {
1837 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1841 ret
= btrfs_delayed_inode_reserve_metadata(trans
, root
, inode
,
1846 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1847 delayed_node
->inode_dirty
= 1;
1848 delayed_node
->count
++;
1849 atomic_inc(&root
->fs_info
->delayed_root
->items
);
1851 mutex_unlock(&delayed_node
->mutex
);
1852 btrfs_release_delayed_node(delayed_node
);
1856 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node
*delayed_node
)
1858 struct btrfs_root
*root
= delayed_node
->root
;
1859 struct btrfs_delayed_item
*curr_item
, *prev_item
;
1861 mutex_lock(&delayed_node
->mutex
);
1862 curr_item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1864 btrfs_delayed_item_release_metadata(root
, curr_item
);
1865 prev_item
= curr_item
;
1866 curr_item
= __btrfs_next_delayed_item(prev_item
);
1867 btrfs_release_delayed_item(prev_item
);
1870 curr_item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1872 btrfs_delayed_item_release_metadata(root
, curr_item
);
1873 prev_item
= curr_item
;
1874 curr_item
= __btrfs_next_delayed_item(prev_item
);
1875 btrfs_release_delayed_item(prev_item
);
1878 if (delayed_node
->inode_dirty
) {
1879 btrfs_delayed_inode_release_metadata(root
, delayed_node
);
1880 btrfs_release_delayed_inode(delayed_node
);
1882 mutex_unlock(&delayed_node
->mutex
);
1885 void btrfs_kill_delayed_inode_items(struct inode
*inode
)
1887 struct btrfs_delayed_node
*delayed_node
;
1889 delayed_node
= btrfs_get_delayed_node(inode
);
1893 __btrfs_kill_delayed_node(delayed_node
);
1894 btrfs_release_delayed_node(delayed_node
);
1897 void btrfs_kill_all_delayed_nodes(struct btrfs_root
*root
)
1900 struct btrfs_delayed_node
*delayed_nodes
[8];
1904 spin_lock(&root
->inode_lock
);
1905 n
= radix_tree_gang_lookup(&root
->delayed_nodes_tree
,
1906 (void **)delayed_nodes
, inode_id
,
1907 ARRAY_SIZE(delayed_nodes
));
1909 spin_unlock(&root
->inode_lock
);
1913 inode_id
= delayed_nodes
[n
- 1]->inode_id
+ 1;
1915 for (i
= 0; i
< n
; i
++)
1916 atomic_inc(&delayed_nodes
[i
]->refs
);
1917 spin_unlock(&root
->inode_lock
);
1919 for (i
= 0; i
< n
; i
++) {
1920 __btrfs_kill_delayed_node(delayed_nodes
[i
]);
1921 btrfs_release_delayed_node(delayed_nodes
[i
]);
1926 void btrfs_destroy_delayed_inodes(struct btrfs_root
*root
)
1928 struct btrfs_delayed_root
*delayed_root
;
1929 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1931 delayed_root
= btrfs_get_delayed_root(root
);
1933 curr_node
= btrfs_first_delayed_node(delayed_root
);
1935 __btrfs_kill_delayed_node(curr_node
);
1937 prev_node
= curr_node
;
1938 curr_node
= btrfs_next_delayed_node(curr_node
);
1939 btrfs_release_delayed_node(prev_node
);