ext4: fix a potential fiemap/page fault deadlock w/ inline_data
[linux/fpc-iii.git] / fs / btrfs / file.c
blob0529736205957973d502f2329960e5f18ed81933
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
51 struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
56 * transid where the defrag was added, we search for
57 * extents newer than this
59 u64 transid;
61 /* root objectid */
62 u64 root;
64 /* last offset we were able to defrag */
65 u64 last_offset;
67 /* if we've wrapped around back to zero once already */
68 int cycled;
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
92 * If an existing record is found the defrag item you
93 * pass in is freed
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 struct inode_defrag *defrag)
98 struct btrfs_root *root = BTRFS_I(inode)->root;
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
102 int ret;
104 p = &root->fs_info->defrag_inodes.rb_node;
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
111 p = &parent->rb_left;
112 else if (ret > 0)
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
123 return -EEXIST;
126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 return 0;
132 static inline int __need_auto_defrag(struct btrfs_root *root)
134 if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 return 0;
137 if (btrfs_fs_closing(root->fs_info))
138 return 0;
140 return 1;
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 struct inode *inode)
150 struct btrfs_root *root = BTRFS_I(inode)->root;
151 struct inode_defrag *defrag;
152 u64 transid;
153 int ret;
155 if (!__need_auto_defrag(root))
156 return 0;
158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 return 0;
161 if (trans)
162 transid = trans->transid;
163 else
164 transid = BTRFS_I(inode)->root->last_trans;
166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 if (!defrag)
168 return -ENOMEM;
170 defrag->ino = btrfs_ino(inode);
171 defrag->transid = transid;
172 defrag->root = root->root_key.objectid;
174 spin_lock(&root->fs_info->defrag_inodes_lock);
175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
177 * If we set IN_DEFRAG flag and evict the inode from memory,
178 * and then re-read this inode, this new inode doesn't have
179 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 ret = __btrfs_add_inode_defrag(inode, defrag);
182 if (ret)
183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 } else {
185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 spin_unlock(&root->fs_info->defrag_inodes_lock);
188 return 0;
192 * Requeue the defrag object. If there is a defrag object that points to
193 * the same inode in the tree, we will merge them together (by
194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 struct inode_defrag *defrag)
199 struct btrfs_root *root = BTRFS_I(inode)->root;
200 int ret;
202 if (!__need_auto_defrag(root))
203 goto out;
206 * Here we don't check the IN_DEFRAG flag, because we need merge
207 * them together.
209 spin_lock(&root->fs_info->defrag_inodes_lock);
210 ret = __btrfs_add_inode_defrag(inode, defrag);
211 spin_unlock(&root->fs_info->defrag_inodes_lock);
212 if (ret)
213 goto out;
214 return;
215 out:
216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
220 * pick the defragable inode that we want, if it doesn't exist, we will get
221 * the next one.
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 struct inode_defrag *entry = NULL;
227 struct inode_defrag tmp;
228 struct rb_node *p;
229 struct rb_node *parent = NULL;
230 int ret;
232 tmp.ino = ino;
233 tmp.root = root;
235 spin_lock(&fs_info->defrag_inodes_lock);
236 p = fs_info->defrag_inodes.rb_node;
237 while (p) {
238 parent = p;
239 entry = rb_entry(parent, struct inode_defrag, rb_node);
241 ret = __compare_inode_defrag(&tmp, entry);
242 if (ret < 0)
243 p = parent->rb_left;
244 else if (ret > 0)
245 p = parent->rb_right;
246 else
247 goto out;
250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 parent = rb_next(parent);
252 if (parent)
253 entry = rb_entry(parent, struct inode_defrag, rb_node);
254 else
255 entry = NULL;
257 out:
258 if (entry)
259 rb_erase(parent, &fs_info->defrag_inodes);
260 spin_unlock(&fs_info->defrag_inodes_lock);
261 return entry;
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 struct inode_defrag *defrag;
267 struct rb_node *node;
269 spin_lock(&fs_info->defrag_inodes_lock);
270 node = rb_first(&fs_info->defrag_inodes);
271 while (node) {
272 rb_erase(node, &fs_info->defrag_inodes);
273 defrag = rb_entry(node, struct inode_defrag, rb_node);
274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276 cond_resched_lock(&fs_info->defrag_inodes_lock);
278 node = rb_first(&fs_info->defrag_inodes);
280 spin_unlock(&fs_info->defrag_inodes_lock);
283 #define BTRFS_DEFRAG_BATCH 1024
285 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
286 struct inode_defrag *defrag)
288 struct btrfs_root *inode_root;
289 struct inode *inode;
290 struct btrfs_key key;
291 struct btrfs_ioctl_defrag_range_args range;
292 int num_defrag;
293 int index;
294 int ret;
296 /* get the inode */
297 key.objectid = defrag->root;
298 key.type = BTRFS_ROOT_ITEM_KEY;
299 key.offset = (u64)-1;
301 index = srcu_read_lock(&fs_info->subvol_srcu);
303 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
304 if (IS_ERR(inode_root)) {
305 ret = PTR_ERR(inode_root);
306 goto cleanup;
309 key.objectid = defrag->ino;
310 key.type = BTRFS_INODE_ITEM_KEY;
311 key.offset = 0;
312 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
313 if (IS_ERR(inode)) {
314 ret = PTR_ERR(inode);
315 goto cleanup;
317 srcu_read_unlock(&fs_info->subvol_srcu, index);
319 /* do a chunk of defrag */
320 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
321 memset(&range, 0, sizeof(range));
322 range.len = (u64)-1;
323 range.start = defrag->last_offset;
325 sb_start_write(fs_info->sb);
326 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
327 BTRFS_DEFRAG_BATCH);
328 sb_end_write(fs_info->sb);
330 * if we filled the whole defrag batch, there
331 * must be more work to do. Queue this defrag
332 * again
334 if (num_defrag == BTRFS_DEFRAG_BATCH) {
335 defrag->last_offset = range.start;
336 btrfs_requeue_inode_defrag(inode, defrag);
337 } else if (defrag->last_offset && !defrag->cycled) {
339 * we didn't fill our defrag batch, but
340 * we didn't start at zero. Make sure we loop
341 * around to the start of the file.
343 defrag->last_offset = 0;
344 defrag->cycled = 1;
345 btrfs_requeue_inode_defrag(inode, defrag);
346 } else {
347 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
350 iput(inode);
351 return 0;
352 cleanup:
353 srcu_read_unlock(&fs_info->subvol_srcu, index);
354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 return ret;
359 * run through the list of inodes in the FS that need
360 * defragging
362 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 struct inode_defrag *defrag;
365 u64 first_ino = 0;
366 u64 root_objectid = 0;
368 atomic_inc(&fs_info->defrag_running);
369 while (1) {
370 /* Pause the auto defragger. */
371 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
372 &fs_info->fs_state))
373 break;
375 if (!__need_auto_defrag(fs_info->tree_root))
376 break;
378 /* find an inode to defrag */
379 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
380 first_ino);
381 if (!defrag) {
382 if (root_objectid || first_ino) {
383 root_objectid = 0;
384 first_ino = 0;
385 continue;
386 } else {
387 break;
391 first_ino = defrag->ino + 1;
392 root_objectid = defrag->root;
394 __btrfs_run_defrag_inode(fs_info, defrag);
396 atomic_dec(&fs_info->defrag_running);
399 * during unmount, we use the transaction_wait queue to
400 * wait for the defragger to stop
402 wake_up(&fs_info->transaction_wait);
403 return 0;
406 /* simple helper to fault in pages and copy. This should go away
407 * and be replaced with calls into generic code.
409 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
410 size_t write_bytes,
411 struct page **prepared_pages,
412 struct iov_iter *i)
414 size_t copied = 0;
415 size_t total_copied = 0;
416 int pg = 0;
417 int offset = pos & (PAGE_CACHE_SIZE - 1);
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_CACHE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
424 * Copy data from userspace to the current page
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
449 break;
451 if (copied < PAGE_CACHE_SIZE - offset) {
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
458 return total_copied;
462 * unlocks pages after btrfs_file_write is done with them
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
476 page_cache_release(pages[i]);
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489 struct page **pages, size_t num_pages,
490 loff_t pos, size_t write_bytes,
491 struct extent_state **cached)
493 int err = 0;
494 int i;
495 u64 num_bytes;
496 u64 start_pos;
497 u64 end_of_last_block;
498 u64 end_pos = pos + write_bytes;
499 loff_t isize = i_size_read(inode);
501 start_pos = pos & ~((u64)root->sectorsize - 1);
502 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
504 end_of_last_block = start_pos + num_bytes - 1;
505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506 cached);
507 if (err)
508 return err;
510 for (i = 0; i < num_pages; i++) {
511 struct page *p = pages[i];
512 SetPageUptodate(p);
513 ClearPageChecked(p);
514 set_page_dirty(p);
518 * we've only changed i_size in ram, and we haven't updated
519 * the disk i_size. There is no need to log the inode
520 * at this time.
522 if (end_pos > isize)
523 i_size_write(inode, end_pos);
524 return 0;
528 * this drops all the extents in the cache that intersect the range
529 * [start, end]. Existing extents are split as required.
531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532 int skip_pinned)
534 struct extent_map *em;
535 struct extent_map *split = NULL;
536 struct extent_map *split2 = NULL;
537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 u64 len = end - start + 1;
539 u64 gen;
540 int ret;
541 int testend = 1;
542 unsigned long flags;
543 int compressed = 0;
544 bool modified;
546 WARN_ON(end < start);
547 if (end == (u64)-1) {
548 len = (u64)-1;
549 testend = 0;
551 while (1) {
552 int no_splits = 0;
554 modified = false;
555 if (!split)
556 split = alloc_extent_map();
557 if (!split2)
558 split2 = alloc_extent_map();
559 if (!split || !split2)
560 no_splits = 1;
562 write_lock(&em_tree->lock);
563 em = lookup_extent_mapping(em_tree, start, len);
564 if (!em) {
565 write_unlock(&em_tree->lock);
566 break;
568 flags = em->flags;
569 gen = em->generation;
570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571 if (testend && em->start + em->len >= start + len) {
572 free_extent_map(em);
573 write_unlock(&em_tree->lock);
574 break;
576 start = em->start + em->len;
577 if (testend)
578 len = start + len - (em->start + em->len);
579 free_extent_map(em);
580 write_unlock(&em_tree->lock);
581 continue;
583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585 clear_bit(EXTENT_FLAG_LOGGING, &flags);
586 modified = !list_empty(&em->list);
587 if (no_splits)
588 goto next;
590 if (em->start < start) {
591 split->start = em->start;
592 split->len = start - em->start;
594 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595 split->orig_start = em->orig_start;
596 split->block_start = em->block_start;
598 if (compressed)
599 split->block_len = em->block_len;
600 else
601 split->block_len = split->len;
602 split->orig_block_len = max(split->block_len,
603 em->orig_block_len);
604 split->ram_bytes = em->ram_bytes;
605 } else {
606 split->orig_start = split->start;
607 split->block_len = 0;
608 split->block_start = em->block_start;
609 split->orig_block_len = 0;
610 split->ram_bytes = split->len;
613 split->generation = gen;
614 split->bdev = em->bdev;
615 split->flags = flags;
616 split->compress_type = em->compress_type;
617 replace_extent_mapping(em_tree, em, split, modified);
618 free_extent_map(split);
619 split = split2;
620 split2 = NULL;
622 if (testend && em->start + em->len > start + len) {
623 u64 diff = start + len - em->start;
625 split->start = start + len;
626 split->len = em->start + em->len - (start + len);
627 split->bdev = em->bdev;
628 split->flags = flags;
629 split->compress_type = em->compress_type;
630 split->generation = gen;
632 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633 split->orig_block_len = max(em->block_len,
634 em->orig_block_len);
636 split->ram_bytes = em->ram_bytes;
637 if (compressed) {
638 split->block_len = em->block_len;
639 split->block_start = em->block_start;
640 split->orig_start = em->orig_start;
641 } else {
642 split->block_len = split->len;
643 split->block_start = em->block_start
644 + diff;
645 split->orig_start = em->orig_start;
647 } else {
648 split->ram_bytes = split->len;
649 split->orig_start = split->start;
650 split->block_len = 0;
651 split->block_start = em->block_start;
652 split->orig_block_len = 0;
655 if (extent_map_in_tree(em)) {
656 replace_extent_mapping(em_tree, em, split,
657 modified);
658 } else {
659 ret = add_extent_mapping(em_tree, split,
660 modified);
661 ASSERT(ret == 0); /* Logic error */
663 free_extent_map(split);
664 split = NULL;
666 next:
667 if (extent_map_in_tree(em))
668 remove_extent_mapping(em_tree, em);
669 write_unlock(&em_tree->lock);
671 /* once for us */
672 free_extent_map(em);
673 /* once for the tree*/
674 free_extent_map(em);
676 if (split)
677 free_extent_map(split);
678 if (split2)
679 free_extent_map(split2);
683 * this is very complex, but the basic idea is to drop all extents
684 * in the range start - end. hint_block is filled in with a block number
685 * that would be a good hint to the block allocator for this file.
687 * If an extent intersects the range but is not entirely inside the range
688 * it is either truncated or split. Anything entirely inside the range
689 * is deleted from the tree.
691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692 struct btrfs_root *root, struct inode *inode,
693 struct btrfs_path *path, u64 start, u64 end,
694 u64 *drop_end, int drop_cache,
695 int replace_extent,
696 u32 extent_item_size,
697 int *key_inserted)
699 struct extent_buffer *leaf;
700 struct btrfs_file_extent_item *fi;
701 struct btrfs_key key;
702 struct btrfs_key new_key;
703 u64 ino = btrfs_ino(inode);
704 u64 search_start = start;
705 u64 disk_bytenr = 0;
706 u64 num_bytes = 0;
707 u64 extent_offset = 0;
708 u64 extent_end = 0;
709 int del_nr = 0;
710 int del_slot = 0;
711 int extent_type;
712 int recow;
713 int ret;
714 int modify_tree = -1;
715 int update_refs;
716 int found = 0;
717 int leafs_visited = 0;
719 if (drop_cache)
720 btrfs_drop_extent_cache(inode, start, end - 1, 0);
722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723 modify_tree = 0;
725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726 root == root->fs_info->tree_root);
727 while (1) {
728 recow = 0;
729 ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 search_start, modify_tree);
731 if (ret < 0)
732 break;
733 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 leaf = path->nodes[0];
735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 if (key.objectid == ino &&
737 key.type == BTRFS_EXTENT_DATA_KEY)
738 path->slots[0]--;
740 ret = 0;
741 leafs_visited++;
742 next_slot:
743 leaf = path->nodes[0];
744 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 BUG_ON(del_nr > 0);
746 ret = btrfs_next_leaf(root, path);
747 if (ret < 0)
748 break;
749 if (ret > 0) {
750 ret = 0;
751 break;
753 leafs_visited++;
754 leaf = path->nodes[0];
755 recow = 1;
758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
760 if (key.objectid > ino)
761 break;
762 if (WARN_ON_ONCE(key.objectid < ino) ||
763 key.type < BTRFS_EXTENT_DATA_KEY) {
764 ASSERT(del_nr == 0);
765 path->slots[0]++;
766 goto next_slot;
768 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
769 break;
771 fi = btrfs_item_ptr(leaf, path->slots[0],
772 struct btrfs_file_extent_item);
773 extent_type = btrfs_file_extent_type(leaf, fi);
775 if (extent_type == BTRFS_FILE_EXTENT_REG ||
776 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
777 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
778 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
779 extent_offset = btrfs_file_extent_offset(leaf, fi);
780 extent_end = key.offset +
781 btrfs_file_extent_num_bytes(leaf, fi);
782 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
783 extent_end = key.offset +
784 btrfs_file_extent_inline_len(leaf,
785 path->slots[0], fi);
786 } else {
787 /* can't happen */
788 BUG();
792 * Don't skip extent items representing 0 byte lengths. They
793 * used to be created (bug) if while punching holes we hit
794 * -ENOSPC condition. So if we find one here, just ensure we
795 * delete it, otherwise we would insert a new file extent item
796 * with the same key (offset) as that 0 bytes length file
797 * extent item in the call to setup_items_for_insert() later
798 * in this function.
800 if (extent_end == key.offset && extent_end >= search_start)
801 goto delete_extent_item;
803 if (extent_end <= search_start) {
804 path->slots[0]++;
805 goto next_slot;
808 found = 1;
809 search_start = max(key.offset, start);
810 if (recow || !modify_tree) {
811 modify_tree = -1;
812 btrfs_release_path(path);
813 continue;
817 * | - range to drop - |
818 * | -------- extent -------- |
820 if (start > key.offset && end < extent_end) {
821 BUG_ON(del_nr > 0);
822 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
823 ret = -EOPNOTSUPP;
824 break;
827 memcpy(&new_key, &key, sizeof(new_key));
828 new_key.offset = start;
829 ret = btrfs_duplicate_item(trans, root, path,
830 &new_key);
831 if (ret == -EAGAIN) {
832 btrfs_release_path(path);
833 continue;
835 if (ret < 0)
836 break;
838 leaf = path->nodes[0];
839 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
840 struct btrfs_file_extent_item);
841 btrfs_set_file_extent_num_bytes(leaf, fi,
842 start - key.offset);
844 fi = btrfs_item_ptr(leaf, path->slots[0],
845 struct btrfs_file_extent_item);
847 extent_offset += start - key.offset;
848 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
849 btrfs_set_file_extent_num_bytes(leaf, fi,
850 extent_end - start);
851 btrfs_mark_buffer_dirty(leaf);
853 if (update_refs && disk_bytenr > 0) {
854 ret = btrfs_inc_extent_ref(trans, root,
855 disk_bytenr, num_bytes, 0,
856 root->root_key.objectid,
857 new_key.objectid,
858 start - extent_offset);
859 BUG_ON(ret); /* -ENOMEM */
861 key.offset = start;
864 * | ---- range to drop ----- |
865 * | -------- extent -------- |
867 if (start <= key.offset && end < extent_end) {
868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869 ret = -EOPNOTSUPP;
870 break;
873 memcpy(&new_key, &key, sizeof(new_key));
874 new_key.offset = end;
875 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
877 extent_offset += end - key.offset;
878 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
879 btrfs_set_file_extent_num_bytes(leaf, fi,
880 extent_end - end);
881 btrfs_mark_buffer_dirty(leaf);
882 if (update_refs && disk_bytenr > 0)
883 inode_sub_bytes(inode, end - key.offset);
884 break;
887 search_start = extent_end;
889 * | ---- range to drop ----- |
890 * | -------- extent -------- |
892 if (start > key.offset && end >= extent_end) {
893 BUG_ON(del_nr > 0);
894 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
895 ret = -EOPNOTSUPP;
896 break;
899 btrfs_set_file_extent_num_bytes(leaf, fi,
900 start - key.offset);
901 btrfs_mark_buffer_dirty(leaf);
902 if (update_refs && disk_bytenr > 0)
903 inode_sub_bytes(inode, extent_end - start);
904 if (end == extent_end)
905 break;
907 path->slots[0]++;
908 goto next_slot;
912 * | ---- range to drop ----- |
913 * | ------ extent ------ |
915 if (start <= key.offset && end >= extent_end) {
916 delete_extent_item:
917 if (del_nr == 0) {
918 del_slot = path->slots[0];
919 del_nr = 1;
920 } else {
921 BUG_ON(del_slot + del_nr != path->slots[0]);
922 del_nr++;
925 if (update_refs &&
926 extent_type == BTRFS_FILE_EXTENT_INLINE) {
927 inode_sub_bytes(inode,
928 extent_end - key.offset);
929 extent_end = ALIGN(extent_end,
930 root->sectorsize);
931 } else if (update_refs && disk_bytenr > 0) {
932 ret = btrfs_free_extent(trans, root,
933 disk_bytenr, num_bytes, 0,
934 root->root_key.objectid,
935 key.objectid, key.offset -
936 extent_offset);
937 BUG_ON(ret); /* -ENOMEM */
938 inode_sub_bytes(inode,
939 extent_end - key.offset);
942 if (end == extent_end)
943 break;
945 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
946 path->slots[0]++;
947 goto next_slot;
950 ret = btrfs_del_items(trans, root, path, del_slot,
951 del_nr);
952 if (ret) {
953 btrfs_abort_transaction(trans, root, ret);
954 break;
957 del_nr = 0;
958 del_slot = 0;
960 btrfs_release_path(path);
961 continue;
964 BUG_ON(1);
967 if (!ret && del_nr > 0) {
969 * Set path->slots[0] to first slot, so that after the delete
970 * if items are move off from our leaf to its immediate left or
971 * right neighbor leafs, we end up with a correct and adjusted
972 * path->slots[0] for our insertion (if replace_extent != 0).
974 path->slots[0] = del_slot;
975 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
976 if (ret)
977 btrfs_abort_transaction(trans, root, ret);
980 leaf = path->nodes[0];
982 * If btrfs_del_items() was called, it might have deleted a leaf, in
983 * which case it unlocked our path, so check path->locks[0] matches a
984 * write lock.
986 if (!ret && replace_extent && leafs_visited == 1 &&
987 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
988 path->locks[0] == BTRFS_WRITE_LOCK) &&
989 btrfs_leaf_free_space(root, leaf) >=
990 sizeof(struct btrfs_item) + extent_item_size) {
992 key.objectid = ino;
993 key.type = BTRFS_EXTENT_DATA_KEY;
994 key.offset = start;
995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
996 struct btrfs_key slot_key;
998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000 path->slots[0]++;
1002 setup_items_for_insert(root, path, &key,
1003 &extent_item_size,
1004 extent_item_size,
1005 sizeof(struct btrfs_item) +
1006 extent_item_size, 1);
1007 *key_inserted = 1;
1010 if (!replace_extent || !(*key_inserted))
1011 btrfs_release_path(path);
1012 if (drop_end)
1013 *drop_end = found ? min(end, extent_end) : end;
1014 return ret;
1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018 struct btrfs_root *root, struct inode *inode, u64 start,
1019 u64 end, int drop_cache)
1021 struct btrfs_path *path;
1022 int ret;
1024 path = btrfs_alloc_path();
1025 if (!path)
1026 return -ENOMEM;
1027 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028 drop_cache, 0, 0, NULL);
1029 btrfs_free_path(path);
1030 return ret;
1033 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034 u64 objectid, u64 bytenr, u64 orig_offset,
1035 u64 *start, u64 *end)
1037 struct btrfs_file_extent_item *fi;
1038 struct btrfs_key key;
1039 u64 extent_end;
1041 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042 return 0;
1044 btrfs_item_key_to_cpu(leaf, &key, slot);
1045 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046 return 0;
1048 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052 btrfs_file_extent_compression(leaf, fi) ||
1053 btrfs_file_extent_encryption(leaf, fi) ||
1054 btrfs_file_extent_other_encoding(leaf, fi))
1055 return 0;
1057 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059 return 0;
1061 *start = key.offset;
1062 *end = extent_end;
1063 return 1;
1067 * Mark extent in the range start - end as written.
1069 * This changes extent type from 'pre-allocated' to 'regular'. If only
1070 * part of extent is marked as written, the extent will be split into
1071 * two or three.
1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074 struct inode *inode, u64 start, u64 end)
1076 struct btrfs_root *root = BTRFS_I(inode)->root;
1077 struct extent_buffer *leaf;
1078 struct btrfs_path *path;
1079 struct btrfs_file_extent_item *fi;
1080 struct btrfs_key key;
1081 struct btrfs_key new_key;
1082 u64 bytenr;
1083 u64 num_bytes;
1084 u64 extent_end;
1085 u64 orig_offset;
1086 u64 other_start;
1087 u64 other_end;
1088 u64 split;
1089 int del_nr = 0;
1090 int del_slot = 0;
1091 int recow;
1092 int ret;
1093 u64 ino = btrfs_ino(inode);
1095 path = btrfs_alloc_path();
1096 if (!path)
1097 return -ENOMEM;
1098 again:
1099 recow = 0;
1100 split = start;
1101 key.objectid = ino;
1102 key.type = BTRFS_EXTENT_DATA_KEY;
1103 key.offset = split;
1105 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106 if (ret < 0)
1107 goto out;
1108 if (ret > 0 && path->slots[0] > 0)
1109 path->slots[0]--;
1111 leaf = path->nodes[0];
1112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1114 fi = btrfs_item_ptr(leaf, path->slots[0],
1115 struct btrfs_file_extent_item);
1116 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1117 BTRFS_FILE_EXTENT_PREALLOC);
1118 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1119 BUG_ON(key.offset > start || extent_end < end);
1121 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1122 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1123 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1124 memcpy(&new_key, &key, sizeof(new_key));
1126 if (start == key.offset && end < extent_end) {
1127 other_start = 0;
1128 other_end = start;
1129 if (extent_mergeable(leaf, path->slots[0] - 1,
1130 ino, bytenr, orig_offset,
1131 &other_start, &other_end)) {
1132 new_key.offset = end;
1133 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1134 fi = btrfs_item_ptr(leaf, path->slots[0],
1135 struct btrfs_file_extent_item);
1136 btrfs_set_file_extent_generation(leaf, fi,
1137 trans->transid);
1138 btrfs_set_file_extent_num_bytes(leaf, fi,
1139 extent_end - end);
1140 btrfs_set_file_extent_offset(leaf, fi,
1141 end - orig_offset);
1142 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1143 struct btrfs_file_extent_item);
1144 btrfs_set_file_extent_generation(leaf, fi,
1145 trans->transid);
1146 btrfs_set_file_extent_num_bytes(leaf, fi,
1147 end - other_start);
1148 btrfs_mark_buffer_dirty(leaf);
1149 goto out;
1153 if (start > key.offset && end == extent_end) {
1154 other_start = end;
1155 other_end = 0;
1156 if (extent_mergeable(leaf, path->slots[0] + 1,
1157 ino, bytenr, orig_offset,
1158 &other_start, &other_end)) {
1159 fi = btrfs_item_ptr(leaf, path->slots[0],
1160 struct btrfs_file_extent_item);
1161 btrfs_set_file_extent_num_bytes(leaf, fi,
1162 start - key.offset);
1163 btrfs_set_file_extent_generation(leaf, fi,
1164 trans->transid);
1165 path->slots[0]++;
1166 new_key.offset = start;
1167 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1169 fi = btrfs_item_ptr(leaf, path->slots[0],
1170 struct btrfs_file_extent_item);
1171 btrfs_set_file_extent_generation(leaf, fi,
1172 trans->transid);
1173 btrfs_set_file_extent_num_bytes(leaf, fi,
1174 other_end - start);
1175 btrfs_set_file_extent_offset(leaf, fi,
1176 start - orig_offset);
1177 btrfs_mark_buffer_dirty(leaf);
1178 goto out;
1182 while (start > key.offset || end < extent_end) {
1183 if (key.offset == start)
1184 split = end;
1186 new_key.offset = split;
1187 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1188 if (ret == -EAGAIN) {
1189 btrfs_release_path(path);
1190 goto again;
1192 if (ret < 0) {
1193 btrfs_abort_transaction(trans, root, ret);
1194 goto out;
1197 leaf = path->nodes[0];
1198 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1199 struct btrfs_file_extent_item);
1200 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1201 btrfs_set_file_extent_num_bytes(leaf, fi,
1202 split - key.offset);
1204 fi = btrfs_item_ptr(leaf, path->slots[0],
1205 struct btrfs_file_extent_item);
1207 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1208 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1209 btrfs_set_file_extent_num_bytes(leaf, fi,
1210 extent_end - split);
1211 btrfs_mark_buffer_dirty(leaf);
1213 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1214 root->root_key.objectid,
1215 ino, orig_offset);
1216 BUG_ON(ret); /* -ENOMEM */
1218 if (split == start) {
1219 key.offset = start;
1220 } else {
1221 BUG_ON(start != key.offset);
1222 path->slots[0]--;
1223 extent_end = end;
1225 recow = 1;
1228 other_start = end;
1229 other_end = 0;
1230 if (extent_mergeable(leaf, path->slots[0] + 1,
1231 ino, bytenr, orig_offset,
1232 &other_start, &other_end)) {
1233 if (recow) {
1234 btrfs_release_path(path);
1235 goto again;
1237 extent_end = other_end;
1238 del_slot = path->slots[0] + 1;
1239 del_nr++;
1240 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1241 0, root->root_key.objectid,
1242 ino, orig_offset);
1243 BUG_ON(ret); /* -ENOMEM */
1245 other_start = 0;
1246 other_end = start;
1247 if (extent_mergeable(leaf, path->slots[0] - 1,
1248 ino, bytenr, orig_offset,
1249 &other_start, &other_end)) {
1250 if (recow) {
1251 btrfs_release_path(path);
1252 goto again;
1254 key.offset = other_start;
1255 del_slot = path->slots[0];
1256 del_nr++;
1257 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1258 0, root->root_key.objectid,
1259 ino, orig_offset);
1260 BUG_ON(ret); /* -ENOMEM */
1262 if (del_nr == 0) {
1263 fi = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_file_extent_item);
1265 btrfs_set_file_extent_type(leaf, fi,
1266 BTRFS_FILE_EXTENT_REG);
1267 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1268 btrfs_mark_buffer_dirty(leaf);
1269 } else {
1270 fi = btrfs_item_ptr(leaf, del_slot - 1,
1271 struct btrfs_file_extent_item);
1272 btrfs_set_file_extent_type(leaf, fi,
1273 BTRFS_FILE_EXTENT_REG);
1274 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1275 btrfs_set_file_extent_num_bytes(leaf, fi,
1276 extent_end - key.offset);
1277 btrfs_mark_buffer_dirty(leaf);
1279 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1280 if (ret < 0) {
1281 btrfs_abort_transaction(trans, root, ret);
1282 goto out;
1285 out:
1286 btrfs_free_path(path);
1287 return 0;
1291 * on error we return an unlocked page and the error value
1292 * on success we return a locked page and 0
1294 static int prepare_uptodate_page(struct inode *inode,
1295 struct page *page, u64 pos,
1296 bool force_uptodate)
1298 int ret = 0;
1300 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1301 !PageUptodate(page)) {
1302 ret = btrfs_readpage(NULL, page);
1303 if (ret)
1304 return ret;
1305 lock_page(page);
1306 if (!PageUptodate(page)) {
1307 unlock_page(page);
1308 return -EIO;
1310 if (page->mapping != inode->i_mapping) {
1311 unlock_page(page);
1312 return -EAGAIN;
1315 return 0;
1319 * this just gets pages into the page cache and locks them down.
1321 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1322 size_t num_pages, loff_t pos,
1323 size_t write_bytes, bool force_uptodate)
1325 int i;
1326 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1327 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1328 int err = 0;
1329 int faili;
1331 for (i = 0; i < num_pages; i++) {
1332 again:
1333 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1334 mask | __GFP_WRITE);
1335 if (!pages[i]) {
1336 faili = i - 1;
1337 err = -ENOMEM;
1338 goto fail;
1341 if (i == 0)
1342 err = prepare_uptodate_page(inode, pages[i], pos,
1343 force_uptodate);
1344 if (!err && i == num_pages - 1)
1345 err = prepare_uptodate_page(inode, pages[i],
1346 pos + write_bytes, false);
1347 if (err) {
1348 page_cache_release(pages[i]);
1349 if (err == -EAGAIN) {
1350 err = 0;
1351 goto again;
1353 faili = i - 1;
1354 goto fail;
1356 wait_on_page_writeback(pages[i]);
1359 return 0;
1360 fail:
1361 while (faili >= 0) {
1362 unlock_page(pages[faili]);
1363 page_cache_release(pages[faili]);
1364 faili--;
1366 return err;
1371 * This function locks the extent and properly waits for data=ordered extents
1372 * to finish before allowing the pages to be modified if need.
1374 * The return value:
1375 * 1 - the extent is locked
1376 * 0 - the extent is not locked, and everything is OK
1377 * -EAGAIN - need re-prepare the pages
1378 * the other < 0 number - Something wrong happens
1380 static noinline int
1381 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1382 size_t num_pages, loff_t pos,
1383 u64 *lockstart, u64 *lockend,
1384 struct extent_state **cached_state)
1386 u64 start_pos;
1387 u64 last_pos;
1388 int i;
1389 int ret = 0;
1391 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1392 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1394 if (start_pos < inode->i_size) {
1395 struct btrfs_ordered_extent *ordered;
1396 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1397 start_pos, last_pos, 0, cached_state);
1398 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1399 last_pos - start_pos + 1);
1400 if (ordered &&
1401 ordered->file_offset + ordered->len > start_pos &&
1402 ordered->file_offset <= last_pos) {
1403 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1404 start_pos, last_pos,
1405 cached_state, GFP_NOFS);
1406 for (i = 0; i < num_pages; i++) {
1407 unlock_page(pages[i]);
1408 page_cache_release(pages[i]);
1410 btrfs_start_ordered_extent(inode, ordered, 1);
1411 btrfs_put_ordered_extent(ordered);
1412 return -EAGAIN;
1414 if (ordered)
1415 btrfs_put_ordered_extent(ordered);
1417 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1418 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1419 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1420 0, 0, cached_state, GFP_NOFS);
1421 *lockstart = start_pos;
1422 *lockend = last_pos;
1423 ret = 1;
1426 for (i = 0; i < num_pages; i++) {
1427 if (clear_page_dirty_for_io(pages[i]))
1428 account_page_redirty(pages[i]);
1429 set_page_extent_mapped(pages[i]);
1430 WARN_ON(!PageLocked(pages[i]));
1433 return ret;
1436 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1437 size_t *write_bytes)
1439 struct btrfs_root *root = BTRFS_I(inode)->root;
1440 struct btrfs_ordered_extent *ordered;
1441 u64 lockstart, lockend;
1442 u64 num_bytes;
1443 int ret;
1445 ret = btrfs_start_write_no_snapshoting(root);
1446 if (!ret)
1447 return -ENOSPC;
1449 lockstart = round_down(pos, root->sectorsize);
1450 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1452 while (1) {
1453 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1454 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1455 lockend - lockstart + 1);
1456 if (!ordered) {
1457 break;
1459 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1460 btrfs_start_ordered_extent(inode, ordered, 1);
1461 btrfs_put_ordered_extent(ordered);
1464 num_bytes = lockend - lockstart + 1;
1465 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1466 if (ret <= 0) {
1467 ret = 0;
1468 btrfs_end_write_no_snapshoting(root);
1469 } else {
1470 *write_bytes = min_t(size_t, *write_bytes ,
1471 num_bytes - pos + lockstart);
1474 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1476 return ret;
1479 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1480 struct iov_iter *i,
1481 loff_t pos)
1483 struct inode *inode = file_inode(file);
1484 struct btrfs_root *root = BTRFS_I(inode)->root;
1485 struct page **pages = NULL;
1486 struct extent_state *cached_state = NULL;
1487 u64 release_bytes = 0;
1488 u64 lockstart;
1489 u64 lockend;
1490 size_t num_written = 0;
1491 int nrptrs;
1492 int ret = 0;
1493 bool only_release_metadata = false;
1494 bool force_page_uptodate = false;
1495 bool need_unlock;
1497 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
1498 PAGE_CACHE_SIZE / (sizeof(struct page *)));
1499 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1500 nrptrs = max(nrptrs, 8);
1501 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1502 if (!pages)
1503 return -ENOMEM;
1505 while (iov_iter_count(i) > 0) {
1506 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1507 size_t write_bytes = min(iov_iter_count(i),
1508 nrptrs * (size_t)PAGE_CACHE_SIZE -
1509 offset);
1510 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1511 PAGE_CACHE_SIZE);
1512 size_t reserve_bytes;
1513 size_t dirty_pages;
1514 size_t copied;
1516 WARN_ON(num_pages > nrptrs);
1519 * Fault pages before locking them in prepare_pages
1520 * to avoid recursive lock
1522 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1523 ret = -EFAULT;
1524 break;
1527 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1529 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1530 BTRFS_INODE_PREALLOC)) &&
1531 check_can_nocow(inode, pos, &write_bytes) > 0) {
1533 * For nodata cow case, no need to reserve
1534 * data space.
1536 only_release_metadata = true;
1538 * our prealloc extent may be smaller than
1539 * write_bytes, so scale down.
1541 num_pages = DIV_ROUND_UP(write_bytes + offset,
1542 PAGE_CACHE_SIZE);
1543 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1544 goto reserve_metadata;
1547 ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1548 if (ret < 0)
1549 break;
1551 reserve_metadata:
1552 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1553 if (ret) {
1554 if (!only_release_metadata)
1555 btrfs_free_reserved_data_space(inode, pos,
1556 write_bytes);
1557 else
1558 btrfs_end_write_no_snapshoting(root);
1559 break;
1562 release_bytes = reserve_bytes;
1563 need_unlock = false;
1564 again:
1566 * This is going to setup the pages array with the number of
1567 * pages we want, so we don't really need to worry about the
1568 * contents of pages from loop to loop
1570 ret = prepare_pages(inode, pages, num_pages,
1571 pos, write_bytes,
1572 force_page_uptodate);
1573 if (ret)
1574 break;
1576 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1577 pos, &lockstart, &lockend,
1578 &cached_state);
1579 if (ret < 0) {
1580 if (ret == -EAGAIN)
1581 goto again;
1582 break;
1583 } else if (ret > 0) {
1584 need_unlock = true;
1585 ret = 0;
1588 copied = btrfs_copy_from_user(pos, num_pages,
1589 write_bytes, pages, i);
1592 * if we have trouble faulting in the pages, fall
1593 * back to one page at a time
1595 if (copied < write_bytes)
1596 nrptrs = 1;
1598 if (copied == 0) {
1599 force_page_uptodate = true;
1600 dirty_pages = 0;
1601 } else {
1602 force_page_uptodate = false;
1603 dirty_pages = DIV_ROUND_UP(copied + offset,
1604 PAGE_CACHE_SIZE);
1608 * If we had a short copy we need to release the excess delaloc
1609 * bytes we reserved. We need to increment outstanding_extents
1610 * because btrfs_delalloc_release_space will decrement it, but
1611 * we still have an outstanding extent for the chunk we actually
1612 * managed to copy.
1614 if (num_pages > dirty_pages) {
1615 release_bytes = (num_pages - dirty_pages) <<
1616 PAGE_CACHE_SHIFT;
1617 if (copied > 0) {
1618 spin_lock(&BTRFS_I(inode)->lock);
1619 BTRFS_I(inode)->outstanding_extents++;
1620 spin_unlock(&BTRFS_I(inode)->lock);
1622 if (only_release_metadata) {
1623 btrfs_delalloc_release_metadata(inode,
1624 release_bytes);
1625 } else {
1626 u64 __pos;
1628 __pos = round_down(pos, root->sectorsize) +
1629 (dirty_pages << PAGE_CACHE_SHIFT);
1630 btrfs_delalloc_release_space(inode, __pos,
1631 release_bytes);
1635 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1637 if (copied > 0)
1638 ret = btrfs_dirty_pages(root, inode, pages,
1639 dirty_pages, pos, copied,
1640 NULL);
1641 if (need_unlock)
1642 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1643 lockstart, lockend, &cached_state,
1644 GFP_NOFS);
1645 if (ret) {
1646 btrfs_drop_pages(pages, num_pages);
1647 break;
1650 release_bytes = 0;
1651 if (only_release_metadata)
1652 btrfs_end_write_no_snapshoting(root);
1654 if (only_release_metadata && copied > 0) {
1655 lockstart = round_down(pos, root->sectorsize);
1656 lockend = lockstart +
1657 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1659 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1660 lockend, EXTENT_NORESERVE, NULL,
1661 NULL, GFP_NOFS);
1662 only_release_metadata = false;
1665 btrfs_drop_pages(pages, num_pages);
1667 cond_resched();
1669 balance_dirty_pages_ratelimited(inode->i_mapping);
1670 if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
1671 btrfs_btree_balance_dirty(root);
1673 pos += copied;
1674 num_written += copied;
1677 kfree(pages);
1679 if (release_bytes) {
1680 if (only_release_metadata) {
1681 btrfs_end_write_no_snapshoting(root);
1682 btrfs_delalloc_release_metadata(inode, release_bytes);
1683 } else {
1684 btrfs_delalloc_release_space(inode, pos, release_bytes);
1688 return num_written ? num_written : ret;
1691 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1692 struct iov_iter *from,
1693 loff_t pos)
1695 struct file *file = iocb->ki_filp;
1696 struct inode *inode = file_inode(file);
1697 ssize_t written;
1698 ssize_t written_buffered;
1699 loff_t endbyte;
1700 int err;
1702 written = generic_file_direct_write(iocb, from, pos);
1704 if (written < 0 || !iov_iter_count(from))
1705 return written;
1707 pos += written;
1708 written_buffered = __btrfs_buffered_write(file, from, pos);
1709 if (written_buffered < 0) {
1710 err = written_buffered;
1711 goto out;
1714 * Ensure all data is persisted. We want the next direct IO read to be
1715 * able to read what was just written.
1717 endbyte = pos + written_buffered - 1;
1718 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1719 if (err)
1720 goto out;
1721 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1722 if (err)
1723 goto out;
1724 written += written_buffered;
1725 iocb->ki_pos = pos + written_buffered;
1726 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1727 endbyte >> PAGE_CACHE_SHIFT);
1728 out:
1729 return written ? written : err;
1732 static void update_time_for_write(struct inode *inode)
1734 struct timespec now;
1736 if (IS_NOCMTIME(inode))
1737 return;
1739 now = current_fs_time(inode->i_sb);
1740 if (!timespec_equal(&inode->i_mtime, &now))
1741 inode->i_mtime = now;
1743 if (!timespec_equal(&inode->i_ctime, &now))
1744 inode->i_ctime = now;
1746 if (IS_I_VERSION(inode))
1747 inode_inc_iversion(inode);
1750 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1751 struct iov_iter *from)
1753 struct file *file = iocb->ki_filp;
1754 struct inode *inode = file_inode(file);
1755 struct btrfs_root *root = BTRFS_I(inode)->root;
1756 u64 start_pos;
1757 u64 end_pos;
1758 ssize_t num_written = 0;
1759 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1760 ssize_t err;
1761 loff_t pos;
1762 size_t count;
1764 mutex_lock(&inode->i_mutex);
1765 err = generic_write_checks(iocb, from);
1766 if (err <= 0) {
1767 mutex_unlock(&inode->i_mutex);
1768 return err;
1771 current->backing_dev_info = inode_to_bdi(inode);
1772 err = file_remove_privs(file);
1773 if (err) {
1774 mutex_unlock(&inode->i_mutex);
1775 goto out;
1779 * If BTRFS flips readonly due to some impossible error
1780 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1781 * although we have opened a file as writable, we have
1782 * to stop this write operation to ensure FS consistency.
1784 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1785 mutex_unlock(&inode->i_mutex);
1786 err = -EROFS;
1787 goto out;
1791 * We reserve space for updating the inode when we reserve space for the
1792 * extent we are going to write, so we will enospc out there. We don't
1793 * need to start yet another transaction to update the inode as we will
1794 * update the inode when we finish writing whatever data we write.
1796 update_time_for_write(inode);
1798 pos = iocb->ki_pos;
1799 count = iov_iter_count(from);
1800 start_pos = round_down(pos, root->sectorsize);
1801 if (start_pos > i_size_read(inode)) {
1802 /* Expand hole size to cover write data, preventing empty gap */
1803 end_pos = round_up(pos + count, root->sectorsize);
1804 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1805 if (err) {
1806 mutex_unlock(&inode->i_mutex);
1807 goto out;
1811 if (sync)
1812 atomic_inc(&BTRFS_I(inode)->sync_writers);
1814 if (iocb->ki_flags & IOCB_DIRECT) {
1815 num_written = __btrfs_direct_write(iocb, from, pos);
1816 } else {
1817 num_written = __btrfs_buffered_write(file, from, pos);
1818 if (num_written > 0)
1819 iocb->ki_pos = pos + num_written;
1822 mutex_unlock(&inode->i_mutex);
1825 * We also have to set last_sub_trans to the current log transid,
1826 * otherwise subsequent syncs to a file that's been synced in this
1827 * transaction will appear to have already occured.
1829 spin_lock(&BTRFS_I(inode)->lock);
1830 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1831 spin_unlock(&BTRFS_I(inode)->lock);
1832 if (num_written > 0) {
1833 err = generic_write_sync(file, pos, num_written);
1834 if (err < 0)
1835 num_written = err;
1838 if (sync)
1839 atomic_dec(&BTRFS_I(inode)->sync_writers);
1840 out:
1841 current->backing_dev_info = NULL;
1842 return num_written ? num_written : err;
1845 int btrfs_release_file(struct inode *inode, struct file *filp)
1847 if (filp->private_data)
1848 btrfs_ioctl_trans_end(filp);
1850 * ordered_data_close is set by settattr when we are about to truncate
1851 * a file from a non-zero size to a zero size. This tries to
1852 * flush down new bytes that may have been written if the
1853 * application were using truncate to replace a file in place.
1855 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1856 &BTRFS_I(inode)->runtime_flags))
1857 filemap_flush(inode->i_mapping);
1858 return 0;
1861 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1863 int ret;
1864 struct blk_plug plug;
1867 * This is only called in fsync, which would do synchronous writes, so
1868 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1869 * multiple disks using raid profile, a large IO can be split to
1870 * several segments of stripe length (currently 64K).
1872 blk_start_plug(&plug);
1873 atomic_inc(&BTRFS_I(inode)->sync_writers);
1874 ret = btrfs_fdatawrite_range(inode, start, end);
1875 atomic_dec(&BTRFS_I(inode)->sync_writers);
1876 blk_finish_plug(&plug);
1878 return ret;
1882 * fsync call for both files and directories. This logs the inode into
1883 * the tree log instead of forcing full commits whenever possible.
1885 * It needs to call filemap_fdatawait so that all ordered extent updates are
1886 * in the metadata btree are up to date for copying to the log.
1888 * It drops the inode mutex before doing the tree log commit. This is an
1889 * important optimization for directories because holding the mutex prevents
1890 * new operations on the dir while we write to disk.
1892 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1894 struct dentry *dentry = file_dentry(file);
1895 struct inode *inode = d_inode(dentry);
1896 struct btrfs_root *root = BTRFS_I(inode)->root;
1897 struct btrfs_trans_handle *trans;
1898 struct btrfs_log_ctx ctx;
1899 int ret = 0;
1900 bool full_sync = 0;
1901 u64 len;
1904 * The range length can be represented by u64, we have to do the typecasts
1905 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1907 len = (u64)end - (u64)start + 1;
1908 trace_btrfs_sync_file(file, datasync);
1911 * We write the dirty pages in the range and wait until they complete
1912 * out of the ->i_mutex. If so, we can flush the dirty pages by
1913 * multi-task, and make the performance up. See
1914 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1916 ret = start_ordered_ops(inode, start, end);
1917 if (ret)
1918 return ret;
1920 mutex_lock(&inode->i_mutex);
1921 atomic_inc(&root->log_batch);
1922 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1923 &BTRFS_I(inode)->runtime_flags);
1925 * We might have have had more pages made dirty after calling
1926 * start_ordered_ops and before acquiring the inode's i_mutex.
1928 if (full_sync) {
1930 * For a full sync, we need to make sure any ordered operations
1931 * start and finish before we start logging the inode, so that
1932 * all extents are persisted and the respective file extent
1933 * items are in the fs/subvol btree.
1935 ret = btrfs_wait_ordered_range(inode, start, len);
1936 } else {
1938 * Start any new ordered operations before starting to log the
1939 * inode. We will wait for them to finish in btrfs_sync_log().
1941 * Right before acquiring the inode's mutex, we might have new
1942 * writes dirtying pages, which won't immediately start the
1943 * respective ordered operations - that is done through the
1944 * fill_delalloc callbacks invoked from the writepage and
1945 * writepages address space operations. So make sure we start
1946 * all ordered operations before starting to log our inode. Not
1947 * doing this means that while logging the inode, writeback
1948 * could start and invoke writepage/writepages, which would call
1949 * the fill_delalloc callbacks (cow_file_range,
1950 * submit_compressed_extents). These callbacks add first an
1951 * extent map to the modified list of extents and then create
1952 * the respective ordered operation, which means in
1953 * tree-log.c:btrfs_log_inode() we might capture all existing
1954 * ordered operations (with btrfs_get_logged_extents()) before
1955 * the fill_delalloc callback adds its ordered operation, and by
1956 * the time we visit the modified list of extent maps (with
1957 * btrfs_log_changed_extents()), we see and process the extent
1958 * map they created. We then use the extent map to construct a
1959 * file extent item for logging without waiting for the
1960 * respective ordered operation to finish - this file extent
1961 * item points to a disk location that might not have yet been
1962 * written to, containing random data - so after a crash a log
1963 * replay will make our inode have file extent items that point
1964 * to disk locations containing invalid data, as we returned
1965 * success to userspace without waiting for the respective
1966 * ordered operation to finish, because it wasn't captured by
1967 * btrfs_get_logged_extents().
1969 ret = start_ordered_ops(inode, start, end);
1971 if (ret) {
1972 mutex_unlock(&inode->i_mutex);
1973 goto out;
1975 atomic_inc(&root->log_batch);
1978 * If the last transaction that changed this file was before the current
1979 * transaction and we have the full sync flag set in our inode, we can
1980 * bail out now without any syncing.
1982 * Note that we can't bail out if the full sync flag isn't set. This is
1983 * because when the full sync flag is set we start all ordered extents
1984 * and wait for them to fully complete - when they complete they update
1985 * the inode's last_trans field through:
1987 * btrfs_finish_ordered_io() ->
1988 * btrfs_update_inode_fallback() ->
1989 * btrfs_update_inode() ->
1990 * btrfs_set_inode_last_trans()
1992 * So we are sure that last_trans is up to date and can do this check to
1993 * bail out safely. For the fast path, when the full sync flag is not
1994 * set in our inode, we can not do it because we start only our ordered
1995 * extents and don't wait for them to complete (that is when
1996 * btrfs_finish_ordered_io runs), so here at this point their last_trans
1997 * value might be less than or equals to fs_info->last_trans_committed,
1998 * and setting a speculative last_trans for an inode when a buffered
1999 * write is made (such as fs_info->generation + 1 for example) would not
2000 * be reliable since after setting the value and before fsync is called
2001 * any number of transactions can start and commit (transaction kthread
2002 * commits the current transaction periodically), and a transaction
2003 * commit does not start nor waits for ordered extents to complete.
2005 smp_mb();
2006 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
2007 (BTRFS_I(inode)->last_trans <=
2008 root->fs_info->last_trans_committed &&
2009 (full_sync ||
2010 !btrfs_have_ordered_extents_in_range(inode, start, len)))) {
2012 * We'v had everything committed since the last time we were
2013 * modified so clear this flag in case it was set for whatever
2014 * reason, it's no longer relevant.
2016 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2017 &BTRFS_I(inode)->runtime_flags);
2018 mutex_unlock(&inode->i_mutex);
2019 goto out;
2023 * ok we haven't committed the transaction yet, lets do a commit
2025 if (file->private_data)
2026 btrfs_ioctl_trans_end(file);
2029 * We use start here because we will need to wait on the IO to complete
2030 * in btrfs_sync_log, which could require joining a transaction (for
2031 * example checking cross references in the nocow path). If we use join
2032 * here we could get into a situation where we're waiting on IO to
2033 * happen that is blocked on a transaction trying to commit. With start
2034 * we inc the extwriter counter, so we wait for all extwriters to exit
2035 * before we start blocking join'ers. This comment is to keep somebody
2036 * from thinking they are super smart and changing this to
2037 * btrfs_join_transaction *cough*Josef*cough*.
2039 trans = btrfs_start_transaction(root, 0);
2040 if (IS_ERR(trans)) {
2041 ret = PTR_ERR(trans);
2042 mutex_unlock(&inode->i_mutex);
2043 goto out;
2045 trans->sync = true;
2047 btrfs_init_log_ctx(&ctx);
2049 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2050 if (ret < 0) {
2051 /* Fallthrough and commit/free transaction. */
2052 ret = 1;
2055 /* we've logged all the items and now have a consistent
2056 * version of the file in the log. It is possible that
2057 * someone will come in and modify the file, but that's
2058 * fine because the log is consistent on disk, and we
2059 * have references to all of the file's extents
2061 * It is possible that someone will come in and log the
2062 * file again, but that will end up using the synchronization
2063 * inside btrfs_sync_log to keep things safe.
2065 mutex_unlock(&inode->i_mutex);
2068 * If any of the ordered extents had an error, just return it to user
2069 * space, so that the application knows some writes didn't succeed and
2070 * can take proper action (retry for e.g.). Blindly committing the
2071 * transaction in this case, would fool userspace that everything was
2072 * successful. And we also want to make sure our log doesn't contain
2073 * file extent items pointing to extents that weren't fully written to -
2074 * just like in the non fast fsync path, where we check for the ordered
2075 * operation's error flag before writing to the log tree and return -EIO
2076 * if any of them had this flag set (btrfs_wait_ordered_range) -
2077 * therefore we need to check for errors in the ordered operations,
2078 * which are indicated by ctx.io_err.
2080 if (ctx.io_err) {
2081 btrfs_end_transaction(trans, root);
2082 ret = ctx.io_err;
2083 goto out;
2086 if (ret != BTRFS_NO_LOG_SYNC) {
2087 if (!ret) {
2088 ret = btrfs_sync_log(trans, root, &ctx);
2089 if (!ret) {
2090 ret = btrfs_end_transaction(trans, root);
2091 goto out;
2094 if (!full_sync) {
2095 ret = btrfs_wait_ordered_range(inode, start, len);
2096 if (ret) {
2097 btrfs_end_transaction(trans, root);
2098 goto out;
2101 ret = btrfs_commit_transaction(trans, root);
2102 } else {
2103 ret = btrfs_end_transaction(trans, root);
2105 out:
2106 return ret > 0 ? -EIO : ret;
2109 static const struct vm_operations_struct btrfs_file_vm_ops = {
2110 .fault = filemap_fault,
2111 .map_pages = filemap_map_pages,
2112 .page_mkwrite = btrfs_page_mkwrite,
2115 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2117 struct address_space *mapping = filp->f_mapping;
2119 if (!mapping->a_ops->readpage)
2120 return -ENOEXEC;
2122 file_accessed(filp);
2123 vma->vm_ops = &btrfs_file_vm_ops;
2125 return 0;
2128 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2129 int slot, u64 start, u64 end)
2131 struct btrfs_file_extent_item *fi;
2132 struct btrfs_key key;
2134 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2135 return 0;
2137 btrfs_item_key_to_cpu(leaf, &key, slot);
2138 if (key.objectid != btrfs_ino(inode) ||
2139 key.type != BTRFS_EXTENT_DATA_KEY)
2140 return 0;
2142 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2144 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2145 return 0;
2147 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2148 return 0;
2150 if (key.offset == end)
2151 return 1;
2152 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2153 return 1;
2154 return 0;
2157 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2158 struct btrfs_path *path, u64 offset, u64 end)
2160 struct btrfs_root *root = BTRFS_I(inode)->root;
2161 struct extent_buffer *leaf;
2162 struct btrfs_file_extent_item *fi;
2163 struct extent_map *hole_em;
2164 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2165 struct btrfs_key key;
2166 int ret;
2168 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2169 goto out;
2171 key.objectid = btrfs_ino(inode);
2172 key.type = BTRFS_EXTENT_DATA_KEY;
2173 key.offset = offset;
2175 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2176 if (ret < 0)
2177 return ret;
2178 BUG_ON(!ret);
2180 leaf = path->nodes[0];
2181 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2182 u64 num_bytes;
2184 path->slots[0]--;
2185 fi = btrfs_item_ptr(leaf, path->slots[0],
2186 struct btrfs_file_extent_item);
2187 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2188 end - offset;
2189 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2190 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2191 btrfs_set_file_extent_offset(leaf, fi, 0);
2192 btrfs_mark_buffer_dirty(leaf);
2193 goto out;
2196 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2197 u64 num_bytes;
2199 key.offset = offset;
2200 btrfs_set_item_key_safe(root->fs_info, path, &key);
2201 fi = btrfs_item_ptr(leaf, path->slots[0],
2202 struct btrfs_file_extent_item);
2203 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2204 offset;
2205 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2206 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2207 btrfs_set_file_extent_offset(leaf, fi, 0);
2208 btrfs_mark_buffer_dirty(leaf);
2209 goto out;
2211 btrfs_release_path(path);
2213 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2214 0, 0, end - offset, 0, end - offset,
2215 0, 0, 0);
2216 if (ret)
2217 return ret;
2219 out:
2220 btrfs_release_path(path);
2222 hole_em = alloc_extent_map();
2223 if (!hole_em) {
2224 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2225 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2226 &BTRFS_I(inode)->runtime_flags);
2227 } else {
2228 hole_em->start = offset;
2229 hole_em->len = end - offset;
2230 hole_em->ram_bytes = hole_em->len;
2231 hole_em->orig_start = offset;
2233 hole_em->block_start = EXTENT_MAP_HOLE;
2234 hole_em->block_len = 0;
2235 hole_em->orig_block_len = 0;
2236 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2237 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2238 hole_em->generation = trans->transid;
2240 do {
2241 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2242 write_lock(&em_tree->lock);
2243 ret = add_extent_mapping(em_tree, hole_em, 1);
2244 write_unlock(&em_tree->lock);
2245 } while (ret == -EEXIST);
2246 free_extent_map(hole_em);
2247 if (ret)
2248 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2249 &BTRFS_I(inode)->runtime_flags);
2252 return 0;
2256 * Find a hole extent on given inode and change start/len to the end of hole
2257 * extent.(hole/vacuum extent whose em->start <= start &&
2258 * em->start + em->len > start)
2259 * When a hole extent is found, return 1 and modify start/len.
2261 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2263 struct extent_map *em;
2264 int ret = 0;
2266 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2267 if (IS_ERR_OR_NULL(em)) {
2268 if (!em)
2269 ret = -ENOMEM;
2270 else
2271 ret = PTR_ERR(em);
2272 return ret;
2275 /* Hole or vacuum extent(only exists in no-hole mode) */
2276 if (em->block_start == EXTENT_MAP_HOLE) {
2277 ret = 1;
2278 *len = em->start + em->len > *start + *len ?
2279 0 : *start + *len - em->start - em->len;
2280 *start = em->start + em->len;
2282 free_extent_map(em);
2283 return ret;
2286 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2288 struct btrfs_root *root = BTRFS_I(inode)->root;
2289 struct extent_state *cached_state = NULL;
2290 struct btrfs_path *path;
2291 struct btrfs_block_rsv *rsv;
2292 struct btrfs_trans_handle *trans;
2293 u64 lockstart;
2294 u64 lockend;
2295 u64 tail_start;
2296 u64 tail_len;
2297 u64 orig_start = offset;
2298 u64 cur_offset;
2299 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2300 u64 drop_end;
2301 int ret = 0;
2302 int err = 0;
2303 unsigned int rsv_count;
2304 bool same_page;
2305 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2306 u64 ino_size;
2307 bool truncated_page = false;
2308 bool updated_inode = false;
2310 ret = btrfs_wait_ordered_range(inode, offset, len);
2311 if (ret)
2312 return ret;
2314 mutex_lock(&inode->i_mutex);
2315 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2316 ret = find_first_non_hole(inode, &offset, &len);
2317 if (ret < 0)
2318 goto out_only_mutex;
2319 if (ret && !len) {
2320 /* Already in a large hole */
2321 ret = 0;
2322 goto out_only_mutex;
2325 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2326 lockend = round_down(offset + len,
2327 BTRFS_I(inode)->root->sectorsize) - 1;
2328 same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2329 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2332 * We needn't truncate any page which is beyond the end of the file
2333 * because we are sure there is no data there.
2336 * Only do this if we are in the same page and we aren't doing the
2337 * entire page.
2339 if (same_page && len < PAGE_CACHE_SIZE) {
2340 if (offset < ino_size) {
2341 truncated_page = true;
2342 ret = btrfs_truncate_page(inode, offset, len, 0);
2343 } else {
2344 ret = 0;
2346 goto out_only_mutex;
2349 /* zero back part of the first page */
2350 if (offset < ino_size) {
2351 truncated_page = true;
2352 ret = btrfs_truncate_page(inode, offset, 0, 0);
2353 if (ret) {
2354 mutex_unlock(&inode->i_mutex);
2355 return ret;
2359 /* Check the aligned pages after the first unaligned page,
2360 * if offset != orig_start, which means the first unaligned page
2361 * including serveral following pages are already in holes,
2362 * the extra check can be skipped */
2363 if (offset == orig_start) {
2364 /* after truncate page, check hole again */
2365 len = offset + len - lockstart;
2366 offset = lockstart;
2367 ret = find_first_non_hole(inode, &offset, &len);
2368 if (ret < 0)
2369 goto out_only_mutex;
2370 if (ret && !len) {
2371 ret = 0;
2372 goto out_only_mutex;
2374 lockstart = offset;
2377 /* Check the tail unaligned part is in a hole */
2378 tail_start = lockend + 1;
2379 tail_len = offset + len - tail_start;
2380 if (tail_len) {
2381 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2382 if (unlikely(ret < 0))
2383 goto out_only_mutex;
2384 if (!ret) {
2385 /* zero the front end of the last page */
2386 if (tail_start + tail_len < ino_size) {
2387 truncated_page = true;
2388 ret = btrfs_truncate_page(inode,
2389 tail_start + tail_len, 0, 1);
2390 if (ret)
2391 goto out_only_mutex;
2396 if (lockend < lockstart) {
2397 ret = 0;
2398 goto out_only_mutex;
2401 while (1) {
2402 struct btrfs_ordered_extent *ordered;
2404 truncate_pagecache_range(inode, lockstart, lockend);
2406 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2407 0, &cached_state);
2408 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2411 * We need to make sure we have no ordered extents in this range
2412 * and nobody raced in and read a page in this range, if we did
2413 * we need to try again.
2415 if ((!ordered ||
2416 (ordered->file_offset + ordered->len <= lockstart ||
2417 ordered->file_offset > lockend)) &&
2418 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2419 if (ordered)
2420 btrfs_put_ordered_extent(ordered);
2421 break;
2423 if (ordered)
2424 btrfs_put_ordered_extent(ordered);
2425 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2426 lockend, &cached_state, GFP_NOFS);
2427 ret = btrfs_wait_ordered_range(inode, lockstart,
2428 lockend - lockstart + 1);
2429 if (ret) {
2430 mutex_unlock(&inode->i_mutex);
2431 return ret;
2435 path = btrfs_alloc_path();
2436 if (!path) {
2437 ret = -ENOMEM;
2438 goto out;
2441 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2442 if (!rsv) {
2443 ret = -ENOMEM;
2444 goto out_free;
2446 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2447 rsv->failfast = 1;
2450 * 1 - update the inode
2451 * 1 - removing the extents in the range
2452 * 1 - adding the hole extent if no_holes isn't set
2454 rsv_count = no_holes ? 2 : 3;
2455 trans = btrfs_start_transaction(root, rsv_count);
2456 if (IS_ERR(trans)) {
2457 err = PTR_ERR(trans);
2458 goto out_free;
2461 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2462 min_size);
2463 BUG_ON(ret);
2464 trans->block_rsv = rsv;
2466 cur_offset = lockstart;
2467 len = lockend - cur_offset;
2468 while (cur_offset < lockend) {
2469 ret = __btrfs_drop_extents(trans, root, inode, path,
2470 cur_offset, lockend + 1,
2471 &drop_end, 1, 0, 0, NULL);
2472 if (ret != -ENOSPC)
2473 break;
2475 trans->block_rsv = &root->fs_info->trans_block_rsv;
2477 if (cur_offset < ino_size) {
2478 ret = fill_holes(trans, inode, path, cur_offset,
2479 drop_end);
2480 if (ret) {
2481 err = ret;
2482 break;
2486 cur_offset = drop_end;
2488 ret = btrfs_update_inode(trans, root, inode);
2489 if (ret) {
2490 err = ret;
2491 break;
2494 btrfs_end_transaction(trans, root);
2495 btrfs_btree_balance_dirty(root);
2497 trans = btrfs_start_transaction(root, rsv_count);
2498 if (IS_ERR(trans)) {
2499 ret = PTR_ERR(trans);
2500 trans = NULL;
2501 break;
2504 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2505 rsv, min_size);
2506 BUG_ON(ret); /* shouldn't happen */
2507 trans->block_rsv = rsv;
2509 ret = find_first_non_hole(inode, &cur_offset, &len);
2510 if (unlikely(ret < 0))
2511 break;
2512 if (ret && !len) {
2513 ret = 0;
2514 break;
2518 if (ret) {
2519 err = ret;
2520 goto out_trans;
2523 trans->block_rsv = &root->fs_info->trans_block_rsv;
2525 * If we are using the NO_HOLES feature we might have had already an
2526 * hole that overlaps a part of the region [lockstart, lockend] and
2527 * ends at (or beyond) lockend. Since we have no file extent items to
2528 * represent holes, drop_end can be less than lockend and so we must
2529 * make sure we have an extent map representing the existing hole (the
2530 * call to __btrfs_drop_extents() might have dropped the existing extent
2531 * map representing the existing hole), otherwise the fast fsync path
2532 * will not record the existence of the hole region
2533 * [existing_hole_start, lockend].
2535 if (drop_end <= lockend)
2536 drop_end = lockend + 1;
2538 * Don't insert file hole extent item if it's for a range beyond eof
2539 * (because it's useless) or if it represents a 0 bytes range (when
2540 * cur_offset == drop_end).
2542 if (cur_offset < ino_size && cur_offset < drop_end) {
2543 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2544 if (ret) {
2545 err = ret;
2546 goto out_trans;
2550 out_trans:
2551 if (!trans)
2552 goto out_free;
2554 inode_inc_iversion(inode);
2555 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2557 trans->block_rsv = &root->fs_info->trans_block_rsv;
2558 ret = btrfs_update_inode(trans, root, inode);
2559 updated_inode = true;
2560 btrfs_end_transaction(trans, root);
2561 btrfs_btree_balance_dirty(root);
2562 out_free:
2563 btrfs_free_path(path);
2564 btrfs_free_block_rsv(root, rsv);
2565 out:
2566 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2567 &cached_state, GFP_NOFS);
2568 out_only_mutex:
2569 if (!updated_inode && truncated_page && !ret && !err) {
2571 * If we only end up zeroing part of a page, we still need to
2572 * update the inode item, so that all the time fields are
2573 * updated as well as the necessary btrfs inode in memory fields
2574 * for detecting, at fsync time, if the inode isn't yet in the
2575 * log tree or it's there but not up to date.
2577 trans = btrfs_start_transaction(root, 1);
2578 if (IS_ERR(trans)) {
2579 err = PTR_ERR(trans);
2580 } else {
2581 err = btrfs_update_inode(trans, root, inode);
2582 ret = btrfs_end_transaction(trans, root);
2585 mutex_unlock(&inode->i_mutex);
2586 if (ret && !err)
2587 err = ret;
2588 return err;
2591 /* Helper structure to record which range is already reserved */
2592 struct falloc_range {
2593 struct list_head list;
2594 u64 start;
2595 u64 len;
2599 * Helper function to add falloc range
2601 * Caller should have locked the larger range of extent containing
2602 * [start, len)
2604 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2606 struct falloc_range *prev = NULL;
2607 struct falloc_range *range = NULL;
2609 if (list_empty(head))
2610 goto insert;
2613 * As fallocate iterate by bytenr order, we only need to check
2614 * the last range.
2616 prev = list_entry(head->prev, struct falloc_range, list);
2617 if (prev->start + prev->len == start) {
2618 prev->len += len;
2619 return 0;
2621 insert:
2622 range = kmalloc(sizeof(*range), GFP_NOFS);
2623 if (!range)
2624 return -ENOMEM;
2625 range->start = start;
2626 range->len = len;
2627 list_add_tail(&range->list, head);
2628 return 0;
2631 static long btrfs_fallocate(struct file *file, int mode,
2632 loff_t offset, loff_t len)
2634 struct inode *inode = file_inode(file);
2635 struct extent_state *cached_state = NULL;
2636 struct falloc_range *range;
2637 struct falloc_range *tmp;
2638 struct list_head reserve_list;
2639 u64 cur_offset;
2640 u64 last_byte;
2641 u64 alloc_start;
2642 u64 alloc_end;
2643 u64 alloc_hint = 0;
2644 u64 locked_end;
2645 u64 actual_end = 0;
2646 struct extent_map *em;
2647 int blocksize = BTRFS_I(inode)->root->sectorsize;
2648 int ret;
2650 alloc_start = round_down(offset, blocksize);
2651 alloc_end = round_up(offset + len, blocksize);
2653 /* Make sure we aren't being give some crap mode */
2654 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2655 return -EOPNOTSUPP;
2657 if (mode & FALLOC_FL_PUNCH_HOLE)
2658 return btrfs_punch_hole(inode, offset, len);
2661 * Only trigger disk allocation, don't trigger qgroup reserve
2663 * For qgroup space, it will be checked later.
2665 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2666 if (ret < 0)
2667 return ret;
2669 mutex_lock(&inode->i_mutex);
2670 ret = inode_newsize_ok(inode, alloc_end);
2671 if (ret)
2672 goto out;
2675 * TODO: Move these two operations after we have checked
2676 * accurate reserved space, or fallocate can still fail but
2677 * with page truncated or size expanded.
2679 * But that's a minor problem and won't do much harm BTW.
2681 if (alloc_start > inode->i_size) {
2682 ret = btrfs_cont_expand(inode, i_size_read(inode),
2683 alloc_start);
2684 if (ret)
2685 goto out;
2686 } else if (offset + len > inode->i_size) {
2688 * If we are fallocating from the end of the file onward we
2689 * need to zero out the end of the page if i_size lands in the
2690 * middle of a page.
2692 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2693 if (ret)
2694 goto out;
2698 * wait for ordered IO before we have any locks. We'll loop again
2699 * below with the locks held.
2701 ret = btrfs_wait_ordered_range(inode, alloc_start,
2702 alloc_end - alloc_start);
2703 if (ret)
2704 goto out;
2706 locked_end = alloc_end - 1;
2707 while (1) {
2708 struct btrfs_ordered_extent *ordered;
2710 /* the extent lock is ordered inside the running
2711 * transaction
2713 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2714 locked_end, 0, &cached_state);
2715 ordered = btrfs_lookup_first_ordered_extent(inode,
2716 alloc_end - 1);
2717 if (ordered &&
2718 ordered->file_offset + ordered->len > alloc_start &&
2719 ordered->file_offset < alloc_end) {
2720 btrfs_put_ordered_extent(ordered);
2721 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2722 alloc_start, locked_end,
2723 &cached_state, GFP_NOFS);
2725 * we can't wait on the range with the transaction
2726 * running or with the extent lock held
2728 ret = btrfs_wait_ordered_range(inode, alloc_start,
2729 alloc_end - alloc_start);
2730 if (ret)
2731 goto out;
2732 } else {
2733 if (ordered)
2734 btrfs_put_ordered_extent(ordered);
2735 break;
2739 /* First, check if we exceed the qgroup limit */
2740 INIT_LIST_HEAD(&reserve_list);
2741 cur_offset = alloc_start;
2742 while (1) {
2743 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2744 alloc_end - cur_offset, 0);
2745 if (IS_ERR_OR_NULL(em)) {
2746 if (!em)
2747 ret = -ENOMEM;
2748 else
2749 ret = PTR_ERR(em);
2750 break;
2752 last_byte = min(extent_map_end(em), alloc_end);
2753 actual_end = min_t(u64, extent_map_end(em), offset + len);
2754 last_byte = ALIGN(last_byte, blocksize);
2755 if (em->block_start == EXTENT_MAP_HOLE ||
2756 (cur_offset >= inode->i_size &&
2757 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2758 ret = add_falloc_range(&reserve_list, cur_offset,
2759 last_byte - cur_offset);
2760 if (ret < 0) {
2761 free_extent_map(em);
2762 break;
2764 ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2765 last_byte - cur_offset);
2766 if (ret < 0)
2767 break;
2769 free_extent_map(em);
2770 cur_offset = last_byte;
2771 if (cur_offset >= alloc_end)
2772 break;
2776 * If ret is still 0, means we're OK to fallocate.
2777 * Or just cleanup the list and exit.
2779 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2780 if (!ret)
2781 ret = btrfs_prealloc_file_range(inode, mode,
2782 range->start,
2783 range->len, i_blocksize(inode),
2784 offset + len, &alloc_hint);
2785 list_del(&range->list);
2786 kfree(range);
2788 if (ret < 0)
2789 goto out_unlock;
2791 if (actual_end > inode->i_size &&
2792 !(mode & FALLOC_FL_KEEP_SIZE)) {
2793 struct btrfs_trans_handle *trans;
2794 struct btrfs_root *root = BTRFS_I(inode)->root;
2797 * We didn't need to allocate any more space, but we
2798 * still extended the size of the file so we need to
2799 * update i_size and the inode item.
2801 trans = btrfs_start_transaction(root, 1);
2802 if (IS_ERR(trans)) {
2803 ret = PTR_ERR(trans);
2804 } else {
2805 inode->i_ctime = CURRENT_TIME;
2806 i_size_write(inode, actual_end);
2807 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2808 ret = btrfs_update_inode(trans, root, inode);
2809 if (ret)
2810 btrfs_end_transaction(trans, root);
2811 else
2812 ret = btrfs_end_transaction(trans, root);
2815 out_unlock:
2816 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2817 &cached_state, GFP_NOFS);
2818 out:
2820 * As we waited the extent range, the data_rsv_map must be empty
2821 * in the range, as written data range will be released from it.
2822 * And for prealloacted extent, it will also be released when
2823 * its metadata is written.
2824 * So this is completely used as cleanup.
2826 btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start);
2827 mutex_unlock(&inode->i_mutex);
2828 /* Let go of our reservation. */
2829 btrfs_free_reserved_data_space(inode, alloc_start,
2830 alloc_end - alloc_start);
2831 return ret;
2834 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2836 struct btrfs_root *root = BTRFS_I(inode)->root;
2837 struct extent_map *em = NULL;
2838 struct extent_state *cached_state = NULL;
2839 u64 lockstart;
2840 u64 lockend;
2841 u64 start;
2842 u64 len;
2843 int ret = 0;
2845 if (inode->i_size == 0)
2846 return -ENXIO;
2849 * *offset can be negative, in this case we start finding DATA/HOLE from
2850 * the very start of the file.
2852 start = max_t(loff_t, 0, *offset);
2854 lockstart = round_down(start, root->sectorsize);
2855 lockend = round_up(i_size_read(inode), root->sectorsize);
2856 if (lockend <= lockstart)
2857 lockend = lockstart + root->sectorsize;
2858 lockend--;
2859 len = lockend - lockstart + 1;
2861 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2862 &cached_state);
2864 while (start < inode->i_size) {
2865 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2866 if (IS_ERR(em)) {
2867 ret = PTR_ERR(em);
2868 em = NULL;
2869 break;
2872 if (whence == SEEK_HOLE &&
2873 (em->block_start == EXTENT_MAP_HOLE ||
2874 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2875 break;
2876 else if (whence == SEEK_DATA &&
2877 (em->block_start != EXTENT_MAP_HOLE &&
2878 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2879 break;
2881 start = em->start + em->len;
2882 free_extent_map(em);
2883 em = NULL;
2884 cond_resched();
2886 free_extent_map(em);
2887 if (!ret) {
2888 if (whence == SEEK_DATA && start >= inode->i_size)
2889 ret = -ENXIO;
2890 else
2891 *offset = min_t(loff_t, start, inode->i_size);
2893 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2894 &cached_state, GFP_NOFS);
2895 return ret;
2898 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2900 struct inode *inode = file->f_mapping->host;
2901 int ret;
2903 mutex_lock(&inode->i_mutex);
2904 switch (whence) {
2905 case SEEK_END:
2906 case SEEK_CUR:
2907 offset = generic_file_llseek(file, offset, whence);
2908 goto out;
2909 case SEEK_DATA:
2910 case SEEK_HOLE:
2911 if (offset >= i_size_read(inode)) {
2912 mutex_unlock(&inode->i_mutex);
2913 return -ENXIO;
2916 ret = find_desired_extent(inode, &offset, whence);
2917 if (ret) {
2918 mutex_unlock(&inode->i_mutex);
2919 return ret;
2923 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2924 out:
2925 mutex_unlock(&inode->i_mutex);
2926 return offset;
2929 const struct file_operations btrfs_file_operations = {
2930 .llseek = btrfs_file_llseek,
2931 .read_iter = generic_file_read_iter,
2932 .splice_read = generic_file_splice_read,
2933 .write_iter = btrfs_file_write_iter,
2934 .mmap = btrfs_file_mmap,
2935 .open = generic_file_open,
2936 .release = btrfs_release_file,
2937 .fsync = btrfs_sync_file,
2938 .fallocate = btrfs_fallocate,
2939 .unlocked_ioctl = btrfs_ioctl,
2940 #ifdef CONFIG_COMPAT
2941 .compat_ioctl = btrfs_ioctl,
2942 #endif
2945 void btrfs_auto_defrag_exit(void)
2947 if (btrfs_inode_defrag_cachep)
2948 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2951 int btrfs_auto_defrag_init(void)
2953 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2954 sizeof(struct inode_defrag), 0,
2955 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2956 NULL);
2957 if (!btrfs_inode_defrag_cachep)
2958 return -ENOMEM;
2960 return 0;
2963 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2965 int ret;
2968 * So with compression we will find and lock a dirty page and clear the
2969 * first one as dirty, setup an async extent, and immediately return
2970 * with the entire range locked but with nobody actually marked with
2971 * writeback. So we can't just filemap_write_and_wait_range() and
2972 * expect it to work since it will just kick off a thread to do the
2973 * actual work. So we need to call filemap_fdatawrite_range _again_
2974 * since it will wait on the page lock, which won't be unlocked until
2975 * after the pages have been marked as writeback and so we're good to go
2976 * from there. We have to do this otherwise we'll miss the ordered
2977 * extents and that results in badness. Please Josef, do not think you
2978 * know better and pull this out at some point in the future, it is
2979 * right and you are wrong.
2981 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2982 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
2983 &BTRFS_I(inode)->runtime_flags))
2984 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2986 return ret;