2 * SuperH Timer Support - CMT
4 * Copyright (C) 2008 Magnus Damm
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_domain.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/spinlock.h>
39 * The CMT comes in 5 different identified flavours, depending not only on the
40 * SoC but also on the particular instance. The following table lists the main
41 * characteristics of those flavours.
43 * 16B 32B 32B-F 48B R-Car Gen2
44 * -----------------------------------------------------------------------------
45 * Channels 2 1/4 1 6 2/8
46 * Control Width 16 16 16 16 32
47 * Counter Width 16 32 32 32/48 32/48
48 * Shared Start/Stop Y Y Y Y N
50 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
51 * located in the channel registers block. All other versions have a shared
52 * start/stop register located in the global space.
54 * Channels are indexed from 0 to N-1 in the documentation. The channel index
55 * infers the start/stop bit position in the control register and the channel
56 * registers block address. Some CMT instances have a subset of channels
57 * available, in which case the index in the documentation doesn't match the
58 * "real" index as implemented in hardware. This is for instance the case with
59 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
60 * in the documentation but using start/stop bit 5 and having its registers
63 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
64 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
76 enum sh_cmt_model model
;
78 unsigned int channels_mask
;
80 unsigned long width
; /* 16 or 32 bit version of hardware block */
84 /* callbacks for CMSTR and CMCSR access */
85 u32 (*read_control
)(void __iomem
*base
, unsigned long offs
);
86 void (*write_control
)(void __iomem
*base
, unsigned long offs
,
89 /* callbacks for CMCNT and CMCOR access */
90 u32 (*read_count
)(void __iomem
*base
, unsigned long offs
);
91 void (*write_count
)(void __iomem
*base
, unsigned long offs
, u32 value
);
94 struct sh_cmt_channel
{
95 struct sh_cmt_device
*cmt
;
97 unsigned int index
; /* Index in the documentation */
98 unsigned int hwidx
; /* Real hardware index */
100 void __iomem
*iostart
;
101 void __iomem
*ioctrl
;
103 unsigned int timer_bit
;
106 u32 next_match_value
;
109 struct clock_event_device ced
;
110 struct clocksource cs
;
115 struct sh_cmt_device
{
116 struct platform_device
*pdev
;
118 const struct sh_cmt_info
*info
;
120 void __iomem
*mapbase
;
124 raw_spinlock_t lock
; /* Protect the shared start/stop register */
126 struct sh_cmt_channel
*channels
;
127 unsigned int num_channels
;
128 unsigned int hw_channels
;
131 bool has_clocksource
;
134 #define SH_CMT16_CMCSR_CMF (1 << 7)
135 #define SH_CMT16_CMCSR_CMIE (1 << 6)
136 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
137 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
138 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
139 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
140 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
142 #define SH_CMT32_CMCSR_CMF (1 << 15)
143 #define SH_CMT32_CMCSR_OVF (1 << 14)
144 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
145 #define SH_CMT32_CMCSR_STTF (1 << 12)
146 #define SH_CMT32_CMCSR_STPF (1 << 11)
147 #define SH_CMT32_CMCSR_SSIE (1 << 10)
148 #define SH_CMT32_CMCSR_CMS (1 << 9)
149 #define SH_CMT32_CMCSR_CMM (1 << 8)
150 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
151 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
152 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
153 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
154 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
155 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
156 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
157 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
158 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
159 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
160 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
162 static u32
sh_cmt_read16(void __iomem
*base
, unsigned long offs
)
164 return ioread16(base
+ (offs
<< 1));
167 static u32
sh_cmt_read32(void __iomem
*base
, unsigned long offs
)
169 return ioread32(base
+ (offs
<< 2));
172 static void sh_cmt_write16(void __iomem
*base
, unsigned long offs
, u32 value
)
174 iowrite16(value
, base
+ (offs
<< 1));
177 static void sh_cmt_write32(void __iomem
*base
, unsigned long offs
, u32 value
)
179 iowrite32(value
, base
+ (offs
<< 2));
182 static const struct sh_cmt_info sh_cmt_info
[] = {
184 .model
= SH_CMT_16BIT
,
186 .overflow_bit
= SH_CMT16_CMCSR_CMF
,
187 .clear_bits
= ~SH_CMT16_CMCSR_CMF
,
188 .read_control
= sh_cmt_read16
,
189 .write_control
= sh_cmt_write16
,
190 .read_count
= sh_cmt_read16
,
191 .write_count
= sh_cmt_write16
,
194 .model
= SH_CMT_32BIT
,
196 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
197 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
198 .read_control
= sh_cmt_read16
,
199 .write_control
= sh_cmt_write16
,
200 .read_count
= sh_cmt_read32
,
201 .write_count
= sh_cmt_write32
,
204 .model
= SH_CMT_48BIT
,
205 .channels_mask
= 0x3f,
207 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
208 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
209 .read_control
= sh_cmt_read32
,
210 .write_control
= sh_cmt_write32
,
211 .read_count
= sh_cmt_read32
,
212 .write_count
= sh_cmt_write32
,
214 [SH_CMT0_RCAR_GEN2
] = {
215 .model
= SH_CMT0_RCAR_GEN2
,
216 .channels_mask
= 0x60,
218 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
219 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
220 .read_control
= sh_cmt_read32
,
221 .write_control
= sh_cmt_write32
,
222 .read_count
= sh_cmt_read32
,
223 .write_count
= sh_cmt_write32
,
225 [SH_CMT1_RCAR_GEN2
] = {
226 .model
= SH_CMT1_RCAR_GEN2
,
227 .channels_mask
= 0xff,
229 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
230 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
231 .read_control
= sh_cmt_read32
,
232 .write_control
= sh_cmt_write32
,
233 .read_count
= sh_cmt_read32
,
234 .write_count
= sh_cmt_write32
,
238 #define CMCSR 0 /* channel register */
239 #define CMCNT 1 /* channel register */
240 #define CMCOR 2 /* channel register */
242 static inline u32
sh_cmt_read_cmstr(struct sh_cmt_channel
*ch
)
245 return ch
->cmt
->info
->read_control(ch
->iostart
, 0);
247 return ch
->cmt
->info
->read_control(ch
->cmt
->mapbase
, 0);
250 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel
*ch
, u32 value
)
253 ch
->cmt
->info
->write_control(ch
->iostart
, 0, value
);
255 ch
->cmt
->info
->write_control(ch
->cmt
->mapbase
, 0, value
);
258 static inline u32
sh_cmt_read_cmcsr(struct sh_cmt_channel
*ch
)
260 return ch
->cmt
->info
->read_control(ch
->ioctrl
, CMCSR
);
263 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel
*ch
, u32 value
)
265 ch
->cmt
->info
->write_control(ch
->ioctrl
, CMCSR
, value
);
268 static inline u32
sh_cmt_read_cmcnt(struct sh_cmt_channel
*ch
)
270 return ch
->cmt
->info
->read_count(ch
->ioctrl
, CMCNT
);
273 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel
*ch
, u32 value
)
275 ch
->cmt
->info
->write_count(ch
->ioctrl
, CMCNT
, value
);
278 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel
*ch
, u32 value
)
280 ch
->cmt
->info
->write_count(ch
->ioctrl
, CMCOR
, value
);
283 static u32
sh_cmt_get_counter(struct sh_cmt_channel
*ch
, u32
*has_wrapped
)
288 o1
= sh_cmt_read_cmcsr(ch
) & ch
->cmt
->info
->overflow_bit
;
290 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
293 v1
= sh_cmt_read_cmcnt(ch
);
294 v2
= sh_cmt_read_cmcnt(ch
);
295 v3
= sh_cmt_read_cmcnt(ch
);
296 o1
= sh_cmt_read_cmcsr(ch
) & ch
->cmt
->info
->overflow_bit
;
297 } while (unlikely((o1
!= o2
) || (v1
> v2
&& v1
< v3
)
298 || (v2
> v3
&& v2
< v1
) || (v3
> v1
&& v3
< v2
)));
304 static void sh_cmt_start_stop_ch(struct sh_cmt_channel
*ch
, int start
)
309 /* start stop register shared by multiple timer channels */
310 raw_spin_lock_irqsave(&ch
->cmt
->lock
, flags
);
311 value
= sh_cmt_read_cmstr(ch
);
314 value
|= 1 << ch
->timer_bit
;
316 value
&= ~(1 << ch
->timer_bit
);
318 sh_cmt_write_cmstr(ch
, value
);
319 raw_spin_unlock_irqrestore(&ch
->cmt
->lock
, flags
);
322 static int sh_cmt_enable(struct sh_cmt_channel
*ch
)
326 pm_runtime_get_sync(&ch
->cmt
->pdev
->dev
);
327 dev_pm_syscore_device(&ch
->cmt
->pdev
->dev
, true);
330 ret
= clk_enable(ch
->cmt
->clk
);
332 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: cannot enable clock\n",
337 /* make sure channel is disabled */
338 sh_cmt_start_stop_ch(ch
, 0);
340 /* configure channel, periodic mode and maximum timeout */
341 if (ch
->cmt
->info
->width
== 16) {
342 sh_cmt_write_cmcsr(ch
, SH_CMT16_CMCSR_CMIE
|
343 SH_CMT16_CMCSR_CKS512
);
345 sh_cmt_write_cmcsr(ch
, SH_CMT32_CMCSR_CMM
|
346 SH_CMT32_CMCSR_CMTOUT_IE
|
347 SH_CMT32_CMCSR_CMR_IRQ
|
348 SH_CMT32_CMCSR_CKS_RCLK8
);
351 sh_cmt_write_cmcor(ch
, 0xffffffff);
352 sh_cmt_write_cmcnt(ch
, 0);
355 * According to the sh73a0 user's manual, as CMCNT can be operated
356 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
357 * modifying CMCNT register; two RCLK cycles are necessary before
358 * this register is either read or any modification of the value
359 * it holds is reflected in the LSI's actual operation.
361 * While at it, we're supposed to clear out the CMCNT as of this
362 * moment, so make sure it's processed properly here. This will
363 * take RCLKx2 at maximum.
365 for (k
= 0; k
< 100; k
++) {
366 if (!sh_cmt_read_cmcnt(ch
))
371 if (sh_cmt_read_cmcnt(ch
)) {
372 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: cannot clear CMCNT\n",
379 sh_cmt_start_stop_ch(ch
, 1);
383 clk_disable(ch
->cmt
->clk
);
389 static void sh_cmt_disable(struct sh_cmt_channel
*ch
)
391 /* disable channel */
392 sh_cmt_start_stop_ch(ch
, 0);
394 /* disable interrupts in CMT block */
395 sh_cmt_write_cmcsr(ch
, 0);
398 clk_disable(ch
->cmt
->clk
);
400 dev_pm_syscore_device(&ch
->cmt
->pdev
->dev
, false);
401 pm_runtime_put(&ch
->cmt
->pdev
->dev
);
405 #define FLAG_CLOCKEVENT (1 << 0)
406 #define FLAG_CLOCKSOURCE (1 << 1)
407 #define FLAG_REPROGRAM (1 << 2)
408 #define FLAG_SKIPEVENT (1 << 3)
409 #define FLAG_IRQCONTEXT (1 << 4)
411 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel
*ch
,
414 u32 value
= ch
->next_match_value
;
420 now
= sh_cmt_get_counter(ch
, &has_wrapped
);
421 ch
->flags
|= FLAG_REPROGRAM
; /* force reprogram */
424 /* we're competing with the interrupt handler.
425 * -> let the interrupt handler reprogram the timer.
426 * -> interrupt number two handles the event.
428 ch
->flags
|= FLAG_SKIPEVENT
;
436 /* reprogram the timer hardware,
437 * but don't save the new match value yet.
439 new_match
= now
+ value
+ delay
;
440 if (new_match
> ch
->max_match_value
)
441 new_match
= ch
->max_match_value
;
443 sh_cmt_write_cmcor(ch
, new_match
);
445 now
= sh_cmt_get_counter(ch
, &has_wrapped
);
446 if (has_wrapped
&& (new_match
> ch
->match_value
)) {
447 /* we are changing to a greater match value,
448 * so this wrap must be caused by the counter
449 * matching the old value.
450 * -> first interrupt reprograms the timer.
451 * -> interrupt number two handles the event.
453 ch
->flags
|= FLAG_SKIPEVENT
;
458 /* we are changing to a smaller match value,
459 * so the wrap must be caused by the counter
460 * matching the new value.
461 * -> save programmed match value.
462 * -> let isr handle the event.
464 ch
->match_value
= new_match
;
468 /* be safe: verify hardware settings */
469 if (now
< new_match
) {
470 /* timer value is below match value, all good.
471 * this makes sure we won't miss any match events.
472 * -> save programmed match value.
473 * -> let isr handle the event.
475 ch
->match_value
= new_match
;
479 /* the counter has reached a value greater
480 * than our new match value. and since the
481 * has_wrapped flag isn't set we must have
482 * programmed a too close event.
483 * -> increase delay and retry.
491 dev_warn(&ch
->cmt
->pdev
->dev
, "ch%u: too long delay\n",
497 static void __sh_cmt_set_next(struct sh_cmt_channel
*ch
, unsigned long delta
)
499 if (delta
> ch
->max_match_value
)
500 dev_warn(&ch
->cmt
->pdev
->dev
, "ch%u: delta out of range\n",
503 ch
->next_match_value
= delta
;
504 sh_cmt_clock_event_program_verify(ch
, 0);
507 static void sh_cmt_set_next(struct sh_cmt_channel
*ch
, unsigned long delta
)
511 raw_spin_lock_irqsave(&ch
->lock
, flags
);
512 __sh_cmt_set_next(ch
, delta
);
513 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
516 static irqreturn_t
sh_cmt_interrupt(int irq
, void *dev_id
)
518 struct sh_cmt_channel
*ch
= dev_id
;
521 sh_cmt_write_cmcsr(ch
, sh_cmt_read_cmcsr(ch
) &
522 ch
->cmt
->info
->clear_bits
);
524 /* update clock source counter to begin with if enabled
525 * the wrap flag should be cleared by the timer specific
526 * isr before we end up here.
528 if (ch
->flags
& FLAG_CLOCKSOURCE
)
529 ch
->total_cycles
+= ch
->match_value
+ 1;
531 if (!(ch
->flags
& FLAG_REPROGRAM
))
532 ch
->next_match_value
= ch
->max_match_value
;
534 ch
->flags
|= FLAG_IRQCONTEXT
;
536 if (ch
->flags
& FLAG_CLOCKEVENT
) {
537 if (!(ch
->flags
& FLAG_SKIPEVENT
)) {
538 if (clockevent_state_oneshot(&ch
->ced
)) {
539 ch
->next_match_value
= ch
->max_match_value
;
540 ch
->flags
|= FLAG_REPROGRAM
;
543 ch
->ced
.event_handler(&ch
->ced
);
547 ch
->flags
&= ~FLAG_SKIPEVENT
;
549 if (ch
->flags
& FLAG_REPROGRAM
) {
550 ch
->flags
&= ~FLAG_REPROGRAM
;
551 sh_cmt_clock_event_program_verify(ch
, 1);
553 if (ch
->flags
& FLAG_CLOCKEVENT
)
554 if ((clockevent_state_shutdown(&ch
->ced
))
555 || (ch
->match_value
== ch
->next_match_value
))
556 ch
->flags
&= ~FLAG_REPROGRAM
;
559 ch
->flags
&= ~FLAG_IRQCONTEXT
;
564 static int sh_cmt_start(struct sh_cmt_channel
*ch
, unsigned long flag
)
569 raw_spin_lock_irqsave(&ch
->lock
, flags
);
571 if (!(ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
)))
572 ret
= sh_cmt_enable(ch
);
578 /* setup timeout if no clockevent */
579 if ((flag
== FLAG_CLOCKSOURCE
) && (!(ch
->flags
& FLAG_CLOCKEVENT
)))
580 __sh_cmt_set_next(ch
, ch
->max_match_value
);
582 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
587 static void sh_cmt_stop(struct sh_cmt_channel
*ch
, unsigned long flag
)
592 raw_spin_lock_irqsave(&ch
->lock
, flags
);
594 f
= ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
);
597 if (f
&& !(ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
)))
600 /* adjust the timeout to maximum if only clocksource left */
601 if ((flag
== FLAG_CLOCKEVENT
) && (ch
->flags
& FLAG_CLOCKSOURCE
))
602 __sh_cmt_set_next(ch
, ch
->max_match_value
);
604 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
607 static struct sh_cmt_channel
*cs_to_sh_cmt(struct clocksource
*cs
)
609 return container_of(cs
, struct sh_cmt_channel
, cs
);
612 static u64
sh_cmt_clocksource_read(struct clocksource
*cs
)
614 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
620 raw_spin_lock_irqsave(&ch
->lock
, flags
);
621 value
= ch
->total_cycles
;
622 raw
= sh_cmt_get_counter(ch
, &has_wrapped
);
624 if (unlikely(has_wrapped
))
625 raw
+= ch
->match_value
+ 1;
626 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
631 static int sh_cmt_clocksource_enable(struct clocksource
*cs
)
634 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
636 WARN_ON(ch
->cs_enabled
);
638 ch
->total_cycles
= 0;
640 ret
= sh_cmt_start(ch
, FLAG_CLOCKSOURCE
);
642 ch
->cs_enabled
= true;
647 static void sh_cmt_clocksource_disable(struct clocksource
*cs
)
649 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
651 WARN_ON(!ch
->cs_enabled
);
653 sh_cmt_stop(ch
, FLAG_CLOCKSOURCE
);
654 ch
->cs_enabled
= false;
657 static void sh_cmt_clocksource_suspend(struct clocksource
*cs
)
659 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
664 sh_cmt_stop(ch
, FLAG_CLOCKSOURCE
);
665 pm_genpd_syscore_poweroff(&ch
->cmt
->pdev
->dev
);
668 static void sh_cmt_clocksource_resume(struct clocksource
*cs
)
670 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
675 pm_genpd_syscore_poweron(&ch
->cmt
->pdev
->dev
);
676 sh_cmt_start(ch
, FLAG_CLOCKSOURCE
);
679 static int sh_cmt_register_clocksource(struct sh_cmt_channel
*ch
,
682 struct clocksource
*cs
= &ch
->cs
;
686 cs
->read
= sh_cmt_clocksource_read
;
687 cs
->enable
= sh_cmt_clocksource_enable
;
688 cs
->disable
= sh_cmt_clocksource_disable
;
689 cs
->suspend
= sh_cmt_clocksource_suspend
;
690 cs
->resume
= sh_cmt_clocksource_resume
;
691 cs
->mask
= CLOCKSOURCE_MASK(sizeof(u64
) * 8);
692 cs
->flags
= CLOCK_SOURCE_IS_CONTINUOUS
;
694 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used as clock source\n",
697 clocksource_register_hz(cs
, ch
->cmt
->rate
);
701 static struct sh_cmt_channel
*ced_to_sh_cmt(struct clock_event_device
*ced
)
703 return container_of(ced
, struct sh_cmt_channel
, ced
);
706 static void sh_cmt_clock_event_start(struct sh_cmt_channel
*ch
, int periodic
)
708 sh_cmt_start(ch
, FLAG_CLOCKEVENT
);
711 sh_cmt_set_next(ch
, ((ch
->cmt
->rate
+ HZ
/2) / HZ
) - 1);
713 sh_cmt_set_next(ch
, ch
->max_match_value
);
716 static int sh_cmt_clock_event_shutdown(struct clock_event_device
*ced
)
718 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
720 sh_cmt_stop(ch
, FLAG_CLOCKEVENT
);
724 static int sh_cmt_clock_event_set_state(struct clock_event_device
*ced
,
727 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
729 /* deal with old setting first */
730 if (clockevent_state_oneshot(ced
) || clockevent_state_periodic(ced
))
731 sh_cmt_stop(ch
, FLAG_CLOCKEVENT
);
733 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used for %s clock events\n",
734 ch
->index
, periodic
? "periodic" : "oneshot");
735 sh_cmt_clock_event_start(ch
, periodic
);
739 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device
*ced
)
741 return sh_cmt_clock_event_set_state(ced
, 0);
744 static int sh_cmt_clock_event_set_periodic(struct clock_event_device
*ced
)
746 return sh_cmt_clock_event_set_state(ced
, 1);
749 static int sh_cmt_clock_event_next(unsigned long delta
,
750 struct clock_event_device
*ced
)
752 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
754 BUG_ON(!clockevent_state_oneshot(ced
));
755 if (likely(ch
->flags
& FLAG_IRQCONTEXT
))
756 ch
->next_match_value
= delta
- 1;
758 sh_cmt_set_next(ch
, delta
- 1);
763 static void sh_cmt_clock_event_suspend(struct clock_event_device
*ced
)
765 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
767 pm_genpd_syscore_poweroff(&ch
->cmt
->pdev
->dev
);
768 clk_unprepare(ch
->cmt
->clk
);
771 static void sh_cmt_clock_event_resume(struct clock_event_device
*ced
)
773 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
775 clk_prepare(ch
->cmt
->clk
);
776 pm_genpd_syscore_poweron(&ch
->cmt
->pdev
->dev
);
779 static int sh_cmt_register_clockevent(struct sh_cmt_channel
*ch
,
782 struct clock_event_device
*ced
= &ch
->ced
;
786 irq
= platform_get_irq(ch
->cmt
->pdev
, ch
->index
);
788 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: failed to get irq\n",
793 ret
= request_irq(irq
, sh_cmt_interrupt
,
794 IRQF_TIMER
| IRQF_IRQPOLL
| IRQF_NOBALANCING
,
795 dev_name(&ch
->cmt
->pdev
->dev
), ch
);
797 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: failed to request irq %d\n",
803 ced
->features
= CLOCK_EVT_FEAT_PERIODIC
;
804 ced
->features
|= CLOCK_EVT_FEAT_ONESHOT
;
806 ced
->cpumask
= cpu_possible_mask
;
807 ced
->set_next_event
= sh_cmt_clock_event_next
;
808 ced
->set_state_shutdown
= sh_cmt_clock_event_shutdown
;
809 ced
->set_state_periodic
= sh_cmt_clock_event_set_periodic
;
810 ced
->set_state_oneshot
= sh_cmt_clock_event_set_oneshot
;
811 ced
->suspend
= sh_cmt_clock_event_suspend
;
812 ced
->resume
= sh_cmt_clock_event_resume
;
814 /* TODO: calculate good shift from rate and counter bit width */
816 ced
->mult
= div_sc(ch
->cmt
->rate
, NSEC_PER_SEC
, ced
->shift
);
817 ced
->max_delta_ns
= clockevent_delta2ns(ch
->max_match_value
, ced
);
818 ced
->max_delta_ticks
= ch
->max_match_value
;
819 ced
->min_delta_ns
= clockevent_delta2ns(0x1f, ced
);
820 ced
->min_delta_ticks
= 0x1f;
822 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used for clock events\n",
824 clockevents_register_device(ced
);
829 static int sh_cmt_register(struct sh_cmt_channel
*ch
, const char *name
,
830 bool clockevent
, bool clocksource
)
835 ch
->cmt
->has_clockevent
= true;
836 ret
= sh_cmt_register_clockevent(ch
, name
);
842 ch
->cmt
->has_clocksource
= true;
843 sh_cmt_register_clocksource(ch
, name
);
849 static int sh_cmt_setup_channel(struct sh_cmt_channel
*ch
, unsigned int index
,
850 unsigned int hwidx
, bool clockevent
,
851 bool clocksource
, struct sh_cmt_device
*cmt
)
855 /* Skip unused channels. */
856 if (!clockevent
&& !clocksource
)
862 ch
->timer_bit
= hwidx
;
865 * Compute the address of the channel control register block. For the
866 * timers with a per-channel start/stop register, compute its address
869 switch (cmt
->info
->model
) {
871 ch
->ioctrl
= cmt
->mapbase
+ 2 + ch
->hwidx
* 6;
875 ch
->ioctrl
= cmt
->mapbase
+ 0x10 + ch
->hwidx
* 0x10;
877 case SH_CMT0_RCAR_GEN2
:
878 case SH_CMT1_RCAR_GEN2
:
879 ch
->iostart
= cmt
->mapbase
+ ch
->hwidx
* 0x100;
880 ch
->ioctrl
= ch
->iostart
+ 0x10;
885 if (cmt
->info
->width
== (sizeof(ch
->max_match_value
) * 8))
886 ch
->max_match_value
= ~0;
888 ch
->max_match_value
= (1 << cmt
->info
->width
) - 1;
890 ch
->match_value
= ch
->max_match_value
;
891 raw_spin_lock_init(&ch
->lock
);
893 ret
= sh_cmt_register(ch
, dev_name(&cmt
->pdev
->dev
),
894 clockevent
, clocksource
);
896 dev_err(&cmt
->pdev
->dev
, "ch%u: registration failed\n",
900 ch
->cs_enabled
= false;
905 static int sh_cmt_map_memory(struct sh_cmt_device
*cmt
)
907 struct resource
*mem
;
909 mem
= platform_get_resource(cmt
->pdev
, IORESOURCE_MEM
, 0);
911 dev_err(&cmt
->pdev
->dev
, "failed to get I/O memory\n");
915 cmt
->mapbase
= ioremap_nocache(mem
->start
, resource_size(mem
));
916 if (cmt
->mapbase
== NULL
) {
917 dev_err(&cmt
->pdev
->dev
, "failed to remap I/O memory\n");
924 static const struct platform_device_id sh_cmt_id_table
[] = {
925 { "sh-cmt-16", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_16BIT
] },
926 { "sh-cmt-32", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_32BIT
] },
929 MODULE_DEVICE_TABLE(platform
, sh_cmt_id_table
);
931 static const struct of_device_id sh_cmt_of_table
[] __maybe_unused
= {
932 { .compatible
= "renesas,cmt-48", .data
= &sh_cmt_info
[SH_CMT_48BIT
] },
934 /* deprecated, preserved for backward compatibility */
935 .compatible
= "renesas,cmt-48-gen2",
936 .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
]
938 { .compatible
= "renesas,rcar-gen2-cmt0", .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
] },
939 { .compatible
= "renesas,rcar-gen2-cmt1", .data
= &sh_cmt_info
[SH_CMT1_RCAR_GEN2
] },
942 MODULE_DEVICE_TABLE(of
, sh_cmt_of_table
);
944 static int sh_cmt_setup(struct sh_cmt_device
*cmt
, struct platform_device
*pdev
)
951 raw_spin_lock_init(&cmt
->lock
);
953 if (IS_ENABLED(CONFIG_OF
) && pdev
->dev
.of_node
) {
954 cmt
->info
= of_device_get_match_data(&pdev
->dev
);
955 cmt
->hw_channels
= cmt
->info
->channels_mask
;
956 } else if (pdev
->dev
.platform_data
) {
957 struct sh_timer_config
*cfg
= pdev
->dev
.platform_data
;
958 const struct platform_device_id
*id
= pdev
->id_entry
;
960 cmt
->info
= (const struct sh_cmt_info
*)id
->driver_data
;
961 cmt
->hw_channels
= cfg
->channels_mask
;
963 dev_err(&cmt
->pdev
->dev
, "missing platform data\n");
967 /* Get hold of clock. */
968 cmt
->clk
= clk_get(&cmt
->pdev
->dev
, "fck");
969 if (IS_ERR(cmt
->clk
)) {
970 dev_err(&cmt
->pdev
->dev
, "cannot get clock\n");
971 return PTR_ERR(cmt
->clk
);
974 ret
= clk_prepare(cmt
->clk
);
978 /* Determine clock rate. */
979 ret
= clk_enable(cmt
->clk
);
981 goto err_clk_unprepare
;
983 if (cmt
->info
->width
== 16)
984 cmt
->rate
= clk_get_rate(cmt
->clk
) / 512;
986 cmt
->rate
= clk_get_rate(cmt
->clk
) / 8;
988 clk_disable(cmt
->clk
);
990 /* Map the memory resource(s). */
991 ret
= sh_cmt_map_memory(cmt
);
993 goto err_clk_unprepare
;
995 /* Allocate and setup the channels. */
996 cmt
->num_channels
= hweight8(cmt
->hw_channels
);
997 cmt
->channels
= kcalloc(cmt
->num_channels
, sizeof(*cmt
->channels
),
999 if (cmt
->channels
== NULL
) {
1005 * Use the first channel as a clock event device and the second channel
1006 * as a clock source. If only one channel is available use it for both.
1008 for (i
= 0, mask
= cmt
->hw_channels
; i
< cmt
->num_channels
; ++i
) {
1009 unsigned int hwidx
= ffs(mask
) - 1;
1010 bool clocksource
= i
== 1 || cmt
->num_channels
== 1;
1011 bool clockevent
= i
== 0;
1013 ret
= sh_cmt_setup_channel(&cmt
->channels
[i
], i
, hwidx
,
1014 clockevent
, clocksource
, cmt
);
1018 mask
&= ~(1 << hwidx
);
1021 platform_set_drvdata(pdev
, cmt
);
1026 kfree(cmt
->channels
);
1027 iounmap(cmt
->mapbase
);
1029 clk_unprepare(cmt
->clk
);
1035 static int sh_cmt_probe(struct platform_device
*pdev
)
1037 struct sh_cmt_device
*cmt
= platform_get_drvdata(pdev
);
1040 if (!is_early_platform_device(pdev
)) {
1041 pm_runtime_set_active(&pdev
->dev
);
1042 pm_runtime_enable(&pdev
->dev
);
1046 dev_info(&pdev
->dev
, "kept as earlytimer\n");
1050 cmt
= kzalloc(sizeof(*cmt
), GFP_KERNEL
);
1054 ret
= sh_cmt_setup(cmt
, pdev
);
1057 pm_runtime_idle(&pdev
->dev
);
1060 if (is_early_platform_device(pdev
))
1064 if (cmt
->has_clockevent
|| cmt
->has_clocksource
)
1065 pm_runtime_irq_safe(&pdev
->dev
);
1067 pm_runtime_idle(&pdev
->dev
);
1072 static int sh_cmt_remove(struct platform_device
*pdev
)
1074 return -EBUSY
; /* cannot unregister clockevent and clocksource */
1077 static struct platform_driver sh_cmt_device_driver
= {
1078 .probe
= sh_cmt_probe
,
1079 .remove
= sh_cmt_remove
,
1082 .of_match_table
= of_match_ptr(sh_cmt_of_table
),
1084 .id_table
= sh_cmt_id_table
,
1087 static int __init
sh_cmt_init(void)
1089 return platform_driver_register(&sh_cmt_device_driver
);
1092 static void __exit
sh_cmt_exit(void)
1094 platform_driver_unregister(&sh_cmt_device_driver
);
1097 early_platform_init("earlytimer", &sh_cmt_device_driver
);
1098 subsys_initcall(sh_cmt_init
);
1099 module_exit(sh_cmt_exit
);
1101 MODULE_AUTHOR("Magnus Damm");
1102 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1103 MODULE_LICENSE("GPL v2");