1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
30 #include "edac_module.h"
33 static LIST_HEAD(sbridge_edac_list
);
36 * Alter this version for the module when modifications are made
38 #define SBRIDGE_REVISION " Ver: 1.1.2 "
39 #define EDAC_MOD_STR "sb_edac"
44 #define sbridge_printk(level, fmt, arg...) \
45 edac_printk(level, "sbridge", fmt, ##arg)
47 #define sbridge_mc_printk(mci, level, fmt, arg...) \
48 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
51 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
53 #define GET_BITFIELD(v, lo, hi) \
54 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule
[] = {
58 0x80, 0x88, 0x90, 0x98, 0xa0,
59 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
62 static const u32 ibridge_dram_rule
[] = {
63 0x60, 0x68, 0x70, 0x78, 0x80,
64 0x88, 0x90, 0x98, 0xa0, 0xa8,
65 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
69 static const u32 knl_dram_rule
[] = {
70 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 0x100, 0x108, 0x110, 0x118, /* 20-23 */
77 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
78 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
80 static char *show_dram_attr(u32 attr
)
94 static const u32 sbridge_interleave_list
[] = {
95 0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
99 static const u32 ibridge_interleave_list
[] = {
100 0x64, 0x6c, 0x74, 0x7c, 0x84,
101 0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
106 static const u32 knl_interleave_list
[] = {
107 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
113 #define MAX_INTERLEAVE \
114 (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list), \
115 max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
116 ARRAY_SIZE(knl_interleave_list))))
118 struct interleave_pkg
{
123 static const struct interleave_pkg sbridge_interleave_pkg
[] = {
134 static const struct interleave_pkg ibridge_interleave_pkg
[] = {
145 static inline int sad_pkg(const struct interleave_pkg
*table
, u32 reg
,
148 return GET_BITFIELD(reg
, table
[interleave
].start
,
149 table
[interleave
].end
);
152 /* Devices 12 Function 7 */
156 #define HASWELL_TOLM 0xd0
157 #define HASWELL_TOHM_0 0xd4
158 #define HASWELL_TOHM_1 0xd8
159 #define KNL_TOLM 0xd0
160 #define KNL_TOHM_0 0xd4
161 #define KNL_TOHM_1 0xd8
163 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
164 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
166 /* Device 13 Function 6 */
168 #define SAD_TARGET 0xf0
170 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
172 #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
174 #define SAD_CONTROL 0xf4
176 /* Device 14 function 0 */
178 static const u32 tad_dram_rule
[] = {
179 0x40, 0x44, 0x48, 0x4c,
180 0x50, 0x54, 0x58, 0x5c,
181 0x60, 0x64, 0x68, 0x6c,
183 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
185 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
186 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
187 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
188 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
189 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
190 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
191 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
193 /* Device 15, function 0 */
196 #define KNL_MCMTR 0x624
198 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
199 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
200 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
202 /* Device 15, function 1 */
204 #define RASENABLES 0xac
205 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
207 /* Device 15, functions 2-5 */
209 static const int mtr_regs
[] = {
213 static const int knl_mtr_reg
= 0xb60;
215 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
216 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
217 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
218 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
219 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
221 static const u32 tad_ch_nilv_offset
[] = {
222 0x90, 0x94, 0x98, 0x9c,
223 0xa0, 0xa4, 0xa8, 0xac,
224 0xb0, 0xb4, 0xb8, 0xbc,
226 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
227 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
229 static const u32 rir_way_limit
[] = {
230 0x108, 0x10c, 0x110, 0x114, 0x118,
232 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
234 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
235 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
237 #define MAX_RIR_WAY 8
239 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
240 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
241 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
242 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
243 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
244 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
247 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
248 GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
250 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
251 GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
253 /* Device 16, functions 2-7 */
256 * FIXME: Implement the error count reads directly
259 static const u32 correrrcnt
[] = {
260 0x104, 0x108, 0x10c, 0x110,
263 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
264 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
266 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
268 static const u32 correrrthrsld
[] = {
269 0x11c, 0x120, 0x124, 0x128,
272 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
276 /* Device 17, function 0 */
278 #define SB_RANK_CFG_A 0x0328
280 #define IB_RANK_CFG_A 0x0320
286 #define NUM_CHANNELS 6 /* Max channels per MC */
287 #define MAX_DIMMS 3 /* Max DIMMS per channel */
288 #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
289 #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
290 #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
291 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
307 enum mirroring_mode
{
309 ADDR_RANGE_MIRRORING
,
314 struct sbridge_info
{
318 u64 (*get_tolm
)(struct sbridge_pvt
*pvt
);
319 u64 (*get_tohm
)(struct sbridge_pvt
*pvt
);
320 u64 (*rir_limit
)(u32 reg
);
321 u64 (*sad_limit
)(u32 reg
);
322 u32 (*interleave_mode
)(u32 reg
);
323 u32 (*dram_attr
)(u32 reg
);
324 const u32
*dram_rule
;
325 const u32
*interleave_list
;
326 const struct interleave_pkg
*interleave_pkg
;
328 u8 (*get_node_id
)(struct sbridge_pvt
*pvt
);
329 enum mem_type (*get_memory_type
)(struct sbridge_pvt
*pvt
);
330 enum dev_type (*get_width
)(struct sbridge_pvt
*pvt
, u32 mtr
);
331 struct pci_dev
*pci_vtd
;
334 struct sbridge_channel
{
339 struct pci_id_descr
{
345 struct pci_id_table
{
346 const struct pci_id_descr
*descr
;
354 struct list_head list
;
357 u8 node_id
, source_id
;
358 struct pci_dev
**pdev
;
362 struct mem_ctl_info
*mci
;
366 struct pci_dev
*pci_cha
[KNL_MAX_CHAS
];
367 struct pci_dev
*pci_channel
[KNL_MAX_CHANNELS
];
368 struct pci_dev
*pci_mc0
;
369 struct pci_dev
*pci_mc1
;
370 struct pci_dev
*pci_mc0_misc
;
371 struct pci_dev
*pci_mc1_misc
;
372 struct pci_dev
*pci_mc_info
; /* tolm, tohm */
376 /* Devices per socket */
377 struct pci_dev
*pci_ddrio
;
378 struct pci_dev
*pci_sad0
, *pci_sad1
;
379 struct pci_dev
*pci_br0
, *pci_br1
;
380 /* Devices per memory controller */
381 struct pci_dev
*pci_ha
, *pci_ta
, *pci_ras
;
382 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
384 struct sbridge_dev
*sbridge_dev
;
386 struct sbridge_info info
;
387 struct sbridge_channel channel
[NUM_CHANNELS
];
389 /* Memory type detection */
390 bool is_cur_addr_mirrored
, is_lockstep
, is_close_pg
;
392 enum mirroring_mode mirror_mode
;
394 /* Memory description */
399 #define PCI_DESCR(device_id, opt, domain) \
400 .dev_id = (device_id), \
404 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
405 /* Processor Home Agent */
406 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
, 0, IMC0
) },
408 /* Memory controller */
409 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
, 0, IMC0
) },
410 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
, 0, IMC0
) },
411 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
, 0, IMC0
) },
412 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
, 0, IMC0
) },
413 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
, 0, IMC0
) },
414 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
, 0, IMC0
) },
415 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
, 1, SOCK
) },
417 /* System Address Decoder */
418 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
, 0, SOCK
) },
419 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
, 0, SOCK
) },
421 /* Broadcast Registers */
422 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR
, 0, SOCK
) },
425 #define PCI_ID_TABLE_ENTRY(A, N, M, T) { \
427 .n_devs_per_imc = N, \
428 .n_devs_per_sock = ARRAY_SIZE(A), \
429 .n_imcs_per_sock = M, \
433 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
434 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
, ARRAY_SIZE(pci_dev_descr_sbridge
), 1, SANDY_BRIDGE
),
435 {0,} /* 0 terminated list. */
438 /* This changes depending if 1HA or 2HA:
440 * 0x0eb8 (17.0) is DDRIO0
442 * 0x0ebc (17.4) is DDRIO0
444 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
448 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
466 static const struct pci_id_descr pci_dev_descr_ibridge
[] = {
467 /* Processor Home Agent */
468 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
, 0, IMC0
) },
469 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, 1, IMC1
) },
471 /* Memory controller */
472 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
, 0, IMC0
) },
473 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
, 0, IMC0
) },
474 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
, 0, IMC0
) },
475 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
, 0, IMC0
) },
476 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
, 0, IMC0
) },
477 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
, 0, IMC0
) },
479 /* Optional, mode 2HA */
480 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
, 1, IMC1
) },
481 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
, 1, IMC1
) },
482 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
, 1, IMC1
) },
483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
, 1, IMC1
) },
484 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
, 1, IMC1
) },
485 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
, 1, IMC1
) },
487 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
, 1, SOCK
) },
488 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
, 1, SOCK
) },
490 /* System Address Decoder */
491 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
, 0, SOCK
) },
493 /* Broadcast Registers */
494 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
, 1, SOCK
) },
495 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
, 0, SOCK
) },
499 static const struct pci_id_table pci_dev_descr_ibridge_table
[] = {
500 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge
, 12, 2, IVY_BRIDGE
),
501 {0,} /* 0 terminated list. */
504 /* Haswell support */
507 * - 3 DDR3 channels, 2 DPC per channel
510 * - 4 DDR4 channels, 3 DPC per channel
513 * - 4 DDR4 channels, 3 DPC per channel
516 * - each IMC interfaces with a SMI 2 channel
517 * - each SMI channel interfaces with a scalable memory buffer
518 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
520 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
521 #define HASWELL_HASYSDEFEATURE2 0x84
522 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
543 static const struct pci_id_descr pci_dev_descr_haswell
[] = {
544 /* first item must be the HA */
545 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
, 0, IMC0
) },
546 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
, 1, IMC1
) },
548 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
, 0, IMC0
) },
549 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM
, 0, IMC0
) },
550 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
, 0, IMC0
) },
551 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
, 0, IMC0
) },
552 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
, 1, IMC0
) },
553 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
, 1, IMC0
) },
555 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
, 1, IMC1
) },
556 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM
, 1, IMC1
) },
557 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
, 1, IMC1
) },
558 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
, 1, IMC1
) },
559 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
, 1, IMC1
) },
560 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
, 1, IMC1
) },
562 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
, 0, SOCK
) },
563 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
, 0, SOCK
) },
564 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
, 1, SOCK
) },
565 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
, 1, SOCK
) },
566 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
, 1, SOCK
) },
567 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
, 1, SOCK
) },
570 static const struct pci_id_table pci_dev_descr_haswell_table
[] = {
571 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell
, 13, 2, HASWELL
),
572 {0,} /* 0 terminated list. */
575 /* Knight's Landing Support */
577 * KNL's memory channels are swizzled between memory controllers.
578 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
580 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
582 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
583 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
584 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
585 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843
586 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
587 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
588 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
589 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
590 /* SAD target - 1-29-1 (1 of these) */
591 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
592 /* Caching / Home Agent */
593 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
594 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
595 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
598 * KNL differs from SB, IB, and Haswell in that it has multiple
599 * instances of the same device with the same device ID, so we handle that
600 * by creating as many copies in the table as we expect to find.
601 * (Like device ID must be grouped together.)
604 static const struct pci_id_descr pci_dev_descr_knl
[] = {
605 [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC
, 0, IMC0
)},
606 [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN
, 0, IMC0
) },
607 [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA
, 0, IMC0
) },
608 [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
, 0, IMC0
) },
609 [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
, 0, SOCK
) },
610 [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
, 0, SOCK
) },
611 [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
, 0, SOCK
) },
614 static const struct pci_id_table pci_dev_descr_knl_table
[] = {
615 PCI_ID_TABLE_ENTRY(pci_dev_descr_knl
, ARRAY_SIZE(pci_dev_descr_knl
), 1, KNIGHTS_LANDING
),
624 * - 2 DDR3 channels, 2 DPC per channel
627 * - 4 DDR4 channels, 3 DPC per channel
630 * - 4 DDR4 channels, 3 DPC per channel
633 * - each IMC interfaces with a SMI 2 channel
634 * - each SMI channel interfaces with a scalable memory buffer
635 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
637 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
656 static const struct pci_id_descr pci_dev_descr_broadwell
[] = {
657 /* first item must be the HA */
658 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
, 0, IMC0
) },
659 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
, 1, IMC1
) },
661 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
, 0, IMC0
) },
662 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM
, 0, IMC0
) },
663 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
, 0, IMC0
) },
664 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
, 0, IMC0
) },
665 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
, 1, IMC0
) },
666 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
, 1, IMC0
) },
668 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
, 1, IMC1
) },
669 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM
, 1, IMC1
) },
670 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
, 1, IMC1
) },
671 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
, 1, IMC1
) },
672 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
, 1, IMC1
) },
673 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
, 1, IMC1
) },
675 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
, 0, SOCK
) },
676 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
, 0, SOCK
) },
677 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
, 1, SOCK
) },
680 static const struct pci_id_table pci_dev_descr_broadwell_table
[] = {
681 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell
, 10, 2, BROADWELL
),
682 {0,} /* 0 terminated list. */
686 /****************************************************************************
687 Ancillary status routines
688 ****************************************************************************/
690 static inline int numrank(enum type type
, u32 mtr
)
692 int ranks
= (1 << RANK_CNT_BITS(mtr
));
695 if (type
== HASWELL
|| type
== BROADWELL
|| type
== KNIGHTS_LANDING
)
699 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
700 ranks
, max
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
707 static inline int numrow(u32 mtr
)
709 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
711 if (rows
< 13 || rows
> 18) {
712 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
713 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
720 static inline int numcol(u32 mtr
)
722 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
725 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
726 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
733 static struct sbridge_dev
*get_sbridge_dev(int seg
, u8 bus
, enum domain dom
,
735 struct sbridge_dev
*prev
)
737 struct sbridge_dev
*sbridge_dev
;
740 * If we have devices scattered across several busses that pertain
741 * to the same memory controller, we'll lump them all together.
744 return list_first_entry_or_null(&sbridge_edac_list
,
745 struct sbridge_dev
, list
);
748 sbridge_dev
= list_entry(prev
? prev
->list
.next
749 : sbridge_edac_list
.next
, struct sbridge_dev
, list
);
751 list_for_each_entry_from(sbridge_dev
, &sbridge_edac_list
, list
) {
752 if ((sbridge_dev
->seg
== seg
) && (sbridge_dev
->bus
== bus
) &&
753 (dom
== SOCK
|| dom
== sbridge_dev
->dom
))
760 static struct sbridge_dev
*alloc_sbridge_dev(int seg
, u8 bus
, enum domain dom
,
761 const struct pci_id_table
*table
)
763 struct sbridge_dev
*sbridge_dev
;
765 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
769 sbridge_dev
->pdev
= kcalloc(table
->n_devs_per_imc
,
770 sizeof(*sbridge_dev
->pdev
),
772 if (!sbridge_dev
->pdev
) {
777 sbridge_dev
->seg
= seg
;
778 sbridge_dev
->bus
= bus
;
779 sbridge_dev
->dom
= dom
;
780 sbridge_dev
->n_devs
= table
->n_devs_per_imc
;
781 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
786 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
788 list_del(&sbridge_dev
->list
);
789 kfree(sbridge_dev
->pdev
);
793 static u64
sbridge_get_tolm(struct sbridge_pvt
*pvt
)
797 /* Address range is 32:28 */
798 pci_read_config_dword(pvt
->pci_sad1
, TOLM
, ®
);
799 return GET_TOLM(reg
);
802 static u64
sbridge_get_tohm(struct sbridge_pvt
*pvt
)
806 pci_read_config_dword(pvt
->pci_sad1
, TOHM
, ®
);
807 return GET_TOHM(reg
);
810 static u64
ibridge_get_tolm(struct sbridge_pvt
*pvt
)
814 pci_read_config_dword(pvt
->pci_br1
, TOLM
, ®
);
816 return GET_TOLM(reg
);
819 static u64
ibridge_get_tohm(struct sbridge_pvt
*pvt
)
823 pci_read_config_dword(pvt
->pci_br1
, TOHM
, ®
);
825 return GET_TOHM(reg
);
828 static u64
rir_limit(u32 reg
)
830 return ((u64
)GET_BITFIELD(reg
, 1, 10) << 29) | 0x1fffffff;
833 static u64
sad_limit(u32 reg
)
835 return (GET_BITFIELD(reg
, 6, 25) << 26) | 0x3ffffff;
838 static u32
interleave_mode(u32 reg
)
840 return GET_BITFIELD(reg
, 1, 1);
843 static u32
dram_attr(u32 reg
)
845 return GET_BITFIELD(reg
, 2, 3);
848 static u64
knl_sad_limit(u32 reg
)
850 return (GET_BITFIELD(reg
, 7, 26) << 26) | 0x3ffffff;
853 static u32
knl_interleave_mode(u32 reg
)
855 return GET_BITFIELD(reg
, 1, 2);
858 static const char * const knl_intlv_mode
[] = {
859 "[8:6]", "[10:8]", "[14:12]", "[32:30]"
862 static const char *get_intlv_mode_str(u32 reg
, enum type t
)
864 if (t
== KNIGHTS_LANDING
)
865 return knl_intlv_mode
[knl_interleave_mode(reg
)];
867 return interleave_mode(reg
) ? "[8:6]" : "[8:6]XOR[18:16]";
870 static u32
dram_attr_knl(u32 reg
)
872 return GET_BITFIELD(reg
, 3, 4);
876 static enum mem_type
get_memory_type(struct sbridge_pvt
*pvt
)
881 if (pvt
->pci_ddrio
) {
882 pci_read_config_dword(pvt
->pci_ddrio
, pvt
->info
.rankcfgr
,
884 if (GET_BITFIELD(reg
, 11, 11))
885 /* FIXME: Can also be LRDIMM */
895 static enum mem_type
haswell_get_memory_type(struct sbridge_pvt
*pvt
)
898 bool registered
= false;
899 enum mem_type mtype
= MEM_UNKNOWN
;
904 pci_read_config_dword(pvt
->pci_ddrio
,
905 HASWELL_DDRCRCLKCONTROLS
, ®
);
907 if (GET_BITFIELD(reg
, 16, 16))
910 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, ®
);
911 if (GET_BITFIELD(reg
, 14, 14)) {
927 static enum dev_type
knl_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
929 /* for KNL value is fixed */
933 static enum dev_type
sbridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
935 /* there's no way to figure out */
939 static enum dev_type
__ibridge_get_width(u32 mtr
)
961 static enum dev_type
ibridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
964 * ddr3_width on the documentation but also valid for DDR4 on
967 return __ibridge_get_width(GET_BITFIELD(mtr
, 7, 8));
970 static enum dev_type
broadwell_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
972 /* ddr3_width on the documentation but also valid for DDR4 */
973 return __ibridge_get_width(GET_BITFIELD(mtr
, 8, 9));
976 static enum mem_type
knl_get_memory_type(struct sbridge_pvt
*pvt
)
978 /* DDR4 RDIMMS and LRDIMMS are supported */
982 static u8
get_node_id(struct sbridge_pvt
*pvt
)
985 pci_read_config_dword(pvt
->pci_br0
, SAD_CONTROL
, ®
);
986 return GET_BITFIELD(reg
, 0, 2);
989 static u8
haswell_get_node_id(struct sbridge_pvt
*pvt
)
993 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
994 return GET_BITFIELD(reg
, 0, 3);
997 static u8
knl_get_node_id(struct sbridge_pvt
*pvt
)
1001 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
1002 return GET_BITFIELD(reg
, 0, 2);
1006 static u64
haswell_get_tolm(struct sbridge_pvt
*pvt
)
1010 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOLM
, ®
);
1011 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1014 static u64
haswell_get_tohm(struct sbridge_pvt
*pvt
)
1019 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_0
, ®
);
1020 rc
= GET_BITFIELD(reg
, 26, 31);
1021 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_1
, ®
);
1022 rc
= ((reg
<< 6) | rc
) << 26;
1024 return rc
| 0x1ffffff;
1027 static u64
knl_get_tolm(struct sbridge_pvt
*pvt
)
1031 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOLM
, ®
);
1032 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1035 static u64
knl_get_tohm(struct sbridge_pvt
*pvt
)
1040 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_0
, ®_lo
);
1041 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_1
, ®_hi
);
1042 rc
= ((u64
)reg_hi
<< 32) | reg_lo
;
1043 return rc
| 0x3ffffff;
1047 static u64
haswell_rir_limit(u32 reg
)
1049 return (((u64
)GET_BITFIELD(reg
, 1, 11) + 1) << 29) - 1;
1052 static inline u8
sad_pkg_socket(u8 pkg
)
1054 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1055 return ((pkg
>> 3) << 2) | (pkg
& 0x3);
1058 static inline u8
sad_pkg_ha(u8 pkg
)
1060 return (pkg
>> 2) & 0x1;
1063 static int haswell_chan_hash(int idx
, u64 addr
)
1068 * XOR even bits from 12:26 to bit0 of idx,
1069 * odd bits from 13:27 to bit1
1071 for (i
= 12; i
< 28; i
+= 2)
1072 idx
^= (addr
>> i
) & 3;
1077 /* Low bits of TAD limit, and some metadata. */
1078 static const u32 knl_tad_dram_limit_lo
[] = {
1079 0x400, 0x500, 0x600, 0x700,
1080 0x800, 0x900, 0xa00, 0xb00,
1083 /* Low bits of TAD offset. */
1084 static const u32 knl_tad_dram_offset_lo
[] = {
1085 0x404, 0x504, 0x604, 0x704,
1086 0x804, 0x904, 0xa04, 0xb04,
1089 /* High 16 bits of TAD limit and offset. */
1090 static const u32 knl_tad_dram_hi
[] = {
1091 0x408, 0x508, 0x608, 0x708,
1092 0x808, 0x908, 0xa08, 0xb08,
1095 /* Number of ways a tad entry is interleaved. */
1096 static const u32 knl_tad_ways
[] = {
1101 * Retrieve the n'th Target Address Decode table entry
1102 * from the memory controller's TAD table.
1104 * @pvt: driver private data
1105 * @entry: which entry you want to retrieve
1106 * @mc: which memory controller (0 or 1)
1107 * @offset: output tad range offset
1108 * @limit: output address of first byte above tad range
1109 * @ways: output number of interleave ways
1111 * The offset value has curious semantics. It's a sort of running total
1112 * of the sizes of all the memory regions that aren't mapped in this
1115 static int knl_get_tad(const struct sbridge_pvt
*pvt
,
1122 u32 reg_limit_lo
, reg_offset_lo
, reg_hi
;
1123 struct pci_dev
*pci_mc
;
1128 pci_mc
= pvt
->knl
.pci_mc0
;
1131 pci_mc
= pvt
->knl
.pci_mc1
;
1138 pci_read_config_dword(pci_mc
,
1139 knl_tad_dram_limit_lo
[entry
], ®_limit_lo
);
1140 pci_read_config_dword(pci_mc
,
1141 knl_tad_dram_offset_lo
[entry
], ®_offset_lo
);
1142 pci_read_config_dword(pci_mc
,
1143 knl_tad_dram_hi
[entry
], ®_hi
);
1145 /* Is this TAD entry enabled? */
1146 if (!GET_BITFIELD(reg_limit_lo
, 0, 0))
1149 way_id
= GET_BITFIELD(reg_limit_lo
, 3, 5);
1151 if (way_id
< ARRAY_SIZE(knl_tad_ways
)) {
1152 *ways
= knl_tad_ways
[way_id
];
1155 sbridge_printk(KERN_ERR
,
1156 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1162 * The least significant 6 bits of base and limit are truncated.
1163 * For limit, we fill the missing bits with 1s.
1165 *offset
= ((u64
) GET_BITFIELD(reg_offset_lo
, 6, 31) << 6) |
1166 ((u64
) GET_BITFIELD(reg_hi
, 0, 15) << 32);
1167 *limit
= ((u64
) GET_BITFIELD(reg_limit_lo
, 6, 31) << 6) | 63 |
1168 ((u64
) GET_BITFIELD(reg_hi
, 16, 31) << 32);
1173 /* Determine which memory controller is responsible for a given channel. */
1174 static int knl_channel_mc(int channel
)
1176 WARN_ON(channel
< 0 || channel
>= 6);
1178 return channel
< 3 ? 1 : 0;
1182 * Get the Nth entry from EDC_ROUTE_TABLE register.
1183 * (This is the per-tile mapping of logical interleave targets to
1184 * physical EDC modules.)
1196 static u32
knl_get_edc_route(int entry
, u32 reg
)
1198 WARN_ON(entry
>= KNL_MAX_EDCS
);
1199 return GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1203 * Get the Nth entry from MC_ROUTE_TABLE register.
1204 * (This is the per-tile mapping of logical interleave targets to
1205 * physical DRAM channels modules.)
1207 * entry 0: mc 0:2 channel 18:19
1208 * 1: mc 3:5 channel 20:21
1209 * 2: mc 6:8 channel 22:23
1210 * 3: mc 9:11 channel 24:25
1211 * 4: mc 12:14 channel 26:27
1212 * 5: mc 15:17 channel 28:29
1215 * Though we have 3 bits to identify the MC, we should only see
1216 * the values 0 or 1.
1219 static u32
knl_get_mc_route(int entry
, u32 reg
)
1223 WARN_ON(entry
>= KNL_MAX_CHANNELS
);
1225 mc
= GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1226 chan
= GET_BITFIELD(reg
, (entry
*2) + 18, (entry
*2) + 18 + 1);
1228 return knl_channel_remap(mc
, chan
);
1232 * Render the EDC_ROUTE register in human-readable form.
1233 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1235 static void knl_show_edc_route(u32 reg
, char *s
)
1239 for (i
= 0; i
< KNL_MAX_EDCS
; i
++) {
1240 s
[i
*2] = knl_get_edc_route(i
, reg
) + '0';
1244 s
[KNL_MAX_EDCS
*2 - 1] = '\0';
1248 * Render the MC_ROUTE register in human-readable form.
1249 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1251 static void knl_show_mc_route(u32 reg
, char *s
)
1255 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
1256 s
[i
*2] = knl_get_mc_route(i
, reg
) + '0';
1260 s
[KNL_MAX_CHANNELS
*2 - 1] = '\0';
1263 #define KNL_EDC_ROUTE 0xb8
1264 #define KNL_MC_ROUTE 0xb4
1266 /* Is this dram rule backed by regular DRAM in flat mode? */
1267 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1269 /* Is this dram rule cached? */
1270 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1272 /* Is this rule backed by edc ? */
1273 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1275 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1276 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1278 /* Is this rule mod3? */
1279 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1282 * Figure out how big our RAM modules are.
1284 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1285 * have to figure this out from the SAD rules, interleave lists, route tables,
1288 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1289 * inspect the TAD rules to figure out how large the SAD regions really are.
1291 * When we know the real size of a SAD region and how many ways it's
1292 * interleaved, we know the individual contribution of each channel to
1295 * Finally, we have to check whether each channel participates in each SAD
1298 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1299 * much memory the channel uses, we know the DIMM is at least that large.
1300 * (The BIOS might possibly choose not to map all available memory, in which
1301 * case we will underreport the size of the DIMM.)
1303 * In theory, we could try to determine the EDC sizes as well, but that would
1304 * only work in flat mode, not in cache mode.
1306 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1309 static int knl_get_dimm_capacity(struct sbridge_pvt
*pvt
, u64
*mc_sizes
)
1311 u64 sad_base
, sad_size
, sad_limit
= 0;
1312 u64 tad_base
, tad_size
, tad_limit
, tad_deadspace
, tad_livespace
;
1315 int intrlv_ways
, tad_ways
;
1318 u64 sad_actual_size
[2]; /* sad size accounting for holes, per mc */
1319 u32 dram_rule
, interleave_reg
;
1320 u32 mc_route_reg
[KNL_MAX_CHAS
];
1321 u32 edc_route_reg
[KNL_MAX_CHAS
];
1323 char edc_route_string
[KNL_MAX_EDCS
*2];
1324 char mc_route_string
[KNL_MAX_CHANNELS
*2];
1328 int participants
[KNL_MAX_CHANNELS
];
1330 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++)
1333 /* Read the EDC route table in each CHA. */
1335 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1336 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1337 KNL_EDC_ROUTE
, &edc_route_reg
[i
]);
1339 if (i
> 0 && edc_route_reg
[i
] != edc_route_reg
[i
-1]) {
1340 knl_show_edc_route(edc_route_reg
[i
-1],
1342 if (cur_reg_start
== i
-1)
1343 edac_dbg(0, "edc route table for CHA %d: %s\n",
1344 cur_reg_start
, edc_route_string
);
1346 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1347 cur_reg_start
, i
-1, edc_route_string
);
1351 knl_show_edc_route(edc_route_reg
[i
-1], edc_route_string
);
1352 if (cur_reg_start
== i
-1)
1353 edac_dbg(0, "edc route table for CHA %d: %s\n",
1354 cur_reg_start
, edc_route_string
);
1356 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1357 cur_reg_start
, i
-1, edc_route_string
);
1359 /* Read the MC route table in each CHA. */
1361 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1362 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1363 KNL_MC_ROUTE
, &mc_route_reg
[i
]);
1365 if (i
> 0 && mc_route_reg
[i
] != mc_route_reg
[i
-1]) {
1366 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1367 if (cur_reg_start
== i
-1)
1368 edac_dbg(0, "mc route table for CHA %d: %s\n",
1369 cur_reg_start
, mc_route_string
);
1371 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1372 cur_reg_start
, i
-1, mc_route_string
);
1376 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1377 if (cur_reg_start
== i
-1)
1378 edac_dbg(0, "mc route table for CHA %d: %s\n",
1379 cur_reg_start
, mc_route_string
);
1381 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1382 cur_reg_start
, i
-1, mc_route_string
);
1384 /* Process DRAM rules */
1385 for (sad_rule
= 0; sad_rule
< pvt
->info
.max_sad
; sad_rule
++) {
1386 /* previous limit becomes the new base */
1387 sad_base
= sad_limit
;
1389 pci_read_config_dword(pvt
->pci_sad0
,
1390 pvt
->info
.dram_rule
[sad_rule
], &dram_rule
);
1392 if (!DRAM_RULE_ENABLE(dram_rule
))
1395 edram_only
= KNL_EDRAM_ONLY(dram_rule
);
1397 sad_limit
= pvt
->info
.sad_limit(dram_rule
)+1;
1398 sad_size
= sad_limit
- sad_base
;
1400 pci_read_config_dword(pvt
->pci_sad0
,
1401 pvt
->info
.interleave_list
[sad_rule
], &interleave_reg
);
1404 * Find out how many ways this dram rule is interleaved.
1405 * We stop when we see the first channel again.
1407 first_pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1409 for (intrlv_ways
= 1; intrlv_ways
< 8; intrlv_ways
++) {
1410 pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1411 interleave_reg
, intrlv_ways
);
1413 if ((pkg
& 0x8) == 0) {
1415 * 0 bit means memory is non-local,
1416 * which KNL doesn't support
1418 edac_dbg(0, "Unexpected interleave target %d\n",
1423 if (pkg
== first_pkg
)
1426 if (KNL_MOD3(dram_rule
))
1429 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1434 edram_only
? ", EDRAM" : "");
1437 * Find out how big the SAD region really is by iterating
1438 * over TAD tables (SAD regions may contain holes).
1439 * Each memory controller might have a different TAD table, so
1440 * we have to look at both.
1442 * Livespace is the memory that's mapped in this TAD table,
1443 * deadspace is the holes (this could be the MMIO hole, or it
1444 * could be memory that's mapped by the other TAD table but
1447 for (mc
= 0; mc
< 2; mc
++) {
1448 sad_actual_size
[mc
] = 0;
1451 tad_rule
< ARRAY_SIZE(
1452 knl_tad_dram_limit_lo
);
1454 if (knl_get_tad(pvt
,
1462 tad_size
= (tad_limit
+1) -
1463 (tad_livespace
+ tad_deadspace
);
1464 tad_livespace
+= tad_size
;
1465 tad_base
= (tad_limit
+1) - tad_size
;
1467 if (tad_base
< sad_base
) {
1468 if (tad_limit
> sad_base
)
1469 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1470 } else if (tad_base
< sad_limit
) {
1471 if (tad_limit
+1 > sad_limit
) {
1472 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1474 /* TAD region is completely inside SAD region */
1475 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1477 tad_limit
, tad_size
,
1479 sad_actual_size
[mc
] += tad_size
;
1482 tad_base
= tad_limit
+1;
1486 for (mc
= 0; mc
< 2; mc
++) {
1487 edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1488 mc
, sad_actual_size
[mc
], sad_actual_size
[mc
]);
1491 /* Ignore EDRAM rule */
1495 /* Figure out which channels participate in interleave. */
1496 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++)
1497 participants
[channel
] = 0;
1499 /* For each channel, does at least one CHA have
1500 * this channel mapped to the given target?
1502 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1506 for (target
= 0; target
< KNL_MAX_CHANNELS
; target
++) {
1507 for (cha
= 0; cha
< KNL_MAX_CHAS
; cha
++) {
1508 if (knl_get_mc_route(target
,
1509 mc_route_reg
[cha
]) == channel
1510 && !participants
[channel
]) {
1511 participants
[channel
] = 1;
1518 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1519 mc
= knl_channel_mc(channel
);
1520 if (participants
[channel
]) {
1521 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1523 sad_actual_size
[mc
]/intrlv_ways
,
1525 mc_sizes
[channel
] +=
1526 sad_actual_size
[mc
]/intrlv_ways
;
1534 static void get_source_id(struct mem_ctl_info
*mci
)
1536 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1539 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
||
1540 pvt
->info
.type
== KNIGHTS_LANDING
)
1541 pci_read_config_dword(pvt
->pci_sad1
, SAD_TARGET
, ®
);
1543 pci_read_config_dword(pvt
->pci_br0
, SAD_TARGET
, ®
);
1545 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1546 pvt
->sbridge_dev
->source_id
= SOURCE_ID_KNL(reg
);
1548 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
1551 static int __populate_dimms(struct mem_ctl_info
*mci
,
1552 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
],
1553 enum edac_type mode
)
1555 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1556 int channels
= pvt
->info
.type
== KNIGHTS_LANDING
? KNL_MAX_CHANNELS
1558 unsigned int i
, j
, banks
, ranks
, rows
, cols
, npages
;
1559 struct dimm_info
*dimm
;
1560 enum mem_type mtype
;
1563 mtype
= pvt
->info
.get_memory_type(pvt
);
1564 if (mtype
== MEM_RDDR3
|| mtype
== MEM_RDDR4
)
1565 edac_dbg(0, "Memory is registered\n");
1566 else if (mtype
== MEM_UNKNOWN
)
1567 edac_dbg(0, "Cannot determine memory type\n");
1569 edac_dbg(0, "Memory is unregistered\n");
1571 if (mtype
== MEM_DDR4
|| mtype
== MEM_RDDR4
)
1576 for (i
= 0; i
< channels
; i
++) {
1579 int max_dimms_per_channel
;
1581 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1582 max_dimms_per_channel
= 1;
1583 if (!pvt
->knl
.pci_channel
[i
])
1586 max_dimms_per_channel
= ARRAY_SIZE(mtr_regs
);
1587 if (!pvt
->pci_tad
[i
])
1591 for (j
= 0; j
< max_dimms_per_channel
; j
++) {
1592 dimm
= EDAC_DIMM_PTR(mci
->layers
, mci
->dimms
, mci
->n_layers
, i
, j
, 0);
1593 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1594 pci_read_config_dword(pvt
->knl
.pci_channel
[i
],
1597 pci_read_config_dword(pvt
->pci_tad
[i
],
1600 edac_dbg(4, "Channel #%d MTR%d = %x\n", i
, j
, mtr
);
1601 if (IS_DIMM_PRESENT(mtr
)) {
1602 if (!IS_ECC_ENABLED(pvt
->info
.mcmtr
)) {
1603 sbridge_printk(KERN_ERR
, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1604 pvt
->sbridge_dev
->source_id
,
1605 pvt
->sbridge_dev
->dom
, i
);
1608 pvt
->channel
[i
].dimms
++;
1610 ranks
= numrank(pvt
->info
.type
, mtr
);
1612 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1613 /* For DDR4, this is fixed. */
1615 rows
= knl_mc_sizes
[i
] /
1616 ((u64
) cols
* ranks
* banks
* 8);
1622 size
= ((u64
)rows
* cols
* banks
* ranks
) >> (20 - 3);
1623 npages
= MiB_TO_PAGES(size
);
1625 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1626 pvt
->sbridge_dev
->mc
, pvt
->sbridge_dev
->dom
, i
, j
,
1628 banks
, ranks
, rows
, cols
);
1630 dimm
->nr_pages
= npages
;
1632 dimm
->dtype
= pvt
->info
.get_width(pvt
, mtr
);
1633 dimm
->mtype
= mtype
;
1634 dimm
->edac_mode
= mode
;
1635 snprintf(dimm
->label
, sizeof(dimm
->label
),
1636 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1637 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
, i
, j
);
1645 static int get_dimm_config(struct mem_ctl_info
*mci
)
1647 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1648 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
];
1649 enum edac_type mode
;
1652 pvt
->sbridge_dev
->node_id
= pvt
->info
.get_node_id(pvt
);
1653 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1654 pvt
->sbridge_dev
->mc
,
1655 pvt
->sbridge_dev
->node_id
,
1656 pvt
->sbridge_dev
->source_id
);
1658 /* KNL doesn't support mirroring or lockstep,
1659 * and is always closed page
1661 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1662 mode
= EDAC_S4ECD4ED
;
1663 pvt
->mirror_mode
= NON_MIRRORING
;
1664 pvt
->is_cur_addr_mirrored
= false;
1666 if (knl_get_dimm_capacity(pvt
, knl_mc_sizes
) != 0)
1668 if (pci_read_config_dword(pvt
->pci_ta
, KNL_MCMTR
, &pvt
->info
.mcmtr
)) {
1669 edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1673 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
1674 if (pci_read_config_dword(pvt
->pci_ha
, HASWELL_HASYSDEFEATURE2
, ®
)) {
1675 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1678 pvt
->is_chan_hash
= GET_BITFIELD(reg
, 21, 21);
1679 if (GET_BITFIELD(reg
, 28, 28)) {
1680 pvt
->mirror_mode
= ADDR_RANGE_MIRRORING
;
1681 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1685 if (pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
)) {
1686 edac_dbg(0, "Failed to read RASENABLES register\n");
1689 if (IS_MIRROR_ENABLED(reg
)) {
1690 pvt
->mirror_mode
= FULL_MIRRORING
;
1691 edac_dbg(0, "Full memory mirroring is enabled\n");
1693 pvt
->mirror_mode
= NON_MIRRORING
;
1694 edac_dbg(0, "Memory mirroring is disabled\n");
1698 if (pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
)) {
1699 edac_dbg(0, "Failed to read MCMTR register\n");
1702 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
1703 edac_dbg(0, "Lockstep is enabled\n");
1704 mode
= EDAC_S8ECD8ED
;
1705 pvt
->is_lockstep
= true;
1707 edac_dbg(0, "Lockstep is disabled\n");
1708 mode
= EDAC_S4ECD4ED
;
1709 pvt
->is_lockstep
= false;
1711 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
1712 edac_dbg(0, "address map is on closed page mode\n");
1713 pvt
->is_close_pg
= true;
1715 edac_dbg(0, "address map is on open page mode\n");
1716 pvt
->is_close_pg
= false;
1720 return __populate_dimms(mci
, knl_mc_sizes
, mode
);
1723 static void get_memory_layout(const struct mem_ctl_info
*mci
)
1725 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1726 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
1734 * Step 1) Get TOLM/TOHM ranges
1737 pvt
->tolm
= pvt
->info
.get_tolm(pvt
);
1738 tmp_mb
= (1 + pvt
->tolm
) >> 20;
1740 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1741 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1742 gb
, (mb
*1000)/1024, (u64
)pvt
->tolm
);
1744 /* Address range is already 45:25 */
1745 pvt
->tohm
= pvt
->info
.get_tohm(pvt
);
1746 tmp_mb
= (1 + pvt
->tohm
) >> 20;
1748 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1749 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1750 gb
, (mb
*1000)/1024, (u64
)pvt
->tohm
);
1753 * Step 2) Get SAD range and SAD Interleave list
1754 * TAD registers contain the interleave wayness. However, it
1755 * seems simpler to just discover it indirectly, with the
1759 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1760 /* SAD_LIMIT Address range is 45:26 */
1761 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1763 limit
= pvt
->info
.sad_limit(reg
);
1765 if (!DRAM_RULE_ENABLE(reg
))
1771 tmp_mb
= (limit
+ 1) >> 20;
1772 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1773 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1775 show_dram_attr(pvt
->info
.dram_attr(reg
)),
1777 ((u64
)tmp_mb
) << 20L,
1778 get_intlv_mode_str(reg
, pvt
->info
.type
),
1782 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1784 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1785 for (j
= 0; j
< 8; j
++) {
1786 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, j
);
1787 if (j
> 0 && sad_interl
== pkg
)
1790 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1795 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1799 * Step 3) Get TAD range
1802 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1803 pci_read_config_dword(pvt
->pci_ha
, tad_dram_rule
[n_tads
], ®
);
1804 limit
= TAD_LIMIT(reg
);
1807 tmp_mb
= (limit
+ 1) >> 20;
1809 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1810 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1811 n_tads
, gb
, (mb
*1000)/1024,
1812 ((u64
)tmp_mb
) << 20L,
1813 (u32
)(1 << TAD_SOCK(reg
)),
1814 (u32
)TAD_CH(reg
) + 1,
1824 * Step 4) Get TAD offsets, per each channel
1826 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1827 if (!pvt
->channel
[i
].dimms
)
1829 for (j
= 0; j
< n_tads
; j
++) {
1830 pci_read_config_dword(pvt
->pci_tad
[i
],
1831 tad_ch_nilv_offset
[j
],
1833 tmp_mb
= TAD_OFFSET(reg
) >> 20;
1834 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1835 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1838 ((u64
)tmp_mb
) << 20L,
1844 * Step 6) Get RIR Wayness/Limit, per each channel
1846 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1847 if (!pvt
->channel
[i
].dimms
)
1849 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
1850 pci_read_config_dword(pvt
->pci_tad
[i
],
1854 if (!IS_RIR_VALID(reg
))
1857 tmp_mb
= pvt
->info
.rir_limit(reg
) >> 20;
1858 rir_way
= 1 << RIR_WAY(reg
);
1859 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1860 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1863 ((u64
)tmp_mb
) << 20L,
1867 for (k
= 0; k
< rir_way
; k
++) {
1868 pci_read_config_dword(pvt
->pci_tad
[i
],
1871 tmp_mb
= RIR_OFFSET(pvt
->info
.type
, reg
) << 6;
1873 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1874 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1877 ((u64
)tmp_mb
) << 20L,
1878 (u32
)RIR_RNK_TGT(pvt
->info
.type
, reg
),
1885 static struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
, u8 ha
)
1887 struct sbridge_dev
*sbridge_dev
;
1889 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
1890 if (sbridge_dev
->node_id
== node_id
&& sbridge_dev
->dom
== ha
)
1891 return sbridge_dev
->mci
;
1896 static int get_memory_error_data(struct mem_ctl_info
*mci
,
1901 char **area_type
, char *msg
)
1903 struct mem_ctl_info
*new_mci
;
1904 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1905 struct pci_dev
*pci_ha
;
1906 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
1907 int sad_interl
, idx
, base_ch
;
1908 int interleave_mode
, shiftup
= 0;
1909 unsigned int sad_interleave
[MAX_INTERLEAVE
];
1911 u8 ch_way
, sck_way
, pkg
, sad_ha
= 0;
1915 u64 ch_addr
, offset
, limit
= 0, prv
= 0;
1919 * Step 0) Check if the address is at special memory ranges
1920 * The check bellow is probably enough to fill all cases where
1921 * the error is not inside a memory, except for the legacy
1922 * range (e. g. VGA addresses). It is unlikely, however, that the
1923 * memory controller would generate an error on that range.
1925 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1LL << 32))) {
1926 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
1929 if (addr
>= (u64
)pvt
->tohm
) {
1930 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
1935 * Step 1) Get socket
1937 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1938 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1941 if (!DRAM_RULE_ENABLE(reg
))
1944 limit
= pvt
->info
.sad_limit(reg
);
1946 sprintf(msg
, "Can't discover the memory socket");
1953 if (n_sads
== pvt
->info
.max_sad
) {
1954 sprintf(msg
, "Can't discover the memory socket");
1958 *area_type
= show_dram_attr(pvt
->info
.dram_attr(dram_rule
));
1959 interleave_mode
= pvt
->info
.interleave_mode(dram_rule
);
1961 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1964 if (pvt
->info
.type
== SANDY_BRIDGE
) {
1965 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1966 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
1967 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, sad_way
);
1968 if (sad_way
> 0 && sad_interl
== pkg
)
1970 sad_interleave
[sad_way
] = pkg
;
1971 edac_dbg(0, "SAD interleave #%d: %d\n",
1972 sad_way
, sad_interleave
[sad_way
]);
1974 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1975 pvt
->sbridge_dev
->mc
,
1980 !interleave_mode
? "" : "XOR[18:16]");
1981 if (interleave_mode
)
1982 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
1984 idx
= (addr
>> 6) & 7;
1998 sprintf(msg
, "Can't discover socket interleave");
2001 *socket
= sad_interleave
[idx
];
2002 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2003 idx
, sad_way
, *socket
);
2004 } else if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
2005 int bits
, a7mode
= A7MODE(dram_rule
);
2008 /* A7 mode swaps P9 with P6 */
2009 bits
= GET_BITFIELD(addr
, 7, 8) << 1;
2010 bits
|= GET_BITFIELD(addr
, 9, 9);
2012 bits
= GET_BITFIELD(addr
, 6, 8);
2014 if (interleave_mode
== 0) {
2015 /* interleave mode will XOR {8,7,6} with {18,17,16} */
2016 idx
= GET_BITFIELD(addr
, 16, 18);
2021 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2022 *socket
= sad_pkg_socket(pkg
);
2023 sad_ha
= sad_pkg_ha(pkg
);
2026 /* MCChanShiftUpEnable */
2027 pci_read_config_dword(pvt
->pci_ha
, HASWELL_HASYSDEFEATURE2
, ®
);
2028 shiftup
= GET_BITFIELD(reg
, 22, 22);
2031 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2032 idx
, *socket
, sad_ha
, shiftup
);
2034 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2035 idx
= (addr
>> 6) & 7;
2036 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2037 *socket
= sad_pkg_socket(pkg
);
2038 sad_ha
= sad_pkg_ha(pkg
);
2039 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2040 idx
, *socket
, sad_ha
);
2046 * Move to the proper node structure, in order to access the
2047 * right PCI registers
2049 new_mci
= get_mci_for_node_id(*socket
, sad_ha
);
2051 sprintf(msg
, "Struct for socket #%u wasn't initialized",
2056 pvt
= mci
->pvt_info
;
2059 * Step 2) Get memory channel
2062 pci_ha
= pvt
->pci_ha
;
2063 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
2064 pci_read_config_dword(pci_ha
, tad_dram_rule
[n_tads
], ®
);
2065 limit
= TAD_LIMIT(reg
);
2067 sprintf(msg
, "Can't discover the memory channel");
2074 if (n_tads
== MAX_TAD
) {
2075 sprintf(msg
, "Can't discover the memory channel");
2079 ch_way
= TAD_CH(reg
) + 1;
2080 sck_way
= TAD_SOCK(reg
);
2085 idx
= (addr
>> (6 + sck_way
+ shiftup
)) & 0x3;
2086 if (pvt
->is_chan_hash
)
2087 idx
= haswell_chan_hash(idx
, addr
);
2092 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2096 base_ch
= TAD_TGT0(reg
);
2099 base_ch
= TAD_TGT1(reg
);
2102 base_ch
= TAD_TGT2(reg
);
2105 base_ch
= TAD_TGT3(reg
);
2108 sprintf(msg
, "Can't discover the TAD target");
2111 *channel_mask
= 1 << base_ch
;
2113 pci_read_config_dword(pvt
->pci_tad
[base_ch
], tad_ch_nilv_offset
[n_tads
], &tad_offset
);
2115 if (pvt
->mirror_mode
== FULL_MIRRORING
||
2116 (pvt
->mirror_mode
== ADDR_RANGE_MIRRORING
&& n_tads
== 0)) {
2117 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
2121 sck_xch
= (1 << sck_way
) * (ch_way
>> 1);
2124 sprintf(msg
, "Invalid mirror set. Can't decode addr");
2128 pvt
->is_cur_addr_mirrored
= true;
2130 sck_xch
= (1 << sck_way
) * ch_way
;
2131 pvt
->is_cur_addr_mirrored
= false;
2134 if (pvt
->is_lockstep
)
2135 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
2137 offset
= TAD_OFFSET(tad_offset
);
2139 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2150 /* Calculate channel address */
2151 /* Remove the TAD offset */
2153 if (offset
> addr
) {
2154 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2159 ch_addr
= addr
- offset
;
2160 ch_addr
>>= (6 + shiftup
);
2162 ch_addr
<<= (6 + shiftup
);
2163 ch_addr
|= addr
& ((1 << (6 + shiftup
)) - 1);
2166 * Step 3) Decode rank
2168 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
2169 pci_read_config_dword(pvt
->pci_tad
[base_ch
], rir_way_limit
[n_rir
], ®
);
2171 if (!IS_RIR_VALID(reg
))
2174 limit
= pvt
->info
.rir_limit(reg
);
2175 gb
= div_u64_rem(limit
>> 20, 1024, &mb
);
2176 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2181 if (ch_addr
<= limit
)
2184 if (n_rir
== MAX_RIR_RANGES
) {
2185 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
2189 rir_way
= RIR_WAY(reg
);
2191 if (pvt
->is_close_pg
)
2192 idx
= (ch_addr
>> 6);
2194 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
2195 idx
%= 1 << rir_way
;
2197 pci_read_config_dword(pvt
->pci_tad
[base_ch
], rir_offset
[n_rir
][idx
], ®
);
2198 *rank
= RIR_RNK_TGT(pvt
->info
.type
, reg
);
2200 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2210 /****************************************************************************
2211 Device initialization routines: put/get, init/exit
2212 ****************************************************************************/
2215 * sbridge_put_all_devices 'put' all the devices that we have
2216 * reserved via 'get'
2218 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
2223 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2224 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
2227 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2229 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
2234 static void sbridge_put_all_devices(void)
2236 struct sbridge_dev
*sbridge_dev
, *tmp
;
2238 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
2239 sbridge_put_devices(sbridge_dev
);
2240 free_sbridge_dev(sbridge_dev
);
2244 static int sbridge_get_onedevice(struct pci_dev
**prev
,
2246 const struct pci_id_table
*table
,
2247 const unsigned devno
,
2248 const int multi_bus
)
2250 struct sbridge_dev
*sbridge_dev
= NULL
;
2251 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
2252 struct pci_dev
*pdev
= NULL
;
2257 sbridge_printk(KERN_DEBUG
,
2258 "Seeking for: PCI ID %04x:%04x\n",
2259 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2261 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2262 dev_descr
->dev_id
, *prev
);
2270 if (dev_descr
->optional
)
2273 /* if the HA wasn't found */
2277 sbridge_printk(KERN_INFO
,
2278 "Device not found: %04x:%04x\n",
2279 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2281 /* End of list, leave */
2284 seg
= pci_domain_nr(pdev
->bus
);
2285 bus
= pdev
->bus
->number
;
2288 sbridge_dev
= get_sbridge_dev(seg
, bus
, dev_descr
->dom
,
2289 multi_bus
, sbridge_dev
);
2291 /* If the HA1 wasn't found, don't create EDAC second memory controller */
2292 if (dev_descr
->dom
== IMC1
&& devno
!= 1) {
2293 edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2294 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2299 if (dev_descr
->dom
== SOCK
)
2302 sbridge_dev
= alloc_sbridge_dev(seg
, bus
, dev_descr
->dom
, table
);
2310 if (sbridge_dev
->pdev
[sbridge_dev
->i_devs
]) {
2311 sbridge_printk(KERN_ERR
,
2312 "Duplicated device for %04x:%04x\n",
2313 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2318 sbridge_dev
->pdev
[sbridge_dev
->i_devs
++] = pdev
;
2320 /* pdev belongs to more than one IMC, do extra gets */
2324 if (dev_descr
->dom
== SOCK
&& i
< table
->n_imcs_per_sock
)
2328 /* Be sure that the device is enabled */
2329 if (unlikely(pci_enable_device(pdev
) < 0)) {
2330 sbridge_printk(KERN_ERR
,
2331 "Couldn't enable %04x:%04x\n",
2332 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2336 edac_dbg(0, "Detected %04x:%04x\n",
2337 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2340 * As stated on drivers/pci/search.c, the reference count for
2341 * @from is always decremented if it is not %NULL. So, as we need
2342 * to get all devices up to null, we need to do a get for the device
2352 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2353 * devices we want to reference for this driver.
2354 * @num_mc: pointer to the memory controllers count, to be incremented in case
2356 * @table: model specific table
2358 * returns 0 in case of success or error code
2360 static int sbridge_get_all_devices(u8
*num_mc
,
2361 const struct pci_id_table
*table
)
2364 struct pci_dev
*pdev
= NULL
;
2368 if (table
->type
== KNIGHTS_LANDING
)
2369 allow_dups
= multi_bus
= 1;
2370 while (table
&& table
->descr
) {
2371 for (i
= 0; i
< table
->n_devs_per_sock
; i
++) {
2372 if (!allow_dups
|| i
== 0 ||
2373 table
->descr
[i
].dev_id
!=
2374 table
->descr
[i
-1].dev_id
) {
2378 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
2379 table
, i
, multi_bus
);
2382 i
= table
->n_devs_per_sock
;
2385 sbridge_put_all_devices();
2388 } while (pdev
&& !allow_dups
);
2397 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2398 * the format: XXXa. So we can convert from a device to the corresponding
2401 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2403 static int sbridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2404 struct sbridge_dev
*sbridge_dev
)
2406 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2407 struct pci_dev
*pdev
;
2408 u8 saw_chan_mask
= 0;
2411 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2412 pdev
= sbridge_dev
->pdev
[i
];
2416 switch (pdev
->device
) {
2417 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
:
2418 pvt
->pci_sad0
= pdev
;
2420 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
:
2421 pvt
->pci_sad1
= pdev
;
2423 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR
:
2424 pvt
->pci_br0
= pdev
;
2426 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
2429 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
:
2432 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
:
2433 pvt
->pci_ras
= pdev
;
2435 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
:
2436 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
:
2437 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
:
2438 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
:
2440 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2441 pvt
->pci_tad
[id
] = pdev
;
2442 saw_chan_mask
|= 1 << id
;
2445 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
:
2446 pvt
->pci_ddrio
= pdev
;
2452 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2453 pdev
->vendor
, pdev
->device
,
2458 /* Check if everything were registered */
2459 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha
||
2460 !pvt
->pci_ras
|| !pvt
->pci_ta
)
2463 if (saw_chan_mask
!= 0x0f)
2468 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2472 sbridge_printk(KERN_ERR
, "Unexpected device %02x:%02x\n",
2473 PCI_VENDOR_ID_INTEL
, pdev
->device
);
2477 static int ibridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2478 struct sbridge_dev
*sbridge_dev
)
2480 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2481 struct pci_dev
*pdev
;
2482 u8 saw_chan_mask
= 0;
2485 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2486 pdev
= sbridge_dev
->pdev
[i
];
2490 switch (pdev
->device
) {
2491 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
:
2492 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
:
2495 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
2496 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
:
2499 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
:
2500 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
:
2501 pvt
->pci_ras
= pdev
;
2503 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
:
2504 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
:
2505 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
:
2506 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
:
2507 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
:
2508 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
:
2509 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
:
2510 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
:
2512 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2513 pvt
->pci_tad
[id
] = pdev
;
2514 saw_chan_mask
|= 1 << id
;
2517 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
:
2518 pvt
->pci_ddrio
= pdev
;
2520 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
:
2521 pvt
->pci_ddrio
= pdev
;
2523 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
:
2524 pvt
->pci_sad0
= pdev
;
2526 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
:
2527 pvt
->pci_br0
= pdev
;
2529 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
:
2530 pvt
->pci_br1
= pdev
;
2536 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2538 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2542 /* Check if everything were registered */
2543 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_br0
||
2544 !pvt
->pci_br1
|| !pvt
->pci_ras
|| !pvt
->pci_ta
)
2547 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2548 saw_chan_mask
!= 0x03) /* -EP */
2553 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2557 sbridge_printk(KERN_ERR
,
2558 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL
,
2563 static int haswell_mci_bind_devs(struct mem_ctl_info
*mci
,
2564 struct sbridge_dev
*sbridge_dev
)
2566 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2567 struct pci_dev
*pdev
;
2568 u8 saw_chan_mask
= 0;
2571 /* there's only one device per system; not tied to any bus */
2572 if (pvt
->info
.pci_vtd
== NULL
)
2573 /* result will be checked later */
2574 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2575 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC
,
2578 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2579 pdev
= sbridge_dev
->pdev
[i
];
2583 switch (pdev
->device
) {
2584 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
:
2585 pvt
->pci_sad0
= pdev
;
2587 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
:
2588 pvt
->pci_sad1
= pdev
;
2590 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
2591 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
:
2594 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
:
2595 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
:
2598 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM
:
2599 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM
:
2600 pvt
->pci_ras
= pdev
;
2602 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
:
2603 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
:
2604 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
:
2605 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
:
2606 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
:
2607 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
:
2608 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
:
2609 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
:
2611 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2612 pvt
->pci_tad
[id
] = pdev
;
2613 saw_chan_mask
|= 1 << id
;
2616 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
:
2617 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
:
2618 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
:
2619 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
:
2620 if (!pvt
->pci_ddrio
)
2621 pvt
->pci_ddrio
= pdev
;
2627 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2629 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2633 /* Check if everything were registered */
2634 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_sad1
||
2635 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2638 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2639 saw_chan_mask
!= 0x03) /* -EP */
2644 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2648 static int broadwell_mci_bind_devs(struct mem_ctl_info
*mci
,
2649 struct sbridge_dev
*sbridge_dev
)
2651 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2652 struct pci_dev
*pdev
;
2653 u8 saw_chan_mask
= 0;
2656 /* there's only one device per system; not tied to any bus */
2657 if (pvt
->info
.pci_vtd
== NULL
)
2658 /* result will be checked later */
2659 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2660 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC
,
2663 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2664 pdev
= sbridge_dev
->pdev
[i
];
2668 switch (pdev
->device
) {
2669 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
:
2670 pvt
->pci_sad0
= pdev
;
2672 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
:
2673 pvt
->pci_sad1
= pdev
;
2675 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
:
2676 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
:
2679 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
:
2680 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
:
2683 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM
:
2684 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM
:
2685 pvt
->pci_ras
= pdev
;
2687 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
:
2688 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
:
2689 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
:
2690 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
:
2691 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
:
2692 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
:
2693 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
:
2694 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
:
2696 int id
= TAD_DEV_TO_CHAN(pdev
->device
);
2697 pvt
->pci_tad
[id
] = pdev
;
2698 saw_chan_mask
|= 1 << id
;
2701 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
:
2702 pvt
->pci_ddrio
= pdev
;
2708 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2710 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2714 /* Check if everything were registered */
2715 if (!pvt
->pci_sad0
|| !pvt
->pci_ha
|| !pvt
->pci_sad1
||
2716 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2719 if (saw_chan_mask
!= 0x0f && /* -EN/-EX */
2720 saw_chan_mask
!= 0x03) /* -EP */
2725 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2729 static int knl_mci_bind_devs(struct mem_ctl_info
*mci
,
2730 struct sbridge_dev
*sbridge_dev
)
2732 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2733 struct pci_dev
*pdev
;
2739 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2740 pdev
= sbridge_dev
->pdev
[i
];
2744 /* Extract PCI device and function. */
2745 dev
= (pdev
->devfn
>> 3) & 0x1f;
2746 func
= pdev
->devfn
& 0x7;
2748 switch (pdev
->device
) {
2749 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC
:
2751 pvt
->knl
.pci_mc0
= pdev
;
2753 pvt
->knl
.pci_mc1
= pdev
;
2755 sbridge_printk(KERN_ERR
,
2756 "Memory controller in unexpected place! (dev %d, fn %d)\n",
2762 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
:
2763 pvt
->pci_sad0
= pdev
;
2766 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
:
2767 pvt
->pci_sad1
= pdev
;
2770 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
:
2771 /* There are one of these per tile, and range from
2774 devidx
= ((dev
-14)*8)+func
;
2776 if (devidx
< 0 || devidx
>= KNL_MAX_CHAS
) {
2777 sbridge_printk(KERN_ERR
,
2778 "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2783 WARN_ON(pvt
->knl
.pci_cha
[devidx
] != NULL
);
2785 pvt
->knl
.pci_cha
[devidx
] = pdev
;
2788 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN
:
2792 * MC0 channels 0-2 are device 9 function 2-4,
2793 * MC1 channels 3-5 are device 8 function 2-4.
2799 devidx
= 3 + (func
-2);
2801 if (devidx
< 0 || devidx
>= KNL_MAX_CHANNELS
) {
2802 sbridge_printk(KERN_ERR
,
2803 "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2808 WARN_ON(pvt
->knl
.pci_channel
[devidx
] != NULL
);
2809 pvt
->knl
.pci_channel
[devidx
] = pdev
;
2812 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
:
2813 pvt
->knl
.pci_mc_info
= pdev
;
2816 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA
:
2821 sbridge_printk(KERN_ERR
, "Unexpected device %d\n",
2827 if (!pvt
->knl
.pci_mc0
|| !pvt
->knl
.pci_mc1
||
2828 !pvt
->pci_sad0
|| !pvt
->pci_sad1
||
2833 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
2834 if (!pvt
->knl
.pci_channel
[i
]) {
2835 sbridge_printk(KERN_ERR
, "Missing channel %d\n", i
);
2840 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
2841 if (!pvt
->knl
.pci_cha
[i
]) {
2842 sbridge_printk(KERN_ERR
, "Missing CHA %d\n", i
);
2850 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2854 /****************************************************************************
2855 Error check routines
2856 ****************************************************************************/
2859 * While Sandy Bridge has error count registers, SMI BIOS read values from
2860 * and resets the counters. So, they are not reliable for the OS to read
2861 * from them. So, we have no option but to just trust on whatever MCE is
2862 * telling us about the errors.
2864 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
2865 const struct mce
*m
)
2867 struct mem_ctl_info
*new_mci
;
2868 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2869 enum hw_event_mc_err_type tp_event
;
2870 char *type
, *optype
, msg
[256];
2871 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
2872 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
2873 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
2875 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
2876 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
2877 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
2878 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
2879 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
2880 long channel_mask
, first_channel
;
2881 u8 rank
, socket
, ha
;
2883 char *area_type
= NULL
;
2885 if (pvt
->info
.type
!= SANDY_BRIDGE
)
2888 recoverable
= GET_BITFIELD(m
->status
, 56, 56);
2890 if (uncorrected_error
) {
2894 tp_event
= HW_EVENT_ERR_FATAL
;
2897 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
2901 tp_event
= HW_EVENT_ERR_CORRECTED
;
2905 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2906 * memory errors should fit in this mask:
2907 * 000f 0000 1mmm cccc (binary)
2909 * f = Correction Report Filtering Bit. If 1, subsequent errors
2913 * If the mask doesn't match, report an error to the parsing logic
2915 switch (optypenum
) {
2917 optype
= "generic undef request error";
2920 optype
= "memory read error";
2923 optype
= "memory write error";
2926 optype
= "addr/cmd error";
2929 optype
= "memory scrubbing error";
2932 optype
= "reserved";
2936 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
2937 if (channel
== 14) {
2938 edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2939 overflow
? " OVERFLOW" : "",
2940 (uncorrected_error
&& recoverable
)
2941 ? " recoverable" : "",
2948 * Reported channel is in range 0-2, so we can't map it
2949 * back to mc. To figure out mc we check machine check
2950 * bank register that reported this error.
2951 * bank15 means mc0 and bank16 means mc1.
2953 channel
= knl_channel_remap(m
->bank
== 16, channel
);
2954 channel_mask
= 1 << channel
;
2956 snprintf(msg
, sizeof(msg
),
2957 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
2958 overflow
? " OVERFLOW" : "",
2959 (uncorrected_error
&& recoverable
)
2960 ? " recoverable" : " ",
2961 mscod
, errcode
, channel
, A
+ channel
);
2962 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
2963 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
2969 rc
= get_memory_error_data(mci
, m
->addr
, &socket
, &ha
,
2970 &channel_mask
, &rank
, &area_type
, msg
);
2975 new_mci
= get_mci_for_node_id(socket
, ha
);
2977 strcpy(msg
, "Error: socket got corrupted!");
2981 pvt
= mci
->pvt_info
;
2983 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
2994 * FIXME: On some memory configurations (mirror, lockstep), the
2995 * Memory Controller can't point the error to a single DIMM. The
2996 * EDAC core should be handling the channel mask, in order to point
2997 * to the group of dimm's where the error may be happening.
2999 if (!pvt
->is_lockstep
&& !pvt
->is_cur_addr_mirrored
&& !pvt
->is_close_pg
)
3000 channel
= first_channel
;
3002 snprintf(msg
, sizeof(msg
),
3003 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3004 overflow
? " OVERFLOW" : "",
3005 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
3012 edac_dbg(0, "%s\n", msg
);
3014 /* FIXME: need support for channel mask */
3016 if (channel
== CHANNEL_UNSPECIFIED
)
3019 /* Call the helper to output message */
3020 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
3021 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
3026 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0,
3033 * Check that logging is enabled and that this is the right type
3034 * of error for us to handle.
3036 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
3039 struct mce
*mce
= (struct mce
*)data
;
3040 struct mem_ctl_info
*mci
;
3043 if (edac_get_report_status() == EDAC_REPORTING_DISABLED
)
3047 * Just let mcelog handle it if the error is
3048 * outside the memory controller. A memory error
3049 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3050 * bit 12 has an special meaning.
3052 if ((mce
->status
& 0xefff) >> 7 != 1)
3055 /* Check ADDRV bit in STATUS */
3056 if (!GET_BITFIELD(mce
->status
, 58, 58))
3059 /* Check MISCV bit in STATUS */
3060 if (!GET_BITFIELD(mce
->status
, 59, 59))
3063 /* Check address type in MISC (physical address only) */
3064 if (GET_BITFIELD(mce
->misc
, 6, 8) != 2)
3067 mci
= get_mci_for_node_id(mce
->socketid
, IMC0
);
3071 if (mce
->mcgstatus
& MCG_STATUS_MCIP
)
3076 sbridge_mc_printk(mci
, KERN_DEBUG
, "HANDLING MCE MEMORY ERROR\n");
3078 sbridge_mc_printk(mci
, KERN_DEBUG
, "CPU %d: Machine Check %s: %Lx "
3079 "Bank %d: %016Lx\n", mce
->extcpu
, type
,
3080 mce
->mcgstatus
, mce
->bank
, mce
->status
);
3081 sbridge_mc_printk(mci
, KERN_DEBUG
, "TSC %llx ", mce
->tsc
);
3082 sbridge_mc_printk(mci
, KERN_DEBUG
, "ADDR %llx ", mce
->addr
);
3083 sbridge_mc_printk(mci
, KERN_DEBUG
, "MISC %llx ", mce
->misc
);
3085 sbridge_mc_printk(mci
, KERN_DEBUG
, "PROCESSOR %u:%x TIME %llu SOCKET "
3086 "%u APIC %x\n", mce
->cpuvendor
, mce
->cpuid
,
3087 mce
->time
, mce
->socketid
, mce
->apicid
);
3089 sbridge_mce_output_error(mci
, mce
);
3091 /* Advice mcelog that the error were handled */
3095 static struct notifier_block sbridge_mce_dec
= {
3096 .notifier_call
= sbridge_mce_check_error
,
3097 .priority
= MCE_PRIO_EDAC
,
3100 /****************************************************************************
3101 EDAC register/unregister logic
3102 ****************************************************************************/
3104 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
3106 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
3107 struct sbridge_pvt
*pvt
;
3109 if (unlikely(!mci
|| !mci
->pvt_info
)) {
3110 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev
->pdev
[0]->dev
);
3112 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
3116 pvt
= mci
->pvt_info
;
3118 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3119 mci
, &sbridge_dev
->pdev
[0]->dev
);
3121 /* Remove MC sysfs nodes */
3122 edac_mc_del_mc(mci
->pdev
);
3124 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
3125 kfree(mci
->ctl_name
);
3127 sbridge_dev
->mci
= NULL
;
3130 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
, enum type type
)
3132 struct mem_ctl_info
*mci
;
3133 struct edac_mc_layer layers
[2];
3134 struct sbridge_pvt
*pvt
;
3135 struct pci_dev
*pdev
= sbridge_dev
->pdev
[0];
3138 /* allocate a new MC control structure */
3139 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
3140 layers
[0].size
= type
== KNIGHTS_LANDING
?
3141 KNL_MAX_CHANNELS
: NUM_CHANNELS
;
3142 layers
[0].is_virt_csrow
= false;
3143 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
3144 layers
[1].size
= type
== KNIGHTS_LANDING
? 1 : MAX_DIMMS
;
3145 layers
[1].is_virt_csrow
= true;
3146 mci
= edac_mc_alloc(sbridge_dev
->mc
, ARRAY_SIZE(layers
), layers
,
3152 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3155 pvt
= mci
->pvt_info
;
3156 memset(pvt
, 0, sizeof(*pvt
));
3158 /* Associate sbridge_dev and mci for future usage */
3159 pvt
->sbridge_dev
= sbridge_dev
;
3160 sbridge_dev
->mci
= mci
;
3162 mci
->mtype_cap
= type
== KNIGHTS_LANDING
?
3163 MEM_FLAG_DDR4
: MEM_FLAG_DDR3
;
3164 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
3165 mci
->edac_cap
= EDAC_FLAG_NONE
;
3166 mci
->mod_name
= EDAC_MOD_STR
;
3167 mci
->dev_name
= pci_name(pdev
);
3168 mci
->ctl_page_to_phys
= NULL
;
3170 pvt
->info
.type
= type
;
3173 pvt
->info
.rankcfgr
= IB_RANK_CFG_A
;
3174 pvt
->info
.get_tolm
= ibridge_get_tolm
;
3175 pvt
->info
.get_tohm
= ibridge_get_tohm
;
3176 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3177 pvt
->info
.get_memory_type
= get_memory_type
;
3178 pvt
->info
.get_node_id
= get_node_id
;
3179 pvt
->info
.rir_limit
= rir_limit
;
3180 pvt
->info
.sad_limit
= sad_limit
;
3181 pvt
->info
.interleave_mode
= interleave_mode
;
3182 pvt
->info
.dram_attr
= dram_attr
;
3183 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3184 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3185 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3186 pvt
->info
.get_width
= ibridge_get_width
;
3188 /* Store pci devices at mci for faster access */
3189 rc
= ibridge_mci_bind_devs(mci
, sbridge_dev
);
3190 if (unlikely(rc
< 0))
3193 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Ivy Bridge SrcID#%d_Ha#%d",
3194 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3197 pvt
->info
.rankcfgr
= SB_RANK_CFG_A
;
3198 pvt
->info
.get_tolm
= sbridge_get_tolm
;
3199 pvt
->info
.get_tohm
= sbridge_get_tohm
;
3200 pvt
->info
.dram_rule
= sbridge_dram_rule
;
3201 pvt
->info
.get_memory_type
= get_memory_type
;
3202 pvt
->info
.get_node_id
= get_node_id
;
3203 pvt
->info
.rir_limit
= rir_limit
;
3204 pvt
->info
.sad_limit
= sad_limit
;
3205 pvt
->info
.interleave_mode
= interleave_mode
;
3206 pvt
->info
.dram_attr
= dram_attr
;
3207 pvt
->info
.max_sad
= ARRAY_SIZE(sbridge_dram_rule
);
3208 pvt
->info
.interleave_list
= sbridge_interleave_list
;
3209 pvt
->info
.interleave_pkg
= sbridge_interleave_pkg
;
3210 pvt
->info
.get_width
= sbridge_get_width
;
3212 /* Store pci devices at mci for faster access */
3213 rc
= sbridge_mci_bind_devs(mci
, sbridge_dev
);
3214 if (unlikely(rc
< 0))
3217 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge SrcID#%d_Ha#%d",
3218 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3221 /* rankcfgr isn't used */
3222 pvt
->info
.get_tolm
= haswell_get_tolm
;
3223 pvt
->info
.get_tohm
= haswell_get_tohm
;
3224 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3225 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3226 pvt
->info
.get_node_id
= haswell_get_node_id
;
3227 pvt
->info
.rir_limit
= haswell_rir_limit
;
3228 pvt
->info
.sad_limit
= sad_limit
;
3229 pvt
->info
.interleave_mode
= interleave_mode
;
3230 pvt
->info
.dram_attr
= dram_attr
;
3231 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3232 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3233 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3234 pvt
->info
.get_width
= ibridge_get_width
;
3236 /* Store pci devices at mci for faster access */
3237 rc
= haswell_mci_bind_devs(mci
, sbridge_dev
);
3238 if (unlikely(rc
< 0))
3241 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Haswell SrcID#%d_Ha#%d",
3242 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3245 /* rankcfgr isn't used */
3246 pvt
->info
.get_tolm
= haswell_get_tolm
;
3247 pvt
->info
.get_tohm
= haswell_get_tohm
;
3248 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3249 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3250 pvt
->info
.get_node_id
= haswell_get_node_id
;
3251 pvt
->info
.rir_limit
= haswell_rir_limit
;
3252 pvt
->info
.sad_limit
= sad_limit
;
3253 pvt
->info
.interleave_mode
= interleave_mode
;
3254 pvt
->info
.dram_attr
= dram_attr
;
3255 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3256 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3257 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3258 pvt
->info
.get_width
= broadwell_get_width
;
3260 /* Store pci devices at mci for faster access */
3261 rc
= broadwell_mci_bind_devs(mci
, sbridge_dev
);
3262 if (unlikely(rc
< 0))
3265 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Broadwell SrcID#%d_Ha#%d",
3266 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3268 case KNIGHTS_LANDING
:
3269 /* pvt->info.rankcfgr == ??? */
3270 pvt
->info
.get_tolm
= knl_get_tolm
;
3271 pvt
->info
.get_tohm
= knl_get_tohm
;
3272 pvt
->info
.dram_rule
= knl_dram_rule
;
3273 pvt
->info
.get_memory_type
= knl_get_memory_type
;
3274 pvt
->info
.get_node_id
= knl_get_node_id
;
3275 pvt
->info
.rir_limit
= NULL
;
3276 pvt
->info
.sad_limit
= knl_sad_limit
;
3277 pvt
->info
.interleave_mode
= knl_interleave_mode
;
3278 pvt
->info
.dram_attr
= dram_attr_knl
;
3279 pvt
->info
.max_sad
= ARRAY_SIZE(knl_dram_rule
);
3280 pvt
->info
.interleave_list
= knl_interleave_list
;
3281 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3282 pvt
->info
.get_width
= knl_get_width
;
3284 rc
= knl_mci_bind_devs(mci
, sbridge_dev
);
3285 if (unlikely(rc
< 0))
3288 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Knights Landing SrcID#%d_Ha#%d",
3289 pvt
->sbridge_dev
->source_id
, pvt
->sbridge_dev
->dom
);
3293 if (!mci
->ctl_name
) {
3298 /* Get dimm basic config and the memory layout */
3299 rc
= get_dimm_config(mci
);
3301 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3304 get_memory_layout(mci
);
3306 /* record ptr to the generic device */
3307 mci
->pdev
= &pdev
->dev
;
3309 /* add this new MC control structure to EDAC's list of MCs */
3310 if (unlikely(edac_mc_add_mc(mci
))) {
3311 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3319 kfree(mci
->ctl_name
);
3322 sbridge_dev
->mci
= NULL
;
3326 #define ICPU(model, table) \
3327 { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3329 static const struct x86_cpu_id sbridge_cpuids
[] = {
3330 ICPU(INTEL_FAM6_SANDYBRIDGE_X
, pci_dev_descr_sbridge_table
),
3331 ICPU(INTEL_FAM6_IVYBRIDGE_X
, pci_dev_descr_ibridge_table
),
3332 ICPU(INTEL_FAM6_HASWELL_X
, pci_dev_descr_haswell_table
),
3333 ICPU(INTEL_FAM6_BROADWELL_X
, pci_dev_descr_broadwell_table
),
3334 ICPU(INTEL_FAM6_BROADWELL_XEON_D
, pci_dev_descr_broadwell_table
),
3335 ICPU(INTEL_FAM6_XEON_PHI_KNL
, pci_dev_descr_knl_table
),
3336 ICPU(INTEL_FAM6_XEON_PHI_KNM
, pci_dev_descr_knl_table
),
3339 MODULE_DEVICE_TABLE(x86cpu
, sbridge_cpuids
);
3342 * sbridge_probe Get all devices and register memory controllers
3345 * 0 for FOUND a device
3346 * < 0 for error code
3349 static int sbridge_probe(const struct x86_cpu_id
*id
)
3353 struct sbridge_dev
*sbridge_dev
;
3354 struct pci_id_table
*ptable
= (struct pci_id_table
*)id
->driver_data
;
3356 /* get the pci devices we want to reserve for our use */
3357 rc
= sbridge_get_all_devices(&num_mc
, ptable
);
3359 if (unlikely(rc
< 0)) {
3360 edac_dbg(0, "couldn't get all devices\n");
3366 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
3367 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3368 mc
, mc
+ 1, num_mc
);
3370 sbridge_dev
->mc
= mc
++;
3371 rc
= sbridge_register_mci(sbridge_dev
, ptable
->type
);
3372 if (unlikely(rc
< 0))
3376 sbridge_printk(KERN_INFO
, "%s\n", SBRIDGE_REVISION
);
3381 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3382 sbridge_unregister_mci(sbridge_dev
);
3384 sbridge_put_all_devices();
3390 * sbridge_remove cleanup
3393 static void sbridge_remove(void)
3395 struct sbridge_dev
*sbridge_dev
;
3399 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3400 sbridge_unregister_mci(sbridge_dev
);
3402 /* Release PCI resources */
3403 sbridge_put_all_devices();
3407 * sbridge_init Module entry function
3408 * Try to initialize this module for its devices
3410 static int __init
sbridge_init(void)
3412 const struct x86_cpu_id
*id
;
3418 owner
= edac_get_owner();
3419 if (owner
&& strncmp(owner
, EDAC_MOD_STR
, sizeof(EDAC_MOD_STR
)))
3422 id
= x86_match_cpu(sbridge_cpuids
);
3426 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3429 rc
= sbridge_probe(id
);
3432 mce_register_decode_chain(&sbridge_mce_dec
);
3433 if (edac_get_report_status() == EDAC_REPORTING_DISABLED
)
3434 sbridge_printk(KERN_WARNING
, "Loading driver, error reporting disabled.\n");
3438 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
3445 * sbridge_exit() Module exit function
3446 * Unregister the driver
3448 static void __exit
sbridge_exit(void)
3452 mce_unregister_decode_chain(&sbridge_mce_dec
);
3455 module_init(sbridge_init
);
3456 module_exit(sbridge_exit
);
3458 module_param(edac_op_state
, int, 0444);
3459 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
3461 MODULE_LICENSE("GPL");
3462 MODULE_AUTHOR("Mauro Carvalho Chehab");
3463 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3464 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "