Linux 4.19.133
[linux/fpc-iii.git] / drivers / spi / spi-atmel.c
blob5a9d7e252a77c406132faf1c82607f8291d7900b
1 /*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/dma-atmel.h>
23 #include <linux/of.h>
25 #include <linux/io.h>
26 #include <linux/gpio.h>
27 #include <linux/of_gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
31 /* SPI register offsets */
32 #define SPI_CR 0x0000
33 #define SPI_MR 0x0004
34 #define SPI_RDR 0x0008
35 #define SPI_TDR 0x000c
36 #define SPI_SR 0x0010
37 #define SPI_IER 0x0014
38 #define SPI_IDR 0x0018
39 #define SPI_IMR 0x001c
40 #define SPI_CSR0 0x0030
41 #define SPI_CSR1 0x0034
42 #define SPI_CSR2 0x0038
43 #define SPI_CSR3 0x003c
44 #define SPI_FMR 0x0040
45 #define SPI_FLR 0x0044
46 #define SPI_VERSION 0x00fc
47 #define SPI_RPR 0x0100
48 #define SPI_RCR 0x0104
49 #define SPI_TPR 0x0108
50 #define SPI_TCR 0x010c
51 #define SPI_RNPR 0x0110
52 #define SPI_RNCR 0x0114
53 #define SPI_TNPR 0x0118
54 #define SPI_TNCR 0x011c
55 #define SPI_PTCR 0x0120
56 #define SPI_PTSR 0x0124
58 /* Bitfields in CR */
59 #define SPI_SPIEN_OFFSET 0
60 #define SPI_SPIEN_SIZE 1
61 #define SPI_SPIDIS_OFFSET 1
62 #define SPI_SPIDIS_SIZE 1
63 #define SPI_SWRST_OFFSET 7
64 #define SPI_SWRST_SIZE 1
65 #define SPI_LASTXFER_OFFSET 24
66 #define SPI_LASTXFER_SIZE 1
67 #define SPI_TXFCLR_OFFSET 16
68 #define SPI_TXFCLR_SIZE 1
69 #define SPI_RXFCLR_OFFSET 17
70 #define SPI_RXFCLR_SIZE 1
71 #define SPI_FIFOEN_OFFSET 30
72 #define SPI_FIFOEN_SIZE 1
73 #define SPI_FIFODIS_OFFSET 31
74 #define SPI_FIFODIS_SIZE 1
76 /* Bitfields in MR */
77 #define SPI_MSTR_OFFSET 0
78 #define SPI_MSTR_SIZE 1
79 #define SPI_PS_OFFSET 1
80 #define SPI_PS_SIZE 1
81 #define SPI_PCSDEC_OFFSET 2
82 #define SPI_PCSDEC_SIZE 1
83 #define SPI_FDIV_OFFSET 3
84 #define SPI_FDIV_SIZE 1
85 #define SPI_MODFDIS_OFFSET 4
86 #define SPI_MODFDIS_SIZE 1
87 #define SPI_WDRBT_OFFSET 5
88 #define SPI_WDRBT_SIZE 1
89 #define SPI_LLB_OFFSET 7
90 #define SPI_LLB_SIZE 1
91 #define SPI_PCS_OFFSET 16
92 #define SPI_PCS_SIZE 4
93 #define SPI_DLYBCS_OFFSET 24
94 #define SPI_DLYBCS_SIZE 8
96 /* Bitfields in RDR */
97 #define SPI_RD_OFFSET 0
98 #define SPI_RD_SIZE 16
100 /* Bitfields in TDR */
101 #define SPI_TD_OFFSET 0
102 #define SPI_TD_SIZE 16
104 /* Bitfields in SR */
105 #define SPI_RDRF_OFFSET 0
106 #define SPI_RDRF_SIZE 1
107 #define SPI_TDRE_OFFSET 1
108 #define SPI_TDRE_SIZE 1
109 #define SPI_MODF_OFFSET 2
110 #define SPI_MODF_SIZE 1
111 #define SPI_OVRES_OFFSET 3
112 #define SPI_OVRES_SIZE 1
113 #define SPI_ENDRX_OFFSET 4
114 #define SPI_ENDRX_SIZE 1
115 #define SPI_ENDTX_OFFSET 5
116 #define SPI_ENDTX_SIZE 1
117 #define SPI_RXBUFF_OFFSET 6
118 #define SPI_RXBUFF_SIZE 1
119 #define SPI_TXBUFE_OFFSET 7
120 #define SPI_TXBUFE_SIZE 1
121 #define SPI_NSSR_OFFSET 8
122 #define SPI_NSSR_SIZE 1
123 #define SPI_TXEMPTY_OFFSET 9
124 #define SPI_TXEMPTY_SIZE 1
125 #define SPI_SPIENS_OFFSET 16
126 #define SPI_SPIENS_SIZE 1
127 #define SPI_TXFEF_OFFSET 24
128 #define SPI_TXFEF_SIZE 1
129 #define SPI_TXFFF_OFFSET 25
130 #define SPI_TXFFF_SIZE 1
131 #define SPI_TXFTHF_OFFSET 26
132 #define SPI_TXFTHF_SIZE 1
133 #define SPI_RXFEF_OFFSET 27
134 #define SPI_RXFEF_SIZE 1
135 #define SPI_RXFFF_OFFSET 28
136 #define SPI_RXFFF_SIZE 1
137 #define SPI_RXFTHF_OFFSET 29
138 #define SPI_RXFTHF_SIZE 1
139 #define SPI_TXFPTEF_OFFSET 30
140 #define SPI_TXFPTEF_SIZE 1
141 #define SPI_RXFPTEF_OFFSET 31
142 #define SPI_RXFPTEF_SIZE 1
144 /* Bitfields in CSR0 */
145 #define SPI_CPOL_OFFSET 0
146 #define SPI_CPOL_SIZE 1
147 #define SPI_NCPHA_OFFSET 1
148 #define SPI_NCPHA_SIZE 1
149 #define SPI_CSAAT_OFFSET 3
150 #define SPI_CSAAT_SIZE 1
151 #define SPI_BITS_OFFSET 4
152 #define SPI_BITS_SIZE 4
153 #define SPI_SCBR_OFFSET 8
154 #define SPI_SCBR_SIZE 8
155 #define SPI_DLYBS_OFFSET 16
156 #define SPI_DLYBS_SIZE 8
157 #define SPI_DLYBCT_OFFSET 24
158 #define SPI_DLYBCT_SIZE 8
160 /* Bitfields in RCR */
161 #define SPI_RXCTR_OFFSET 0
162 #define SPI_RXCTR_SIZE 16
164 /* Bitfields in TCR */
165 #define SPI_TXCTR_OFFSET 0
166 #define SPI_TXCTR_SIZE 16
168 /* Bitfields in RNCR */
169 #define SPI_RXNCR_OFFSET 0
170 #define SPI_RXNCR_SIZE 16
172 /* Bitfields in TNCR */
173 #define SPI_TXNCR_OFFSET 0
174 #define SPI_TXNCR_SIZE 16
176 /* Bitfields in PTCR */
177 #define SPI_RXTEN_OFFSET 0
178 #define SPI_RXTEN_SIZE 1
179 #define SPI_RXTDIS_OFFSET 1
180 #define SPI_RXTDIS_SIZE 1
181 #define SPI_TXTEN_OFFSET 8
182 #define SPI_TXTEN_SIZE 1
183 #define SPI_TXTDIS_OFFSET 9
184 #define SPI_TXTDIS_SIZE 1
186 /* Bitfields in FMR */
187 #define SPI_TXRDYM_OFFSET 0
188 #define SPI_TXRDYM_SIZE 2
189 #define SPI_RXRDYM_OFFSET 4
190 #define SPI_RXRDYM_SIZE 2
191 #define SPI_TXFTHRES_OFFSET 16
192 #define SPI_TXFTHRES_SIZE 6
193 #define SPI_RXFTHRES_OFFSET 24
194 #define SPI_RXFTHRES_SIZE 6
196 /* Bitfields in FLR */
197 #define SPI_TXFL_OFFSET 0
198 #define SPI_TXFL_SIZE 6
199 #define SPI_RXFL_OFFSET 16
200 #define SPI_RXFL_SIZE 6
202 /* Constants for BITS */
203 #define SPI_BITS_8_BPT 0
204 #define SPI_BITS_9_BPT 1
205 #define SPI_BITS_10_BPT 2
206 #define SPI_BITS_11_BPT 3
207 #define SPI_BITS_12_BPT 4
208 #define SPI_BITS_13_BPT 5
209 #define SPI_BITS_14_BPT 6
210 #define SPI_BITS_15_BPT 7
211 #define SPI_BITS_16_BPT 8
212 #define SPI_ONE_DATA 0
213 #define SPI_TWO_DATA 1
214 #define SPI_FOUR_DATA 2
216 /* Bit manipulation macros */
217 #define SPI_BIT(name) \
218 (1 << SPI_##name##_OFFSET)
219 #define SPI_BF(name, value) \
220 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
221 #define SPI_BFEXT(name, value) \
222 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
223 #define SPI_BFINS(name, value, old) \
224 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
225 | SPI_BF(name, value))
227 /* Register access macros */
228 #ifdef CONFIG_AVR32
229 #define spi_readl(port, reg) \
230 __raw_readl((port)->regs + SPI_##reg)
231 #define spi_writel(port, reg, value) \
232 __raw_writel((value), (port)->regs + SPI_##reg)
234 #define spi_readw(port, reg) \
235 __raw_readw((port)->regs + SPI_##reg)
236 #define spi_writew(port, reg, value) \
237 __raw_writew((value), (port)->regs + SPI_##reg)
239 #define spi_readb(port, reg) \
240 __raw_readb((port)->regs + SPI_##reg)
241 #define spi_writeb(port, reg, value) \
242 __raw_writeb((value), (port)->regs + SPI_##reg)
243 #else
244 #define spi_readl(port, reg) \
245 readl_relaxed((port)->regs + SPI_##reg)
246 #define spi_writel(port, reg, value) \
247 writel_relaxed((value), (port)->regs + SPI_##reg)
249 #define spi_readw(port, reg) \
250 readw_relaxed((port)->regs + SPI_##reg)
251 #define spi_writew(port, reg, value) \
252 writew_relaxed((value), (port)->regs + SPI_##reg)
254 #define spi_readb(port, reg) \
255 readb_relaxed((port)->regs + SPI_##reg)
256 #define spi_writeb(port, reg, value) \
257 writeb_relaxed((value), (port)->regs + SPI_##reg)
258 #endif
259 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
260 * cache operations; better heuristics consider wordsize and bitrate.
262 #define DMA_MIN_BYTES 16
264 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
266 #define AUTOSUSPEND_TIMEOUT 2000
268 struct atmel_spi_caps {
269 bool is_spi2;
270 bool has_wdrbt;
271 bool has_dma_support;
272 bool has_pdc_support;
276 * The core SPI transfer engine just talks to a register bank to set up
277 * DMA transfers; transfer queue progress is driven by IRQs. The clock
278 * framework provides the base clock, subdivided for each spi_device.
280 struct atmel_spi {
281 spinlock_t lock;
282 unsigned long flags;
284 phys_addr_t phybase;
285 void __iomem *regs;
286 int irq;
287 struct clk *clk;
288 struct platform_device *pdev;
289 unsigned long spi_clk;
291 struct spi_transfer *current_transfer;
292 int current_remaining_bytes;
293 int done_status;
294 dma_addr_t dma_addr_rx_bbuf;
295 dma_addr_t dma_addr_tx_bbuf;
296 void *addr_rx_bbuf;
297 void *addr_tx_bbuf;
299 struct completion xfer_completion;
301 struct atmel_spi_caps caps;
303 bool use_dma;
304 bool use_pdc;
305 bool use_cs_gpios;
307 bool keep_cs;
309 u32 fifo_size;
312 /* Controller-specific per-slave state */
313 struct atmel_spi_device {
314 unsigned int npcs_pin;
315 u32 csr;
318 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
319 #define INVALID_DMA_ADDRESS 0xffffffff
322 * Version 2 of the SPI controller has
323 * - CR.LASTXFER
324 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
325 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
326 * - SPI_CSRx.CSAAT
327 * - SPI_CSRx.SBCR allows faster clocking
329 static bool atmel_spi_is_v2(struct atmel_spi *as)
331 return as->caps.is_spi2;
335 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
336 * they assume that spi slave device state will not change on deselect, so
337 * that automagic deselection is OK. ("NPCSx rises if no data is to be
338 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
339 * controllers have CSAAT and friends.
341 * Since the CSAAT functionality is a bit weird on newer controllers as
342 * well, we use GPIO to control nCSx pins on all controllers, updating
343 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
344 * support active-high chipselects despite the controller's belief that
345 * only active-low devices/systems exists.
347 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
348 * right when driven with GPIO. ("Mode Fault does not allow more than one
349 * Master on Chip Select 0.") No workaround exists for that ... so for
350 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
351 * and (c) will trigger that first erratum in some cases.
354 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
356 struct atmel_spi_device *asd = spi->controller_state;
357 unsigned active = spi->mode & SPI_CS_HIGH;
358 u32 mr;
360 if (atmel_spi_is_v2(as)) {
361 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
362 /* For the low SPI version, there is a issue that PDC transfer
363 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
365 spi_writel(as, CSR0, asd->csr);
366 if (as->caps.has_wdrbt) {
367 spi_writel(as, MR,
368 SPI_BF(PCS, ~(0x01 << spi->chip_select))
369 | SPI_BIT(WDRBT)
370 | SPI_BIT(MODFDIS)
371 | SPI_BIT(MSTR));
372 } else {
373 spi_writel(as, MR,
374 SPI_BF(PCS, ~(0x01 << spi->chip_select))
375 | SPI_BIT(MODFDIS)
376 | SPI_BIT(MSTR));
379 mr = spi_readl(as, MR);
380 if (as->use_cs_gpios)
381 gpio_set_value(asd->npcs_pin, active);
382 } else {
383 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
384 int i;
385 u32 csr;
387 /* Make sure clock polarity is correct */
388 for (i = 0; i < spi->master->num_chipselect; i++) {
389 csr = spi_readl(as, CSR0 + 4 * i);
390 if ((csr ^ cpol) & SPI_BIT(CPOL))
391 spi_writel(as, CSR0 + 4 * i,
392 csr ^ SPI_BIT(CPOL));
395 mr = spi_readl(as, MR);
396 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
397 if (as->use_cs_gpios && spi->chip_select != 0)
398 gpio_set_value(asd->npcs_pin, active);
399 spi_writel(as, MR, mr);
402 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
403 asd->npcs_pin, active ? " (high)" : "",
404 mr);
407 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
409 struct atmel_spi_device *asd = spi->controller_state;
410 unsigned active = spi->mode & SPI_CS_HIGH;
411 u32 mr;
413 /* only deactivate *this* device; sometimes transfers to
414 * another device may be active when this routine is called.
416 mr = spi_readl(as, MR);
417 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
418 mr = SPI_BFINS(PCS, 0xf, mr);
419 spi_writel(as, MR, mr);
422 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
423 asd->npcs_pin, active ? " (low)" : "",
424 mr);
426 if (!as->use_cs_gpios)
427 spi_writel(as, CR, SPI_BIT(LASTXFER));
428 else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
429 gpio_set_value(asd->npcs_pin, !active);
432 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
434 spin_lock_irqsave(&as->lock, as->flags);
437 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
439 spin_unlock_irqrestore(&as->lock, as->flags);
442 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
444 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
447 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
448 struct spi_transfer *xfer)
450 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
453 static bool atmel_spi_can_dma(struct spi_master *master,
454 struct spi_device *spi,
455 struct spi_transfer *xfer)
457 struct atmel_spi *as = spi_master_get_devdata(master);
459 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
460 return atmel_spi_use_dma(as, xfer) &&
461 !atmel_spi_is_vmalloc_xfer(xfer);
462 else
463 return atmel_spi_use_dma(as, xfer);
467 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
468 struct dma_slave_config *slave_config,
469 u8 bits_per_word)
471 struct spi_master *master = platform_get_drvdata(as->pdev);
472 int err = 0;
474 if (bits_per_word > 8) {
475 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
476 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
477 } else {
478 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
479 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
482 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
483 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
484 slave_config->src_maxburst = 1;
485 slave_config->dst_maxburst = 1;
486 slave_config->device_fc = false;
489 * This driver uses fixed peripheral select mode (PS bit set to '0' in
490 * the Mode Register).
491 * So according to the datasheet, when FIFOs are available (and
492 * enabled), the Transmit FIFO operates in Multiple Data Mode.
493 * In this mode, up to 2 data, not 4, can be written into the Transmit
494 * Data Register in a single access.
495 * However, the first data has to be written into the lowest 16 bits and
496 * the second data into the highest 16 bits of the Transmit
497 * Data Register. For 8bit data (the most frequent case), it would
498 * require to rework tx_buf so each data would actualy fit 16 bits.
499 * So we'd rather write only one data at the time. Hence the transmit
500 * path works the same whether FIFOs are available (and enabled) or not.
502 slave_config->direction = DMA_MEM_TO_DEV;
503 if (dmaengine_slave_config(master->dma_tx, slave_config)) {
504 dev_err(&as->pdev->dev,
505 "failed to configure tx dma channel\n");
506 err = -EINVAL;
510 * This driver configures the spi controller for master mode (MSTR bit
511 * set to '1' in the Mode Register).
512 * So according to the datasheet, when FIFOs are available (and
513 * enabled), the Receive FIFO operates in Single Data Mode.
514 * So the receive path works the same whether FIFOs are available (and
515 * enabled) or not.
517 slave_config->direction = DMA_DEV_TO_MEM;
518 if (dmaengine_slave_config(master->dma_rx, slave_config)) {
519 dev_err(&as->pdev->dev,
520 "failed to configure rx dma channel\n");
521 err = -EINVAL;
524 return err;
527 static int atmel_spi_configure_dma(struct spi_master *master,
528 struct atmel_spi *as)
530 struct dma_slave_config slave_config;
531 struct device *dev = &as->pdev->dev;
532 int err;
534 dma_cap_mask_t mask;
535 dma_cap_zero(mask);
536 dma_cap_set(DMA_SLAVE, mask);
538 master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
539 if (IS_ERR(master->dma_tx)) {
540 err = PTR_ERR(master->dma_tx);
541 if (err == -EPROBE_DEFER) {
542 dev_warn(dev, "no DMA channel available at the moment\n");
543 goto error_clear;
545 dev_err(dev,
546 "DMA TX channel not available, SPI unable to use DMA\n");
547 err = -EBUSY;
548 goto error_clear;
552 * No reason to check EPROBE_DEFER here since we have already requested
553 * tx channel. If it fails here, it's for another reason.
555 master->dma_rx = dma_request_slave_channel(dev, "rx");
557 if (!master->dma_rx) {
558 dev_err(dev,
559 "DMA RX channel not available, SPI unable to use DMA\n");
560 err = -EBUSY;
561 goto error;
564 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
565 if (err)
566 goto error;
568 dev_info(&as->pdev->dev,
569 "Using %s (tx) and %s (rx) for DMA transfers\n",
570 dma_chan_name(master->dma_tx),
571 dma_chan_name(master->dma_rx));
573 return 0;
574 error:
575 if (master->dma_rx)
576 dma_release_channel(master->dma_rx);
577 if (!IS_ERR(master->dma_tx))
578 dma_release_channel(master->dma_tx);
579 error_clear:
580 master->dma_tx = master->dma_rx = NULL;
581 return err;
584 static void atmel_spi_stop_dma(struct spi_master *master)
586 if (master->dma_rx)
587 dmaengine_terminate_all(master->dma_rx);
588 if (master->dma_tx)
589 dmaengine_terminate_all(master->dma_tx);
592 static void atmel_spi_release_dma(struct spi_master *master)
594 if (master->dma_rx) {
595 dma_release_channel(master->dma_rx);
596 master->dma_rx = NULL;
598 if (master->dma_tx) {
599 dma_release_channel(master->dma_tx);
600 master->dma_tx = NULL;
604 /* This function is called by the DMA driver from tasklet context */
605 static void dma_callback(void *data)
607 struct spi_master *master = data;
608 struct atmel_spi *as = spi_master_get_devdata(master);
610 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
611 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
612 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
613 as->current_transfer->len);
615 complete(&as->xfer_completion);
619 * Next transfer using PIO without FIFO.
621 static void atmel_spi_next_xfer_single(struct spi_master *master,
622 struct spi_transfer *xfer)
624 struct atmel_spi *as = spi_master_get_devdata(master);
625 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
627 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
629 /* Make sure data is not remaining in RDR */
630 spi_readl(as, RDR);
631 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
632 spi_readl(as, RDR);
633 cpu_relax();
636 if (xfer->bits_per_word > 8)
637 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
638 else
639 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
641 dev_dbg(master->dev.parent,
642 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
643 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
644 xfer->bits_per_word);
646 /* Enable relevant interrupts */
647 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
651 * Next transfer using PIO with FIFO.
653 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
654 struct spi_transfer *xfer)
656 struct atmel_spi *as = spi_master_get_devdata(master);
657 u32 current_remaining_data, num_data;
658 u32 offset = xfer->len - as->current_remaining_bytes;
659 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
660 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
661 u16 td0, td1;
662 u32 fifomr;
664 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
666 /* Compute the number of data to transfer in the current iteration */
667 current_remaining_data = ((xfer->bits_per_word > 8) ?
668 ((u32)as->current_remaining_bytes >> 1) :
669 (u32)as->current_remaining_bytes);
670 num_data = min(current_remaining_data, as->fifo_size);
672 /* Flush RX and TX FIFOs */
673 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
674 while (spi_readl(as, FLR))
675 cpu_relax();
677 /* Set RX FIFO Threshold to the number of data to transfer */
678 fifomr = spi_readl(as, FMR);
679 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
681 /* Clear FIFO flags in the Status Register, especially RXFTHF */
682 (void)spi_readl(as, SR);
684 /* Fill TX FIFO */
685 while (num_data >= 2) {
686 if (xfer->bits_per_word > 8) {
687 td0 = *words++;
688 td1 = *words++;
689 } else {
690 td0 = *bytes++;
691 td1 = *bytes++;
694 spi_writel(as, TDR, (td1 << 16) | td0);
695 num_data -= 2;
698 if (num_data) {
699 if (xfer->bits_per_word > 8)
700 td0 = *words++;
701 else
702 td0 = *bytes++;
704 spi_writew(as, TDR, td0);
705 num_data--;
708 dev_dbg(master->dev.parent,
709 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
710 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
711 xfer->bits_per_word);
714 * Enable RX FIFO Threshold Flag interrupt to be notified about
715 * transfer completion.
717 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
721 * Next transfer using PIO.
723 static void atmel_spi_next_xfer_pio(struct spi_master *master,
724 struct spi_transfer *xfer)
726 struct atmel_spi *as = spi_master_get_devdata(master);
728 if (as->fifo_size)
729 atmel_spi_next_xfer_fifo(master, xfer);
730 else
731 atmel_spi_next_xfer_single(master, xfer);
735 * Submit next transfer for DMA.
737 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
738 struct spi_transfer *xfer,
739 u32 *plen)
741 struct atmel_spi *as = spi_master_get_devdata(master);
742 struct dma_chan *rxchan = master->dma_rx;
743 struct dma_chan *txchan = master->dma_tx;
744 struct dma_async_tx_descriptor *rxdesc;
745 struct dma_async_tx_descriptor *txdesc;
746 struct dma_slave_config slave_config;
747 dma_cookie_t cookie;
749 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
751 /* Check that the channels are available */
752 if (!rxchan || !txchan)
753 return -ENODEV;
755 /* release lock for DMA operations */
756 atmel_spi_unlock(as);
758 *plen = xfer->len;
760 if (atmel_spi_dma_slave_config(as, &slave_config,
761 xfer->bits_per_word))
762 goto err_exit;
764 /* Send both scatterlists */
765 if (atmel_spi_is_vmalloc_xfer(xfer) &&
766 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
767 rxdesc = dmaengine_prep_slave_single(rxchan,
768 as->dma_addr_rx_bbuf,
769 xfer->len,
770 DMA_DEV_TO_MEM,
771 DMA_PREP_INTERRUPT |
772 DMA_CTRL_ACK);
773 } else {
774 rxdesc = dmaengine_prep_slave_sg(rxchan,
775 xfer->rx_sg.sgl,
776 xfer->rx_sg.nents,
777 DMA_DEV_TO_MEM,
778 DMA_PREP_INTERRUPT |
779 DMA_CTRL_ACK);
781 if (!rxdesc)
782 goto err_dma;
784 if (atmel_spi_is_vmalloc_xfer(xfer) &&
785 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
786 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
787 txdesc = dmaengine_prep_slave_single(txchan,
788 as->dma_addr_tx_bbuf,
789 xfer->len, DMA_MEM_TO_DEV,
790 DMA_PREP_INTERRUPT |
791 DMA_CTRL_ACK);
792 } else {
793 txdesc = dmaengine_prep_slave_sg(txchan,
794 xfer->tx_sg.sgl,
795 xfer->tx_sg.nents,
796 DMA_MEM_TO_DEV,
797 DMA_PREP_INTERRUPT |
798 DMA_CTRL_ACK);
800 if (!txdesc)
801 goto err_dma;
803 dev_dbg(master->dev.parent,
804 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
805 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
806 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
808 /* Enable relevant interrupts */
809 spi_writel(as, IER, SPI_BIT(OVRES));
811 /* Put the callback on the RX transfer only, that should finish last */
812 rxdesc->callback = dma_callback;
813 rxdesc->callback_param = master;
815 /* Submit and fire RX and TX with TX last so we're ready to read! */
816 cookie = rxdesc->tx_submit(rxdesc);
817 if (dma_submit_error(cookie))
818 goto err_dma;
819 cookie = txdesc->tx_submit(txdesc);
820 if (dma_submit_error(cookie))
821 goto err_dma;
822 rxchan->device->device_issue_pending(rxchan);
823 txchan->device->device_issue_pending(txchan);
825 /* take back lock */
826 atmel_spi_lock(as);
827 return 0;
829 err_dma:
830 spi_writel(as, IDR, SPI_BIT(OVRES));
831 atmel_spi_stop_dma(master);
832 err_exit:
833 atmel_spi_lock(as);
834 return -ENOMEM;
837 static void atmel_spi_next_xfer_data(struct spi_master *master,
838 struct spi_transfer *xfer,
839 dma_addr_t *tx_dma,
840 dma_addr_t *rx_dma,
841 u32 *plen)
843 *rx_dma = xfer->rx_dma + xfer->len - *plen;
844 *tx_dma = xfer->tx_dma + xfer->len - *plen;
845 if (*plen > master->max_dma_len)
846 *plen = master->max_dma_len;
849 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
850 struct spi_device *spi,
851 struct spi_transfer *xfer)
853 u32 scbr, csr;
854 unsigned long bus_hz;
856 /* v1 chips start out at half the peripheral bus speed. */
857 bus_hz = as->spi_clk;
858 if (!atmel_spi_is_v2(as))
859 bus_hz /= 2;
862 * Calculate the lowest divider that satisfies the
863 * constraint, assuming div32/fdiv/mbz == 0.
865 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
868 * If the resulting divider doesn't fit into the
869 * register bitfield, we can't satisfy the constraint.
871 if (scbr >= (1 << SPI_SCBR_SIZE)) {
872 dev_err(&spi->dev,
873 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
874 xfer->speed_hz, scbr, bus_hz/255);
875 return -EINVAL;
877 if (scbr == 0) {
878 dev_err(&spi->dev,
879 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
880 xfer->speed_hz, scbr, bus_hz);
881 return -EINVAL;
883 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
884 csr = SPI_BFINS(SCBR, scbr, csr);
885 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
887 return 0;
891 * Submit next transfer for PDC.
892 * lock is held, spi irq is blocked
894 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
895 struct spi_message *msg,
896 struct spi_transfer *xfer)
898 struct atmel_spi *as = spi_master_get_devdata(master);
899 u32 len;
900 dma_addr_t tx_dma, rx_dma;
902 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
904 len = as->current_remaining_bytes;
905 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
906 as->current_remaining_bytes -= len;
908 spi_writel(as, RPR, rx_dma);
909 spi_writel(as, TPR, tx_dma);
911 if (msg->spi->bits_per_word > 8)
912 len >>= 1;
913 spi_writel(as, RCR, len);
914 spi_writel(as, TCR, len);
916 dev_dbg(&msg->spi->dev,
917 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
918 xfer, xfer->len, xfer->tx_buf,
919 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
920 (unsigned long long)xfer->rx_dma);
922 if (as->current_remaining_bytes) {
923 len = as->current_remaining_bytes;
924 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
925 as->current_remaining_bytes -= len;
927 spi_writel(as, RNPR, rx_dma);
928 spi_writel(as, TNPR, tx_dma);
930 if (msg->spi->bits_per_word > 8)
931 len >>= 1;
932 spi_writel(as, RNCR, len);
933 spi_writel(as, TNCR, len);
935 dev_dbg(&msg->spi->dev,
936 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
937 xfer, xfer->len, xfer->tx_buf,
938 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
939 (unsigned long long)xfer->rx_dma);
942 /* REVISIT: We're waiting for RXBUFF before we start the next
943 * transfer because we need to handle some difficult timing
944 * issues otherwise. If we wait for TXBUFE in one transfer and
945 * then starts waiting for RXBUFF in the next, it's difficult
946 * to tell the difference between the RXBUFF interrupt we're
947 * actually waiting for and the RXBUFF interrupt of the
948 * previous transfer.
950 * It should be doable, though. Just not now...
952 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
953 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
957 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
958 * - The buffer is either valid for CPU access, else NULL
959 * - If the buffer is valid, so is its DMA address
961 * This driver manages the dma address unless message->is_dma_mapped.
963 static int
964 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
966 struct device *dev = &as->pdev->dev;
968 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
969 if (xfer->tx_buf) {
970 /* tx_buf is a const void* where we need a void * for the dma
971 * mapping */
972 void *nonconst_tx = (void *)xfer->tx_buf;
974 xfer->tx_dma = dma_map_single(dev,
975 nonconst_tx, xfer->len,
976 DMA_TO_DEVICE);
977 if (dma_mapping_error(dev, xfer->tx_dma))
978 return -ENOMEM;
980 if (xfer->rx_buf) {
981 xfer->rx_dma = dma_map_single(dev,
982 xfer->rx_buf, xfer->len,
983 DMA_FROM_DEVICE);
984 if (dma_mapping_error(dev, xfer->rx_dma)) {
985 if (xfer->tx_buf)
986 dma_unmap_single(dev,
987 xfer->tx_dma, xfer->len,
988 DMA_TO_DEVICE);
989 return -ENOMEM;
992 return 0;
995 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
996 struct spi_transfer *xfer)
998 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
999 dma_unmap_single(master->dev.parent, xfer->tx_dma,
1000 xfer->len, DMA_TO_DEVICE);
1001 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1002 dma_unmap_single(master->dev.parent, xfer->rx_dma,
1003 xfer->len, DMA_FROM_DEVICE);
1006 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1008 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1011 static void
1012 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1014 u8 *rxp;
1015 u16 *rxp16;
1016 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1018 if (xfer->bits_per_word > 8) {
1019 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1020 *rxp16 = spi_readl(as, RDR);
1021 } else {
1022 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1023 *rxp = spi_readl(as, RDR);
1025 if (xfer->bits_per_word > 8) {
1026 if (as->current_remaining_bytes > 2)
1027 as->current_remaining_bytes -= 2;
1028 else
1029 as->current_remaining_bytes = 0;
1030 } else {
1031 as->current_remaining_bytes--;
1035 static void
1036 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1038 u32 fifolr = spi_readl(as, FLR);
1039 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1040 u32 offset = xfer->len - as->current_remaining_bytes;
1041 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1042 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1043 u16 rd; /* RD field is the lowest 16 bits of RDR */
1045 /* Update the number of remaining bytes to transfer */
1046 num_bytes = ((xfer->bits_per_word > 8) ?
1047 (num_data << 1) :
1048 num_data);
1050 if (as->current_remaining_bytes > num_bytes)
1051 as->current_remaining_bytes -= num_bytes;
1052 else
1053 as->current_remaining_bytes = 0;
1055 /* Handle odd number of bytes when data are more than 8bit width */
1056 if (xfer->bits_per_word > 8)
1057 as->current_remaining_bytes &= ~0x1;
1059 /* Read data */
1060 while (num_data) {
1061 rd = spi_readl(as, RDR);
1062 if (xfer->bits_per_word > 8)
1063 *words++ = rd;
1064 else
1065 *bytes++ = rd;
1066 num_data--;
1070 /* Called from IRQ
1072 * Must update "current_remaining_bytes" to keep track of data
1073 * to transfer.
1075 static void
1076 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1078 if (as->fifo_size)
1079 atmel_spi_pump_fifo_data(as, xfer);
1080 else
1081 atmel_spi_pump_single_data(as, xfer);
1084 /* Interrupt
1086 * No need for locking in this Interrupt handler: done_status is the
1087 * only information modified.
1089 static irqreturn_t
1090 atmel_spi_pio_interrupt(int irq, void *dev_id)
1092 struct spi_master *master = dev_id;
1093 struct atmel_spi *as = spi_master_get_devdata(master);
1094 u32 status, pending, imr;
1095 struct spi_transfer *xfer;
1096 int ret = IRQ_NONE;
1098 imr = spi_readl(as, IMR);
1099 status = spi_readl(as, SR);
1100 pending = status & imr;
1102 if (pending & SPI_BIT(OVRES)) {
1103 ret = IRQ_HANDLED;
1104 spi_writel(as, IDR, SPI_BIT(OVRES));
1105 dev_warn(master->dev.parent, "overrun\n");
1108 * When we get an overrun, we disregard the current
1109 * transfer. Data will not be copied back from any
1110 * bounce buffer and msg->actual_len will not be
1111 * updated with the last xfer.
1113 * We will also not process any remaning transfers in
1114 * the message.
1116 as->done_status = -EIO;
1117 smp_wmb();
1119 /* Clear any overrun happening while cleaning up */
1120 spi_readl(as, SR);
1122 complete(&as->xfer_completion);
1124 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1125 atmel_spi_lock(as);
1127 if (as->current_remaining_bytes) {
1128 ret = IRQ_HANDLED;
1129 xfer = as->current_transfer;
1130 atmel_spi_pump_pio_data(as, xfer);
1131 if (!as->current_remaining_bytes)
1132 spi_writel(as, IDR, pending);
1134 complete(&as->xfer_completion);
1137 atmel_spi_unlock(as);
1138 } else {
1139 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1140 ret = IRQ_HANDLED;
1141 spi_writel(as, IDR, pending);
1144 return ret;
1147 static irqreturn_t
1148 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1150 struct spi_master *master = dev_id;
1151 struct atmel_spi *as = spi_master_get_devdata(master);
1152 u32 status, pending, imr;
1153 int ret = IRQ_NONE;
1155 imr = spi_readl(as, IMR);
1156 status = spi_readl(as, SR);
1157 pending = status & imr;
1159 if (pending & SPI_BIT(OVRES)) {
1161 ret = IRQ_HANDLED;
1163 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1164 | SPI_BIT(OVRES)));
1166 /* Clear any overrun happening while cleaning up */
1167 spi_readl(as, SR);
1169 as->done_status = -EIO;
1171 complete(&as->xfer_completion);
1173 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1174 ret = IRQ_HANDLED;
1176 spi_writel(as, IDR, pending);
1178 complete(&as->xfer_completion);
1181 return ret;
1184 static int atmel_spi_setup(struct spi_device *spi)
1186 struct atmel_spi *as;
1187 struct atmel_spi_device *asd;
1188 u32 csr;
1189 unsigned int bits = spi->bits_per_word;
1190 unsigned int npcs_pin;
1192 as = spi_master_get_devdata(spi->master);
1194 /* see notes above re chipselect */
1195 if (!as->use_cs_gpios && (spi->mode & SPI_CS_HIGH)) {
1196 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1197 return -EINVAL;
1200 csr = SPI_BF(BITS, bits - 8);
1201 if (spi->mode & SPI_CPOL)
1202 csr |= SPI_BIT(CPOL);
1203 if (!(spi->mode & SPI_CPHA))
1204 csr |= SPI_BIT(NCPHA);
1205 if (!as->use_cs_gpios)
1206 csr |= SPI_BIT(CSAAT);
1208 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1210 * DLYBCT would add delays between words, slowing down transfers.
1211 * It could potentially be useful to cope with DMA bottlenecks, but
1212 * in those cases it's probably best to just use a lower bitrate.
1214 csr |= SPI_BF(DLYBS, 0);
1215 csr |= SPI_BF(DLYBCT, 0);
1217 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1218 npcs_pin = (unsigned long)spi->controller_data;
1220 if (!as->use_cs_gpios)
1221 npcs_pin = spi->chip_select;
1222 else if (gpio_is_valid(spi->cs_gpio))
1223 npcs_pin = spi->cs_gpio;
1225 asd = spi->controller_state;
1226 if (!asd) {
1227 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1228 if (!asd)
1229 return -ENOMEM;
1231 if (as->use_cs_gpios)
1232 gpio_direction_output(npcs_pin,
1233 !(spi->mode & SPI_CS_HIGH));
1235 asd->npcs_pin = npcs_pin;
1236 spi->controller_state = asd;
1239 asd->csr = csr;
1241 dev_dbg(&spi->dev,
1242 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1243 bits, spi->mode, spi->chip_select, csr);
1245 if (!atmel_spi_is_v2(as))
1246 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1248 return 0;
1251 static int atmel_spi_one_transfer(struct spi_master *master,
1252 struct spi_message *msg,
1253 struct spi_transfer *xfer)
1255 struct atmel_spi *as;
1256 struct spi_device *spi = msg->spi;
1257 u8 bits;
1258 u32 len;
1259 struct atmel_spi_device *asd;
1260 int timeout;
1261 int ret;
1262 unsigned long dma_timeout;
1264 as = spi_master_get_devdata(master);
1266 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1267 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1268 return -EINVAL;
1271 asd = spi->controller_state;
1272 bits = (asd->csr >> 4) & 0xf;
1273 if (bits != xfer->bits_per_word - 8) {
1274 dev_dbg(&spi->dev,
1275 "you can't yet change bits_per_word in transfers\n");
1276 return -ENOPROTOOPT;
1280 * DMA map early, for performance (empties dcache ASAP) and
1281 * better fault reporting.
1283 if ((!msg->is_dma_mapped)
1284 && as->use_pdc) {
1285 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1286 return -ENOMEM;
1289 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1291 as->done_status = 0;
1292 as->current_transfer = xfer;
1293 as->current_remaining_bytes = xfer->len;
1294 while (as->current_remaining_bytes) {
1295 reinit_completion(&as->xfer_completion);
1297 if (as->use_pdc) {
1298 atmel_spi_pdc_next_xfer(master, msg, xfer);
1299 } else if (atmel_spi_use_dma(as, xfer)) {
1300 len = as->current_remaining_bytes;
1301 ret = atmel_spi_next_xfer_dma_submit(master,
1302 xfer, &len);
1303 if (ret) {
1304 dev_err(&spi->dev,
1305 "unable to use DMA, fallback to PIO\n");
1306 atmel_spi_next_xfer_pio(master, xfer);
1307 } else {
1308 as->current_remaining_bytes -= len;
1309 if (as->current_remaining_bytes < 0)
1310 as->current_remaining_bytes = 0;
1312 } else {
1313 atmel_spi_next_xfer_pio(master, xfer);
1316 /* interrupts are disabled, so free the lock for schedule */
1317 atmel_spi_unlock(as);
1318 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1319 SPI_DMA_TIMEOUT);
1320 atmel_spi_lock(as);
1321 if (WARN_ON(dma_timeout == 0)) {
1322 dev_err(&spi->dev, "spi transfer timeout\n");
1323 as->done_status = -EIO;
1326 if (as->done_status)
1327 break;
1330 if (as->done_status) {
1331 if (as->use_pdc) {
1332 dev_warn(master->dev.parent,
1333 "overrun (%u/%u remaining)\n",
1334 spi_readl(as, TCR), spi_readl(as, RCR));
1337 * Clean up DMA registers and make sure the data
1338 * registers are empty.
1340 spi_writel(as, RNCR, 0);
1341 spi_writel(as, TNCR, 0);
1342 spi_writel(as, RCR, 0);
1343 spi_writel(as, TCR, 0);
1344 for (timeout = 1000; timeout; timeout--)
1345 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1346 break;
1347 if (!timeout)
1348 dev_warn(master->dev.parent,
1349 "timeout waiting for TXEMPTY");
1350 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1351 spi_readl(as, RDR);
1353 /* Clear any overrun happening while cleaning up */
1354 spi_readl(as, SR);
1356 } else if (atmel_spi_use_dma(as, xfer)) {
1357 atmel_spi_stop_dma(master);
1360 if (!msg->is_dma_mapped
1361 && as->use_pdc)
1362 atmel_spi_dma_unmap_xfer(master, xfer);
1364 return 0;
1366 } else {
1367 /* only update length if no error */
1368 msg->actual_length += xfer->len;
1371 if (!msg->is_dma_mapped
1372 && as->use_pdc)
1373 atmel_spi_dma_unmap_xfer(master, xfer);
1375 if (xfer->delay_usecs)
1376 udelay(xfer->delay_usecs);
1378 if (xfer->cs_change) {
1379 if (list_is_last(&xfer->transfer_list,
1380 &msg->transfers)) {
1381 as->keep_cs = true;
1382 } else {
1383 cs_deactivate(as, msg->spi);
1384 udelay(10);
1385 cs_activate(as, msg->spi);
1389 return 0;
1392 static int atmel_spi_transfer_one_message(struct spi_master *master,
1393 struct spi_message *msg)
1395 struct atmel_spi *as;
1396 struct spi_transfer *xfer;
1397 struct spi_device *spi = msg->spi;
1398 int ret = 0;
1400 as = spi_master_get_devdata(master);
1402 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1403 msg, dev_name(&spi->dev));
1405 atmel_spi_lock(as);
1406 cs_activate(as, spi);
1408 as->keep_cs = false;
1410 msg->status = 0;
1411 msg->actual_length = 0;
1413 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1414 ret = atmel_spi_one_transfer(master, msg, xfer);
1415 if (ret)
1416 goto msg_done;
1419 if (as->use_pdc)
1420 atmel_spi_disable_pdc_transfer(as);
1422 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1423 dev_dbg(&spi->dev,
1424 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1425 xfer, xfer->len,
1426 xfer->tx_buf, &xfer->tx_dma,
1427 xfer->rx_buf, &xfer->rx_dma);
1430 msg_done:
1431 if (!as->keep_cs)
1432 cs_deactivate(as, msg->spi);
1434 atmel_spi_unlock(as);
1436 msg->status = as->done_status;
1437 spi_finalize_current_message(spi->master);
1439 return ret;
1442 static void atmel_spi_cleanup(struct spi_device *spi)
1444 struct atmel_spi_device *asd = spi->controller_state;
1446 if (!asd)
1447 return;
1449 spi->controller_state = NULL;
1450 kfree(asd);
1453 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1455 return spi_readl(as, VERSION) & 0x00000fff;
1458 static void atmel_get_caps(struct atmel_spi *as)
1460 unsigned int version;
1462 version = atmel_get_version(as);
1464 as->caps.is_spi2 = version > 0x121;
1465 as->caps.has_wdrbt = version >= 0x210;
1466 as->caps.has_dma_support = version >= 0x212;
1467 as->caps.has_pdc_support = version < 0x212;
1470 /*-------------------------------------------------------------------------*/
1471 static int atmel_spi_gpio_cs(struct platform_device *pdev)
1473 struct spi_master *master = platform_get_drvdata(pdev);
1474 struct atmel_spi *as = spi_master_get_devdata(master);
1475 struct device_node *np = master->dev.of_node;
1476 int i;
1477 int ret = 0;
1478 int nb = 0;
1480 if (!as->use_cs_gpios)
1481 return 0;
1483 if (!np)
1484 return 0;
1486 nb = of_gpio_named_count(np, "cs-gpios");
1487 for (i = 0; i < nb; i++) {
1488 int cs_gpio = of_get_named_gpio(pdev->dev.of_node,
1489 "cs-gpios", i);
1491 if (cs_gpio == -EPROBE_DEFER)
1492 return cs_gpio;
1494 if (gpio_is_valid(cs_gpio)) {
1495 ret = devm_gpio_request(&pdev->dev, cs_gpio,
1496 dev_name(&pdev->dev));
1497 if (ret)
1498 return ret;
1502 return 0;
1505 static void atmel_spi_init(struct atmel_spi *as)
1507 spi_writel(as, CR, SPI_BIT(SWRST));
1508 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1510 /* It is recommended to enable FIFOs first thing after reset */
1511 if (as->fifo_size)
1512 spi_writel(as, CR, SPI_BIT(FIFOEN));
1514 if (as->caps.has_wdrbt) {
1515 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1516 | SPI_BIT(MSTR));
1517 } else {
1518 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1521 if (as->use_pdc)
1522 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1523 spi_writel(as, CR, SPI_BIT(SPIEN));
1526 static int atmel_spi_probe(struct platform_device *pdev)
1528 struct resource *regs;
1529 int irq;
1530 struct clk *clk;
1531 int ret;
1532 struct spi_master *master;
1533 struct atmel_spi *as;
1535 /* Select default pin state */
1536 pinctrl_pm_select_default_state(&pdev->dev);
1538 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1539 if (!regs)
1540 return -ENXIO;
1542 irq = platform_get_irq(pdev, 0);
1543 if (irq < 0)
1544 return irq;
1546 clk = devm_clk_get(&pdev->dev, "spi_clk");
1547 if (IS_ERR(clk))
1548 return PTR_ERR(clk);
1550 /* setup spi core then atmel-specific driver state */
1551 ret = -ENOMEM;
1552 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1553 if (!master)
1554 goto out_free;
1556 /* the spi->mode bits understood by this driver: */
1557 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1558 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1559 master->dev.of_node = pdev->dev.of_node;
1560 master->bus_num = pdev->id;
1561 master->num_chipselect = master->dev.of_node ? 0 : 4;
1562 master->setup = atmel_spi_setup;
1563 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1564 master->transfer_one_message = atmel_spi_transfer_one_message;
1565 master->cleanup = atmel_spi_cleanup;
1566 master->auto_runtime_pm = true;
1567 master->max_dma_len = SPI_MAX_DMA_XFER;
1568 master->can_dma = atmel_spi_can_dma;
1569 platform_set_drvdata(pdev, master);
1571 as = spi_master_get_devdata(master);
1573 spin_lock_init(&as->lock);
1575 as->pdev = pdev;
1576 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1577 if (IS_ERR(as->regs)) {
1578 ret = PTR_ERR(as->regs);
1579 goto out_unmap_regs;
1581 as->phybase = regs->start;
1582 as->irq = irq;
1583 as->clk = clk;
1585 init_completion(&as->xfer_completion);
1587 atmel_get_caps(as);
1589 as->use_cs_gpios = true;
1590 if (atmel_spi_is_v2(as) &&
1591 pdev->dev.of_node &&
1592 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1593 as->use_cs_gpios = false;
1594 master->num_chipselect = 4;
1597 ret = atmel_spi_gpio_cs(pdev);
1598 if (ret)
1599 goto out_unmap_regs;
1601 as->use_dma = false;
1602 as->use_pdc = false;
1603 if (as->caps.has_dma_support) {
1604 ret = atmel_spi_configure_dma(master, as);
1605 if (ret == 0) {
1606 as->use_dma = true;
1607 } else if (ret == -EPROBE_DEFER) {
1608 return ret;
1610 } else if (as->caps.has_pdc_support) {
1611 as->use_pdc = true;
1614 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1615 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1616 SPI_MAX_DMA_XFER,
1617 &as->dma_addr_rx_bbuf,
1618 GFP_KERNEL | GFP_DMA);
1619 if (!as->addr_rx_bbuf) {
1620 as->use_dma = false;
1621 } else {
1622 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1623 SPI_MAX_DMA_XFER,
1624 &as->dma_addr_tx_bbuf,
1625 GFP_KERNEL | GFP_DMA);
1626 if (!as->addr_tx_bbuf) {
1627 as->use_dma = false;
1628 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1629 as->addr_rx_bbuf,
1630 as->dma_addr_rx_bbuf);
1633 if (!as->use_dma)
1634 dev_info(master->dev.parent,
1635 " can not allocate dma coherent memory\n");
1638 if (as->caps.has_dma_support && !as->use_dma)
1639 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1641 if (as->use_pdc) {
1642 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1643 0, dev_name(&pdev->dev), master);
1644 } else {
1645 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1646 0, dev_name(&pdev->dev), master);
1648 if (ret)
1649 goto out_unmap_regs;
1651 /* Initialize the hardware */
1652 ret = clk_prepare_enable(clk);
1653 if (ret)
1654 goto out_free_irq;
1656 as->spi_clk = clk_get_rate(clk);
1658 as->fifo_size = 0;
1659 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1660 &as->fifo_size)) {
1661 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1664 atmel_spi_init(as);
1666 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1667 pm_runtime_use_autosuspend(&pdev->dev);
1668 pm_runtime_set_active(&pdev->dev);
1669 pm_runtime_enable(&pdev->dev);
1671 ret = devm_spi_register_master(&pdev->dev, master);
1672 if (ret)
1673 goto out_free_dma;
1675 /* go! */
1676 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1677 atmel_get_version(as), (unsigned long)regs->start,
1678 irq);
1680 return 0;
1682 out_free_dma:
1683 pm_runtime_disable(&pdev->dev);
1684 pm_runtime_set_suspended(&pdev->dev);
1686 if (as->use_dma)
1687 atmel_spi_release_dma(master);
1689 spi_writel(as, CR, SPI_BIT(SWRST));
1690 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1691 clk_disable_unprepare(clk);
1692 out_free_irq:
1693 out_unmap_regs:
1694 out_free:
1695 spi_master_put(master);
1696 return ret;
1699 static int atmel_spi_remove(struct platform_device *pdev)
1701 struct spi_master *master = platform_get_drvdata(pdev);
1702 struct atmel_spi *as = spi_master_get_devdata(master);
1704 pm_runtime_get_sync(&pdev->dev);
1706 /* reset the hardware and block queue progress */
1707 if (as->use_dma) {
1708 atmel_spi_stop_dma(master);
1709 atmel_spi_release_dma(master);
1710 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1711 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1712 as->addr_tx_bbuf,
1713 as->dma_addr_tx_bbuf);
1714 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1715 as->addr_rx_bbuf,
1716 as->dma_addr_rx_bbuf);
1720 spin_lock_irq(&as->lock);
1721 spi_writel(as, CR, SPI_BIT(SWRST));
1722 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1723 spi_readl(as, SR);
1724 spin_unlock_irq(&as->lock);
1726 clk_disable_unprepare(as->clk);
1728 pm_runtime_put_noidle(&pdev->dev);
1729 pm_runtime_disable(&pdev->dev);
1731 return 0;
1734 #ifdef CONFIG_PM
1735 static int atmel_spi_runtime_suspend(struct device *dev)
1737 struct spi_master *master = dev_get_drvdata(dev);
1738 struct atmel_spi *as = spi_master_get_devdata(master);
1740 clk_disable_unprepare(as->clk);
1741 pinctrl_pm_select_sleep_state(dev);
1743 return 0;
1746 static int atmel_spi_runtime_resume(struct device *dev)
1748 struct spi_master *master = dev_get_drvdata(dev);
1749 struct atmel_spi *as = spi_master_get_devdata(master);
1751 pinctrl_pm_select_default_state(dev);
1753 return clk_prepare_enable(as->clk);
1756 #ifdef CONFIG_PM_SLEEP
1757 static int atmel_spi_suspend(struct device *dev)
1759 struct spi_master *master = dev_get_drvdata(dev);
1760 int ret;
1762 /* Stop the queue running */
1763 ret = spi_master_suspend(master);
1764 if (ret) {
1765 dev_warn(dev, "cannot suspend master\n");
1766 return ret;
1769 if (!pm_runtime_suspended(dev))
1770 atmel_spi_runtime_suspend(dev);
1772 return 0;
1775 static int atmel_spi_resume(struct device *dev)
1777 struct spi_master *master = dev_get_drvdata(dev);
1778 struct atmel_spi *as = spi_master_get_devdata(master);
1779 int ret;
1781 ret = clk_prepare_enable(as->clk);
1782 if (ret)
1783 return ret;
1785 atmel_spi_init(as);
1787 clk_disable_unprepare(as->clk);
1789 if (!pm_runtime_suspended(dev)) {
1790 ret = atmel_spi_runtime_resume(dev);
1791 if (ret)
1792 return ret;
1795 /* Start the queue running */
1796 ret = spi_master_resume(master);
1797 if (ret)
1798 dev_err(dev, "problem starting queue (%d)\n", ret);
1800 return ret;
1802 #endif
1804 static const struct dev_pm_ops atmel_spi_pm_ops = {
1805 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1806 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1807 atmel_spi_runtime_resume, NULL)
1809 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1810 #else
1811 #define ATMEL_SPI_PM_OPS NULL
1812 #endif
1814 #if defined(CONFIG_OF)
1815 static const struct of_device_id atmel_spi_dt_ids[] = {
1816 { .compatible = "atmel,at91rm9200-spi" },
1817 { /* sentinel */ }
1820 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1821 #endif
1823 static struct platform_driver atmel_spi_driver = {
1824 .driver = {
1825 .name = "atmel_spi",
1826 .pm = ATMEL_SPI_PM_OPS,
1827 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1829 .probe = atmel_spi_probe,
1830 .remove = atmel_spi_remove,
1832 module_platform_driver(atmel_spi_driver);
1834 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1835 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1836 MODULE_LICENSE("GPL");
1837 MODULE_ALIAS("platform:atmel_spi");