Linux 4.19.133
[linux/fpc-iii.git] / drivers / spi / spi-fsl-espi.c
blob1e8ff6256079f1344e5e6a1ceb2192d620bf0d5b
1 /*
2 * Freescale eSPI controller driver.
4 * Copyright 2010 Freescale Semiconductor, Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/fsl_devices.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mm.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/spi/spi.h>
23 #include <linux/pm_runtime.h>
24 #include <sysdev/fsl_soc.h>
26 /* eSPI Controller registers */
27 #define ESPI_SPMODE 0x00 /* eSPI mode register */
28 #define ESPI_SPIE 0x04 /* eSPI event register */
29 #define ESPI_SPIM 0x08 /* eSPI mask register */
30 #define ESPI_SPCOM 0x0c /* eSPI command register */
31 #define ESPI_SPITF 0x10 /* eSPI transmit FIFO access register*/
32 #define ESPI_SPIRF 0x14 /* eSPI receive FIFO access register*/
33 #define ESPI_SPMODE0 0x20 /* eSPI cs0 mode register */
35 #define ESPI_SPMODEx(x) (ESPI_SPMODE0 + (x) * 4)
37 /* eSPI Controller mode register definitions */
38 #define SPMODE_ENABLE BIT(31)
39 #define SPMODE_LOOP BIT(30)
40 #define SPMODE_TXTHR(x) ((x) << 8)
41 #define SPMODE_RXTHR(x) ((x) << 0)
43 /* eSPI Controller CS mode register definitions */
44 #define CSMODE_CI_INACTIVEHIGH BIT(31)
45 #define CSMODE_CP_BEGIN_EDGECLK BIT(30)
46 #define CSMODE_REV BIT(29)
47 #define CSMODE_DIV16 BIT(28)
48 #define CSMODE_PM(x) ((x) << 24)
49 #define CSMODE_POL_1 BIT(20)
50 #define CSMODE_LEN(x) ((x) << 16)
51 #define CSMODE_BEF(x) ((x) << 12)
52 #define CSMODE_AFT(x) ((x) << 8)
53 #define CSMODE_CG(x) ((x) << 3)
55 #define FSL_ESPI_FIFO_SIZE 32
56 #define FSL_ESPI_RXTHR 15
58 /* Default mode/csmode for eSPI controller */
59 #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
60 #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
61 | CSMODE_AFT(0) | CSMODE_CG(1))
63 /* SPIE register values */
64 #define SPIE_RXCNT(reg) ((reg >> 24) & 0x3F)
65 #define SPIE_TXCNT(reg) ((reg >> 16) & 0x3F)
66 #define SPIE_TXE BIT(15) /* TX FIFO empty */
67 #define SPIE_DON BIT(14) /* TX done */
68 #define SPIE_RXT BIT(13) /* RX FIFO threshold */
69 #define SPIE_RXF BIT(12) /* RX FIFO full */
70 #define SPIE_TXT BIT(11) /* TX FIFO threshold*/
71 #define SPIE_RNE BIT(9) /* RX FIFO not empty */
72 #define SPIE_TNF BIT(8) /* TX FIFO not full */
74 /* SPIM register values */
75 #define SPIM_TXE BIT(15) /* TX FIFO empty */
76 #define SPIM_DON BIT(14) /* TX done */
77 #define SPIM_RXT BIT(13) /* RX FIFO threshold */
78 #define SPIM_RXF BIT(12) /* RX FIFO full */
79 #define SPIM_TXT BIT(11) /* TX FIFO threshold*/
80 #define SPIM_RNE BIT(9) /* RX FIFO not empty */
81 #define SPIM_TNF BIT(8) /* TX FIFO not full */
83 /* SPCOM register values */
84 #define SPCOM_CS(x) ((x) << 30)
85 #define SPCOM_DO BIT(28) /* Dual output */
86 #define SPCOM_TO BIT(27) /* TX only */
87 #define SPCOM_RXSKIP(x) ((x) << 16)
88 #define SPCOM_TRANLEN(x) ((x) << 0)
90 #define SPCOM_TRANLEN_MAX 0x10000 /* Max transaction length */
92 #define AUTOSUSPEND_TIMEOUT 2000
94 struct fsl_espi {
95 struct device *dev;
96 void __iomem *reg_base;
98 struct list_head *m_transfers;
99 struct spi_transfer *tx_t;
100 unsigned int tx_pos;
101 bool tx_done;
102 struct spi_transfer *rx_t;
103 unsigned int rx_pos;
104 bool rx_done;
106 bool swab;
107 unsigned int rxskip;
109 spinlock_t lock;
111 u32 spibrg; /* SPIBRG input clock */
113 struct completion done;
116 struct fsl_espi_cs {
117 u32 hw_mode;
120 static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
122 return ioread32be(espi->reg_base + offset);
125 static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
127 return ioread16be(espi->reg_base + offset);
130 static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
132 return ioread8(espi->reg_base + offset);
135 static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
136 u32 val)
138 iowrite32be(val, espi->reg_base + offset);
141 static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
142 u16 val)
144 iowrite16be(val, espi->reg_base + offset);
147 static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
148 u8 val)
150 iowrite8(val, espi->reg_base + offset);
153 static int fsl_espi_check_message(struct spi_message *m)
155 struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
156 struct spi_transfer *t, *first;
158 if (m->frame_length > SPCOM_TRANLEN_MAX) {
159 dev_err(espi->dev, "message too long, size is %u bytes\n",
160 m->frame_length);
161 return -EMSGSIZE;
164 first = list_first_entry(&m->transfers, struct spi_transfer,
165 transfer_list);
167 list_for_each_entry(t, &m->transfers, transfer_list) {
168 if (first->bits_per_word != t->bits_per_word ||
169 first->speed_hz != t->speed_hz) {
170 dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
171 return -EINVAL;
175 /* ESPI supports MSB-first transfers for word size 8 / 16 only */
176 if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
177 first->bits_per_word != 16) {
178 dev_err(espi->dev,
179 "MSB-first transfer not supported for wordsize %u\n",
180 first->bits_per_word);
181 return -EINVAL;
184 return 0;
187 static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
189 struct spi_transfer *t;
190 unsigned int i = 0, rxskip = 0;
193 * prerequisites for ESPI rxskip mode:
194 * - message has two transfers
195 * - first transfer is a write and second is a read
197 * In addition the current low-level transfer mechanism requires
198 * that the rxskip bytes fit into the TX FIFO. Else the transfer
199 * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
200 * the TX FIFO isn't re-filled.
202 list_for_each_entry(t, &m->transfers, transfer_list) {
203 if (i == 0) {
204 if (!t->tx_buf || t->rx_buf ||
205 t->len > FSL_ESPI_FIFO_SIZE)
206 return 0;
207 rxskip = t->len;
208 } else if (i == 1) {
209 if (t->tx_buf || !t->rx_buf)
210 return 0;
212 i++;
215 return i == 2 ? rxskip : 0;
218 static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
220 u32 tx_fifo_avail;
221 unsigned int tx_left;
222 const void *tx_buf;
224 /* if events is zero transfer has not started and tx fifo is empty */
225 tx_fifo_avail = events ? SPIE_TXCNT(events) : FSL_ESPI_FIFO_SIZE;
226 start:
227 tx_left = espi->tx_t->len - espi->tx_pos;
228 tx_buf = espi->tx_t->tx_buf;
229 while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
230 if (tx_left >= 4) {
231 if (!tx_buf)
232 fsl_espi_write_reg(espi, ESPI_SPITF, 0);
233 else if (espi->swab)
234 fsl_espi_write_reg(espi, ESPI_SPITF,
235 swahb32p(tx_buf + espi->tx_pos));
236 else
237 fsl_espi_write_reg(espi, ESPI_SPITF,
238 *(u32 *)(tx_buf + espi->tx_pos));
239 espi->tx_pos += 4;
240 tx_left -= 4;
241 tx_fifo_avail -= 4;
242 } else if (tx_left >= 2 && tx_buf && espi->swab) {
243 fsl_espi_write_reg16(espi, ESPI_SPITF,
244 swab16p(tx_buf + espi->tx_pos));
245 espi->tx_pos += 2;
246 tx_left -= 2;
247 tx_fifo_avail -= 2;
248 } else {
249 if (!tx_buf)
250 fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
251 else
252 fsl_espi_write_reg8(espi, ESPI_SPITF,
253 *(u8 *)(tx_buf + espi->tx_pos));
254 espi->tx_pos += 1;
255 tx_left -= 1;
256 tx_fifo_avail -= 1;
260 if (!tx_left) {
261 /* Last transfer finished, in rxskip mode only one is needed */
262 if (list_is_last(&espi->tx_t->transfer_list,
263 espi->m_transfers) || espi->rxskip) {
264 espi->tx_done = true;
265 return;
267 espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
268 espi->tx_pos = 0;
269 /* continue with next transfer if tx fifo is not full */
270 if (tx_fifo_avail)
271 goto start;
275 static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
277 u32 rx_fifo_avail = SPIE_RXCNT(events);
278 unsigned int rx_left;
279 void *rx_buf;
281 start:
282 rx_left = espi->rx_t->len - espi->rx_pos;
283 rx_buf = espi->rx_t->rx_buf;
284 while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
285 if (rx_left >= 4) {
286 u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
288 if (rx_buf && espi->swab)
289 *(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
290 else if (rx_buf)
291 *(u32 *)(rx_buf + espi->rx_pos) = val;
292 espi->rx_pos += 4;
293 rx_left -= 4;
294 rx_fifo_avail -= 4;
295 } else if (rx_left >= 2 && rx_buf && espi->swab) {
296 u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
298 *(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
299 espi->rx_pos += 2;
300 rx_left -= 2;
301 rx_fifo_avail -= 2;
302 } else {
303 u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
305 if (rx_buf)
306 *(u8 *)(rx_buf + espi->rx_pos) = val;
307 espi->rx_pos += 1;
308 rx_left -= 1;
309 rx_fifo_avail -= 1;
313 if (!rx_left) {
314 if (list_is_last(&espi->rx_t->transfer_list,
315 espi->m_transfers)) {
316 espi->rx_done = true;
317 return;
319 espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
320 espi->rx_pos = 0;
321 /* continue with next transfer if rx fifo is not empty */
322 if (rx_fifo_avail)
323 goto start;
327 static void fsl_espi_setup_transfer(struct spi_device *spi,
328 struct spi_transfer *t)
330 struct fsl_espi *espi = spi_master_get_devdata(spi->master);
331 int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
332 u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
333 struct fsl_espi_cs *cs = spi_get_ctldata(spi);
334 u32 hw_mode_old = cs->hw_mode;
336 /* mask out bits we are going to set */
337 cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
339 cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
341 pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
343 if (pm > 15) {
344 cs->hw_mode |= CSMODE_DIV16;
345 pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
348 cs->hw_mode |= CSMODE_PM(pm);
350 /* don't write the mode register if the mode doesn't change */
351 if (cs->hw_mode != hw_mode_old)
352 fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
353 cs->hw_mode);
356 static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
358 struct fsl_espi *espi = spi_master_get_devdata(spi->master);
359 unsigned int rx_len = t->len;
360 u32 mask, spcom;
361 int ret;
363 reinit_completion(&espi->done);
365 /* Set SPCOM[CS] and SPCOM[TRANLEN] field */
366 spcom = SPCOM_CS(spi->chip_select);
367 spcom |= SPCOM_TRANLEN(t->len - 1);
369 /* configure RXSKIP mode */
370 if (espi->rxskip) {
371 spcom |= SPCOM_RXSKIP(espi->rxskip);
372 rx_len = t->len - espi->rxskip;
373 if (t->rx_nbits == SPI_NBITS_DUAL)
374 spcom |= SPCOM_DO;
377 fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
379 /* enable interrupts */
380 mask = SPIM_DON;
381 if (rx_len > FSL_ESPI_FIFO_SIZE)
382 mask |= SPIM_RXT;
383 fsl_espi_write_reg(espi, ESPI_SPIM, mask);
385 /* Prevent filling the fifo from getting interrupted */
386 spin_lock_irq(&espi->lock);
387 fsl_espi_fill_tx_fifo(espi, 0);
388 spin_unlock_irq(&espi->lock);
390 /* Won't hang up forever, SPI bus sometimes got lost interrupts... */
391 ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
392 if (ret == 0)
393 dev_err(espi->dev, "Transfer timed out!\n");
395 /* disable rx ints */
396 fsl_espi_write_reg(espi, ESPI_SPIM, 0);
398 return ret == 0 ? -ETIMEDOUT : 0;
401 static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
403 struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
404 struct spi_device *spi = m->spi;
405 int ret;
407 /* In case of LSB-first and bits_per_word > 8 byte-swap all words */
408 espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
410 espi->m_transfers = &m->transfers;
411 espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
412 transfer_list);
413 espi->tx_pos = 0;
414 espi->tx_done = false;
415 espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
416 transfer_list);
417 espi->rx_pos = 0;
418 espi->rx_done = false;
420 espi->rxskip = fsl_espi_check_rxskip_mode(m);
421 if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
422 dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
423 return -EINVAL;
426 /* In RXSKIP mode skip first transfer for reads */
427 if (espi->rxskip)
428 espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
430 fsl_espi_setup_transfer(spi, trans);
432 ret = fsl_espi_bufs(spi, trans);
434 if (trans->delay_usecs)
435 udelay(trans->delay_usecs);
437 return ret;
440 static int fsl_espi_do_one_msg(struct spi_master *master,
441 struct spi_message *m)
443 unsigned int delay_usecs = 0, rx_nbits = 0;
444 struct spi_transfer *t, trans = {};
445 int ret;
447 ret = fsl_espi_check_message(m);
448 if (ret)
449 goto out;
451 list_for_each_entry(t, &m->transfers, transfer_list) {
452 if (t->delay_usecs > delay_usecs)
453 delay_usecs = t->delay_usecs;
454 if (t->rx_nbits > rx_nbits)
455 rx_nbits = t->rx_nbits;
458 t = list_first_entry(&m->transfers, struct spi_transfer,
459 transfer_list);
461 trans.len = m->frame_length;
462 trans.speed_hz = t->speed_hz;
463 trans.bits_per_word = t->bits_per_word;
464 trans.delay_usecs = delay_usecs;
465 trans.rx_nbits = rx_nbits;
467 if (trans.len)
468 ret = fsl_espi_trans(m, &trans);
470 m->actual_length = ret ? 0 : trans.len;
471 out:
472 if (m->status == -EINPROGRESS)
473 m->status = ret;
475 spi_finalize_current_message(master);
477 return ret;
480 static int fsl_espi_setup(struct spi_device *spi)
482 struct fsl_espi *espi;
483 u32 loop_mode;
484 struct fsl_espi_cs *cs = spi_get_ctldata(spi);
486 if (!cs) {
487 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
488 if (!cs)
489 return -ENOMEM;
490 spi_set_ctldata(spi, cs);
493 espi = spi_master_get_devdata(spi->master);
495 pm_runtime_get_sync(espi->dev);
497 cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
498 /* mask out bits we are going to set */
499 cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
500 | CSMODE_REV);
502 if (spi->mode & SPI_CPHA)
503 cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
504 if (spi->mode & SPI_CPOL)
505 cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
506 if (!(spi->mode & SPI_LSB_FIRST))
507 cs->hw_mode |= CSMODE_REV;
509 /* Handle the loop mode */
510 loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
511 loop_mode &= ~SPMODE_LOOP;
512 if (spi->mode & SPI_LOOP)
513 loop_mode |= SPMODE_LOOP;
514 fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
516 fsl_espi_setup_transfer(spi, NULL);
518 pm_runtime_mark_last_busy(espi->dev);
519 pm_runtime_put_autosuspend(espi->dev);
521 return 0;
524 static void fsl_espi_cleanup(struct spi_device *spi)
526 struct fsl_espi_cs *cs = spi_get_ctldata(spi);
528 kfree(cs);
529 spi_set_ctldata(spi, NULL);
532 static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
534 if (!espi->rx_done)
535 fsl_espi_read_rx_fifo(espi, events);
537 if (!espi->tx_done)
538 fsl_espi_fill_tx_fifo(espi, events);
540 if (!espi->tx_done || !espi->rx_done)
541 return;
543 /* we're done, but check for errors before returning */
544 events = fsl_espi_read_reg(espi, ESPI_SPIE);
546 if (!(events & SPIE_DON))
547 dev_err(espi->dev,
548 "Transfer done but SPIE_DON isn't set!\n");
550 if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE) {
551 dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
552 dev_err(espi->dev, "SPIE_RXCNT = %d, SPIE_TXCNT = %d\n",
553 SPIE_RXCNT(events), SPIE_TXCNT(events));
556 complete(&espi->done);
559 static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
561 struct fsl_espi *espi = context_data;
562 u32 events;
564 spin_lock(&espi->lock);
566 /* Get interrupt events(tx/rx) */
567 events = fsl_espi_read_reg(espi, ESPI_SPIE);
568 if (!events) {
569 spin_unlock(&espi->lock);
570 return IRQ_NONE;
573 dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
575 fsl_espi_cpu_irq(espi, events);
577 /* Clear the events */
578 fsl_espi_write_reg(espi, ESPI_SPIE, events);
580 spin_unlock(&espi->lock);
582 return IRQ_HANDLED;
585 #ifdef CONFIG_PM
586 static int fsl_espi_runtime_suspend(struct device *dev)
588 struct spi_master *master = dev_get_drvdata(dev);
589 struct fsl_espi *espi = spi_master_get_devdata(master);
590 u32 regval;
592 regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
593 regval &= ~SPMODE_ENABLE;
594 fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
596 return 0;
599 static int fsl_espi_runtime_resume(struct device *dev)
601 struct spi_master *master = dev_get_drvdata(dev);
602 struct fsl_espi *espi = spi_master_get_devdata(master);
603 u32 regval;
605 regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
606 regval |= SPMODE_ENABLE;
607 fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
609 return 0;
611 #endif
613 static size_t fsl_espi_max_message_size(struct spi_device *spi)
615 return SPCOM_TRANLEN_MAX;
618 static void fsl_espi_init_regs(struct device *dev, bool initial)
620 struct spi_master *master = dev_get_drvdata(dev);
621 struct fsl_espi *espi = spi_master_get_devdata(master);
622 struct device_node *nc;
623 u32 csmode, cs, prop;
624 int ret;
626 /* SPI controller initializations */
627 fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
628 fsl_espi_write_reg(espi, ESPI_SPIM, 0);
629 fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
630 fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
632 /* Init eSPI CS mode register */
633 for_each_available_child_of_node(master->dev.of_node, nc) {
634 /* get chip select */
635 ret = of_property_read_u32(nc, "reg", &cs);
636 if (ret || cs >= master->num_chipselect)
637 continue;
639 csmode = CSMODE_INIT_VAL;
641 /* check if CSBEF is set in device tree */
642 ret = of_property_read_u32(nc, "fsl,csbef", &prop);
643 if (!ret) {
644 csmode &= ~(CSMODE_BEF(0xf));
645 csmode |= CSMODE_BEF(prop);
648 /* check if CSAFT is set in device tree */
649 ret = of_property_read_u32(nc, "fsl,csaft", &prop);
650 if (!ret) {
651 csmode &= ~(CSMODE_AFT(0xf));
652 csmode |= CSMODE_AFT(prop);
655 fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
657 if (initial)
658 dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
661 /* Enable SPI interface */
662 fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
665 static int fsl_espi_probe(struct device *dev, struct resource *mem,
666 unsigned int irq, unsigned int num_cs)
668 struct spi_master *master;
669 struct fsl_espi *espi;
670 int ret;
672 master = spi_alloc_master(dev, sizeof(struct fsl_espi));
673 if (!master)
674 return -ENOMEM;
676 dev_set_drvdata(dev, master);
678 master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
679 SPI_LSB_FIRST | SPI_LOOP;
680 master->dev.of_node = dev->of_node;
681 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
682 master->setup = fsl_espi_setup;
683 master->cleanup = fsl_espi_cleanup;
684 master->transfer_one_message = fsl_espi_do_one_msg;
685 master->auto_runtime_pm = true;
686 master->max_message_size = fsl_espi_max_message_size;
687 master->num_chipselect = num_cs;
689 espi = spi_master_get_devdata(master);
690 spin_lock_init(&espi->lock);
692 espi->dev = dev;
693 espi->spibrg = fsl_get_sys_freq();
694 if (espi->spibrg == -1) {
695 dev_err(dev, "Can't get sys frequency!\n");
696 ret = -EINVAL;
697 goto err_probe;
699 /* determined by clock divider fields DIV16/PM in register SPMODEx */
700 master->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
701 master->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
703 init_completion(&espi->done);
705 espi->reg_base = devm_ioremap_resource(dev, mem);
706 if (IS_ERR(espi->reg_base)) {
707 ret = PTR_ERR(espi->reg_base);
708 goto err_probe;
711 /* Register for SPI Interrupt */
712 ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
713 if (ret)
714 goto err_probe;
716 fsl_espi_init_regs(dev, true);
718 pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
719 pm_runtime_use_autosuspend(dev);
720 pm_runtime_set_active(dev);
721 pm_runtime_enable(dev);
722 pm_runtime_get_sync(dev);
724 ret = devm_spi_register_master(dev, master);
725 if (ret < 0)
726 goto err_pm;
728 dev_info(dev, "at 0x%p (irq = %u)\n", espi->reg_base, irq);
730 pm_runtime_mark_last_busy(dev);
731 pm_runtime_put_autosuspend(dev);
733 return 0;
735 err_pm:
736 pm_runtime_put_noidle(dev);
737 pm_runtime_disable(dev);
738 pm_runtime_set_suspended(dev);
739 err_probe:
740 spi_master_put(master);
741 return ret;
744 static int of_fsl_espi_get_chipselects(struct device *dev)
746 struct device_node *np = dev->of_node;
747 u32 num_cs;
748 int ret;
750 ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
751 if (ret) {
752 dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
753 return 0;
756 return num_cs;
759 static int of_fsl_espi_probe(struct platform_device *ofdev)
761 struct device *dev = &ofdev->dev;
762 struct device_node *np = ofdev->dev.of_node;
763 struct resource mem;
764 unsigned int irq, num_cs;
765 int ret;
767 if (of_property_read_bool(np, "mode")) {
768 dev_err(dev, "mode property is not supported on ESPI!\n");
769 return -EINVAL;
772 num_cs = of_fsl_espi_get_chipselects(dev);
773 if (!num_cs)
774 return -EINVAL;
776 ret = of_address_to_resource(np, 0, &mem);
777 if (ret)
778 return ret;
780 irq = irq_of_parse_and_map(np, 0);
781 if (!irq)
782 return -EINVAL;
784 return fsl_espi_probe(dev, &mem, irq, num_cs);
787 static int of_fsl_espi_remove(struct platform_device *dev)
789 pm_runtime_disable(&dev->dev);
791 return 0;
794 #ifdef CONFIG_PM_SLEEP
795 static int of_fsl_espi_suspend(struct device *dev)
797 struct spi_master *master = dev_get_drvdata(dev);
798 int ret;
800 ret = spi_master_suspend(master);
801 if (ret) {
802 dev_warn(dev, "cannot suspend master\n");
803 return ret;
806 return pm_runtime_force_suspend(dev);
809 static int of_fsl_espi_resume(struct device *dev)
811 struct spi_master *master = dev_get_drvdata(dev);
812 int ret;
814 fsl_espi_init_regs(dev, false);
816 ret = pm_runtime_force_resume(dev);
817 if (ret < 0)
818 return ret;
820 return spi_master_resume(master);
822 #endif /* CONFIG_PM_SLEEP */
824 static const struct dev_pm_ops espi_pm = {
825 SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
826 fsl_espi_runtime_resume, NULL)
827 SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
830 static const struct of_device_id of_fsl_espi_match[] = {
831 { .compatible = "fsl,mpc8536-espi" },
834 MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
836 static struct platform_driver fsl_espi_driver = {
837 .driver = {
838 .name = "fsl_espi",
839 .of_match_table = of_fsl_espi_match,
840 .pm = &espi_pm,
842 .probe = of_fsl_espi_probe,
843 .remove = of_fsl_espi_remove,
845 module_platform_driver(fsl_espi_driver);
847 MODULE_AUTHOR("Mingkai Hu");
848 MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
849 MODULE_LICENSE("GPL");