Linux 4.19.133
[linux/fpc-iii.git] / fs / dcache.c
blob6e0022326afe32c002014cab639c595a1022ce05
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
37 * Usage:
38 * dcache->d_inode->i_lock protects:
39 * - i_dentry, d_u.d_alias, d_inode of aliases
40 * dcache_hash_bucket lock protects:
41 * - the dcache hash table
42 * s_roots bl list spinlock protects:
43 * - the s_roots list (see __d_drop)
44 * dentry->d_sb->s_dentry_lru_lock protects:
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
50 * - d_count
51 * - d_unhashed()
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
54 * - d_u.d_alias, d_inode
56 * Ordering:
57 * dentry->d_inode->i_lock
58 * dentry->d_lock
59 * dentry->d_sb->s_dentry_lru_lock
60 * dcache_hash_bucket lock
61 * s_roots lock
63 * If there is an ancestor relationship:
64 * dentry->d_parent->...->d_parent->d_lock
65 * ...
66 * dentry->d_parent->d_lock
67 * dentry->d_lock
69 * If no ancestor relationship:
70 * arbitrary, since it's serialized on rename_lock
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
77 EXPORT_SYMBOL(rename_lock);
79 static struct kmem_cache *dentry_cache __read_mostly;
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
87 * This is the single most critical data structure when it comes
88 * to the dcache: the hashtable for lookups. Somebody should try
89 * to make this good - I've just made it work.
91 * This hash-function tries to avoid losing too many bits of hash
92 * information, yet avoid using a prime hash-size or similar.
95 static unsigned int d_hash_shift __read_mostly;
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
101 return dentry_hashtable + (hash >> d_hash_shift);
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 unsigned int hash)
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
126 * Here we resort to our own counters instead of using generic per-cpu counters
127 * for consistency with what the vfs inode code does. We are expected to harvest
128 * better code and performance by having our own specialized counters.
130 * Please note that the loop is done over all possible CPUs, not over all online
131 * CPUs. The reason for this is that we don't want to play games with CPUs going
132 * on and off. If one of them goes off, we will just keep their counters.
134 * glommer: See cffbc8a for details, and if you ever intend to change this,
135 * please update all vfs counters to match.
137 static long get_nr_dentry(void)
139 int i;
140 long sum = 0;
141 for_each_possible_cpu(i)
142 sum += per_cpu(nr_dentry, i);
143 return sum < 0 ? 0 : sum;
146 static long get_nr_dentry_unused(void)
148 int i;
149 long sum = 0;
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry_unused, i);
152 return sum < 0 ? 0 : sum;
155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156 size_t *lenp, loff_t *ppos)
158 dentry_stat.nr_dentry = get_nr_dentry();
159 dentry_stat.nr_unused = get_nr_dentry_unused();
160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
162 #endif
165 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166 * The strings are both count bytes long, and count is non-zero.
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
170 #include <asm/word-at-a-time.h>
172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173 * aligned allocation for this particular component. We don't
174 * strictly need the load_unaligned_zeropad() safety, but it
175 * doesn't hurt either.
177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178 * need the careful unaligned handling.
180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
182 unsigned long a,b,mask;
184 for (;;) {
185 a = read_word_at_a_time(cs);
186 b = load_unaligned_zeropad(ct);
187 if (tcount < sizeof(unsigned long))
188 break;
189 if (unlikely(a != b))
190 return 1;
191 cs += sizeof(unsigned long);
192 ct += sizeof(unsigned long);
193 tcount -= sizeof(unsigned long);
194 if (!tcount)
195 return 0;
197 mask = bytemask_from_count(tcount);
198 return unlikely(!!((a ^ b) & mask));
201 #else
203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
205 do {
206 if (*cs != *ct)
207 return 1;
208 cs++;
209 ct++;
210 tcount--;
211 } while (tcount);
212 return 0;
215 #endif
217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
220 * Be careful about RCU walk racing with rename:
221 * use 'READ_ONCE' to fetch the name pointer.
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
235 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
237 return dentry_string_cmp(cs, ct, tcount);
240 struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
248 static inline struct external_name *external_name(struct dentry *dentry)
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
253 static void __d_free(struct rcu_head *head)
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
257 kmem_cache_free(dentry_cache, dentry);
260 static void __d_free_external_name(struct rcu_head *head)
262 struct external_name *name = container_of(head, struct external_name,
263 u.head);
265 mod_node_page_state(page_pgdat(virt_to_page(name)),
266 NR_INDIRECTLY_RECLAIMABLE_BYTES,
267 -ksize(name));
269 kfree(name);
272 static void __d_free_external(struct rcu_head *head)
274 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
276 __d_free_external_name(&external_name(dentry)->u.head);
278 kmem_cache_free(dentry_cache, dentry);
281 static inline int dname_external(const struct dentry *dentry)
283 return dentry->d_name.name != dentry->d_iname;
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
288 spin_lock(&dentry->d_lock);
289 if (unlikely(dname_external(dentry))) {
290 struct external_name *p = external_name(dentry);
291 atomic_inc(&p->u.count);
292 spin_unlock(&dentry->d_lock);
293 name->name = p->name;
294 } else {
295 memcpy(name->inline_name, dentry->d_iname,
296 dentry->d_name.len + 1);
297 spin_unlock(&dentry->d_lock);
298 name->name = name->inline_name;
301 EXPORT_SYMBOL(take_dentry_name_snapshot);
303 void release_dentry_name_snapshot(struct name_snapshot *name)
305 if (unlikely(name->name != name->inline_name)) {
306 struct external_name *p;
307 p = container_of(name->name, struct external_name, name[0]);
308 if (unlikely(atomic_dec_and_test(&p->u.count)))
309 call_rcu(&p->u.head, __d_free_external_name);
312 EXPORT_SYMBOL(release_dentry_name_snapshot);
314 static inline void __d_set_inode_and_type(struct dentry *dentry,
315 struct inode *inode,
316 unsigned type_flags)
318 unsigned flags;
320 dentry->d_inode = inode;
321 flags = READ_ONCE(dentry->d_flags);
322 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
323 flags |= type_flags;
324 WRITE_ONCE(dentry->d_flags, flags);
327 static inline void __d_clear_type_and_inode(struct dentry *dentry)
329 unsigned flags = READ_ONCE(dentry->d_flags);
331 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
332 WRITE_ONCE(dentry->d_flags, flags);
333 dentry->d_inode = NULL;
336 static void dentry_free(struct dentry *dentry)
338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 if (unlikely(dname_external(dentry))) {
340 struct external_name *p = external_name(dentry);
341 if (likely(atomic_dec_and_test(&p->u.count))) {
342 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 return;
346 /* if dentry was never visible to RCU, immediate free is OK */
347 if (dentry->d_flags & DCACHE_NORCU)
348 __d_free(&dentry->d_u.d_rcu);
349 else
350 call_rcu(&dentry->d_u.d_rcu, __d_free);
354 * Release the dentry's inode, using the filesystem
355 * d_iput() operation if defined.
357 static void dentry_unlink_inode(struct dentry * dentry)
358 __releases(dentry->d_lock)
359 __releases(dentry->d_inode->i_lock)
361 struct inode *inode = dentry->d_inode;
363 raw_write_seqcount_begin(&dentry->d_seq);
364 __d_clear_type_and_inode(dentry);
365 hlist_del_init(&dentry->d_u.d_alias);
366 raw_write_seqcount_end(&dentry->d_seq);
367 spin_unlock(&dentry->d_lock);
368 spin_unlock(&inode->i_lock);
369 if (!inode->i_nlink)
370 fsnotify_inoderemove(inode);
371 if (dentry->d_op && dentry->d_op->d_iput)
372 dentry->d_op->d_iput(dentry, inode);
373 else
374 iput(inode);
378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379 * is in use - which includes both the "real" per-superblock
380 * LRU list _and_ the DCACHE_SHRINK_LIST use.
382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383 * on the shrink list (ie not on the superblock LRU list).
385 * The per-cpu "nr_dentry_unused" counters are updated with
386 * the DCACHE_LRU_LIST bit.
388 * These helper functions make sure we always follow the
389 * rules. d_lock must be held by the caller.
391 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
392 static void d_lru_add(struct dentry *dentry)
394 D_FLAG_VERIFY(dentry, 0);
395 dentry->d_flags |= DCACHE_LRU_LIST;
396 this_cpu_inc(nr_dentry_unused);
397 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
400 static void d_lru_del(struct dentry *dentry)
402 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
403 dentry->d_flags &= ~DCACHE_LRU_LIST;
404 this_cpu_dec(nr_dentry_unused);
405 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
408 static void d_shrink_del(struct dentry *dentry)
410 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
411 list_del_init(&dentry->d_lru);
412 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
413 this_cpu_dec(nr_dentry_unused);
416 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
418 D_FLAG_VERIFY(dentry, 0);
419 list_add(&dentry->d_lru, list);
420 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
421 this_cpu_inc(nr_dentry_unused);
425 * These can only be called under the global LRU lock, ie during the
426 * callback for freeing the LRU list. "isolate" removes it from the
427 * LRU lists entirely, while shrink_move moves it to the indicated
428 * private list.
430 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
432 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
433 dentry->d_flags &= ~DCACHE_LRU_LIST;
434 this_cpu_dec(nr_dentry_unused);
435 list_lru_isolate(lru, &dentry->d_lru);
438 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
439 struct list_head *list)
441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 dentry->d_flags |= DCACHE_SHRINK_LIST;
443 list_lru_isolate_move(lru, &dentry->d_lru, list);
447 * d_drop - drop a dentry
448 * @dentry: dentry to drop
450 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
451 * be found through a VFS lookup any more. Note that this is different from
452 * deleting the dentry - d_delete will try to mark the dentry negative if
453 * possible, giving a successful _negative_ lookup, while d_drop will
454 * just make the cache lookup fail.
456 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
457 * reason (NFS timeouts or autofs deletes).
459 * __d_drop requires dentry->d_lock
460 * ___d_drop doesn't mark dentry as "unhashed"
461 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
463 static void ___d_drop(struct dentry *dentry)
465 struct hlist_bl_head *b;
467 * Hashed dentries are normally on the dentry hashtable,
468 * with the exception of those newly allocated by
469 * d_obtain_root, which are always IS_ROOT:
471 if (unlikely(IS_ROOT(dentry)))
472 b = &dentry->d_sb->s_roots;
473 else
474 b = d_hash(dentry->d_name.hash);
476 hlist_bl_lock(b);
477 __hlist_bl_del(&dentry->d_hash);
478 hlist_bl_unlock(b);
481 void __d_drop(struct dentry *dentry)
483 if (!d_unhashed(dentry)) {
484 ___d_drop(dentry);
485 dentry->d_hash.pprev = NULL;
486 write_seqcount_invalidate(&dentry->d_seq);
489 EXPORT_SYMBOL(__d_drop);
491 void d_drop(struct dentry *dentry)
493 spin_lock(&dentry->d_lock);
494 __d_drop(dentry);
495 spin_unlock(&dentry->d_lock);
497 EXPORT_SYMBOL(d_drop);
499 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
501 struct dentry *next;
503 * Inform d_walk() and shrink_dentry_list() that we are no longer
504 * attached to the dentry tree
506 dentry->d_flags |= DCACHE_DENTRY_KILLED;
507 if (unlikely(list_empty(&dentry->d_child)))
508 return;
509 __list_del_entry(&dentry->d_child);
511 * Cursors can move around the list of children. While we'd been
512 * a normal list member, it didn't matter - ->d_child.next would've
513 * been updated. However, from now on it won't be and for the
514 * things like d_walk() it might end up with a nasty surprise.
515 * Normally d_walk() doesn't care about cursors moving around -
516 * ->d_lock on parent prevents that and since a cursor has no children
517 * of its own, we get through it without ever unlocking the parent.
518 * There is one exception, though - if we ascend from a child that
519 * gets killed as soon as we unlock it, the next sibling is found
520 * using the value left in its ->d_child.next. And if _that_
521 * pointed to a cursor, and cursor got moved (e.g. by lseek())
522 * before d_walk() regains parent->d_lock, we'll end up skipping
523 * everything the cursor had been moved past.
525 * Solution: make sure that the pointer left behind in ->d_child.next
526 * points to something that won't be moving around. I.e. skip the
527 * cursors.
529 while (dentry->d_child.next != &parent->d_subdirs) {
530 next = list_entry(dentry->d_child.next, struct dentry, d_child);
531 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
532 break;
533 dentry->d_child.next = next->d_child.next;
537 static void __dentry_kill(struct dentry *dentry)
539 struct dentry *parent = NULL;
540 bool can_free = true;
541 if (!IS_ROOT(dentry))
542 parent = dentry->d_parent;
545 * The dentry is now unrecoverably dead to the world.
547 lockref_mark_dead(&dentry->d_lockref);
550 * inform the fs via d_prune that this dentry is about to be
551 * unhashed and destroyed.
553 if (dentry->d_flags & DCACHE_OP_PRUNE)
554 dentry->d_op->d_prune(dentry);
556 if (dentry->d_flags & DCACHE_LRU_LIST) {
557 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
558 d_lru_del(dentry);
560 /* if it was on the hash then remove it */
561 __d_drop(dentry);
562 dentry_unlist(dentry, parent);
563 if (parent)
564 spin_unlock(&parent->d_lock);
565 if (dentry->d_inode)
566 dentry_unlink_inode(dentry);
567 else
568 spin_unlock(&dentry->d_lock);
569 this_cpu_dec(nr_dentry);
570 if (dentry->d_op && dentry->d_op->d_release)
571 dentry->d_op->d_release(dentry);
573 spin_lock(&dentry->d_lock);
574 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
575 dentry->d_flags |= DCACHE_MAY_FREE;
576 can_free = false;
578 spin_unlock(&dentry->d_lock);
579 if (likely(can_free))
580 dentry_free(dentry);
581 cond_resched();
584 static struct dentry *__lock_parent(struct dentry *dentry)
586 struct dentry *parent;
587 rcu_read_lock();
588 spin_unlock(&dentry->d_lock);
589 again:
590 parent = READ_ONCE(dentry->d_parent);
591 spin_lock(&parent->d_lock);
593 * We can't blindly lock dentry until we are sure
594 * that we won't violate the locking order.
595 * Any changes of dentry->d_parent must have
596 * been done with parent->d_lock held, so
597 * spin_lock() above is enough of a barrier
598 * for checking if it's still our child.
600 if (unlikely(parent != dentry->d_parent)) {
601 spin_unlock(&parent->d_lock);
602 goto again;
604 rcu_read_unlock();
605 if (parent != dentry)
606 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
607 else
608 parent = NULL;
609 return parent;
612 static inline struct dentry *lock_parent(struct dentry *dentry)
614 struct dentry *parent = dentry->d_parent;
615 if (IS_ROOT(dentry))
616 return NULL;
617 if (likely(spin_trylock(&parent->d_lock)))
618 return parent;
619 return __lock_parent(dentry);
622 static inline bool retain_dentry(struct dentry *dentry)
624 WARN_ON(d_in_lookup(dentry));
626 /* Unreachable? Get rid of it */
627 if (unlikely(d_unhashed(dentry)))
628 return false;
630 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
631 return false;
633 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
634 if (dentry->d_op->d_delete(dentry))
635 return false;
637 /* retain; LRU fodder */
638 dentry->d_lockref.count--;
639 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
640 d_lru_add(dentry);
641 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
642 dentry->d_flags |= DCACHE_REFERENCED;
643 return true;
647 * Finish off a dentry we've decided to kill.
648 * dentry->d_lock must be held, returns with it unlocked.
649 * Returns dentry requiring refcount drop, or NULL if we're done.
651 static struct dentry *dentry_kill(struct dentry *dentry)
652 __releases(dentry->d_lock)
654 struct inode *inode = dentry->d_inode;
655 struct dentry *parent = NULL;
657 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
658 goto slow_positive;
660 if (!IS_ROOT(dentry)) {
661 parent = dentry->d_parent;
662 if (unlikely(!spin_trylock(&parent->d_lock))) {
663 parent = __lock_parent(dentry);
664 if (likely(inode || !dentry->d_inode))
665 goto got_locks;
666 /* negative that became positive */
667 if (parent)
668 spin_unlock(&parent->d_lock);
669 inode = dentry->d_inode;
670 goto slow_positive;
673 __dentry_kill(dentry);
674 return parent;
676 slow_positive:
677 spin_unlock(&dentry->d_lock);
678 spin_lock(&inode->i_lock);
679 spin_lock(&dentry->d_lock);
680 parent = lock_parent(dentry);
681 got_locks:
682 if (unlikely(dentry->d_lockref.count != 1)) {
683 dentry->d_lockref.count--;
684 } else if (likely(!retain_dentry(dentry))) {
685 __dentry_kill(dentry);
686 return parent;
688 /* we are keeping it, after all */
689 if (inode)
690 spin_unlock(&inode->i_lock);
691 if (parent)
692 spin_unlock(&parent->d_lock);
693 spin_unlock(&dentry->d_lock);
694 return NULL;
698 * Try to do a lockless dput(), and return whether that was successful.
700 * If unsuccessful, we return false, having already taken the dentry lock.
702 * The caller needs to hold the RCU read lock, so that the dentry is
703 * guaranteed to stay around even if the refcount goes down to zero!
705 static inline bool fast_dput(struct dentry *dentry)
707 int ret;
708 unsigned int d_flags;
711 * If we have a d_op->d_delete() operation, we sould not
712 * let the dentry count go to zero, so use "put_or_lock".
714 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
715 return lockref_put_or_lock(&dentry->d_lockref);
718 * .. otherwise, we can try to just decrement the
719 * lockref optimistically.
721 ret = lockref_put_return(&dentry->d_lockref);
724 * If the lockref_put_return() failed due to the lock being held
725 * by somebody else, the fast path has failed. We will need to
726 * get the lock, and then check the count again.
728 if (unlikely(ret < 0)) {
729 spin_lock(&dentry->d_lock);
730 if (dentry->d_lockref.count > 1) {
731 dentry->d_lockref.count--;
732 spin_unlock(&dentry->d_lock);
733 return true;
735 return false;
739 * If we weren't the last ref, we're done.
741 if (ret)
742 return true;
745 * Careful, careful. The reference count went down
746 * to zero, but we don't hold the dentry lock, so
747 * somebody else could get it again, and do another
748 * dput(), and we need to not race with that.
750 * However, there is a very special and common case
751 * where we don't care, because there is nothing to
752 * do: the dentry is still hashed, it does not have
753 * a 'delete' op, and it's referenced and already on
754 * the LRU list.
756 * NOTE! Since we aren't locked, these values are
757 * not "stable". However, it is sufficient that at
758 * some point after we dropped the reference the
759 * dentry was hashed and the flags had the proper
760 * value. Other dentry users may have re-gotten
761 * a reference to the dentry and change that, but
762 * our work is done - we can leave the dentry
763 * around with a zero refcount.
765 smp_rmb();
766 d_flags = READ_ONCE(dentry->d_flags);
767 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
769 /* Nothing to do? Dropping the reference was all we needed? */
770 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
771 return true;
774 * Not the fast normal case? Get the lock. We've already decremented
775 * the refcount, but we'll need to re-check the situation after
776 * getting the lock.
778 spin_lock(&dentry->d_lock);
781 * Did somebody else grab a reference to it in the meantime, and
782 * we're no longer the last user after all? Alternatively, somebody
783 * else could have killed it and marked it dead. Either way, we
784 * don't need to do anything else.
786 if (dentry->d_lockref.count) {
787 spin_unlock(&dentry->d_lock);
788 return true;
792 * Re-get the reference we optimistically dropped. We hold the
793 * lock, and we just tested that it was zero, so we can just
794 * set it to 1.
796 dentry->d_lockref.count = 1;
797 return false;
802 * This is dput
804 * This is complicated by the fact that we do not want to put
805 * dentries that are no longer on any hash chain on the unused
806 * list: we'd much rather just get rid of them immediately.
808 * However, that implies that we have to traverse the dentry
809 * tree upwards to the parents which might _also_ now be
810 * scheduled for deletion (it may have been only waiting for
811 * its last child to go away).
813 * This tail recursion is done by hand as we don't want to depend
814 * on the compiler to always get this right (gcc generally doesn't).
815 * Real recursion would eat up our stack space.
819 * dput - release a dentry
820 * @dentry: dentry to release
822 * Release a dentry. This will drop the usage count and if appropriate
823 * call the dentry unlink method as well as removing it from the queues and
824 * releasing its resources. If the parent dentries were scheduled for release
825 * they too may now get deleted.
827 void dput(struct dentry *dentry)
829 while (dentry) {
830 might_sleep();
832 rcu_read_lock();
833 if (likely(fast_dput(dentry))) {
834 rcu_read_unlock();
835 return;
838 /* Slow case: now with the dentry lock held */
839 rcu_read_unlock();
841 if (likely(retain_dentry(dentry))) {
842 spin_unlock(&dentry->d_lock);
843 return;
846 dentry = dentry_kill(dentry);
849 EXPORT_SYMBOL(dput);
852 /* This must be called with d_lock held */
853 static inline void __dget_dlock(struct dentry *dentry)
855 dentry->d_lockref.count++;
858 static inline void __dget(struct dentry *dentry)
860 lockref_get(&dentry->d_lockref);
863 struct dentry *dget_parent(struct dentry *dentry)
865 int gotref;
866 struct dentry *ret;
869 * Do optimistic parent lookup without any
870 * locking.
872 rcu_read_lock();
873 ret = READ_ONCE(dentry->d_parent);
874 gotref = lockref_get_not_zero(&ret->d_lockref);
875 rcu_read_unlock();
876 if (likely(gotref)) {
877 if (likely(ret == READ_ONCE(dentry->d_parent)))
878 return ret;
879 dput(ret);
882 repeat:
884 * Don't need rcu_dereference because we re-check it was correct under
885 * the lock.
887 rcu_read_lock();
888 ret = dentry->d_parent;
889 spin_lock(&ret->d_lock);
890 if (unlikely(ret != dentry->d_parent)) {
891 spin_unlock(&ret->d_lock);
892 rcu_read_unlock();
893 goto repeat;
895 rcu_read_unlock();
896 BUG_ON(!ret->d_lockref.count);
897 ret->d_lockref.count++;
898 spin_unlock(&ret->d_lock);
899 return ret;
901 EXPORT_SYMBOL(dget_parent);
903 static struct dentry * __d_find_any_alias(struct inode *inode)
905 struct dentry *alias;
907 if (hlist_empty(&inode->i_dentry))
908 return NULL;
909 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
910 __dget(alias);
911 return alias;
915 * d_find_any_alias - find any alias for a given inode
916 * @inode: inode to find an alias for
918 * If any aliases exist for the given inode, take and return a
919 * reference for one of them. If no aliases exist, return %NULL.
921 struct dentry *d_find_any_alias(struct inode *inode)
923 struct dentry *de;
925 spin_lock(&inode->i_lock);
926 de = __d_find_any_alias(inode);
927 spin_unlock(&inode->i_lock);
928 return de;
930 EXPORT_SYMBOL(d_find_any_alias);
933 * d_find_alias - grab a hashed alias of inode
934 * @inode: inode in question
936 * If inode has a hashed alias, or is a directory and has any alias,
937 * acquire the reference to alias and return it. Otherwise return NULL.
938 * Notice that if inode is a directory there can be only one alias and
939 * it can be unhashed only if it has no children, or if it is the root
940 * of a filesystem, or if the directory was renamed and d_revalidate
941 * was the first vfs operation to notice.
943 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
944 * any other hashed alias over that one.
946 static struct dentry *__d_find_alias(struct inode *inode)
948 struct dentry *alias;
950 if (S_ISDIR(inode->i_mode))
951 return __d_find_any_alias(inode);
953 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
954 spin_lock(&alias->d_lock);
955 if (!d_unhashed(alias)) {
956 __dget_dlock(alias);
957 spin_unlock(&alias->d_lock);
958 return alias;
960 spin_unlock(&alias->d_lock);
962 return NULL;
965 struct dentry *d_find_alias(struct inode *inode)
967 struct dentry *de = NULL;
969 if (!hlist_empty(&inode->i_dentry)) {
970 spin_lock(&inode->i_lock);
971 de = __d_find_alias(inode);
972 spin_unlock(&inode->i_lock);
974 return de;
976 EXPORT_SYMBOL(d_find_alias);
979 * Try to kill dentries associated with this inode.
980 * WARNING: you must own a reference to inode.
982 void d_prune_aliases(struct inode *inode)
984 struct dentry *dentry;
985 restart:
986 spin_lock(&inode->i_lock);
987 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
988 spin_lock(&dentry->d_lock);
989 if (!dentry->d_lockref.count) {
990 struct dentry *parent = lock_parent(dentry);
991 if (likely(!dentry->d_lockref.count)) {
992 __dentry_kill(dentry);
993 dput(parent);
994 goto restart;
996 if (parent)
997 spin_unlock(&parent->d_lock);
999 spin_unlock(&dentry->d_lock);
1001 spin_unlock(&inode->i_lock);
1003 EXPORT_SYMBOL(d_prune_aliases);
1006 * Lock a dentry from shrink list.
1007 * Called under rcu_read_lock() and dentry->d_lock; the former
1008 * guarantees that nothing we access will be freed under us.
1009 * Note that dentry is *not* protected from concurrent dentry_kill(),
1010 * d_delete(), etc.
1012 * Return false if dentry has been disrupted or grabbed, leaving
1013 * the caller to kick it off-list. Otherwise, return true and have
1014 * that dentry's inode and parent both locked.
1016 static bool shrink_lock_dentry(struct dentry *dentry)
1018 struct inode *inode;
1019 struct dentry *parent;
1021 if (dentry->d_lockref.count)
1022 return false;
1024 inode = dentry->d_inode;
1025 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1026 spin_unlock(&dentry->d_lock);
1027 spin_lock(&inode->i_lock);
1028 spin_lock(&dentry->d_lock);
1029 if (unlikely(dentry->d_lockref.count))
1030 goto out;
1031 /* changed inode means that somebody had grabbed it */
1032 if (unlikely(inode != dentry->d_inode))
1033 goto out;
1036 parent = dentry->d_parent;
1037 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1038 return true;
1040 spin_unlock(&dentry->d_lock);
1041 spin_lock(&parent->d_lock);
1042 if (unlikely(parent != dentry->d_parent)) {
1043 spin_unlock(&parent->d_lock);
1044 spin_lock(&dentry->d_lock);
1045 goto out;
1047 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1048 if (likely(!dentry->d_lockref.count))
1049 return true;
1050 spin_unlock(&parent->d_lock);
1051 out:
1052 if (inode)
1053 spin_unlock(&inode->i_lock);
1054 return false;
1057 static void shrink_dentry_list(struct list_head *list)
1059 while (!list_empty(list)) {
1060 struct dentry *dentry, *parent;
1062 dentry = list_entry(list->prev, struct dentry, d_lru);
1063 spin_lock(&dentry->d_lock);
1064 rcu_read_lock();
1065 if (!shrink_lock_dentry(dentry)) {
1066 bool can_free = false;
1067 rcu_read_unlock();
1068 d_shrink_del(dentry);
1069 if (dentry->d_lockref.count < 0)
1070 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1071 spin_unlock(&dentry->d_lock);
1072 if (can_free)
1073 dentry_free(dentry);
1074 continue;
1076 rcu_read_unlock();
1077 d_shrink_del(dentry);
1078 parent = dentry->d_parent;
1079 __dentry_kill(dentry);
1080 if (parent == dentry)
1081 continue;
1083 * We need to prune ancestors too. This is necessary to prevent
1084 * quadratic behavior of shrink_dcache_parent(), but is also
1085 * expected to be beneficial in reducing dentry cache
1086 * fragmentation.
1088 dentry = parent;
1089 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1090 dentry = dentry_kill(dentry);
1094 static enum lru_status dentry_lru_isolate(struct list_head *item,
1095 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1097 struct list_head *freeable = arg;
1098 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1102 * we are inverting the lru lock/dentry->d_lock here,
1103 * so use a trylock. If we fail to get the lock, just skip
1104 * it
1106 if (!spin_trylock(&dentry->d_lock))
1107 return LRU_SKIP;
1110 * Referenced dentries are still in use. If they have active
1111 * counts, just remove them from the LRU. Otherwise give them
1112 * another pass through the LRU.
1114 if (dentry->d_lockref.count) {
1115 d_lru_isolate(lru, dentry);
1116 spin_unlock(&dentry->d_lock);
1117 return LRU_REMOVED;
1120 if (dentry->d_flags & DCACHE_REFERENCED) {
1121 dentry->d_flags &= ~DCACHE_REFERENCED;
1122 spin_unlock(&dentry->d_lock);
1125 * The list move itself will be made by the common LRU code. At
1126 * this point, we've dropped the dentry->d_lock but keep the
1127 * lru lock. This is safe to do, since every list movement is
1128 * protected by the lru lock even if both locks are held.
1130 * This is guaranteed by the fact that all LRU management
1131 * functions are intermediated by the LRU API calls like
1132 * list_lru_add and list_lru_del. List movement in this file
1133 * only ever occur through this functions or through callbacks
1134 * like this one, that are called from the LRU API.
1136 * The only exceptions to this are functions like
1137 * shrink_dentry_list, and code that first checks for the
1138 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1139 * operating only with stack provided lists after they are
1140 * properly isolated from the main list. It is thus, always a
1141 * local access.
1143 return LRU_ROTATE;
1146 d_lru_shrink_move(lru, dentry, freeable);
1147 spin_unlock(&dentry->d_lock);
1149 return LRU_REMOVED;
1153 * prune_dcache_sb - shrink the dcache
1154 * @sb: superblock
1155 * @sc: shrink control, passed to list_lru_shrink_walk()
1157 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1158 * is done when we need more memory and called from the superblock shrinker
1159 * function.
1161 * This function may fail to free any resources if all the dentries are in
1162 * use.
1164 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1166 LIST_HEAD(dispose);
1167 long freed;
1169 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1170 dentry_lru_isolate, &dispose);
1171 shrink_dentry_list(&dispose);
1172 return freed;
1175 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1176 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1178 struct list_head *freeable = arg;
1179 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1182 * we are inverting the lru lock/dentry->d_lock here,
1183 * so use a trylock. If we fail to get the lock, just skip
1184 * it
1186 if (!spin_trylock(&dentry->d_lock))
1187 return LRU_SKIP;
1189 d_lru_shrink_move(lru, dentry, freeable);
1190 spin_unlock(&dentry->d_lock);
1192 return LRU_REMOVED;
1197 * shrink_dcache_sb - shrink dcache for a superblock
1198 * @sb: superblock
1200 * Shrink the dcache for the specified super block. This is used to free
1201 * the dcache before unmounting a file system.
1203 void shrink_dcache_sb(struct super_block *sb)
1205 do {
1206 LIST_HEAD(dispose);
1208 list_lru_walk(&sb->s_dentry_lru,
1209 dentry_lru_isolate_shrink, &dispose, 1024);
1210 shrink_dentry_list(&dispose);
1211 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1213 EXPORT_SYMBOL(shrink_dcache_sb);
1216 * enum d_walk_ret - action to talke during tree walk
1217 * @D_WALK_CONTINUE: contrinue walk
1218 * @D_WALK_QUIT: quit walk
1219 * @D_WALK_NORETRY: quit when retry is needed
1220 * @D_WALK_SKIP: skip this dentry and its children
1222 enum d_walk_ret {
1223 D_WALK_CONTINUE,
1224 D_WALK_QUIT,
1225 D_WALK_NORETRY,
1226 D_WALK_SKIP,
1230 * d_walk - walk the dentry tree
1231 * @parent: start of walk
1232 * @data: data passed to @enter() and @finish()
1233 * @enter: callback when first entering the dentry
1235 * The @enter() callbacks are called with d_lock held.
1237 static void d_walk(struct dentry *parent, void *data,
1238 enum d_walk_ret (*enter)(void *, struct dentry *))
1240 struct dentry *this_parent;
1241 struct list_head *next;
1242 unsigned seq = 0;
1243 enum d_walk_ret ret;
1244 bool retry = true;
1246 again:
1247 read_seqbegin_or_lock(&rename_lock, &seq);
1248 this_parent = parent;
1249 spin_lock(&this_parent->d_lock);
1251 ret = enter(data, this_parent);
1252 switch (ret) {
1253 case D_WALK_CONTINUE:
1254 break;
1255 case D_WALK_QUIT:
1256 case D_WALK_SKIP:
1257 goto out_unlock;
1258 case D_WALK_NORETRY:
1259 retry = false;
1260 break;
1262 repeat:
1263 next = this_parent->d_subdirs.next;
1264 resume:
1265 while (next != &this_parent->d_subdirs) {
1266 struct list_head *tmp = next;
1267 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1268 next = tmp->next;
1270 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1271 continue;
1273 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1275 ret = enter(data, dentry);
1276 switch (ret) {
1277 case D_WALK_CONTINUE:
1278 break;
1279 case D_WALK_QUIT:
1280 spin_unlock(&dentry->d_lock);
1281 goto out_unlock;
1282 case D_WALK_NORETRY:
1283 retry = false;
1284 break;
1285 case D_WALK_SKIP:
1286 spin_unlock(&dentry->d_lock);
1287 continue;
1290 if (!list_empty(&dentry->d_subdirs)) {
1291 spin_unlock(&this_parent->d_lock);
1292 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1293 this_parent = dentry;
1294 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1295 goto repeat;
1297 spin_unlock(&dentry->d_lock);
1300 * All done at this level ... ascend and resume the search.
1302 rcu_read_lock();
1303 ascend:
1304 if (this_parent != parent) {
1305 struct dentry *child = this_parent;
1306 this_parent = child->d_parent;
1308 spin_unlock(&child->d_lock);
1309 spin_lock(&this_parent->d_lock);
1311 /* might go back up the wrong parent if we have had a rename. */
1312 if (need_seqretry(&rename_lock, seq))
1313 goto rename_retry;
1314 /* go into the first sibling still alive */
1315 do {
1316 next = child->d_child.next;
1317 if (next == &this_parent->d_subdirs)
1318 goto ascend;
1319 child = list_entry(next, struct dentry, d_child);
1320 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1321 rcu_read_unlock();
1322 goto resume;
1324 if (need_seqretry(&rename_lock, seq))
1325 goto rename_retry;
1326 rcu_read_unlock();
1328 out_unlock:
1329 spin_unlock(&this_parent->d_lock);
1330 done_seqretry(&rename_lock, seq);
1331 return;
1333 rename_retry:
1334 spin_unlock(&this_parent->d_lock);
1335 rcu_read_unlock();
1336 BUG_ON(seq & 1);
1337 if (!retry)
1338 return;
1339 seq = 1;
1340 goto again;
1343 struct check_mount {
1344 struct vfsmount *mnt;
1345 unsigned int mounted;
1348 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1350 struct check_mount *info = data;
1351 struct path path = { .mnt = info->mnt, .dentry = dentry };
1353 if (likely(!d_mountpoint(dentry)))
1354 return D_WALK_CONTINUE;
1355 if (__path_is_mountpoint(&path)) {
1356 info->mounted = 1;
1357 return D_WALK_QUIT;
1359 return D_WALK_CONTINUE;
1363 * path_has_submounts - check for mounts over a dentry in the
1364 * current namespace.
1365 * @parent: path to check.
1367 * Return true if the parent or its subdirectories contain
1368 * a mount point in the current namespace.
1370 int path_has_submounts(const struct path *parent)
1372 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1374 read_seqlock_excl(&mount_lock);
1375 d_walk(parent->dentry, &data, path_check_mount);
1376 read_sequnlock_excl(&mount_lock);
1378 return data.mounted;
1380 EXPORT_SYMBOL(path_has_submounts);
1383 * Called by mount code to set a mountpoint and check if the mountpoint is
1384 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1385 * subtree can become unreachable).
1387 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1388 * this reason take rename_lock and d_lock on dentry and ancestors.
1390 int d_set_mounted(struct dentry *dentry)
1392 struct dentry *p;
1393 int ret = -ENOENT;
1394 write_seqlock(&rename_lock);
1395 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1396 /* Need exclusion wrt. d_invalidate() */
1397 spin_lock(&p->d_lock);
1398 if (unlikely(d_unhashed(p))) {
1399 spin_unlock(&p->d_lock);
1400 goto out;
1402 spin_unlock(&p->d_lock);
1404 spin_lock(&dentry->d_lock);
1405 if (!d_unlinked(dentry)) {
1406 ret = -EBUSY;
1407 if (!d_mountpoint(dentry)) {
1408 dentry->d_flags |= DCACHE_MOUNTED;
1409 ret = 0;
1412 spin_unlock(&dentry->d_lock);
1413 out:
1414 write_sequnlock(&rename_lock);
1415 return ret;
1419 * Search the dentry child list of the specified parent,
1420 * and move any unused dentries to the end of the unused
1421 * list for prune_dcache(). We descend to the next level
1422 * whenever the d_subdirs list is non-empty and continue
1423 * searching.
1425 * It returns zero iff there are no unused children,
1426 * otherwise it returns the number of children moved to
1427 * the end of the unused list. This may not be the total
1428 * number of unused children, because select_parent can
1429 * drop the lock and return early due to latency
1430 * constraints.
1433 struct select_data {
1434 struct dentry *start;
1435 struct list_head dispose;
1436 int found;
1439 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1441 struct select_data *data = _data;
1442 enum d_walk_ret ret = D_WALK_CONTINUE;
1444 if (data->start == dentry)
1445 goto out;
1447 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1448 data->found++;
1449 } else {
1450 if (dentry->d_flags & DCACHE_LRU_LIST)
1451 d_lru_del(dentry);
1452 if (!dentry->d_lockref.count) {
1453 d_shrink_add(dentry, &data->dispose);
1454 data->found++;
1458 * We can return to the caller if we have found some (this
1459 * ensures forward progress). We'll be coming back to find
1460 * the rest.
1462 if (!list_empty(&data->dispose))
1463 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1464 out:
1465 return ret;
1469 * shrink_dcache_parent - prune dcache
1470 * @parent: parent of entries to prune
1472 * Prune the dcache to remove unused children of the parent dentry.
1474 void shrink_dcache_parent(struct dentry *parent)
1476 for (;;) {
1477 struct select_data data;
1479 INIT_LIST_HEAD(&data.dispose);
1480 data.start = parent;
1481 data.found = 0;
1483 d_walk(parent, &data, select_collect);
1485 if (!list_empty(&data.dispose)) {
1486 shrink_dentry_list(&data.dispose);
1487 continue;
1490 cond_resched();
1491 if (!data.found)
1492 break;
1495 EXPORT_SYMBOL(shrink_dcache_parent);
1497 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1499 /* it has busy descendents; complain about those instead */
1500 if (!list_empty(&dentry->d_subdirs))
1501 return D_WALK_CONTINUE;
1503 /* root with refcount 1 is fine */
1504 if (dentry == _data && dentry->d_lockref.count == 1)
1505 return D_WALK_CONTINUE;
1507 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1508 " still in use (%d) [unmount of %s %s]\n",
1509 dentry,
1510 dentry->d_inode ?
1511 dentry->d_inode->i_ino : 0UL,
1512 dentry,
1513 dentry->d_lockref.count,
1514 dentry->d_sb->s_type->name,
1515 dentry->d_sb->s_id);
1516 WARN_ON(1);
1517 return D_WALK_CONTINUE;
1520 static void do_one_tree(struct dentry *dentry)
1522 shrink_dcache_parent(dentry);
1523 d_walk(dentry, dentry, umount_check);
1524 d_drop(dentry);
1525 dput(dentry);
1529 * destroy the dentries attached to a superblock on unmounting
1531 void shrink_dcache_for_umount(struct super_block *sb)
1533 struct dentry *dentry;
1535 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1537 dentry = sb->s_root;
1538 sb->s_root = NULL;
1539 do_one_tree(dentry);
1541 while (!hlist_bl_empty(&sb->s_roots)) {
1542 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1543 do_one_tree(dentry);
1547 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1549 struct dentry **victim = _data;
1550 if (d_mountpoint(dentry)) {
1551 __dget_dlock(dentry);
1552 *victim = dentry;
1553 return D_WALK_QUIT;
1555 return D_WALK_CONTINUE;
1559 * d_invalidate - detach submounts, prune dcache, and drop
1560 * @dentry: dentry to invalidate (aka detach, prune and drop)
1562 void d_invalidate(struct dentry *dentry)
1564 bool had_submounts = false;
1565 spin_lock(&dentry->d_lock);
1566 if (d_unhashed(dentry)) {
1567 spin_unlock(&dentry->d_lock);
1568 return;
1570 __d_drop(dentry);
1571 spin_unlock(&dentry->d_lock);
1573 /* Negative dentries can be dropped without further checks */
1574 if (!dentry->d_inode)
1575 return;
1577 shrink_dcache_parent(dentry);
1578 for (;;) {
1579 struct dentry *victim = NULL;
1580 d_walk(dentry, &victim, find_submount);
1581 if (!victim) {
1582 if (had_submounts)
1583 shrink_dcache_parent(dentry);
1584 return;
1586 had_submounts = true;
1587 detach_mounts(victim);
1588 dput(victim);
1591 EXPORT_SYMBOL(d_invalidate);
1594 * __d_alloc - allocate a dcache entry
1595 * @sb: filesystem it will belong to
1596 * @name: qstr of the name
1598 * Allocates a dentry. It returns %NULL if there is insufficient memory
1599 * available. On a success the dentry is returned. The name passed in is
1600 * copied and the copy passed in may be reused after this call.
1603 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1605 struct external_name *ext = NULL;
1606 struct dentry *dentry;
1607 char *dname;
1608 int err;
1610 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1611 if (!dentry)
1612 return NULL;
1615 * We guarantee that the inline name is always NUL-terminated.
1616 * This way the memcpy() done by the name switching in rename
1617 * will still always have a NUL at the end, even if we might
1618 * be overwriting an internal NUL character
1620 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1621 if (unlikely(!name)) {
1622 name = &slash_name;
1623 dname = dentry->d_iname;
1624 } else if (name->len > DNAME_INLINE_LEN-1) {
1625 size_t size = offsetof(struct external_name, name[1]);
1627 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1628 if (!ext) {
1629 kmem_cache_free(dentry_cache, dentry);
1630 return NULL;
1632 atomic_set(&ext->u.count, 1);
1633 dname = ext->name;
1634 } else {
1635 dname = dentry->d_iname;
1638 dentry->d_name.len = name->len;
1639 dentry->d_name.hash = name->hash;
1640 memcpy(dname, name->name, name->len);
1641 dname[name->len] = 0;
1643 /* Make sure we always see the terminating NUL character */
1644 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1646 dentry->d_lockref.count = 1;
1647 dentry->d_flags = 0;
1648 spin_lock_init(&dentry->d_lock);
1649 seqcount_init(&dentry->d_seq);
1650 dentry->d_inode = NULL;
1651 dentry->d_parent = dentry;
1652 dentry->d_sb = sb;
1653 dentry->d_op = NULL;
1654 dentry->d_fsdata = NULL;
1655 INIT_HLIST_BL_NODE(&dentry->d_hash);
1656 INIT_LIST_HEAD(&dentry->d_lru);
1657 INIT_LIST_HEAD(&dentry->d_subdirs);
1658 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1659 INIT_LIST_HEAD(&dentry->d_child);
1660 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1662 if (dentry->d_op && dentry->d_op->d_init) {
1663 err = dentry->d_op->d_init(dentry);
1664 if (err) {
1665 if (dname_external(dentry))
1666 kfree(external_name(dentry));
1667 kmem_cache_free(dentry_cache, dentry);
1668 return NULL;
1672 if (unlikely(ext)) {
1673 pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1674 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1675 ksize(ext));
1678 this_cpu_inc(nr_dentry);
1680 return dentry;
1684 * d_alloc - allocate a dcache entry
1685 * @parent: parent of entry to allocate
1686 * @name: qstr of the name
1688 * Allocates a dentry. It returns %NULL if there is insufficient memory
1689 * available. On a success the dentry is returned. The name passed in is
1690 * copied and the copy passed in may be reused after this call.
1692 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1694 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1695 if (!dentry)
1696 return NULL;
1697 spin_lock(&parent->d_lock);
1699 * don't need child lock because it is not subject
1700 * to concurrency here
1702 __dget_dlock(parent);
1703 dentry->d_parent = parent;
1704 list_add(&dentry->d_child, &parent->d_subdirs);
1705 spin_unlock(&parent->d_lock);
1707 return dentry;
1709 EXPORT_SYMBOL(d_alloc);
1711 struct dentry *d_alloc_anon(struct super_block *sb)
1713 return __d_alloc(sb, NULL);
1715 EXPORT_SYMBOL(d_alloc_anon);
1717 struct dentry *d_alloc_cursor(struct dentry * parent)
1719 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1720 if (dentry) {
1721 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1722 dentry->d_parent = dget(parent);
1724 return dentry;
1728 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1729 * @sb: the superblock
1730 * @name: qstr of the name
1732 * For a filesystem that just pins its dentries in memory and never
1733 * performs lookups at all, return an unhashed IS_ROOT dentry.
1734 * This is used for pipes, sockets et.al. - the stuff that should
1735 * never be anyone's children or parents. Unlike all other
1736 * dentries, these will not have RCU delay between dropping the
1737 * last reference and freeing them.
1739 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1741 struct dentry *dentry = __d_alloc(sb, name);
1742 if (likely(dentry))
1743 dentry->d_flags |= DCACHE_NORCU;
1744 return dentry;
1746 EXPORT_SYMBOL(d_alloc_pseudo);
1748 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1750 struct qstr q;
1752 q.name = name;
1753 q.hash_len = hashlen_string(parent, name);
1754 return d_alloc(parent, &q);
1756 EXPORT_SYMBOL(d_alloc_name);
1758 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1760 WARN_ON_ONCE(dentry->d_op);
1761 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1762 DCACHE_OP_COMPARE |
1763 DCACHE_OP_REVALIDATE |
1764 DCACHE_OP_WEAK_REVALIDATE |
1765 DCACHE_OP_DELETE |
1766 DCACHE_OP_REAL));
1767 dentry->d_op = op;
1768 if (!op)
1769 return;
1770 if (op->d_hash)
1771 dentry->d_flags |= DCACHE_OP_HASH;
1772 if (op->d_compare)
1773 dentry->d_flags |= DCACHE_OP_COMPARE;
1774 if (op->d_revalidate)
1775 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1776 if (op->d_weak_revalidate)
1777 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1778 if (op->d_delete)
1779 dentry->d_flags |= DCACHE_OP_DELETE;
1780 if (op->d_prune)
1781 dentry->d_flags |= DCACHE_OP_PRUNE;
1782 if (op->d_real)
1783 dentry->d_flags |= DCACHE_OP_REAL;
1786 EXPORT_SYMBOL(d_set_d_op);
1790 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1791 * @dentry - The dentry to mark
1793 * Mark a dentry as falling through to the lower layer (as set with
1794 * d_pin_lower()). This flag may be recorded on the medium.
1796 void d_set_fallthru(struct dentry *dentry)
1798 spin_lock(&dentry->d_lock);
1799 dentry->d_flags |= DCACHE_FALLTHRU;
1800 spin_unlock(&dentry->d_lock);
1802 EXPORT_SYMBOL(d_set_fallthru);
1804 static unsigned d_flags_for_inode(struct inode *inode)
1806 unsigned add_flags = DCACHE_REGULAR_TYPE;
1808 if (!inode)
1809 return DCACHE_MISS_TYPE;
1811 if (S_ISDIR(inode->i_mode)) {
1812 add_flags = DCACHE_DIRECTORY_TYPE;
1813 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1814 if (unlikely(!inode->i_op->lookup))
1815 add_flags = DCACHE_AUTODIR_TYPE;
1816 else
1817 inode->i_opflags |= IOP_LOOKUP;
1819 goto type_determined;
1822 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1823 if (unlikely(inode->i_op->get_link)) {
1824 add_flags = DCACHE_SYMLINK_TYPE;
1825 goto type_determined;
1827 inode->i_opflags |= IOP_NOFOLLOW;
1830 if (unlikely(!S_ISREG(inode->i_mode)))
1831 add_flags = DCACHE_SPECIAL_TYPE;
1833 type_determined:
1834 if (unlikely(IS_AUTOMOUNT(inode)))
1835 add_flags |= DCACHE_NEED_AUTOMOUNT;
1836 return add_flags;
1839 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1841 unsigned add_flags = d_flags_for_inode(inode);
1842 WARN_ON(d_in_lookup(dentry));
1844 spin_lock(&dentry->d_lock);
1845 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1846 raw_write_seqcount_begin(&dentry->d_seq);
1847 __d_set_inode_and_type(dentry, inode, add_flags);
1848 raw_write_seqcount_end(&dentry->d_seq);
1849 fsnotify_update_flags(dentry);
1850 spin_unlock(&dentry->d_lock);
1854 * d_instantiate - fill in inode information for a dentry
1855 * @entry: dentry to complete
1856 * @inode: inode to attach to this dentry
1858 * Fill in inode information in the entry.
1860 * This turns negative dentries into productive full members
1861 * of society.
1863 * NOTE! This assumes that the inode count has been incremented
1864 * (or otherwise set) by the caller to indicate that it is now
1865 * in use by the dcache.
1868 void d_instantiate(struct dentry *entry, struct inode * inode)
1870 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1871 if (inode) {
1872 security_d_instantiate(entry, inode);
1873 spin_lock(&inode->i_lock);
1874 __d_instantiate(entry, inode);
1875 spin_unlock(&inode->i_lock);
1878 EXPORT_SYMBOL(d_instantiate);
1881 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1882 * with lockdep-related part of unlock_new_inode() done before
1883 * anything else. Use that instead of open-coding d_instantiate()/
1884 * unlock_new_inode() combinations.
1886 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1888 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1889 BUG_ON(!inode);
1890 lockdep_annotate_inode_mutex_key(inode);
1891 security_d_instantiate(entry, inode);
1892 spin_lock(&inode->i_lock);
1893 __d_instantiate(entry, inode);
1894 WARN_ON(!(inode->i_state & I_NEW));
1895 inode->i_state &= ~I_NEW & ~I_CREATING;
1896 smp_mb();
1897 wake_up_bit(&inode->i_state, __I_NEW);
1898 spin_unlock(&inode->i_lock);
1900 EXPORT_SYMBOL(d_instantiate_new);
1902 struct dentry *d_make_root(struct inode *root_inode)
1904 struct dentry *res = NULL;
1906 if (root_inode) {
1907 res = d_alloc_anon(root_inode->i_sb);
1908 if (res)
1909 d_instantiate(res, root_inode);
1910 else
1911 iput(root_inode);
1913 return res;
1915 EXPORT_SYMBOL(d_make_root);
1917 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1918 struct inode *inode,
1919 bool disconnected)
1921 struct dentry *res;
1922 unsigned add_flags;
1924 security_d_instantiate(dentry, inode);
1925 spin_lock(&inode->i_lock);
1926 res = __d_find_any_alias(inode);
1927 if (res) {
1928 spin_unlock(&inode->i_lock);
1929 dput(dentry);
1930 goto out_iput;
1933 /* attach a disconnected dentry */
1934 add_flags = d_flags_for_inode(inode);
1936 if (disconnected)
1937 add_flags |= DCACHE_DISCONNECTED;
1939 spin_lock(&dentry->d_lock);
1940 __d_set_inode_and_type(dentry, inode, add_flags);
1941 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1942 if (!disconnected) {
1943 hlist_bl_lock(&dentry->d_sb->s_roots);
1944 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1945 hlist_bl_unlock(&dentry->d_sb->s_roots);
1947 spin_unlock(&dentry->d_lock);
1948 spin_unlock(&inode->i_lock);
1950 return dentry;
1952 out_iput:
1953 iput(inode);
1954 return res;
1957 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1959 return __d_instantiate_anon(dentry, inode, true);
1961 EXPORT_SYMBOL(d_instantiate_anon);
1963 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1965 struct dentry *tmp;
1966 struct dentry *res;
1968 if (!inode)
1969 return ERR_PTR(-ESTALE);
1970 if (IS_ERR(inode))
1971 return ERR_CAST(inode);
1973 res = d_find_any_alias(inode);
1974 if (res)
1975 goto out_iput;
1977 tmp = d_alloc_anon(inode->i_sb);
1978 if (!tmp) {
1979 res = ERR_PTR(-ENOMEM);
1980 goto out_iput;
1983 return __d_instantiate_anon(tmp, inode, disconnected);
1985 out_iput:
1986 iput(inode);
1987 return res;
1991 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1992 * @inode: inode to allocate the dentry for
1994 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1995 * similar open by handle operations. The returned dentry may be anonymous,
1996 * or may have a full name (if the inode was already in the cache).
1998 * When called on a directory inode, we must ensure that the inode only ever
1999 * has one dentry. If a dentry is found, that is returned instead of
2000 * allocating a new one.
2002 * On successful return, the reference to the inode has been transferred
2003 * to the dentry. In case of an error the reference on the inode is released.
2004 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2005 * be passed in and the error will be propagated to the return value,
2006 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2008 struct dentry *d_obtain_alias(struct inode *inode)
2010 return __d_obtain_alias(inode, true);
2012 EXPORT_SYMBOL(d_obtain_alias);
2015 * d_obtain_root - find or allocate a dentry for a given inode
2016 * @inode: inode to allocate the dentry for
2018 * Obtain an IS_ROOT dentry for the root of a filesystem.
2020 * We must ensure that directory inodes only ever have one dentry. If a
2021 * dentry is found, that is returned instead of allocating a new one.
2023 * On successful return, the reference to the inode has been transferred
2024 * to the dentry. In case of an error the reference on the inode is
2025 * released. A %NULL or IS_ERR inode may be passed in and will be the
2026 * error will be propagate to the return value, with a %NULL @inode
2027 * replaced by ERR_PTR(-ESTALE).
2029 struct dentry *d_obtain_root(struct inode *inode)
2031 return __d_obtain_alias(inode, false);
2033 EXPORT_SYMBOL(d_obtain_root);
2036 * d_add_ci - lookup or allocate new dentry with case-exact name
2037 * @inode: the inode case-insensitive lookup has found
2038 * @dentry: the negative dentry that was passed to the parent's lookup func
2039 * @name: the case-exact name to be associated with the returned dentry
2041 * This is to avoid filling the dcache with case-insensitive names to the
2042 * same inode, only the actual correct case is stored in the dcache for
2043 * case-insensitive filesystems.
2045 * For a case-insensitive lookup match and if the the case-exact dentry
2046 * already exists in in the dcache, use it and return it.
2048 * If no entry exists with the exact case name, allocate new dentry with
2049 * the exact case, and return the spliced entry.
2051 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2052 struct qstr *name)
2054 struct dentry *found, *res;
2057 * First check if a dentry matching the name already exists,
2058 * if not go ahead and create it now.
2060 found = d_hash_and_lookup(dentry->d_parent, name);
2061 if (found) {
2062 iput(inode);
2063 return found;
2065 if (d_in_lookup(dentry)) {
2066 found = d_alloc_parallel(dentry->d_parent, name,
2067 dentry->d_wait);
2068 if (IS_ERR(found) || !d_in_lookup(found)) {
2069 iput(inode);
2070 return found;
2072 } else {
2073 found = d_alloc(dentry->d_parent, name);
2074 if (!found) {
2075 iput(inode);
2076 return ERR_PTR(-ENOMEM);
2079 res = d_splice_alias(inode, found);
2080 if (res) {
2081 dput(found);
2082 return res;
2084 return found;
2086 EXPORT_SYMBOL(d_add_ci);
2089 static inline bool d_same_name(const struct dentry *dentry,
2090 const struct dentry *parent,
2091 const struct qstr *name)
2093 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2094 if (dentry->d_name.len != name->len)
2095 return false;
2096 return dentry_cmp(dentry, name->name, name->len) == 0;
2098 return parent->d_op->d_compare(dentry,
2099 dentry->d_name.len, dentry->d_name.name,
2100 name) == 0;
2104 * __d_lookup_rcu - search for a dentry (racy, store-free)
2105 * @parent: parent dentry
2106 * @name: qstr of name we wish to find
2107 * @seqp: returns d_seq value at the point where the dentry was found
2108 * Returns: dentry, or NULL
2110 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2111 * resolution (store-free path walking) design described in
2112 * Documentation/filesystems/path-lookup.txt.
2114 * This is not to be used outside core vfs.
2116 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2117 * held, and rcu_read_lock held. The returned dentry must not be stored into
2118 * without taking d_lock and checking d_seq sequence count against @seq
2119 * returned here.
2121 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2122 * function.
2124 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2125 * the returned dentry, so long as its parent's seqlock is checked after the
2126 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2127 * is formed, giving integrity down the path walk.
2129 * NOTE! The caller *has* to check the resulting dentry against the sequence
2130 * number we've returned before using any of the resulting dentry state!
2132 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2133 const struct qstr *name,
2134 unsigned *seqp)
2136 u64 hashlen = name->hash_len;
2137 const unsigned char *str = name->name;
2138 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2139 struct hlist_bl_node *node;
2140 struct dentry *dentry;
2143 * Note: There is significant duplication with __d_lookup_rcu which is
2144 * required to prevent single threaded performance regressions
2145 * especially on architectures where smp_rmb (in seqcounts) are costly.
2146 * Keep the two functions in sync.
2150 * The hash list is protected using RCU.
2152 * Carefully use d_seq when comparing a candidate dentry, to avoid
2153 * races with d_move().
2155 * It is possible that concurrent renames can mess up our list
2156 * walk here and result in missing our dentry, resulting in the
2157 * false-negative result. d_lookup() protects against concurrent
2158 * renames using rename_lock seqlock.
2160 * See Documentation/filesystems/path-lookup.txt for more details.
2162 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2163 unsigned seq;
2165 seqretry:
2167 * The dentry sequence count protects us from concurrent
2168 * renames, and thus protects parent and name fields.
2170 * The caller must perform a seqcount check in order
2171 * to do anything useful with the returned dentry.
2173 * NOTE! We do a "raw" seqcount_begin here. That means that
2174 * we don't wait for the sequence count to stabilize if it
2175 * is in the middle of a sequence change. If we do the slow
2176 * dentry compare, we will do seqretries until it is stable,
2177 * and if we end up with a successful lookup, we actually
2178 * want to exit RCU lookup anyway.
2180 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2181 * we are still guaranteed NUL-termination of ->d_name.name.
2183 seq = raw_seqcount_begin(&dentry->d_seq);
2184 if (dentry->d_parent != parent)
2185 continue;
2186 if (d_unhashed(dentry))
2187 continue;
2189 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2190 int tlen;
2191 const char *tname;
2192 if (dentry->d_name.hash != hashlen_hash(hashlen))
2193 continue;
2194 tlen = dentry->d_name.len;
2195 tname = dentry->d_name.name;
2196 /* we want a consistent (name,len) pair */
2197 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2198 cpu_relax();
2199 goto seqretry;
2201 if (parent->d_op->d_compare(dentry,
2202 tlen, tname, name) != 0)
2203 continue;
2204 } else {
2205 if (dentry->d_name.hash_len != hashlen)
2206 continue;
2207 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2208 continue;
2210 *seqp = seq;
2211 return dentry;
2213 return NULL;
2217 * d_lookup - search for a dentry
2218 * @parent: parent dentry
2219 * @name: qstr of name we wish to find
2220 * Returns: dentry, or NULL
2222 * d_lookup searches the children of the parent dentry for the name in
2223 * question. If the dentry is found its reference count is incremented and the
2224 * dentry is returned. The caller must use dput to free the entry when it has
2225 * finished using it. %NULL is returned if the dentry does not exist.
2227 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2229 struct dentry *dentry;
2230 unsigned seq;
2232 do {
2233 seq = read_seqbegin(&rename_lock);
2234 dentry = __d_lookup(parent, name);
2235 if (dentry)
2236 break;
2237 } while (read_seqretry(&rename_lock, seq));
2238 return dentry;
2240 EXPORT_SYMBOL(d_lookup);
2243 * __d_lookup - search for a dentry (racy)
2244 * @parent: parent dentry
2245 * @name: qstr of name we wish to find
2246 * Returns: dentry, or NULL
2248 * __d_lookup is like d_lookup, however it may (rarely) return a
2249 * false-negative result due to unrelated rename activity.
2251 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2252 * however it must be used carefully, eg. with a following d_lookup in
2253 * the case of failure.
2255 * __d_lookup callers must be commented.
2257 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2259 unsigned int hash = name->hash;
2260 struct hlist_bl_head *b = d_hash(hash);
2261 struct hlist_bl_node *node;
2262 struct dentry *found = NULL;
2263 struct dentry *dentry;
2266 * Note: There is significant duplication with __d_lookup_rcu which is
2267 * required to prevent single threaded performance regressions
2268 * especially on architectures where smp_rmb (in seqcounts) are costly.
2269 * Keep the two functions in sync.
2273 * The hash list is protected using RCU.
2275 * Take d_lock when comparing a candidate dentry, to avoid races
2276 * with d_move().
2278 * It is possible that concurrent renames can mess up our list
2279 * walk here and result in missing our dentry, resulting in the
2280 * false-negative result. d_lookup() protects against concurrent
2281 * renames using rename_lock seqlock.
2283 * See Documentation/filesystems/path-lookup.txt for more details.
2285 rcu_read_lock();
2287 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2289 if (dentry->d_name.hash != hash)
2290 continue;
2292 spin_lock(&dentry->d_lock);
2293 if (dentry->d_parent != parent)
2294 goto next;
2295 if (d_unhashed(dentry))
2296 goto next;
2298 if (!d_same_name(dentry, parent, name))
2299 goto next;
2301 dentry->d_lockref.count++;
2302 found = dentry;
2303 spin_unlock(&dentry->d_lock);
2304 break;
2305 next:
2306 spin_unlock(&dentry->d_lock);
2308 rcu_read_unlock();
2310 return found;
2314 * d_hash_and_lookup - hash the qstr then search for a dentry
2315 * @dir: Directory to search in
2316 * @name: qstr of name we wish to find
2318 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2320 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2323 * Check for a fs-specific hash function. Note that we must
2324 * calculate the standard hash first, as the d_op->d_hash()
2325 * routine may choose to leave the hash value unchanged.
2327 name->hash = full_name_hash(dir, name->name, name->len);
2328 if (dir->d_flags & DCACHE_OP_HASH) {
2329 int err = dir->d_op->d_hash(dir, name);
2330 if (unlikely(err < 0))
2331 return ERR_PTR(err);
2333 return d_lookup(dir, name);
2335 EXPORT_SYMBOL(d_hash_and_lookup);
2338 * When a file is deleted, we have two options:
2339 * - turn this dentry into a negative dentry
2340 * - unhash this dentry and free it.
2342 * Usually, we want to just turn this into
2343 * a negative dentry, but if anybody else is
2344 * currently using the dentry or the inode
2345 * we can't do that and we fall back on removing
2346 * it from the hash queues and waiting for
2347 * it to be deleted later when it has no users
2351 * d_delete - delete a dentry
2352 * @dentry: The dentry to delete
2354 * Turn the dentry into a negative dentry if possible, otherwise
2355 * remove it from the hash queues so it can be deleted later
2358 void d_delete(struct dentry * dentry)
2360 struct inode *inode = dentry->d_inode;
2361 int isdir = d_is_dir(dentry);
2363 spin_lock(&inode->i_lock);
2364 spin_lock(&dentry->d_lock);
2366 * Are we the only user?
2368 if (dentry->d_lockref.count == 1) {
2369 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2370 dentry_unlink_inode(dentry);
2371 } else {
2372 __d_drop(dentry);
2373 spin_unlock(&dentry->d_lock);
2374 spin_unlock(&inode->i_lock);
2376 fsnotify_nameremove(dentry, isdir);
2378 EXPORT_SYMBOL(d_delete);
2380 static void __d_rehash(struct dentry *entry)
2382 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2384 hlist_bl_lock(b);
2385 hlist_bl_add_head_rcu(&entry->d_hash, b);
2386 hlist_bl_unlock(b);
2390 * d_rehash - add an entry back to the hash
2391 * @entry: dentry to add to the hash
2393 * Adds a dentry to the hash according to its name.
2396 void d_rehash(struct dentry * entry)
2398 spin_lock(&entry->d_lock);
2399 __d_rehash(entry);
2400 spin_unlock(&entry->d_lock);
2402 EXPORT_SYMBOL(d_rehash);
2404 static inline unsigned start_dir_add(struct inode *dir)
2407 for (;;) {
2408 unsigned n = dir->i_dir_seq;
2409 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2410 return n;
2411 cpu_relax();
2415 static inline void end_dir_add(struct inode *dir, unsigned n)
2417 smp_store_release(&dir->i_dir_seq, n + 2);
2420 static void d_wait_lookup(struct dentry *dentry)
2422 if (d_in_lookup(dentry)) {
2423 DECLARE_WAITQUEUE(wait, current);
2424 add_wait_queue(dentry->d_wait, &wait);
2425 do {
2426 set_current_state(TASK_UNINTERRUPTIBLE);
2427 spin_unlock(&dentry->d_lock);
2428 schedule();
2429 spin_lock(&dentry->d_lock);
2430 } while (d_in_lookup(dentry));
2434 struct dentry *d_alloc_parallel(struct dentry *parent,
2435 const struct qstr *name,
2436 wait_queue_head_t *wq)
2438 unsigned int hash = name->hash;
2439 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2440 struct hlist_bl_node *node;
2441 struct dentry *new = d_alloc(parent, name);
2442 struct dentry *dentry;
2443 unsigned seq, r_seq, d_seq;
2445 if (unlikely(!new))
2446 return ERR_PTR(-ENOMEM);
2448 retry:
2449 rcu_read_lock();
2450 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2451 r_seq = read_seqbegin(&rename_lock);
2452 dentry = __d_lookup_rcu(parent, name, &d_seq);
2453 if (unlikely(dentry)) {
2454 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2455 rcu_read_unlock();
2456 goto retry;
2458 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2459 rcu_read_unlock();
2460 dput(dentry);
2461 goto retry;
2463 rcu_read_unlock();
2464 dput(new);
2465 return dentry;
2467 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2468 rcu_read_unlock();
2469 goto retry;
2472 if (unlikely(seq & 1)) {
2473 rcu_read_unlock();
2474 goto retry;
2477 hlist_bl_lock(b);
2478 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2479 hlist_bl_unlock(b);
2480 rcu_read_unlock();
2481 goto retry;
2484 * No changes for the parent since the beginning of d_lookup().
2485 * Since all removals from the chain happen with hlist_bl_lock(),
2486 * any potential in-lookup matches are going to stay here until
2487 * we unlock the chain. All fields are stable in everything
2488 * we encounter.
2490 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2491 if (dentry->d_name.hash != hash)
2492 continue;
2493 if (dentry->d_parent != parent)
2494 continue;
2495 if (!d_same_name(dentry, parent, name))
2496 continue;
2497 hlist_bl_unlock(b);
2498 /* now we can try to grab a reference */
2499 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2500 rcu_read_unlock();
2501 goto retry;
2504 rcu_read_unlock();
2506 * somebody is likely to be still doing lookup for it;
2507 * wait for them to finish
2509 spin_lock(&dentry->d_lock);
2510 d_wait_lookup(dentry);
2512 * it's not in-lookup anymore; in principle we should repeat
2513 * everything from dcache lookup, but it's likely to be what
2514 * d_lookup() would've found anyway. If it is, just return it;
2515 * otherwise we really have to repeat the whole thing.
2517 if (unlikely(dentry->d_name.hash != hash))
2518 goto mismatch;
2519 if (unlikely(dentry->d_parent != parent))
2520 goto mismatch;
2521 if (unlikely(d_unhashed(dentry)))
2522 goto mismatch;
2523 if (unlikely(!d_same_name(dentry, parent, name)))
2524 goto mismatch;
2525 /* OK, it *is* a hashed match; return it */
2526 spin_unlock(&dentry->d_lock);
2527 dput(new);
2528 return dentry;
2530 rcu_read_unlock();
2531 /* we can't take ->d_lock here; it's OK, though. */
2532 new->d_flags |= DCACHE_PAR_LOOKUP;
2533 new->d_wait = wq;
2534 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2535 hlist_bl_unlock(b);
2536 return new;
2537 mismatch:
2538 spin_unlock(&dentry->d_lock);
2539 dput(dentry);
2540 goto retry;
2542 EXPORT_SYMBOL(d_alloc_parallel);
2544 void __d_lookup_done(struct dentry *dentry)
2546 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2547 dentry->d_name.hash);
2548 hlist_bl_lock(b);
2549 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2550 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2551 wake_up_all(dentry->d_wait);
2552 dentry->d_wait = NULL;
2553 hlist_bl_unlock(b);
2554 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2555 INIT_LIST_HEAD(&dentry->d_lru);
2557 EXPORT_SYMBOL(__d_lookup_done);
2559 /* inode->i_lock held if inode is non-NULL */
2561 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2563 struct inode *dir = NULL;
2564 unsigned n;
2565 spin_lock(&dentry->d_lock);
2566 if (unlikely(d_in_lookup(dentry))) {
2567 dir = dentry->d_parent->d_inode;
2568 n = start_dir_add(dir);
2569 __d_lookup_done(dentry);
2571 if (inode) {
2572 unsigned add_flags = d_flags_for_inode(inode);
2573 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2574 raw_write_seqcount_begin(&dentry->d_seq);
2575 __d_set_inode_and_type(dentry, inode, add_flags);
2576 raw_write_seqcount_end(&dentry->d_seq);
2577 fsnotify_update_flags(dentry);
2579 __d_rehash(dentry);
2580 if (dir)
2581 end_dir_add(dir, n);
2582 spin_unlock(&dentry->d_lock);
2583 if (inode)
2584 spin_unlock(&inode->i_lock);
2588 * d_add - add dentry to hash queues
2589 * @entry: dentry to add
2590 * @inode: The inode to attach to this dentry
2592 * This adds the entry to the hash queues and initializes @inode.
2593 * The entry was actually filled in earlier during d_alloc().
2596 void d_add(struct dentry *entry, struct inode *inode)
2598 if (inode) {
2599 security_d_instantiate(entry, inode);
2600 spin_lock(&inode->i_lock);
2602 __d_add(entry, inode);
2604 EXPORT_SYMBOL(d_add);
2607 * d_exact_alias - find and hash an exact unhashed alias
2608 * @entry: dentry to add
2609 * @inode: The inode to go with this dentry
2611 * If an unhashed dentry with the same name/parent and desired
2612 * inode already exists, hash and return it. Otherwise, return
2613 * NULL.
2615 * Parent directory should be locked.
2617 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2619 struct dentry *alias;
2620 unsigned int hash = entry->d_name.hash;
2622 spin_lock(&inode->i_lock);
2623 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2625 * Don't need alias->d_lock here, because aliases with
2626 * d_parent == entry->d_parent are not subject to name or
2627 * parent changes, because the parent inode i_mutex is held.
2629 if (alias->d_name.hash != hash)
2630 continue;
2631 if (alias->d_parent != entry->d_parent)
2632 continue;
2633 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2634 continue;
2635 spin_lock(&alias->d_lock);
2636 if (!d_unhashed(alias)) {
2637 spin_unlock(&alias->d_lock);
2638 alias = NULL;
2639 } else {
2640 __dget_dlock(alias);
2641 __d_rehash(alias);
2642 spin_unlock(&alias->d_lock);
2644 spin_unlock(&inode->i_lock);
2645 return alias;
2647 spin_unlock(&inode->i_lock);
2648 return NULL;
2650 EXPORT_SYMBOL(d_exact_alias);
2652 static void swap_names(struct dentry *dentry, struct dentry *target)
2654 if (unlikely(dname_external(target))) {
2655 if (unlikely(dname_external(dentry))) {
2657 * Both external: swap the pointers
2659 swap(target->d_name.name, dentry->d_name.name);
2660 } else {
2662 * dentry:internal, target:external. Steal target's
2663 * storage and make target internal.
2665 memcpy(target->d_iname, dentry->d_name.name,
2666 dentry->d_name.len + 1);
2667 dentry->d_name.name = target->d_name.name;
2668 target->d_name.name = target->d_iname;
2670 } else {
2671 if (unlikely(dname_external(dentry))) {
2673 * dentry:external, target:internal. Give dentry's
2674 * storage to target and make dentry internal
2676 memcpy(dentry->d_iname, target->d_name.name,
2677 target->d_name.len + 1);
2678 target->d_name.name = dentry->d_name.name;
2679 dentry->d_name.name = dentry->d_iname;
2680 } else {
2682 * Both are internal.
2684 unsigned int i;
2685 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2686 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2687 swap(((long *) &dentry->d_iname)[i],
2688 ((long *) &target->d_iname)[i]);
2692 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2695 static void copy_name(struct dentry *dentry, struct dentry *target)
2697 struct external_name *old_name = NULL;
2698 if (unlikely(dname_external(dentry)))
2699 old_name = external_name(dentry);
2700 if (unlikely(dname_external(target))) {
2701 atomic_inc(&external_name(target)->u.count);
2702 dentry->d_name = target->d_name;
2703 } else {
2704 memcpy(dentry->d_iname, target->d_name.name,
2705 target->d_name.len + 1);
2706 dentry->d_name.name = dentry->d_iname;
2707 dentry->d_name.hash_len = target->d_name.hash_len;
2709 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2710 call_rcu(&old_name->u.head, __d_free_external_name);
2714 * __d_move - move a dentry
2715 * @dentry: entry to move
2716 * @target: new dentry
2717 * @exchange: exchange the two dentries
2719 * Update the dcache to reflect the move of a file name. Negative
2720 * dcache entries should not be moved in this way. Caller must hold
2721 * rename_lock, the i_mutex of the source and target directories,
2722 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2724 static void __d_move(struct dentry *dentry, struct dentry *target,
2725 bool exchange)
2727 struct dentry *old_parent, *p;
2728 struct inode *dir = NULL;
2729 unsigned n;
2731 WARN_ON(!dentry->d_inode);
2732 if (WARN_ON(dentry == target))
2733 return;
2735 BUG_ON(d_ancestor(target, dentry));
2736 old_parent = dentry->d_parent;
2737 p = d_ancestor(old_parent, target);
2738 if (IS_ROOT(dentry)) {
2739 BUG_ON(p);
2740 spin_lock(&target->d_parent->d_lock);
2741 } else if (!p) {
2742 /* target is not a descendent of dentry->d_parent */
2743 spin_lock(&target->d_parent->d_lock);
2744 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2745 } else {
2746 BUG_ON(p == dentry);
2747 spin_lock(&old_parent->d_lock);
2748 if (p != target)
2749 spin_lock_nested(&target->d_parent->d_lock,
2750 DENTRY_D_LOCK_NESTED);
2752 spin_lock_nested(&dentry->d_lock, 2);
2753 spin_lock_nested(&target->d_lock, 3);
2755 if (unlikely(d_in_lookup(target))) {
2756 dir = target->d_parent->d_inode;
2757 n = start_dir_add(dir);
2758 __d_lookup_done(target);
2761 write_seqcount_begin(&dentry->d_seq);
2762 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2764 /* unhash both */
2765 if (!d_unhashed(dentry))
2766 ___d_drop(dentry);
2767 if (!d_unhashed(target))
2768 ___d_drop(target);
2770 /* ... and switch them in the tree */
2771 dentry->d_parent = target->d_parent;
2772 if (!exchange) {
2773 copy_name(dentry, target);
2774 target->d_hash.pprev = NULL;
2775 dentry->d_parent->d_lockref.count++;
2776 if (dentry != old_parent) /* wasn't IS_ROOT */
2777 WARN_ON(!--old_parent->d_lockref.count);
2778 } else {
2779 target->d_parent = old_parent;
2780 swap_names(dentry, target);
2781 list_move(&target->d_child, &target->d_parent->d_subdirs);
2782 __d_rehash(target);
2783 fsnotify_update_flags(target);
2785 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2786 __d_rehash(dentry);
2787 fsnotify_update_flags(dentry);
2789 write_seqcount_end(&target->d_seq);
2790 write_seqcount_end(&dentry->d_seq);
2792 if (dir)
2793 end_dir_add(dir, n);
2795 if (dentry->d_parent != old_parent)
2796 spin_unlock(&dentry->d_parent->d_lock);
2797 if (dentry != old_parent)
2798 spin_unlock(&old_parent->d_lock);
2799 spin_unlock(&target->d_lock);
2800 spin_unlock(&dentry->d_lock);
2804 * d_move - move a dentry
2805 * @dentry: entry to move
2806 * @target: new dentry
2808 * Update the dcache to reflect the move of a file name. Negative
2809 * dcache entries should not be moved in this way. See the locking
2810 * requirements for __d_move.
2812 void d_move(struct dentry *dentry, struct dentry *target)
2814 write_seqlock(&rename_lock);
2815 __d_move(dentry, target, false);
2816 write_sequnlock(&rename_lock);
2818 EXPORT_SYMBOL(d_move);
2821 * d_exchange - exchange two dentries
2822 * @dentry1: first dentry
2823 * @dentry2: second dentry
2825 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2827 write_seqlock(&rename_lock);
2829 WARN_ON(!dentry1->d_inode);
2830 WARN_ON(!dentry2->d_inode);
2831 WARN_ON(IS_ROOT(dentry1));
2832 WARN_ON(IS_ROOT(dentry2));
2834 __d_move(dentry1, dentry2, true);
2836 write_sequnlock(&rename_lock);
2840 * d_ancestor - search for an ancestor
2841 * @p1: ancestor dentry
2842 * @p2: child dentry
2844 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2845 * an ancestor of p2, else NULL.
2847 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2849 struct dentry *p;
2851 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2852 if (p->d_parent == p1)
2853 return p;
2855 return NULL;
2859 * This helper attempts to cope with remotely renamed directories
2861 * It assumes that the caller is already holding
2862 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2864 * Note: If ever the locking in lock_rename() changes, then please
2865 * remember to update this too...
2867 static int __d_unalias(struct inode *inode,
2868 struct dentry *dentry, struct dentry *alias)
2870 struct mutex *m1 = NULL;
2871 struct rw_semaphore *m2 = NULL;
2872 int ret = -ESTALE;
2874 /* If alias and dentry share a parent, then no extra locks required */
2875 if (alias->d_parent == dentry->d_parent)
2876 goto out_unalias;
2878 /* See lock_rename() */
2879 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2880 goto out_err;
2881 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2882 if (!inode_trylock_shared(alias->d_parent->d_inode))
2883 goto out_err;
2884 m2 = &alias->d_parent->d_inode->i_rwsem;
2885 out_unalias:
2886 __d_move(alias, dentry, false);
2887 ret = 0;
2888 out_err:
2889 if (m2)
2890 up_read(m2);
2891 if (m1)
2892 mutex_unlock(m1);
2893 return ret;
2897 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2898 * @inode: the inode which may have a disconnected dentry
2899 * @dentry: a negative dentry which we want to point to the inode.
2901 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2902 * place of the given dentry and return it, else simply d_add the inode
2903 * to the dentry and return NULL.
2905 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2906 * we should error out: directories can't have multiple aliases.
2908 * This is needed in the lookup routine of any filesystem that is exportable
2909 * (via knfsd) so that we can build dcache paths to directories effectively.
2911 * If a dentry was found and moved, then it is returned. Otherwise NULL
2912 * is returned. This matches the expected return value of ->lookup.
2914 * Cluster filesystems may call this function with a negative, hashed dentry.
2915 * In that case, we know that the inode will be a regular file, and also this
2916 * will only occur during atomic_open. So we need to check for the dentry
2917 * being already hashed only in the final case.
2919 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2921 if (IS_ERR(inode))
2922 return ERR_CAST(inode);
2924 BUG_ON(!d_unhashed(dentry));
2926 if (!inode)
2927 goto out;
2929 security_d_instantiate(dentry, inode);
2930 spin_lock(&inode->i_lock);
2931 if (S_ISDIR(inode->i_mode)) {
2932 struct dentry *new = __d_find_any_alias(inode);
2933 if (unlikely(new)) {
2934 /* The reference to new ensures it remains an alias */
2935 spin_unlock(&inode->i_lock);
2936 write_seqlock(&rename_lock);
2937 if (unlikely(d_ancestor(new, dentry))) {
2938 write_sequnlock(&rename_lock);
2939 dput(new);
2940 new = ERR_PTR(-ELOOP);
2941 pr_warn_ratelimited(
2942 "VFS: Lookup of '%s' in %s %s"
2943 " would have caused loop\n",
2944 dentry->d_name.name,
2945 inode->i_sb->s_type->name,
2946 inode->i_sb->s_id);
2947 } else if (!IS_ROOT(new)) {
2948 struct dentry *old_parent = dget(new->d_parent);
2949 int err = __d_unalias(inode, dentry, new);
2950 write_sequnlock(&rename_lock);
2951 if (err) {
2952 dput(new);
2953 new = ERR_PTR(err);
2955 dput(old_parent);
2956 } else {
2957 __d_move(new, dentry, false);
2958 write_sequnlock(&rename_lock);
2960 iput(inode);
2961 return new;
2964 out:
2965 __d_add(dentry, inode);
2966 return NULL;
2968 EXPORT_SYMBOL(d_splice_alias);
2971 * Test whether new_dentry is a subdirectory of old_dentry.
2973 * Trivially implemented using the dcache structure
2977 * is_subdir - is new dentry a subdirectory of old_dentry
2978 * @new_dentry: new dentry
2979 * @old_dentry: old dentry
2981 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2982 * Returns false otherwise.
2983 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2986 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2988 bool result;
2989 unsigned seq;
2991 if (new_dentry == old_dentry)
2992 return true;
2994 do {
2995 /* for restarting inner loop in case of seq retry */
2996 seq = read_seqbegin(&rename_lock);
2998 * Need rcu_readlock to protect against the d_parent trashing
2999 * due to d_move
3001 rcu_read_lock();
3002 if (d_ancestor(old_dentry, new_dentry))
3003 result = true;
3004 else
3005 result = false;
3006 rcu_read_unlock();
3007 } while (read_seqretry(&rename_lock, seq));
3009 return result;
3011 EXPORT_SYMBOL(is_subdir);
3013 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3015 struct dentry *root = data;
3016 if (dentry != root) {
3017 if (d_unhashed(dentry) || !dentry->d_inode)
3018 return D_WALK_SKIP;
3020 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3021 dentry->d_flags |= DCACHE_GENOCIDE;
3022 dentry->d_lockref.count--;
3025 return D_WALK_CONTINUE;
3028 void d_genocide(struct dentry *parent)
3030 d_walk(parent, parent, d_genocide_kill);
3033 EXPORT_SYMBOL(d_genocide);
3035 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3037 inode_dec_link_count(inode);
3038 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3039 !hlist_unhashed(&dentry->d_u.d_alias) ||
3040 !d_unlinked(dentry));
3041 spin_lock(&dentry->d_parent->d_lock);
3042 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3043 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3044 (unsigned long long)inode->i_ino);
3045 spin_unlock(&dentry->d_lock);
3046 spin_unlock(&dentry->d_parent->d_lock);
3047 d_instantiate(dentry, inode);
3049 EXPORT_SYMBOL(d_tmpfile);
3051 static __initdata unsigned long dhash_entries;
3052 static int __init set_dhash_entries(char *str)
3054 if (!str)
3055 return 0;
3056 dhash_entries = simple_strtoul(str, &str, 0);
3057 return 1;
3059 __setup("dhash_entries=", set_dhash_entries);
3061 static void __init dcache_init_early(void)
3063 /* If hashes are distributed across NUMA nodes, defer
3064 * hash allocation until vmalloc space is available.
3066 if (hashdist)
3067 return;
3069 dentry_hashtable =
3070 alloc_large_system_hash("Dentry cache",
3071 sizeof(struct hlist_bl_head),
3072 dhash_entries,
3074 HASH_EARLY | HASH_ZERO,
3075 &d_hash_shift,
3076 NULL,
3079 d_hash_shift = 32 - d_hash_shift;
3082 static void __init dcache_init(void)
3085 * A constructor could be added for stable state like the lists,
3086 * but it is probably not worth it because of the cache nature
3087 * of the dcache.
3089 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3090 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3091 d_iname);
3093 /* Hash may have been set up in dcache_init_early */
3094 if (!hashdist)
3095 return;
3097 dentry_hashtable =
3098 alloc_large_system_hash("Dentry cache",
3099 sizeof(struct hlist_bl_head),
3100 dhash_entries,
3102 HASH_ZERO,
3103 &d_hash_shift,
3104 NULL,
3107 d_hash_shift = 32 - d_hash_shift;
3110 /* SLAB cache for __getname() consumers */
3111 struct kmem_cache *names_cachep __read_mostly;
3112 EXPORT_SYMBOL(names_cachep);
3114 void __init vfs_caches_init_early(void)
3116 int i;
3118 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3119 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3121 dcache_init_early();
3122 inode_init_early();
3125 void __init vfs_caches_init(void)
3127 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3128 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3130 dcache_init();
3131 inode_init();
3132 files_init();
3133 files_maxfiles_init();
3134 mnt_init();
3135 bdev_cache_init();
3136 chrdev_init();