1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct
*target_completion_wq
;
57 static struct kmem_cache
*se_sess_cache
;
58 struct kmem_cache
*se_ua_cache
;
59 struct kmem_cache
*t10_pr_reg_cache
;
60 struct kmem_cache
*t10_alua_lu_gp_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
62 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
63 struct kmem_cache
*t10_alua_lba_map_cache
;
64 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
66 static void transport_complete_task_attr(struct se_cmd
*cmd
);
67 static void transport_handle_queue_full(struct se_cmd
*cmd
,
68 struct se_device
*dev
);
69 static int transport_put_cmd(struct se_cmd
*cmd
);
70 static void target_complete_ok_work(struct work_struct
*work
);
72 int init_se_kmem_caches(void)
74 se_sess_cache
= kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session
), __alignof__(struct se_session
),
78 pr_err("kmem_cache_create() for struct se_session"
82 se_ua_cache
= kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua
), __alignof__(struct se_ua
),
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache
;
89 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration
),
91 __alignof__(struct t10_pr_registration
), 0, NULL
);
92 if (!t10_pr_reg_cache
) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 goto out_free_ua_cache
;
97 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
100 if (!t10_alua_lu_gp_cache
) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 goto out_free_pr_reg_cache
;
105 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member
),
107 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
108 if (!t10_alua_lu_gp_mem_cache
) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 goto out_free_lu_gp_cache
;
113 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp
),
115 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
116 if (!t10_alua_tg_pt_gp_cache
) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 goto out_free_lu_gp_mem_cache
;
121 t10_alua_lba_map_cache
= kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map
),
124 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
125 if (!t10_alua_lba_map_cache
) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 goto out_free_tg_pt_gp_cache
;
130 t10_alua_lba_map_mem_cache
= kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member
),
133 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
134 if (!t10_alua_lba_map_mem_cache
) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 goto out_free_lba_map_cache
;
140 target_completion_wq
= alloc_workqueue("target_completion",
142 if (!target_completion_wq
)
143 goto out_free_lba_map_mem_cache
;
147 out_free_lba_map_mem_cache
:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
149 out_free_lba_map_cache
:
150 kmem_cache_destroy(t10_alua_lba_map_cache
);
151 out_free_tg_pt_gp_cache
:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
153 out_free_lu_gp_mem_cache
:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
155 out_free_lu_gp_cache
:
156 kmem_cache_destroy(t10_alua_lu_gp_cache
);
157 out_free_pr_reg_cache
:
158 kmem_cache_destroy(t10_pr_reg_cache
);
160 kmem_cache_destroy(se_ua_cache
);
162 kmem_cache_destroy(se_sess_cache
);
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq
);
170 kmem_cache_destroy(se_sess_cache
);
171 kmem_cache_destroy(se_ua_cache
);
172 kmem_cache_destroy(t10_pr_reg_cache
);
173 kmem_cache_destroy(t10_alua_lu_gp_cache
);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
176 kmem_cache_destroy(t10_alua_lba_map_cache
);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
182 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
185 * Allocate a new row index for the entry type specified
187 u32
scsi_get_new_index(scsi_index_t type
)
191 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
193 spin_lock(&scsi_mib_index_lock
);
194 new_index
= ++scsi_mib_index
[type
];
195 spin_unlock(&scsi_mib_index_lock
);
200 void transport_subsystem_check_init(void)
203 static int sub_api_initialized
;
205 if (sub_api_initialized
)
208 ret
= request_module("target_core_iblock");
210 pr_err("Unable to load target_core_iblock\n");
212 ret
= request_module("target_core_file");
214 pr_err("Unable to load target_core_file\n");
216 ret
= request_module("target_core_pscsi");
218 pr_err("Unable to load target_core_pscsi\n");
220 ret
= request_module("target_core_user");
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized
= 1;
227 struct se_session
*transport_init_session(enum target_prot_op sup_prot_ops
)
229 struct se_session
*se_sess
;
231 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
233 pr_err("Unable to allocate struct se_session from"
235 return ERR_PTR(-ENOMEM
);
237 INIT_LIST_HEAD(&se_sess
->sess_list
);
238 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
239 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
240 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
241 spin_lock_init(&se_sess
->sess_cmd_lock
);
242 kref_init(&se_sess
->sess_kref
);
243 se_sess
->sup_prot_ops
= sup_prot_ops
;
247 EXPORT_SYMBOL(transport_init_session
);
249 int transport_alloc_session_tags(struct se_session
*se_sess
,
250 unsigned int tag_num
, unsigned int tag_size
)
254 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
255 GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
256 if (!se_sess
->sess_cmd_map
) {
257 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
258 if (!se_sess
->sess_cmd_map
) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
264 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num
);
268 kvfree(se_sess
->sess_cmd_map
);
269 se_sess
->sess_cmd_map
= NULL
;
275 EXPORT_SYMBOL(transport_alloc_session_tags
);
277 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
278 unsigned int tag_size
,
279 enum target_prot_op sup_prot_ops
)
281 struct se_session
*se_sess
;
284 se_sess
= transport_init_session(sup_prot_ops
);
288 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
290 transport_free_session(se_sess
);
291 return ERR_PTR(-ENOMEM
);
296 EXPORT_SYMBOL(transport_init_session_tags
);
299 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
301 void __transport_register_session(
302 struct se_portal_group
*se_tpg
,
303 struct se_node_acl
*se_nacl
,
304 struct se_session
*se_sess
,
305 void *fabric_sess_ptr
)
307 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
308 unsigned char buf
[PR_REG_ISID_LEN
];
310 se_sess
->se_tpg
= se_tpg
;
311 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
313 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
315 * Only set for struct se_session's that will actually be moving I/O.
316 * eg: *NOT* discovery sessions.
321 * Determine if fabric allows for T10-PI feature bits exposed to
322 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
324 * If so, then always save prot_type on a per se_node_acl node
325 * basis and re-instate the previous sess_prot_type to avoid
326 * disabling PI from below any previously initiator side
329 if (se_nacl
->saved_prot_type
)
330 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
331 else if (tfo
->tpg_check_prot_fabric_only
)
332 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
333 tfo
->tpg_check_prot_fabric_only(se_tpg
);
335 * If the fabric module supports an ISID based TransportID,
336 * save this value in binary from the fabric I_T Nexus now.
338 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
339 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
340 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
341 &buf
[0], PR_REG_ISID_LEN
);
342 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
345 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
347 * The se_nacl->nacl_sess pointer will be set to the
348 * last active I_T Nexus for each struct se_node_acl.
350 se_nacl
->nacl_sess
= se_sess
;
352 list_add_tail(&se_sess
->sess_acl_list
,
353 &se_nacl
->acl_sess_list
);
354 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
356 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
358 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
359 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
361 EXPORT_SYMBOL(__transport_register_session
);
363 void transport_register_session(
364 struct se_portal_group
*se_tpg
,
365 struct se_node_acl
*se_nacl
,
366 struct se_session
*se_sess
,
367 void *fabric_sess_ptr
)
371 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
372 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
373 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
375 EXPORT_SYMBOL(transport_register_session
);
377 static void target_release_session(struct kref
*kref
)
379 struct se_session
*se_sess
= container_of(kref
,
380 struct se_session
, sess_kref
);
381 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
383 se_tpg
->se_tpg_tfo
->close_session(se_sess
);
386 void target_get_session(struct se_session
*se_sess
)
388 kref_get(&se_sess
->sess_kref
);
390 EXPORT_SYMBOL(target_get_session
);
392 void target_put_session(struct se_session
*se_sess
)
394 kref_put(&se_sess
->sess_kref
, target_release_session
);
396 EXPORT_SYMBOL(target_put_session
);
398 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
400 struct se_session
*se_sess
;
403 spin_lock_bh(&se_tpg
->session_lock
);
404 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
405 if (!se_sess
->se_node_acl
)
407 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
409 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
412 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
413 se_sess
->se_node_acl
->initiatorname
);
414 len
+= 1; /* Include NULL terminator */
416 spin_unlock_bh(&se_tpg
->session_lock
);
420 EXPORT_SYMBOL(target_show_dynamic_sessions
);
422 static void target_complete_nacl(struct kref
*kref
)
424 struct se_node_acl
*nacl
= container_of(kref
,
425 struct se_node_acl
, acl_kref
);
426 struct se_portal_group
*se_tpg
= nacl
->se_tpg
;
428 if (!nacl
->dynamic_stop
) {
429 complete(&nacl
->acl_free_comp
);
433 mutex_lock(&se_tpg
->acl_node_mutex
);
434 list_del(&nacl
->acl_list
);
435 mutex_unlock(&se_tpg
->acl_node_mutex
);
437 core_tpg_wait_for_nacl_pr_ref(nacl
);
438 core_free_device_list_for_node(nacl
, se_tpg
);
442 void target_put_nacl(struct se_node_acl
*nacl
)
444 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
446 EXPORT_SYMBOL(target_put_nacl
);
448 void transport_deregister_session_configfs(struct se_session
*se_sess
)
450 struct se_node_acl
*se_nacl
;
453 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
455 se_nacl
= se_sess
->se_node_acl
;
457 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
458 if (se_nacl
->acl_stop
== 0)
459 list_del(&se_sess
->sess_acl_list
);
461 * If the session list is empty, then clear the pointer.
462 * Otherwise, set the struct se_session pointer from the tail
463 * element of the per struct se_node_acl active session list.
465 if (list_empty(&se_nacl
->acl_sess_list
))
466 se_nacl
->nacl_sess
= NULL
;
468 se_nacl
->nacl_sess
= container_of(
469 se_nacl
->acl_sess_list
.prev
,
470 struct se_session
, sess_acl_list
);
472 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
475 EXPORT_SYMBOL(transport_deregister_session_configfs
);
477 void transport_free_session(struct se_session
*se_sess
)
479 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
482 * Drop the se_node_acl->nacl_kref obtained from within
483 * core_tpg_get_initiator_node_acl().
486 struct se_portal_group
*se_tpg
= se_nacl
->se_tpg
;
487 const struct target_core_fabric_ops
*se_tfo
= se_tpg
->se_tpg_tfo
;
490 se_sess
->se_node_acl
= NULL
;
493 * Also determine if we need to drop the extra ->cmd_kref if
494 * it had been previously dynamically generated, and
495 * the endpoint is not caching dynamic ACLs.
497 mutex_lock(&se_tpg
->acl_node_mutex
);
498 if (se_nacl
->dynamic_node_acl
&&
499 !se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
500 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
501 if (list_empty(&se_nacl
->acl_sess_list
))
502 se_nacl
->dynamic_stop
= true;
503 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
505 if (se_nacl
->dynamic_stop
)
506 list_del(&se_nacl
->acl_list
);
508 mutex_unlock(&se_tpg
->acl_node_mutex
);
510 if (se_nacl
->dynamic_stop
)
511 target_put_nacl(se_nacl
);
513 target_put_nacl(se_nacl
);
515 if (se_sess
->sess_cmd_map
) {
516 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
517 kvfree(se_sess
->sess_cmd_map
);
519 kmem_cache_free(se_sess_cache
, se_sess
);
521 EXPORT_SYMBOL(transport_free_session
);
523 void transport_deregister_session(struct se_session
*se_sess
)
525 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
529 transport_free_session(se_sess
);
533 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
534 list_del(&se_sess
->sess_list
);
535 se_sess
->se_tpg
= NULL
;
536 se_sess
->fabric_sess_ptr
= NULL
;
537 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
539 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
540 se_tpg
->se_tpg_tfo
->get_fabric_name());
542 * If last kref is dropping now for an explicit NodeACL, awake sleeping
543 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
544 * removal context from within transport_free_session() code.
546 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
547 * to release all remaining generate_node_acl=1 created ACL resources.
550 transport_free_session(se_sess
);
552 EXPORT_SYMBOL(transport_deregister_session
);
554 static void target_remove_from_state_list(struct se_cmd
*cmd
)
556 struct se_device
*dev
= cmd
->se_dev
;
562 if (cmd
->transport_state
& CMD_T_BUSY
)
565 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
566 if (cmd
->state_active
) {
567 list_del(&cmd
->state_list
);
568 cmd
->state_active
= false;
570 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
573 static int transport_cmd_check_stop(struct se_cmd
*cmd
, bool remove_from_lists
,
578 if (remove_from_lists
) {
579 target_remove_from_state_list(cmd
);
582 * Clear struct se_cmd->se_lun before the handoff to FE.
587 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
589 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
592 * Determine if frontend context caller is requesting the stopping of
593 * this command for frontend exceptions.
595 if (cmd
->transport_state
& CMD_T_STOP
) {
596 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
597 __func__
, __LINE__
, cmd
->tag
);
599 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
601 complete_all(&cmd
->t_transport_stop_comp
);
605 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
606 if (remove_from_lists
) {
608 * Some fabric modules like tcm_loop can release
609 * their internally allocated I/O reference now and
612 * Fabric modules are expected to return '1' here if the
613 * se_cmd being passed is released at this point,
614 * or zero if not being released.
616 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
617 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
618 return cmd
->se_tfo
->check_stop_free(cmd
);
622 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
626 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
628 return transport_cmd_check_stop(cmd
, true, false);
631 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
633 struct se_lun
*lun
= cmd
->se_lun
;
638 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
639 percpu_ref_put(&lun
->lun_ref
);
642 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
644 bool ack_kref
= (cmd
->se_cmd_flags
& SCF_ACK_KREF
);
646 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
647 transport_lun_remove_cmd(cmd
);
649 * Allow the fabric driver to unmap any resources before
650 * releasing the descriptor via TFO->release_cmd()
653 cmd
->se_tfo
->aborted_task(cmd
);
655 if (transport_cmd_check_stop_to_fabric(cmd
))
657 if (remove
&& ack_kref
)
658 transport_put_cmd(cmd
);
661 static void target_complete_failure_work(struct work_struct
*work
)
663 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
665 transport_generic_request_failure(cmd
,
666 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
670 * Used when asking transport to copy Sense Data from the underlying
671 * Linux/SCSI struct scsi_cmnd
673 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
675 struct se_device
*dev
= cmd
->se_dev
;
677 WARN_ON(!cmd
->se_lun
);
682 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
685 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
687 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
688 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
689 return cmd
->sense_buffer
;
692 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
694 struct se_device
*dev
= cmd
->se_dev
;
695 int success
= scsi_status
== GOOD
;
698 cmd
->scsi_status
= scsi_status
;
701 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
702 cmd
->transport_state
&= ~CMD_T_BUSY
;
704 if (dev
&& dev
->transport
->transport_complete
) {
705 dev
->transport
->transport_complete(cmd
,
707 transport_get_sense_buffer(cmd
));
708 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
713 * See if we are waiting to complete for an exception condition.
715 if (cmd
->transport_state
& CMD_T_REQUEST_STOP
) {
716 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
717 complete(&cmd
->task_stop_comp
);
722 * Check for case where an explicit ABORT_TASK has been received
723 * and transport_wait_for_tasks() will be waiting for completion..
725 if (cmd
->transport_state
& CMD_T_ABORTED
||
726 cmd
->transport_state
& CMD_T_STOP
) {
727 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
728 complete_all(&cmd
->t_transport_stop_comp
);
730 } else if (!success
) {
731 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
733 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
736 cmd
->t_state
= TRANSPORT_COMPLETE
;
737 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
738 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
740 queue_work(target_completion_wq
, &cmd
->work
);
742 EXPORT_SYMBOL(target_complete_cmd
);
744 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
746 if (scsi_status
== SAM_STAT_GOOD
&& length
< cmd
->data_length
) {
747 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
748 cmd
->residual_count
+= cmd
->data_length
- length
;
750 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
751 cmd
->residual_count
= cmd
->data_length
- length
;
754 cmd
->data_length
= length
;
757 target_complete_cmd(cmd
, scsi_status
);
759 EXPORT_SYMBOL(target_complete_cmd_with_length
);
761 static void target_add_to_state_list(struct se_cmd
*cmd
)
763 struct se_device
*dev
= cmd
->se_dev
;
766 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
767 if (!cmd
->state_active
) {
768 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
769 cmd
->state_active
= true;
771 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
775 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
777 static void transport_write_pending_qf(struct se_cmd
*cmd
);
778 static void transport_complete_qf(struct se_cmd
*cmd
);
780 void target_qf_do_work(struct work_struct
*work
)
782 struct se_device
*dev
= container_of(work
, struct se_device
,
784 LIST_HEAD(qf_cmd_list
);
785 struct se_cmd
*cmd
, *cmd_tmp
;
787 spin_lock_irq(&dev
->qf_cmd_lock
);
788 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
789 spin_unlock_irq(&dev
->qf_cmd_lock
);
791 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
792 list_del(&cmd
->se_qf_node
);
793 atomic_dec_mb(&dev
->dev_qf_count
);
795 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
796 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
797 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
798 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
801 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
802 transport_write_pending_qf(cmd
);
803 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
)
804 transport_complete_qf(cmd
);
808 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
810 switch (cmd
->data_direction
) {
813 case DMA_FROM_DEVICE
:
817 case DMA_BIDIRECTIONAL
:
826 void transport_dump_dev_state(
827 struct se_device
*dev
,
831 *bl
+= sprintf(b
+ *bl
, "Status: ");
832 if (dev
->export_count
)
833 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
835 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
837 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
838 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
839 dev
->dev_attrib
.block_size
,
840 dev
->dev_attrib
.hw_max_sectors
);
841 *bl
+= sprintf(b
+ *bl
, " ");
844 void transport_dump_vpd_proto_id(
846 unsigned char *p_buf
,
849 unsigned char buf
[VPD_TMP_BUF_SIZE
];
852 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
853 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
855 switch (vpd
->protocol_identifier
) {
857 sprintf(buf
+len
, "Fibre Channel\n");
860 sprintf(buf
+len
, "Parallel SCSI\n");
863 sprintf(buf
+len
, "SSA\n");
866 sprintf(buf
+len
, "IEEE 1394\n");
869 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
873 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
876 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
879 sprintf(buf
+len
, "Automation/Drive Interface Transport"
883 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
886 sprintf(buf
+len
, "Unknown 0x%02x\n",
887 vpd
->protocol_identifier
);
892 strncpy(p_buf
, buf
, p_buf_len
);
898 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
901 * Check if the Protocol Identifier Valid (PIV) bit is set..
903 * from spc3r23.pdf section 7.5.1
905 if (page_83
[1] & 0x80) {
906 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
907 vpd
->protocol_identifier_set
= 1;
908 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
911 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
913 int transport_dump_vpd_assoc(
915 unsigned char *p_buf
,
918 unsigned char buf
[VPD_TMP_BUF_SIZE
];
922 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
923 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
925 switch (vpd
->association
) {
927 sprintf(buf
+len
, "addressed logical unit\n");
930 sprintf(buf
+len
, "target port\n");
933 sprintf(buf
+len
, "SCSI target device\n");
936 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
942 strncpy(p_buf
, buf
, p_buf_len
);
949 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
952 * The VPD identification association..
954 * from spc3r23.pdf Section 7.6.3.1 Table 297
956 vpd
->association
= (page_83
[1] & 0x30);
957 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
959 EXPORT_SYMBOL(transport_set_vpd_assoc
);
961 int transport_dump_vpd_ident_type(
963 unsigned char *p_buf
,
966 unsigned char buf
[VPD_TMP_BUF_SIZE
];
970 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
971 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
973 switch (vpd
->device_identifier_type
) {
975 sprintf(buf
+len
, "Vendor specific\n");
978 sprintf(buf
+len
, "T10 Vendor ID based\n");
981 sprintf(buf
+len
, "EUI-64 based\n");
984 sprintf(buf
+len
, "NAA\n");
987 sprintf(buf
+len
, "Relative target port identifier\n");
990 sprintf(buf
+len
, "SCSI name string\n");
993 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
994 vpd
->device_identifier_type
);
1000 if (p_buf_len
< strlen(buf
)+1)
1002 strncpy(p_buf
, buf
, p_buf_len
);
1004 pr_debug("%s", buf
);
1010 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1013 * The VPD identifier type..
1015 * from spc3r23.pdf Section 7.6.3.1 Table 298
1017 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1018 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1020 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1022 int transport_dump_vpd_ident(
1023 struct t10_vpd
*vpd
,
1024 unsigned char *p_buf
,
1027 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1030 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1032 switch (vpd
->device_identifier_code_set
) {
1033 case 0x01: /* Binary */
1034 snprintf(buf
, sizeof(buf
),
1035 "T10 VPD Binary Device Identifier: %s\n",
1036 &vpd
->device_identifier
[0]);
1038 case 0x02: /* ASCII */
1039 snprintf(buf
, sizeof(buf
),
1040 "T10 VPD ASCII Device Identifier: %s\n",
1041 &vpd
->device_identifier
[0]);
1043 case 0x03: /* UTF-8 */
1044 snprintf(buf
, sizeof(buf
),
1045 "T10 VPD UTF-8 Device Identifier: %s\n",
1046 &vpd
->device_identifier
[0]);
1049 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1050 " 0x%02x", vpd
->device_identifier_code_set
);
1056 strncpy(p_buf
, buf
, p_buf_len
);
1058 pr_debug("%s", buf
);
1064 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1066 static const char hex_str
[] = "0123456789abcdef";
1067 int j
= 0, i
= 4; /* offset to start of the identifier */
1070 * The VPD Code Set (encoding)
1072 * from spc3r23.pdf Section 7.6.3.1 Table 296
1074 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1075 switch (vpd
->device_identifier_code_set
) {
1076 case 0x01: /* Binary */
1077 vpd
->device_identifier
[j
++] =
1078 hex_str
[vpd
->device_identifier_type
];
1079 while (i
< (4 + page_83
[3])) {
1080 vpd
->device_identifier
[j
++] =
1081 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1082 vpd
->device_identifier
[j
++] =
1083 hex_str
[page_83
[i
] & 0x0f];
1087 case 0x02: /* ASCII */
1088 case 0x03: /* UTF-8 */
1089 while (i
< (4 + page_83
[3]))
1090 vpd
->device_identifier
[j
++] = page_83
[i
++];
1096 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1098 EXPORT_SYMBOL(transport_set_vpd_ident
);
1100 static sense_reason_t
1101 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1106 if (!cmd
->se_tfo
->max_data_sg_nents
)
1107 return TCM_NO_SENSE
;
1109 * Check if fabric enforced maximum SGL entries per I/O descriptor
1110 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1111 * residual_count and reduce original cmd->data_length to maximum
1112 * length based on single PAGE_SIZE entry scatter-lists.
1114 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1115 if (cmd
->data_length
> mtl
) {
1117 * If an existing CDB overflow is present, calculate new residual
1118 * based on CDB size minus fabric maximum transfer length.
1120 * If an existing CDB underflow is present, calculate new residual
1121 * based on original cmd->data_length minus fabric maximum transfer
1124 * Otherwise, set the underflow residual based on cmd->data_length
1125 * minus fabric maximum transfer length.
1127 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1128 cmd
->residual_count
= (size
- mtl
);
1129 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1130 u32 orig_dl
= size
+ cmd
->residual_count
;
1131 cmd
->residual_count
= (orig_dl
- mtl
);
1133 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1134 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1136 cmd
->data_length
= mtl
;
1138 * Reset sbc_check_prot() calculated protection payload
1139 * length based upon the new smaller MTL.
1141 if (cmd
->prot_length
) {
1142 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1143 cmd
->prot_length
= dev
->prot_length
* sectors
;
1146 return TCM_NO_SENSE
;
1150 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1152 struct se_device
*dev
= cmd
->se_dev
;
1154 if (cmd
->unknown_data_length
) {
1155 cmd
->data_length
= size
;
1156 } else if (size
!= cmd
->data_length
) {
1157 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1158 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1159 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1160 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1162 if (cmd
->data_direction
== DMA_TO_DEVICE
&&
1163 cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1164 pr_err("Rejecting underflow/overflow WRITE data\n");
1165 return TCM_INVALID_CDB_FIELD
;
1168 * Reject READ_* or WRITE_* with overflow/underflow for
1169 * type SCF_SCSI_DATA_CDB.
1171 if (dev
->dev_attrib
.block_size
!= 512) {
1172 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1173 " CDB on non 512-byte sector setup subsystem"
1174 " plugin: %s\n", dev
->transport
->name
);
1175 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1176 return TCM_INVALID_CDB_FIELD
;
1179 * For the overflow case keep the existing fabric provided
1180 * ->data_length. Otherwise for the underflow case, reset
1181 * ->data_length to the smaller SCSI expected data transfer
1184 if (size
> cmd
->data_length
) {
1185 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1186 cmd
->residual_count
= (size
- cmd
->data_length
);
1188 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1189 cmd
->residual_count
= (cmd
->data_length
- size
);
1190 cmd
->data_length
= size
;
1194 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1199 * Used by fabric modules containing a local struct se_cmd within their
1200 * fabric dependent per I/O descriptor.
1202 * Preserves the value of @cmd->tag.
1204 void transport_init_se_cmd(
1206 const struct target_core_fabric_ops
*tfo
,
1207 struct se_session
*se_sess
,
1211 unsigned char *sense_buffer
)
1213 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1214 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1215 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1216 INIT_LIST_HEAD(&cmd
->state_list
);
1217 init_completion(&cmd
->t_transport_stop_comp
);
1218 init_completion(&cmd
->cmd_wait_comp
);
1219 init_completion(&cmd
->task_stop_comp
);
1220 spin_lock_init(&cmd
->t_state_lock
);
1221 kref_init(&cmd
->cmd_kref
);
1222 cmd
->transport_state
= CMD_T_DEV_ACTIVE
;
1225 cmd
->se_sess
= se_sess
;
1226 cmd
->data_length
= data_length
;
1227 cmd
->data_direction
= data_direction
;
1228 cmd
->sam_task_attr
= task_attr
;
1229 cmd
->sense_buffer
= sense_buffer
;
1231 cmd
->state_active
= false;
1233 EXPORT_SYMBOL(transport_init_se_cmd
);
1235 static sense_reason_t
1236 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1238 struct se_device
*dev
= cmd
->se_dev
;
1241 * Check if SAM Task Attribute emulation is enabled for this
1242 * struct se_device storage object
1244 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1247 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1248 pr_debug("SAM Task Attribute ACA"
1249 " emulation is not supported\n");
1250 return TCM_INVALID_CDB_FIELD
;
1257 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1259 struct se_device
*dev
= cmd
->se_dev
;
1263 * Ensure that the received CDB is less than the max (252 + 8) bytes
1264 * for VARIABLE_LENGTH_CMD
1266 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1267 pr_err("Received SCSI CDB with command_size: %d that"
1268 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1269 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1270 return TCM_INVALID_CDB_FIELD
;
1273 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1274 * allocate the additional extended CDB buffer now.. Otherwise
1275 * setup the pointer from __t_task_cdb to t_task_cdb.
1277 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1278 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1280 if (!cmd
->t_task_cdb
) {
1281 pr_err("Unable to allocate cmd->t_task_cdb"
1282 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1283 scsi_command_size(cdb
),
1284 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1285 return TCM_OUT_OF_RESOURCES
;
1288 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1290 * Copy the original CDB into cmd->
1292 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1294 trace_target_sequencer_start(cmd
);
1296 ret
= dev
->transport
->parse_cdb(cmd
);
1297 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1298 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1299 cmd
->se_tfo
->get_fabric_name(),
1300 cmd
->se_sess
->se_node_acl
->initiatorname
,
1301 cmd
->t_task_cdb
[0]);
1305 ret
= transport_check_alloc_task_attr(cmd
);
1309 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1310 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1313 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1316 * Used by fabric module frontends to queue tasks directly.
1317 * Many only be used from process context only
1319 int transport_handle_cdb_direct(
1326 pr_err("cmd->se_lun is NULL\n");
1329 if (in_interrupt()) {
1331 pr_err("transport_generic_handle_cdb cannot be called"
1332 " from interrupt context\n");
1336 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1337 * outstanding descriptors are handled correctly during shutdown via
1338 * transport_wait_for_tasks()
1340 * Also, we don't take cmd->t_state_lock here as we only expect
1341 * this to be called for initial descriptor submission.
1343 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1344 cmd
->transport_state
|= CMD_T_ACTIVE
;
1347 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1348 * so follow TRANSPORT_NEW_CMD processing thread context usage
1349 * and call transport_generic_request_failure() if necessary..
1351 ret
= transport_generic_new_cmd(cmd
);
1353 transport_generic_request_failure(cmd
, ret
);
1356 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1359 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1360 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1362 if (!sgl
|| !sgl_count
)
1366 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1367 * scatterlists already have been set to follow what the fabric
1368 * passes for the original expected data transfer length.
1370 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1371 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1372 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1373 return TCM_INVALID_CDB_FIELD
;
1376 cmd
->t_data_sg
= sgl
;
1377 cmd
->t_data_nents
= sgl_count
;
1378 cmd
->t_bidi_data_sg
= sgl_bidi
;
1379 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1381 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1386 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1387 * se_cmd + use pre-allocated SGL memory.
1389 * @se_cmd: command descriptor to submit
1390 * @se_sess: associated se_sess for endpoint
1391 * @cdb: pointer to SCSI CDB
1392 * @sense: pointer to SCSI sense buffer
1393 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1394 * @data_length: fabric expected data transfer length
1395 * @task_addr: SAM task attribute
1396 * @data_dir: DMA data direction
1397 * @flags: flags for command submission from target_sc_flags_tables
1398 * @sgl: struct scatterlist memory for unidirectional mapping
1399 * @sgl_count: scatterlist count for unidirectional mapping
1400 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1401 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1402 * @sgl_prot: struct scatterlist memory protection information
1403 * @sgl_prot_count: scatterlist count for protection information
1405 * Task tags are supported if the caller has set @se_cmd->tag.
1407 * Returns non zero to signal active I/O shutdown failure. All other
1408 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1409 * but still return zero here.
1411 * This may only be called from process context, and also currently
1412 * assumes internal allocation of fabric payload buffer by target-core.
1414 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1415 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1416 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1417 struct scatterlist
*sgl
, u32 sgl_count
,
1418 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1419 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1421 struct se_portal_group
*se_tpg
;
1425 se_tpg
= se_sess
->se_tpg
;
1427 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1428 BUG_ON(in_interrupt());
1430 * Initialize se_cmd for target operation. From this point
1431 * exceptions are handled by sending exception status via
1432 * target_core_fabric_ops->queue_status() callback
1434 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1435 data_length
, data_dir
, task_attr
, sense
);
1436 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1437 se_cmd
->unknown_data_length
= 1;
1439 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1440 * se_sess->sess_cmd_list. A second kref_get here is necessary
1441 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1442 * kref_put() to happen during fabric packet acknowledgement.
1444 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1448 * Signal bidirectional data payloads to target-core
1450 if (flags
& TARGET_SCF_BIDI_OP
)
1451 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1453 * Locate se_lun pointer and attach it to struct se_cmd
1455 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1457 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1458 target_put_sess_cmd(se_cmd
);
1462 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1464 transport_generic_request_failure(se_cmd
, rc
);
1469 * Save pointers for SGLs containing protection information,
1472 if (sgl_prot_count
) {
1473 se_cmd
->t_prot_sg
= sgl_prot
;
1474 se_cmd
->t_prot_nents
= sgl_prot_count
;
1475 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1479 * When a non zero sgl_count has been passed perform SGL passthrough
1480 * mapping for pre-allocated fabric memory instead of having target
1481 * core perform an internal SGL allocation..
1483 if (sgl_count
!= 0) {
1487 * A work-around for tcm_loop as some userspace code via
1488 * scsi-generic do not memset their associated read buffers,
1489 * so go ahead and do that here for type non-data CDBs. Also
1490 * note that this is currently guaranteed to be a single SGL
1491 * for this case by target core in target_setup_cmd_from_cdb()
1492 * -> transport_generic_cmd_sequencer().
1494 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1495 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1496 unsigned char *buf
= NULL
;
1499 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1502 memset(buf
, 0, sgl
->length
);
1503 kunmap(sg_page(sgl
));
1507 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1508 sgl_bidi
, sgl_bidi_count
);
1510 transport_generic_request_failure(se_cmd
, rc
);
1516 * Check if we need to delay processing because of ALUA
1517 * Active/NonOptimized primary access state..
1519 core_alua_check_nonop_delay(se_cmd
);
1521 transport_handle_cdb_direct(se_cmd
);
1524 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1527 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1529 * @se_cmd: command descriptor to submit
1530 * @se_sess: associated se_sess for endpoint
1531 * @cdb: pointer to SCSI CDB
1532 * @sense: pointer to SCSI sense buffer
1533 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1534 * @data_length: fabric expected data transfer length
1535 * @task_addr: SAM task attribute
1536 * @data_dir: DMA data direction
1537 * @flags: flags for command submission from target_sc_flags_tables
1539 * Task tags are supported if the caller has set @se_cmd->tag.
1541 * Returns non zero to signal active I/O shutdown failure. All other
1542 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1543 * but still return zero here.
1545 * This may only be called from process context, and also currently
1546 * assumes internal allocation of fabric payload buffer by target-core.
1548 * It also assumes interal target core SGL memory allocation.
1550 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1551 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1552 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1554 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1555 unpacked_lun
, data_length
, task_attr
, data_dir
,
1556 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1558 EXPORT_SYMBOL(target_submit_cmd
);
1560 static void target_complete_tmr_failure(struct work_struct
*work
)
1562 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1564 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1565 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1567 transport_cmd_check_stop_to_fabric(se_cmd
);
1571 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1574 * @se_cmd: command descriptor to submit
1575 * @se_sess: associated se_sess for endpoint
1576 * @sense: pointer to SCSI sense buffer
1577 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1578 * @fabric_context: fabric context for TMR req
1579 * @tm_type: Type of TM request
1580 * @gfp: gfp type for caller
1581 * @tag: referenced task tag for TMR_ABORT_TASK
1582 * @flags: submit cmd flags
1584 * Callable from all contexts.
1587 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1588 unsigned char *sense
, u64 unpacked_lun
,
1589 void *fabric_tmr_ptr
, unsigned char tm_type
,
1590 gfp_t gfp
, unsigned int tag
, int flags
)
1592 struct se_portal_group
*se_tpg
;
1595 se_tpg
= se_sess
->se_tpg
;
1598 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1599 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1601 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1602 * allocation failure.
1604 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1608 if (tm_type
== TMR_ABORT_TASK
)
1609 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1611 /* See target_submit_cmd for commentary */
1612 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1614 core_tmr_release_req(se_cmd
->se_tmr_req
);
1618 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1621 * For callback during failure handling, push this work off
1622 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1624 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1625 schedule_work(&se_cmd
->work
);
1628 transport_generic_handle_tmr(se_cmd
);
1631 EXPORT_SYMBOL(target_submit_tmr
);
1634 * If the cmd is active, request it to be stopped and sleep until it
1637 bool target_stop_cmd(struct se_cmd
*cmd
, unsigned long *flags
)
1638 __releases(&cmd
->t_state_lock
)
1639 __acquires(&cmd
->t_state_lock
)
1641 bool was_active
= false;
1643 if (cmd
->transport_state
& CMD_T_BUSY
) {
1644 cmd
->transport_state
|= CMD_T_REQUEST_STOP
;
1645 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
1647 pr_debug("cmd %p waiting to complete\n", cmd
);
1648 wait_for_completion(&cmd
->task_stop_comp
);
1649 pr_debug("cmd %p stopped successfully\n", cmd
);
1651 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
1652 cmd
->transport_state
&= ~CMD_T_REQUEST_STOP
;
1653 cmd
->transport_state
&= ~CMD_T_BUSY
;
1661 * Handle SAM-esque emulation for generic transport request failures.
1663 void transport_generic_request_failure(struct se_cmd
*cmd
,
1664 sense_reason_t sense_reason
)
1666 int ret
= 0, post_ret
= 0;
1668 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1669 " CDB: 0x%02x\n", cmd
, cmd
->tag
, cmd
->t_task_cdb
[0]);
1670 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1671 cmd
->se_tfo
->get_cmd_state(cmd
),
1672 cmd
->t_state
, sense_reason
);
1673 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1674 (cmd
->transport_state
& CMD_T_ACTIVE
) != 0,
1675 (cmd
->transport_state
& CMD_T_STOP
) != 0,
1676 (cmd
->transport_state
& CMD_T_SENT
) != 0);
1679 * For SAM Task Attribute emulation for failed struct se_cmd
1681 transport_complete_task_attr(cmd
);
1683 * Handle special case for COMPARE_AND_WRITE failure, where the
1684 * callback is expected to drop the per device ->caw_sem.
1686 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1687 cmd
->transport_complete_callback
)
1688 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
1690 switch (sense_reason
) {
1691 case TCM_NON_EXISTENT_LUN
:
1692 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1693 case TCM_INVALID_CDB_FIELD
:
1694 case TCM_INVALID_PARAMETER_LIST
:
1695 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1696 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1697 case TCM_UNKNOWN_MODE_PAGE
:
1698 case TCM_WRITE_PROTECTED
:
1699 case TCM_ADDRESS_OUT_OF_RANGE
:
1700 case TCM_CHECK_CONDITION_ABORT_CMD
:
1701 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1702 case TCM_CHECK_CONDITION_NOT_READY
:
1703 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1704 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1705 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1706 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
:
1708 case TCM_OUT_OF_RESOURCES
:
1709 sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1711 case TCM_RESERVATION_CONFLICT
:
1713 * No SENSE Data payload for this case, set SCSI Status
1714 * and queue the response to $FABRIC_MOD.
1716 * Uses linux/include/scsi/scsi.h SAM status codes defs
1718 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1720 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1721 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1724 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1727 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2) {
1728 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1729 cmd
->orig_fe_lun
, 0x2C,
1730 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1732 trace_target_cmd_complete(cmd
);
1733 ret
= cmd
->se_tfo
->queue_status(cmd
);
1734 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1738 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1739 cmd
->t_task_cdb
[0], sense_reason
);
1740 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1744 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1745 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1749 transport_lun_remove_cmd(cmd
);
1750 transport_cmd_check_stop_to_fabric(cmd
);
1754 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1755 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1757 EXPORT_SYMBOL(transport_generic_request_failure
);
1759 void __target_execute_cmd(struct se_cmd
*cmd
, bool do_checks
)
1763 if (!cmd
->execute_cmd
) {
1764 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1769 * Check for an existing UNIT ATTENTION condition after
1770 * target_handle_task_attr() has done SAM task attr
1771 * checking, and possibly have already defered execution
1772 * out to target_restart_delayed_cmds() context.
1774 ret
= target_scsi3_ua_check(cmd
);
1778 ret
= target_alua_state_check(cmd
);
1782 ret
= target_check_reservation(cmd
);
1784 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1789 ret
= cmd
->execute_cmd(cmd
);
1793 spin_lock_irq(&cmd
->t_state_lock
);
1794 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1795 spin_unlock_irq(&cmd
->t_state_lock
);
1797 transport_generic_request_failure(cmd
, ret
);
1800 static int target_write_prot_action(struct se_cmd
*cmd
)
1804 * Perform WRITE_INSERT of PI using software emulation when backend
1805 * device has PI enabled, if the transport has not already generated
1806 * PI using hardware WRITE_INSERT offload.
1808 switch (cmd
->prot_op
) {
1809 case TARGET_PROT_DOUT_INSERT
:
1810 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1811 sbc_dif_generate(cmd
);
1813 case TARGET_PROT_DOUT_STRIP
:
1814 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1817 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1818 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1819 sectors
, 0, cmd
->t_prot_sg
, 0);
1820 if (unlikely(cmd
->pi_err
)) {
1821 spin_lock_irq(&cmd
->t_state_lock
);
1822 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1823 spin_unlock_irq(&cmd
->t_state_lock
);
1824 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1835 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1837 struct se_device
*dev
= cmd
->se_dev
;
1839 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1842 cmd
->se_cmd_flags
|= SCF_TASK_ATTR_SET
;
1845 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1846 * to allow the passed struct se_cmd list of tasks to the front of the list.
1848 switch (cmd
->sam_task_attr
) {
1850 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1851 cmd
->t_task_cdb
[0]);
1853 case TCM_ORDERED_TAG
:
1854 atomic_inc_mb(&dev
->dev_ordered_sync
);
1856 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1857 cmd
->t_task_cdb
[0]);
1860 * Execute an ORDERED command if no other older commands
1861 * exist that need to be completed first.
1863 if (!atomic_read(&dev
->simple_cmds
))
1868 * For SIMPLE and UNTAGGED Task Attribute commands
1870 atomic_inc_mb(&dev
->simple_cmds
);
1874 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1877 spin_lock(&dev
->delayed_cmd_lock
);
1878 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1879 spin_unlock(&dev
->delayed_cmd_lock
);
1881 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1882 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
1886 static int __transport_check_aborted_status(struct se_cmd
*, int);
1888 void target_execute_cmd(struct se_cmd
*cmd
)
1891 * Determine if frontend context caller is requesting the stopping of
1892 * this command for frontend exceptions.
1894 * If the received CDB has aleady been aborted stop processing it here.
1896 spin_lock_irq(&cmd
->t_state_lock
);
1897 if (__transport_check_aborted_status(cmd
, 1)) {
1898 spin_unlock_irq(&cmd
->t_state_lock
);
1901 if (cmd
->transport_state
& CMD_T_STOP
) {
1902 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1903 __func__
, __LINE__
, cmd
->tag
);
1905 spin_unlock_irq(&cmd
->t_state_lock
);
1906 complete_all(&cmd
->t_transport_stop_comp
);
1910 cmd
->t_state
= TRANSPORT_PROCESSING
;
1911 cmd
->transport_state
|= CMD_T_ACTIVE
|CMD_T_BUSY
|CMD_T_SENT
;
1912 spin_unlock_irq(&cmd
->t_state_lock
);
1914 if (target_write_prot_action(cmd
))
1917 if (target_handle_task_attr(cmd
)) {
1918 spin_lock_irq(&cmd
->t_state_lock
);
1919 cmd
->transport_state
&= ~(CMD_T_BUSY
| CMD_T_SENT
);
1920 spin_unlock_irq(&cmd
->t_state_lock
);
1924 __target_execute_cmd(cmd
, true);
1926 EXPORT_SYMBOL(target_execute_cmd
);
1929 * Process all commands up to the last received ORDERED task attribute which
1930 * requires another blocking boundary
1932 static void target_restart_delayed_cmds(struct se_device
*dev
)
1937 spin_lock(&dev
->delayed_cmd_lock
);
1938 if (list_empty(&dev
->delayed_cmd_list
)) {
1939 spin_unlock(&dev
->delayed_cmd_lock
);
1943 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
1944 struct se_cmd
, se_delayed_node
);
1945 list_del(&cmd
->se_delayed_node
);
1946 spin_unlock(&dev
->delayed_cmd_lock
);
1948 __target_execute_cmd(cmd
, true);
1950 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
1956 * Called from I/O completion to determine which dormant/delayed
1957 * and ordered cmds need to have their tasks added to the execution queue.
1959 static void transport_complete_task_attr(struct se_cmd
*cmd
)
1961 struct se_device
*dev
= cmd
->se_dev
;
1963 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1966 if (!(cmd
->se_cmd_flags
& SCF_TASK_ATTR_SET
))
1969 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
1970 atomic_dec_mb(&dev
->simple_cmds
);
1971 dev
->dev_cur_ordered_id
++;
1972 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1973 dev
->dev_cur_ordered_id
);
1974 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
1975 dev
->dev_cur_ordered_id
++;
1976 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1977 dev
->dev_cur_ordered_id
);
1978 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
1979 atomic_dec_mb(&dev
->dev_ordered_sync
);
1981 dev
->dev_cur_ordered_id
++;
1982 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1983 dev
->dev_cur_ordered_id
);
1986 target_restart_delayed_cmds(dev
);
1989 static void transport_complete_qf(struct se_cmd
*cmd
)
1993 transport_complete_task_attr(cmd
);
1995 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
1996 trace_target_cmd_complete(cmd
);
1997 ret
= cmd
->se_tfo
->queue_status(cmd
);
2001 switch (cmd
->data_direction
) {
2002 case DMA_FROM_DEVICE
:
2003 trace_target_cmd_complete(cmd
);
2004 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2007 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2008 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2011 /* Fall through for DMA_TO_DEVICE */
2013 trace_target_cmd_complete(cmd
);
2014 ret
= cmd
->se_tfo
->queue_status(cmd
);
2022 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2025 transport_lun_remove_cmd(cmd
);
2026 transport_cmd_check_stop_to_fabric(cmd
);
2029 static void transport_handle_queue_full(
2031 struct se_device
*dev
)
2033 spin_lock_irq(&dev
->qf_cmd_lock
);
2034 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
2035 atomic_inc_mb(&dev
->dev_qf_count
);
2036 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2038 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2041 static bool target_read_prot_action(struct se_cmd
*cmd
)
2043 switch (cmd
->prot_op
) {
2044 case TARGET_PROT_DIN_STRIP
:
2045 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2046 u32 sectors
= cmd
->data_length
>>
2047 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2049 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2050 sectors
, 0, cmd
->t_prot_sg
,
2056 case TARGET_PROT_DIN_INSERT
:
2057 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2060 sbc_dif_generate(cmd
);
2069 static void target_complete_ok_work(struct work_struct
*work
)
2071 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2075 * Check if we need to move delayed/dormant tasks from cmds on the
2076 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2079 transport_complete_task_attr(cmd
);
2082 * Check to schedule QUEUE_FULL work, or execute an existing
2083 * cmd->transport_qf_callback()
2085 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2086 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2089 * Check if we need to send a sense buffer from
2090 * the struct se_cmd in question.
2092 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2093 WARN_ON(!cmd
->scsi_status
);
2094 ret
= transport_send_check_condition_and_sense(
2096 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2099 transport_lun_remove_cmd(cmd
);
2100 transport_cmd_check_stop_to_fabric(cmd
);
2104 * Check for a callback, used by amongst other things
2105 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2107 if (cmd
->transport_complete_callback
) {
2109 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2110 bool zero_dl
= !(cmd
->data_length
);
2113 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2114 if (!rc
&& !post_ret
) {
2120 ret
= transport_send_check_condition_and_sense(cmd
,
2122 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2125 transport_lun_remove_cmd(cmd
);
2126 transport_cmd_check_stop_to_fabric(cmd
);
2132 switch (cmd
->data_direction
) {
2133 case DMA_FROM_DEVICE
:
2134 atomic_long_add(cmd
->data_length
,
2135 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2137 * Perform READ_STRIP of PI using software emulation when
2138 * backend had PI enabled, if the transport will not be
2139 * performing hardware READ_STRIP offload.
2141 if (target_read_prot_action(cmd
)) {
2142 ret
= transport_send_check_condition_and_sense(cmd
,
2144 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2147 transport_lun_remove_cmd(cmd
);
2148 transport_cmd_check_stop_to_fabric(cmd
);
2152 trace_target_cmd_complete(cmd
);
2153 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2154 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2158 atomic_long_add(cmd
->data_length
,
2159 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2161 * Check if we need to send READ payload for BIDI-COMMAND
2163 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2164 atomic_long_add(cmd
->data_length
,
2165 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2166 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2167 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2171 /* Fall through for DMA_TO_DEVICE */
2173 trace_target_cmd_complete(cmd
);
2174 ret
= cmd
->se_tfo
->queue_status(cmd
);
2175 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2182 transport_lun_remove_cmd(cmd
);
2183 transport_cmd_check_stop_to_fabric(cmd
);
2187 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2188 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2189 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
2190 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2193 static inline void transport_free_sgl(struct scatterlist
*sgl
, int nents
)
2195 struct scatterlist
*sg
;
2198 for_each_sg(sgl
, sg
, nents
, count
)
2199 __free_page(sg_page(sg
));
2204 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2207 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2208 * emulation, and free + reset pointers if necessary..
2210 if (!cmd
->t_data_sg_orig
)
2213 kfree(cmd
->t_data_sg
);
2214 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2215 cmd
->t_data_sg_orig
= NULL
;
2216 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2217 cmd
->t_data_nents_orig
= 0;
2220 static inline void transport_free_pages(struct se_cmd
*cmd
)
2222 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2223 transport_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2224 cmd
->t_prot_sg
= NULL
;
2225 cmd
->t_prot_nents
= 0;
2228 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2230 * Release special case READ buffer payload required for
2231 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2233 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2234 transport_free_sgl(cmd
->t_bidi_data_sg
,
2235 cmd
->t_bidi_data_nents
);
2236 cmd
->t_bidi_data_sg
= NULL
;
2237 cmd
->t_bidi_data_nents
= 0;
2239 transport_reset_sgl_orig(cmd
);
2242 transport_reset_sgl_orig(cmd
);
2244 transport_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2245 cmd
->t_data_sg
= NULL
;
2246 cmd
->t_data_nents
= 0;
2248 transport_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2249 cmd
->t_bidi_data_sg
= NULL
;
2250 cmd
->t_bidi_data_nents
= 0;
2254 * transport_put_cmd - release a reference to a command
2255 * @cmd: command to release
2257 * This routine releases our reference to the command and frees it if possible.
2259 static int transport_put_cmd(struct se_cmd
*cmd
)
2261 BUG_ON(!cmd
->se_tfo
);
2263 * If this cmd has been setup with target_get_sess_cmd(), drop
2264 * the kref and call ->release_cmd() in kref callback.
2266 return target_put_sess_cmd(cmd
);
2269 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2271 struct scatterlist
*sg
= cmd
->t_data_sg
;
2272 struct page
**pages
;
2276 * We need to take into account a possible offset here for fabrics like
2277 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2278 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2280 if (!cmd
->t_data_nents
)
2284 if (cmd
->t_data_nents
== 1)
2285 return kmap(sg_page(sg
)) + sg
->offset
;
2287 /* >1 page. use vmap */
2288 pages
= kmalloc(sizeof(*pages
) * cmd
->t_data_nents
, GFP_KERNEL
);
2292 /* convert sg[] to pages[] */
2293 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2294 pages
[i
] = sg_page(sg
);
2297 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2299 if (!cmd
->t_data_vmap
)
2302 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2304 EXPORT_SYMBOL(transport_kmap_data_sg
);
2306 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2308 if (!cmd
->t_data_nents
) {
2310 } else if (cmd
->t_data_nents
== 1) {
2311 kunmap(sg_page(cmd
->t_data_sg
));
2315 vunmap(cmd
->t_data_vmap
);
2316 cmd
->t_data_vmap
= NULL
;
2318 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2321 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2324 struct scatterlist
*sg
;
2326 gfp_t zero_flag
= (zero_page
) ? __GFP_ZERO
: 0;
2330 nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
2331 sg
= kmalloc(sizeof(struct scatterlist
) * nent
, GFP_KERNEL
);
2335 sg_init_table(sg
, nent
);
2338 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
2339 page
= alloc_page(GFP_KERNEL
| zero_flag
);
2343 sg_set_page(&sg
[i
], page
, page_len
, 0);
2354 __free_page(sg_page(&sg
[i
]));
2361 * Allocate any required resources to execute the command. For writes we
2362 * might not have the payload yet, so notify the fabric via a call to
2363 * ->write_pending instead. Otherwise place it on the execution queue.
2366 transport_generic_new_cmd(struct se_cmd
*cmd
)
2369 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2371 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2372 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2373 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2374 cmd
->prot_length
, true);
2376 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2380 * Determine is the TCM fabric module has already allocated physical
2381 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2384 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2387 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2388 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2391 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2392 bidi_length
= cmd
->t_task_nolb
*
2393 cmd
->se_dev
->dev_attrib
.block_size
;
2395 bidi_length
= cmd
->data_length
;
2397 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2398 &cmd
->t_bidi_data_nents
,
2399 bidi_length
, zero_flag
);
2401 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2404 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2405 cmd
->data_length
, zero_flag
);
2407 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2408 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2411 * Special case for COMPARE_AND_WRITE with fabrics
2412 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2414 u32 caw_length
= cmd
->t_task_nolb
*
2415 cmd
->se_dev
->dev_attrib
.block_size
;
2417 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2418 &cmd
->t_bidi_data_nents
,
2419 caw_length
, zero_flag
);
2421 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2424 * If this command is not a write we can execute it right here,
2425 * for write buffers we need to notify the fabric driver first
2426 * and let it call back once the write buffers are ready.
2428 target_add_to_state_list(cmd
);
2429 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2430 target_execute_cmd(cmd
);
2433 transport_cmd_check_stop(cmd
, false, true);
2435 ret
= cmd
->se_tfo
->write_pending(cmd
);
2436 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2439 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2442 return (!ret
) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2445 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2446 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
2447 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2450 EXPORT_SYMBOL(transport_generic_new_cmd
);
2452 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2456 ret
= cmd
->se_tfo
->write_pending(cmd
);
2457 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
2458 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2460 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2465 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2466 unsigned long *flags
);
2468 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2470 unsigned long flags
;
2472 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2473 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2474 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2477 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2480 bool aborted
= false, tas
= false;
2482 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2483 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2484 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2486 if (!aborted
|| tas
)
2487 ret
= transport_put_cmd(cmd
);
2490 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2492 * Handle WRITE failure case where transport_generic_new_cmd()
2493 * has already added se_cmd to state_list, but fabric has
2494 * failed command before I/O submission.
2496 if (cmd
->state_active
)
2497 target_remove_from_state_list(cmd
);
2500 transport_lun_remove_cmd(cmd
);
2502 if (!aborted
|| tas
)
2503 ret
= transport_put_cmd(cmd
);
2506 * If the task has been internally aborted due to TMR ABORT_TASK
2507 * or LUN_RESET, target_core_tmr.c is responsible for performing
2508 * the remaining calls to target_put_sess_cmd(), and not the
2509 * callers of this function.
2512 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2513 wait_for_completion(&cmd
->cmd_wait_comp
);
2514 cmd
->se_tfo
->release_cmd(cmd
);
2519 EXPORT_SYMBOL(transport_generic_free_cmd
);
2521 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2522 * @se_cmd: command descriptor to add
2523 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2525 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2527 struct se_session
*se_sess
= se_cmd
->se_sess
;
2528 unsigned long flags
;
2532 * Add a second kref if the fabric caller is expecting to handle
2533 * fabric acknowledgement that requires two target_put_sess_cmd()
2534 * invocations before se_cmd descriptor release.
2537 kref_get(&se_cmd
->cmd_kref
);
2538 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
2541 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2542 if (se_sess
->sess_tearing_down
) {
2546 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2548 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2550 if (ret
&& ack_kref
)
2551 target_put_sess_cmd(se_cmd
);
2555 EXPORT_SYMBOL(target_get_sess_cmd
);
2557 static void target_free_cmd_mem(struct se_cmd
*cmd
)
2559 transport_free_pages(cmd
);
2561 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2562 core_tmr_release_req(cmd
->se_tmr_req
);
2563 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2564 kfree(cmd
->t_task_cdb
);
2567 static void target_release_cmd_kref(struct kref
*kref
)
2569 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2570 struct se_session
*se_sess
= se_cmd
->se_sess
;
2571 unsigned long flags
;
2574 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2576 spin_lock(&se_cmd
->t_state_lock
);
2577 fabric_stop
= (se_cmd
->transport_state
& CMD_T_FABRIC_STOP
) &&
2578 (se_cmd
->transport_state
& CMD_T_ABORTED
);
2579 spin_unlock(&se_cmd
->t_state_lock
);
2581 if (se_cmd
->cmd_wait_set
|| fabric_stop
) {
2582 list_del_init(&se_cmd
->se_cmd_list
);
2583 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2584 target_free_cmd_mem(se_cmd
);
2585 complete(&se_cmd
->cmd_wait_comp
);
2588 list_del_init(&se_cmd
->se_cmd_list
);
2589 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2591 target_free_cmd_mem(se_cmd
);
2592 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2595 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2596 * @se_cmd: command descriptor to drop
2598 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2600 struct se_session
*se_sess
= se_cmd
->se_sess
;
2603 target_free_cmd_mem(se_cmd
);
2604 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2607 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2609 EXPORT_SYMBOL(target_put_sess_cmd
);
2611 /* target_sess_cmd_list_set_waiting - Flag all commands in
2612 * sess_cmd_list to complete cmd_wait_comp. Set
2613 * sess_tearing_down so no more commands are queued.
2614 * @se_sess: session to flag
2616 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2618 struct se_cmd
*se_cmd
;
2619 unsigned long flags
;
2622 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2623 if (se_sess
->sess_tearing_down
) {
2624 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2627 se_sess
->sess_tearing_down
= 1;
2628 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2630 list_for_each_entry(se_cmd
, &se_sess
->sess_wait_list
, se_cmd_list
) {
2631 rc
= kref_get_unless_zero(&se_cmd
->cmd_kref
);
2633 se_cmd
->cmd_wait_set
= 1;
2634 spin_lock(&se_cmd
->t_state_lock
);
2635 se_cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2636 spin_unlock(&se_cmd
->t_state_lock
);
2640 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2642 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2644 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2645 * @se_sess: session to wait for active I/O
2647 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2649 struct se_cmd
*se_cmd
, *tmp_cmd
;
2650 unsigned long flags
;
2653 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2654 &se_sess
->sess_wait_list
, se_cmd_list
) {
2655 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2656 " %d\n", se_cmd
, se_cmd
->t_state
,
2657 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2659 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2660 tas
= (se_cmd
->transport_state
& CMD_T_TAS
);
2661 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2663 if (!target_put_sess_cmd(se_cmd
)) {
2665 target_put_sess_cmd(se_cmd
);
2668 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2669 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2670 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2671 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2673 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2676 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2677 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2678 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2681 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2683 static void target_lun_confirm(struct percpu_ref
*ref
)
2685 struct se_lun
*lun
= container_of(ref
, struct se_lun
, lun_ref
);
2687 complete(&lun
->lun_ref_comp
);
2690 void transport_clear_lun_ref(struct se_lun
*lun
)
2693 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2694 * the initial reference and schedule confirm kill to be
2695 * executed after one full RCU grace period has completed.
2697 percpu_ref_kill_and_confirm(&lun
->lun_ref
, target_lun_confirm
);
2699 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2700 * to call target_lun_confirm after lun->lun_ref has been marked
2701 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2702 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2703 * fails for all new incoming I/O.
2705 wait_for_completion(&lun
->lun_ref_comp
);
2707 * The second completion waits for percpu_ref_put_many() to
2708 * invoke ->release() after lun->lun_ref has switched to
2709 * atomic_t mode, and lun->lun_ref.count has reached zero.
2711 * At this point all target-core lun->lun_ref references have
2712 * been dropped via transport_lun_remove_cmd(), and it's safe
2713 * to proceed with the remaining LUN shutdown.
2715 wait_for_completion(&lun
->lun_shutdown_comp
);
2719 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
2720 bool *aborted
, bool *tas
, unsigned long *flags
)
2721 __releases(&cmd
->t_state_lock
)
2722 __acquires(&cmd
->t_state_lock
)
2725 assert_spin_locked(&cmd
->t_state_lock
);
2726 WARN_ON_ONCE(!irqs_disabled());
2729 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2731 if (cmd
->transport_state
& CMD_T_ABORTED
)
2734 if (cmd
->transport_state
& CMD_T_TAS
)
2737 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2738 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2741 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2742 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2745 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
2748 if (fabric_stop
&& *aborted
)
2751 cmd
->transport_state
|= CMD_T_STOP
;
2753 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2754 " t_state: %d, CMD_T_STOP\n", cmd
, cmd
->tag
,
2755 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
2757 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
2759 wait_for_completion(&cmd
->t_transport_stop_comp
);
2761 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
2762 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2764 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2765 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
2771 * transport_wait_for_tasks - wait for completion to occur
2772 * @cmd: command to wait
2774 * Called from frontend fabric context to wait for storage engine
2775 * to pause and/or release frontend generated struct se_cmd.
2777 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
2779 unsigned long flags
;
2780 bool ret
, aborted
= false, tas
= false;
2782 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2783 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
2784 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2788 EXPORT_SYMBOL(transport_wait_for_tasks
);
2794 bool add_sector_info
;
2797 static const struct sense_info sense_info_table
[] = {
2801 [TCM_NON_EXISTENT_LUN
] = {
2802 .key
= ILLEGAL_REQUEST
,
2803 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2805 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
2806 .key
= ILLEGAL_REQUEST
,
2807 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2809 [TCM_SECTOR_COUNT_TOO_MANY
] = {
2810 .key
= ILLEGAL_REQUEST
,
2811 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2813 [TCM_UNKNOWN_MODE_PAGE
] = {
2814 .key
= ILLEGAL_REQUEST
,
2815 .asc
= 0x24, /* INVALID FIELD IN CDB */
2817 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
2818 .key
= ABORTED_COMMAND
,
2819 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2822 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
2823 .key
= ABORTED_COMMAND
,
2824 .asc
= 0x0c, /* WRITE ERROR */
2825 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2827 [TCM_INVALID_CDB_FIELD
] = {
2828 .key
= ILLEGAL_REQUEST
,
2829 .asc
= 0x24, /* INVALID FIELD IN CDB */
2831 [TCM_INVALID_PARAMETER_LIST
] = {
2832 .key
= ILLEGAL_REQUEST
,
2833 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
2835 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
2836 .key
= ILLEGAL_REQUEST
,
2837 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
2839 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
2840 .key
= ILLEGAL_REQUEST
,
2841 .asc
= 0x0c, /* WRITE ERROR */
2842 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2844 [TCM_SERVICE_CRC_ERROR
] = {
2845 .key
= ABORTED_COMMAND
,
2846 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
2847 .ascq
= 0x05, /* N/A */
2849 [TCM_SNACK_REJECTED
] = {
2850 .key
= ABORTED_COMMAND
,
2851 .asc
= 0x11, /* READ ERROR */
2852 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
2854 [TCM_WRITE_PROTECTED
] = {
2855 .key
= DATA_PROTECT
,
2856 .asc
= 0x27, /* WRITE PROTECTED */
2858 [TCM_ADDRESS_OUT_OF_RANGE
] = {
2859 .key
= ILLEGAL_REQUEST
,
2860 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2862 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
2863 .key
= UNIT_ATTENTION
,
2865 [TCM_CHECK_CONDITION_NOT_READY
] = {
2868 [TCM_MISCOMPARE_VERIFY
] = {
2870 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2873 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
2874 .key
= ABORTED_COMMAND
,
2876 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2877 .add_sector_info
= true,
2879 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
2880 .key
= ABORTED_COMMAND
,
2882 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2883 .add_sector_info
= true,
2885 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
2886 .key
= ABORTED_COMMAND
,
2888 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2889 .add_sector_info
= true,
2891 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
] = {
2892 .key
= COPY_ABORTED
,
2894 .ascq
= 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2897 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
2899 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2900 * Solaris initiators. Returning NOT READY instead means the
2901 * operations will be retried a finite number of times and we
2902 * can survive intermittent errors.
2905 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2909 static int translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
2911 const struct sense_info
*si
;
2912 u8
*buffer
= cmd
->sense_buffer
;
2913 int r
= (__force
int)reason
;
2915 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
2917 if (r
< ARRAY_SIZE(sense_info_table
) && sense_info_table
[r
].key
)
2918 si
= &sense_info_table
[r
];
2920 si
= &sense_info_table
[(__force
int)
2921 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
2923 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
2924 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
2925 WARN_ON_ONCE(asc
== 0);
2926 } else if (si
->asc
== 0) {
2927 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
2928 asc
= cmd
->scsi_asc
;
2929 ascq
= cmd
->scsi_ascq
;
2935 scsi_build_sense_buffer(desc_format
, buffer
, si
->key
, asc
, ascq
);
2936 if (si
->add_sector_info
)
2937 return scsi_set_sense_information(buffer
,
2938 cmd
->scsi_sense_length
,
2945 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
2946 sense_reason_t reason
, int from_transport
)
2948 unsigned long flags
;
2950 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2951 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2952 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2955 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
2956 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2958 if (!from_transport
) {
2961 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
2962 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
2963 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
2964 rc
= translate_sense_reason(cmd
, reason
);
2969 trace_target_cmd_complete(cmd
);
2970 return cmd
->se_tfo
->queue_status(cmd
);
2972 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
2974 static int __transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
2975 __releases(&cmd
->t_state_lock
)
2976 __acquires(&cmd
->t_state_lock
)
2978 assert_spin_locked(&cmd
->t_state_lock
);
2979 WARN_ON_ONCE(!irqs_disabled());
2981 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
2984 * If cmd has been aborted but either no status is to be sent or it has
2985 * already been sent, just return
2987 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
)) {
2989 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
2993 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2994 " 0x%02x ITT: 0x%08llx\n", cmd
->t_task_cdb
[0], cmd
->tag
);
2996 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
2997 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
2998 trace_target_cmd_complete(cmd
);
3000 spin_unlock_irq(&cmd
->t_state_lock
);
3001 cmd
->se_tfo
->queue_status(cmd
);
3002 spin_lock_irq(&cmd
->t_state_lock
);
3007 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3011 spin_lock_irq(&cmd
->t_state_lock
);
3012 ret
= __transport_check_aborted_status(cmd
, send_status
);
3013 spin_unlock_irq(&cmd
->t_state_lock
);
3017 EXPORT_SYMBOL(transport_check_aborted_status
);
3019 void transport_send_task_abort(struct se_cmd
*cmd
)
3021 unsigned long flags
;
3023 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3024 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
3025 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3028 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3031 * If there are still expected incoming fabric WRITEs, we wait
3032 * until until they have completed before sending a TASK_ABORTED
3033 * response. This response with TASK_ABORTED status will be
3034 * queued back to fabric module by transport_check_aborted_status().
3036 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3037 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
3038 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3039 if (cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
) {
3040 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3043 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3044 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3049 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3051 transport_lun_remove_cmd(cmd
);
3053 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3054 cmd
->t_task_cdb
[0], cmd
->tag
);
3056 trace_target_cmd_complete(cmd
);
3057 cmd
->se_tfo
->queue_status(cmd
);
3060 static void target_tmr_work(struct work_struct
*work
)
3062 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3063 struct se_device
*dev
= cmd
->se_dev
;
3064 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3065 unsigned long flags
;
3068 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3069 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3070 tmr
->response
= TMR_FUNCTION_REJECTED
;
3071 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3074 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3076 switch (tmr
->function
) {
3077 case TMR_ABORT_TASK
:
3078 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3080 case TMR_ABORT_TASK_SET
:
3082 case TMR_CLEAR_TASK_SET
:
3083 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3086 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3087 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3088 TMR_FUNCTION_REJECTED
;
3089 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3090 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
3091 cmd
->orig_fe_lun
, 0x29,
3092 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3095 case TMR_TARGET_WARM_RESET
:
3096 tmr
->response
= TMR_FUNCTION_REJECTED
;
3098 case TMR_TARGET_COLD_RESET
:
3099 tmr
->response
= TMR_FUNCTION_REJECTED
;
3102 pr_err("Uknown TMR function: 0x%02x.\n",
3104 tmr
->response
= TMR_FUNCTION_REJECTED
;
3108 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3109 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3110 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3113 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3115 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3118 transport_cmd_check_stop_to_fabric(cmd
);
3121 int transport_generic_handle_tmr(
3124 unsigned long flags
;
3125 bool aborted
= false;
3127 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3128 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3131 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3132 cmd
->transport_state
|= CMD_T_ACTIVE
;
3134 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3137 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3138 "ref_tag: %llu tag: %llu\n", cmd
->se_tmr_req
->function
,
3139 cmd
->se_tmr_req
->ref_task_tag
, cmd
->tag
);
3140 transport_cmd_check_stop_to_fabric(cmd
);
3144 INIT_WORK(&cmd
->work
, target_tmr_work
);
3145 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
3148 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3151 target_check_wce(struct se_device
*dev
)
3155 if (dev
->transport
->get_write_cache
)
3156 wce
= dev
->transport
->get_write_cache(dev
);
3157 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3164 target_check_fua(struct se_device
*dev
)
3166 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;