ubi/upd: Always flush after prepared for an update
[linux/fpc-iii.git] / drivers / target / target_core_transport.c
blobdf2059984e147ee4e7417d8b4fb71c3fbe7e247a
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
72 int init_se_kmem_caches(void)
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
121 t10_alua_lba_map_cache = kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map),
124 __alignof__(struct t10_alua_lba_map), 0, NULL);
125 if (!t10_alua_lba_map_cache) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 "cache failed\n");
128 goto out_free_tg_pt_gp_cache;
130 t10_alua_lba_map_mem_cache = kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member),
133 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 if (!t10_alua_lba_map_mem_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 "cache failed\n");
137 goto out_free_lba_map_cache;
140 target_completion_wq = alloc_workqueue("target_completion",
141 WQ_MEM_RECLAIM, 0);
142 if (!target_completion_wq)
143 goto out_free_lba_map_mem_cache;
145 return 0;
147 out_free_lba_map_mem_cache:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_lba_map_cache);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
185 * Allocate a new row index for the entry type specified
187 u32 scsi_get_new_index(scsi_index_t type)
189 u32 new_index;
191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193 spin_lock(&scsi_mib_index_lock);
194 new_index = ++scsi_mib_index[type];
195 spin_unlock(&scsi_mib_index_lock);
197 return new_index;
200 void transport_subsystem_check_init(void)
202 int ret;
203 static int sub_api_initialized;
205 if (sub_api_initialized)
206 return;
208 ret = request_module("target_core_iblock");
209 if (ret != 0)
210 pr_err("Unable to load target_core_iblock\n");
212 ret = request_module("target_core_file");
213 if (ret != 0)
214 pr_err("Unable to load target_core_file\n");
216 ret = request_module("target_core_pscsi");
217 if (ret != 0)
218 pr_err("Unable to load target_core_pscsi\n");
220 ret = request_module("target_core_user");
221 if (ret != 0)
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized = 1;
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 struct se_session *se_sess;
231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 if (!se_sess) {
233 pr_err("Unable to allocate struct se_session from"
234 " se_sess_cache\n");
235 return ERR_PTR(-ENOMEM);
237 INIT_LIST_HEAD(&se_sess->sess_list);
238 INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 spin_lock_init(&se_sess->sess_cmd_lock);
242 kref_init(&se_sess->sess_kref);
243 se_sess->sup_prot_ops = sup_prot_ops;
245 return se_sess;
247 EXPORT_SYMBOL(transport_init_session);
249 int transport_alloc_session_tags(struct se_session *se_sess,
250 unsigned int tag_num, unsigned int tag_size)
252 int rc;
254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
256 if (!se_sess->sess_cmd_map) {
257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 if (!se_sess->sess_cmd_map) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 return -ENOMEM;
264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 if (rc < 0) {
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num);
268 kvfree(se_sess->sess_cmd_map);
269 se_sess->sess_cmd_map = NULL;
270 return -ENOMEM;
273 return 0;
275 EXPORT_SYMBOL(transport_alloc_session_tags);
277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 unsigned int tag_size,
279 enum target_prot_op sup_prot_ops)
281 struct se_session *se_sess;
282 int rc;
284 se_sess = transport_init_session(sup_prot_ops);
285 if (IS_ERR(se_sess))
286 return se_sess;
288 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
289 if (rc < 0) {
290 transport_free_session(se_sess);
291 return ERR_PTR(-ENOMEM);
294 return se_sess;
296 EXPORT_SYMBOL(transport_init_session_tags);
299 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
301 void __transport_register_session(
302 struct se_portal_group *se_tpg,
303 struct se_node_acl *se_nacl,
304 struct se_session *se_sess,
305 void *fabric_sess_ptr)
307 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
308 unsigned char buf[PR_REG_ISID_LEN];
310 se_sess->se_tpg = se_tpg;
311 se_sess->fabric_sess_ptr = fabric_sess_ptr;
313 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
315 * Only set for struct se_session's that will actually be moving I/O.
316 * eg: *NOT* discovery sessions.
318 if (se_nacl) {
321 * Determine if fabric allows for T10-PI feature bits exposed to
322 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
324 * If so, then always save prot_type on a per se_node_acl node
325 * basis and re-instate the previous sess_prot_type to avoid
326 * disabling PI from below any previously initiator side
327 * registered LUNs.
329 if (se_nacl->saved_prot_type)
330 se_sess->sess_prot_type = se_nacl->saved_prot_type;
331 else if (tfo->tpg_check_prot_fabric_only)
332 se_sess->sess_prot_type = se_nacl->saved_prot_type =
333 tfo->tpg_check_prot_fabric_only(se_tpg);
335 * If the fabric module supports an ISID based TransportID,
336 * save this value in binary from the fabric I_T Nexus now.
338 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
339 memset(&buf[0], 0, PR_REG_ISID_LEN);
340 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
341 &buf[0], PR_REG_ISID_LEN);
342 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
345 spin_lock_irq(&se_nacl->nacl_sess_lock);
347 * The se_nacl->nacl_sess pointer will be set to the
348 * last active I_T Nexus for each struct se_node_acl.
350 se_nacl->nacl_sess = se_sess;
352 list_add_tail(&se_sess->sess_acl_list,
353 &se_nacl->acl_sess_list);
354 spin_unlock_irq(&se_nacl->nacl_sess_lock);
356 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
358 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
359 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
361 EXPORT_SYMBOL(__transport_register_session);
363 void transport_register_session(
364 struct se_portal_group *se_tpg,
365 struct se_node_acl *se_nacl,
366 struct se_session *se_sess,
367 void *fabric_sess_ptr)
369 unsigned long flags;
371 spin_lock_irqsave(&se_tpg->session_lock, flags);
372 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
373 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
375 EXPORT_SYMBOL(transport_register_session);
377 static void target_release_session(struct kref *kref)
379 struct se_session *se_sess = container_of(kref,
380 struct se_session, sess_kref);
381 struct se_portal_group *se_tpg = se_sess->se_tpg;
383 se_tpg->se_tpg_tfo->close_session(se_sess);
386 void target_get_session(struct se_session *se_sess)
388 kref_get(&se_sess->sess_kref);
390 EXPORT_SYMBOL(target_get_session);
392 void target_put_session(struct se_session *se_sess)
394 kref_put(&se_sess->sess_kref, target_release_session);
396 EXPORT_SYMBOL(target_put_session);
398 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
400 struct se_session *se_sess;
401 ssize_t len = 0;
403 spin_lock_bh(&se_tpg->session_lock);
404 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
405 if (!se_sess->se_node_acl)
406 continue;
407 if (!se_sess->se_node_acl->dynamic_node_acl)
408 continue;
409 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
410 break;
412 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
413 se_sess->se_node_acl->initiatorname);
414 len += 1; /* Include NULL terminator */
416 spin_unlock_bh(&se_tpg->session_lock);
418 return len;
420 EXPORT_SYMBOL(target_show_dynamic_sessions);
422 static void target_complete_nacl(struct kref *kref)
424 struct se_node_acl *nacl = container_of(kref,
425 struct se_node_acl, acl_kref);
426 struct se_portal_group *se_tpg = nacl->se_tpg;
428 if (!nacl->dynamic_stop) {
429 complete(&nacl->acl_free_comp);
430 return;
433 mutex_lock(&se_tpg->acl_node_mutex);
434 list_del(&nacl->acl_list);
435 mutex_unlock(&se_tpg->acl_node_mutex);
437 core_tpg_wait_for_nacl_pr_ref(nacl);
438 core_free_device_list_for_node(nacl, se_tpg);
439 kfree(nacl);
442 void target_put_nacl(struct se_node_acl *nacl)
444 kref_put(&nacl->acl_kref, target_complete_nacl);
446 EXPORT_SYMBOL(target_put_nacl);
448 void transport_deregister_session_configfs(struct se_session *se_sess)
450 struct se_node_acl *se_nacl;
451 unsigned long flags;
453 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
455 se_nacl = se_sess->se_node_acl;
456 if (se_nacl) {
457 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
458 if (se_nacl->acl_stop == 0)
459 list_del(&se_sess->sess_acl_list);
461 * If the session list is empty, then clear the pointer.
462 * Otherwise, set the struct se_session pointer from the tail
463 * element of the per struct se_node_acl active session list.
465 if (list_empty(&se_nacl->acl_sess_list))
466 se_nacl->nacl_sess = NULL;
467 else {
468 se_nacl->nacl_sess = container_of(
469 se_nacl->acl_sess_list.prev,
470 struct se_session, sess_acl_list);
472 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
475 EXPORT_SYMBOL(transport_deregister_session_configfs);
477 void transport_free_session(struct se_session *se_sess)
479 struct se_node_acl *se_nacl = se_sess->se_node_acl;
482 * Drop the se_node_acl->nacl_kref obtained from within
483 * core_tpg_get_initiator_node_acl().
485 if (se_nacl) {
486 struct se_portal_group *se_tpg = se_nacl->se_tpg;
487 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
488 unsigned long flags;
490 se_sess->se_node_acl = NULL;
493 * Also determine if we need to drop the extra ->cmd_kref if
494 * it had been previously dynamically generated, and
495 * the endpoint is not caching dynamic ACLs.
497 mutex_lock(&se_tpg->acl_node_mutex);
498 if (se_nacl->dynamic_node_acl &&
499 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
500 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
501 if (list_empty(&se_nacl->acl_sess_list))
502 se_nacl->dynamic_stop = true;
503 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
505 if (se_nacl->dynamic_stop)
506 list_del(&se_nacl->acl_list);
508 mutex_unlock(&se_tpg->acl_node_mutex);
510 if (se_nacl->dynamic_stop)
511 target_put_nacl(se_nacl);
513 target_put_nacl(se_nacl);
515 if (se_sess->sess_cmd_map) {
516 percpu_ida_destroy(&se_sess->sess_tag_pool);
517 kvfree(se_sess->sess_cmd_map);
519 kmem_cache_free(se_sess_cache, se_sess);
521 EXPORT_SYMBOL(transport_free_session);
523 void transport_deregister_session(struct se_session *se_sess)
525 struct se_portal_group *se_tpg = se_sess->se_tpg;
526 unsigned long flags;
528 if (!se_tpg) {
529 transport_free_session(se_sess);
530 return;
533 spin_lock_irqsave(&se_tpg->session_lock, flags);
534 list_del(&se_sess->sess_list);
535 se_sess->se_tpg = NULL;
536 se_sess->fabric_sess_ptr = NULL;
537 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
539 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
540 se_tpg->se_tpg_tfo->get_fabric_name());
542 * If last kref is dropping now for an explicit NodeACL, awake sleeping
543 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
544 * removal context from within transport_free_session() code.
546 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
547 * to release all remaining generate_node_acl=1 created ACL resources.
550 transport_free_session(se_sess);
552 EXPORT_SYMBOL(transport_deregister_session);
554 static void target_remove_from_state_list(struct se_cmd *cmd)
556 struct se_device *dev = cmd->se_dev;
557 unsigned long flags;
559 if (!dev)
560 return;
562 if (cmd->transport_state & CMD_T_BUSY)
563 return;
565 spin_lock_irqsave(&dev->execute_task_lock, flags);
566 if (cmd->state_active) {
567 list_del(&cmd->state_list);
568 cmd->state_active = false;
570 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
573 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
574 bool write_pending)
576 unsigned long flags;
578 if (remove_from_lists) {
579 target_remove_from_state_list(cmd);
582 * Clear struct se_cmd->se_lun before the handoff to FE.
584 cmd->se_lun = NULL;
587 spin_lock_irqsave(&cmd->t_state_lock, flags);
588 if (write_pending)
589 cmd->t_state = TRANSPORT_WRITE_PENDING;
592 * Determine if frontend context caller is requesting the stopping of
593 * this command for frontend exceptions.
595 if (cmd->transport_state & CMD_T_STOP) {
596 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
597 __func__, __LINE__, cmd->tag);
599 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
601 complete_all(&cmd->t_transport_stop_comp);
602 return 1;
605 cmd->transport_state &= ~CMD_T_ACTIVE;
606 if (remove_from_lists) {
608 * Some fabric modules like tcm_loop can release
609 * their internally allocated I/O reference now and
610 * struct se_cmd now.
612 * Fabric modules are expected to return '1' here if the
613 * se_cmd being passed is released at this point,
614 * or zero if not being released.
616 if (cmd->se_tfo->check_stop_free != NULL) {
617 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
618 return cmd->se_tfo->check_stop_free(cmd);
622 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
623 return 0;
626 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
628 return transport_cmd_check_stop(cmd, true, false);
631 static void transport_lun_remove_cmd(struct se_cmd *cmd)
633 struct se_lun *lun = cmd->se_lun;
635 if (!lun)
636 return;
638 if (cmpxchg(&cmd->lun_ref_active, true, false))
639 percpu_ref_put(&lun->lun_ref);
642 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
644 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
646 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
647 transport_lun_remove_cmd(cmd);
649 * Allow the fabric driver to unmap any resources before
650 * releasing the descriptor via TFO->release_cmd()
652 if (remove)
653 cmd->se_tfo->aborted_task(cmd);
655 if (transport_cmd_check_stop_to_fabric(cmd))
656 return;
657 if (remove && ack_kref)
658 transport_put_cmd(cmd);
661 static void target_complete_failure_work(struct work_struct *work)
663 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
665 transport_generic_request_failure(cmd,
666 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
670 * Used when asking transport to copy Sense Data from the underlying
671 * Linux/SCSI struct scsi_cmnd
673 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
675 struct se_device *dev = cmd->se_dev;
677 WARN_ON(!cmd->se_lun);
679 if (!dev)
680 return NULL;
682 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
683 return NULL;
685 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
687 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
688 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
689 return cmd->sense_buffer;
692 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
694 struct se_device *dev = cmd->se_dev;
695 int success = scsi_status == GOOD;
696 unsigned long flags;
698 cmd->scsi_status = scsi_status;
701 spin_lock_irqsave(&cmd->t_state_lock, flags);
702 cmd->transport_state &= ~CMD_T_BUSY;
704 if (dev && dev->transport->transport_complete) {
705 dev->transport->transport_complete(cmd,
706 cmd->t_data_sg,
707 transport_get_sense_buffer(cmd));
708 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
709 success = 1;
713 * See if we are waiting to complete for an exception condition.
715 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
716 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
717 complete(&cmd->task_stop_comp);
718 return;
722 * Check for case where an explicit ABORT_TASK has been received
723 * and transport_wait_for_tasks() will be waiting for completion..
725 if (cmd->transport_state & CMD_T_ABORTED ||
726 cmd->transport_state & CMD_T_STOP) {
727 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
728 complete_all(&cmd->t_transport_stop_comp);
729 return;
730 } else if (!success) {
731 INIT_WORK(&cmd->work, target_complete_failure_work);
732 } else {
733 INIT_WORK(&cmd->work, target_complete_ok_work);
736 cmd->t_state = TRANSPORT_COMPLETE;
737 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
738 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
740 queue_work(target_completion_wq, &cmd->work);
742 EXPORT_SYMBOL(target_complete_cmd);
744 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
746 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
747 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
748 cmd->residual_count += cmd->data_length - length;
749 } else {
750 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
751 cmd->residual_count = cmd->data_length - length;
754 cmd->data_length = length;
757 target_complete_cmd(cmd, scsi_status);
759 EXPORT_SYMBOL(target_complete_cmd_with_length);
761 static void target_add_to_state_list(struct se_cmd *cmd)
763 struct se_device *dev = cmd->se_dev;
764 unsigned long flags;
766 spin_lock_irqsave(&dev->execute_task_lock, flags);
767 if (!cmd->state_active) {
768 list_add_tail(&cmd->state_list, &dev->state_list);
769 cmd->state_active = true;
771 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
775 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
777 static void transport_write_pending_qf(struct se_cmd *cmd);
778 static void transport_complete_qf(struct se_cmd *cmd);
780 void target_qf_do_work(struct work_struct *work)
782 struct se_device *dev = container_of(work, struct se_device,
783 qf_work_queue);
784 LIST_HEAD(qf_cmd_list);
785 struct se_cmd *cmd, *cmd_tmp;
787 spin_lock_irq(&dev->qf_cmd_lock);
788 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
789 spin_unlock_irq(&dev->qf_cmd_lock);
791 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
792 list_del(&cmd->se_qf_node);
793 atomic_dec_mb(&dev->dev_qf_count);
795 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
796 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
797 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
798 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
799 : "UNKNOWN");
801 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
802 transport_write_pending_qf(cmd);
803 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
804 transport_complete_qf(cmd);
808 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
810 switch (cmd->data_direction) {
811 case DMA_NONE:
812 return "NONE";
813 case DMA_FROM_DEVICE:
814 return "READ";
815 case DMA_TO_DEVICE:
816 return "WRITE";
817 case DMA_BIDIRECTIONAL:
818 return "BIDI";
819 default:
820 break;
823 return "UNKNOWN";
826 void transport_dump_dev_state(
827 struct se_device *dev,
828 char *b,
829 int *bl)
831 *bl += sprintf(b + *bl, "Status: ");
832 if (dev->export_count)
833 *bl += sprintf(b + *bl, "ACTIVATED");
834 else
835 *bl += sprintf(b + *bl, "DEACTIVATED");
837 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
838 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
839 dev->dev_attrib.block_size,
840 dev->dev_attrib.hw_max_sectors);
841 *bl += sprintf(b + *bl, " ");
844 void transport_dump_vpd_proto_id(
845 struct t10_vpd *vpd,
846 unsigned char *p_buf,
847 int p_buf_len)
849 unsigned char buf[VPD_TMP_BUF_SIZE];
850 int len;
852 memset(buf, 0, VPD_TMP_BUF_SIZE);
853 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
855 switch (vpd->protocol_identifier) {
856 case 0x00:
857 sprintf(buf+len, "Fibre Channel\n");
858 break;
859 case 0x10:
860 sprintf(buf+len, "Parallel SCSI\n");
861 break;
862 case 0x20:
863 sprintf(buf+len, "SSA\n");
864 break;
865 case 0x30:
866 sprintf(buf+len, "IEEE 1394\n");
867 break;
868 case 0x40:
869 sprintf(buf+len, "SCSI Remote Direct Memory Access"
870 " Protocol\n");
871 break;
872 case 0x50:
873 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
874 break;
875 case 0x60:
876 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
877 break;
878 case 0x70:
879 sprintf(buf+len, "Automation/Drive Interface Transport"
880 " Protocol\n");
881 break;
882 case 0x80:
883 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
884 break;
885 default:
886 sprintf(buf+len, "Unknown 0x%02x\n",
887 vpd->protocol_identifier);
888 break;
891 if (p_buf)
892 strncpy(p_buf, buf, p_buf_len);
893 else
894 pr_debug("%s", buf);
897 void
898 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
901 * Check if the Protocol Identifier Valid (PIV) bit is set..
903 * from spc3r23.pdf section 7.5.1
905 if (page_83[1] & 0x80) {
906 vpd->protocol_identifier = (page_83[0] & 0xf0);
907 vpd->protocol_identifier_set = 1;
908 transport_dump_vpd_proto_id(vpd, NULL, 0);
911 EXPORT_SYMBOL(transport_set_vpd_proto_id);
913 int transport_dump_vpd_assoc(
914 struct t10_vpd *vpd,
915 unsigned char *p_buf,
916 int p_buf_len)
918 unsigned char buf[VPD_TMP_BUF_SIZE];
919 int ret = 0;
920 int len;
922 memset(buf, 0, VPD_TMP_BUF_SIZE);
923 len = sprintf(buf, "T10 VPD Identifier Association: ");
925 switch (vpd->association) {
926 case 0x00:
927 sprintf(buf+len, "addressed logical unit\n");
928 break;
929 case 0x10:
930 sprintf(buf+len, "target port\n");
931 break;
932 case 0x20:
933 sprintf(buf+len, "SCSI target device\n");
934 break;
935 default:
936 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
937 ret = -EINVAL;
938 break;
941 if (p_buf)
942 strncpy(p_buf, buf, p_buf_len);
943 else
944 pr_debug("%s", buf);
946 return ret;
949 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
952 * The VPD identification association..
954 * from spc3r23.pdf Section 7.6.3.1 Table 297
956 vpd->association = (page_83[1] & 0x30);
957 return transport_dump_vpd_assoc(vpd, NULL, 0);
959 EXPORT_SYMBOL(transport_set_vpd_assoc);
961 int transport_dump_vpd_ident_type(
962 struct t10_vpd *vpd,
963 unsigned char *p_buf,
964 int p_buf_len)
966 unsigned char buf[VPD_TMP_BUF_SIZE];
967 int ret = 0;
968 int len;
970 memset(buf, 0, VPD_TMP_BUF_SIZE);
971 len = sprintf(buf, "T10 VPD Identifier Type: ");
973 switch (vpd->device_identifier_type) {
974 case 0x00:
975 sprintf(buf+len, "Vendor specific\n");
976 break;
977 case 0x01:
978 sprintf(buf+len, "T10 Vendor ID based\n");
979 break;
980 case 0x02:
981 sprintf(buf+len, "EUI-64 based\n");
982 break;
983 case 0x03:
984 sprintf(buf+len, "NAA\n");
985 break;
986 case 0x04:
987 sprintf(buf+len, "Relative target port identifier\n");
988 break;
989 case 0x08:
990 sprintf(buf+len, "SCSI name string\n");
991 break;
992 default:
993 sprintf(buf+len, "Unsupported: 0x%02x\n",
994 vpd->device_identifier_type);
995 ret = -EINVAL;
996 break;
999 if (p_buf) {
1000 if (p_buf_len < strlen(buf)+1)
1001 return -EINVAL;
1002 strncpy(p_buf, buf, p_buf_len);
1003 } else {
1004 pr_debug("%s", buf);
1007 return ret;
1010 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1013 * The VPD identifier type..
1015 * from spc3r23.pdf Section 7.6.3.1 Table 298
1017 vpd->device_identifier_type = (page_83[1] & 0x0f);
1018 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1020 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1022 int transport_dump_vpd_ident(
1023 struct t10_vpd *vpd,
1024 unsigned char *p_buf,
1025 int p_buf_len)
1027 unsigned char buf[VPD_TMP_BUF_SIZE];
1028 int ret = 0;
1030 memset(buf, 0, VPD_TMP_BUF_SIZE);
1032 switch (vpd->device_identifier_code_set) {
1033 case 0x01: /* Binary */
1034 snprintf(buf, sizeof(buf),
1035 "T10 VPD Binary Device Identifier: %s\n",
1036 &vpd->device_identifier[0]);
1037 break;
1038 case 0x02: /* ASCII */
1039 snprintf(buf, sizeof(buf),
1040 "T10 VPD ASCII Device Identifier: %s\n",
1041 &vpd->device_identifier[0]);
1042 break;
1043 case 0x03: /* UTF-8 */
1044 snprintf(buf, sizeof(buf),
1045 "T10 VPD UTF-8 Device Identifier: %s\n",
1046 &vpd->device_identifier[0]);
1047 break;
1048 default:
1049 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1050 " 0x%02x", vpd->device_identifier_code_set);
1051 ret = -EINVAL;
1052 break;
1055 if (p_buf)
1056 strncpy(p_buf, buf, p_buf_len);
1057 else
1058 pr_debug("%s", buf);
1060 return ret;
1064 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1066 static const char hex_str[] = "0123456789abcdef";
1067 int j = 0, i = 4; /* offset to start of the identifier */
1070 * The VPD Code Set (encoding)
1072 * from spc3r23.pdf Section 7.6.3.1 Table 296
1074 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1075 switch (vpd->device_identifier_code_set) {
1076 case 0x01: /* Binary */
1077 vpd->device_identifier[j++] =
1078 hex_str[vpd->device_identifier_type];
1079 while (i < (4 + page_83[3])) {
1080 vpd->device_identifier[j++] =
1081 hex_str[(page_83[i] & 0xf0) >> 4];
1082 vpd->device_identifier[j++] =
1083 hex_str[page_83[i] & 0x0f];
1084 i++;
1086 break;
1087 case 0x02: /* ASCII */
1088 case 0x03: /* UTF-8 */
1089 while (i < (4 + page_83[3]))
1090 vpd->device_identifier[j++] = page_83[i++];
1091 break;
1092 default:
1093 break;
1096 return transport_dump_vpd_ident(vpd, NULL, 0);
1098 EXPORT_SYMBOL(transport_set_vpd_ident);
1100 static sense_reason_t
1101 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1102 unsigned int size)
1104 u32 mtl;
1106 if (!cmd->se_tfo->max_data_sg_nents)
1107 return TCM_NO_SENSE;
1109 * Check if fabric enforced maximum SGL entries per I/O descriptor
1110 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1111 * residual_count and reduce original cmd->data_length to maximum
1112 * length based on single PAGE_SIZE entry scatter-lists.
1114 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1115 if (cmd->data_length > mtl) {
1117 * If an existing CDB overflow is present, calculate new residual
1118 * based on CDB size minus fabric maximum transfer length.
1120 * If an existing CDB underflow is present, calculate new residual
1121 * based on original cmd->data_length minus fabric maximum transfer
1122 * length.
1124 * Otherwise, set the underflow residual based on cmd->data_length
1125 * minus fabric maximum transfer length.
1127 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1128 cmd->residual_count = (size - mtl);
1129 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1130 u32 orig_dl = size + cmd->residual_count;
1131 cmd->residual_count = (orig_dl - mtl);
1132 } else {
1133 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1134 cmd->residual_count = (cmd->data_length - mtl);
1136 cmd->data_length = mtl;
1138 * Reset sbc_check_prot() calculated protection payload
1139 * length based upon the new smaller MTL.
1141 if (cmd->prot_length) {
1142 u32 sectors = (mtl / dev->dev_attrib.block_size);
1143 cmd->prot_length = dev->prot_length * sectors;
1146 return TCM_NO_SENSE;
1149 sense_reason_t
1150 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1152 struct se_device *dev = cmd->se_dev;
1154 if (cmd->unknown_data_length) {
1155 cmd->data_length = size;
1156 } else if (size != cmd->data_length) {
1157 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1158 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1159 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1160 cmd->data_length, size, cmd->t_task_cdb[0]);
1162 if (cmd->data_direction == DMA_TO_DEVICE &&
1163 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1164 pr_err("Rejecting underflow/overflow WRITE data\n");
1165 return TCM_INVALID_CDB_FIELD;
1168 * Reject READ_* or WRITE_* with overflow/underflow for
1169 * type SCF_SCSI_DATA_CDB.
1171 if (dev->dev_attrib.block_size != 512) {
1172 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1173 " CDB on non 512-byte sector setup subsystem"
1174 " plugin: %s\n", dev->transport->name);
1175 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1176 return TCM_INVALID_CDB_FIELD;
1179 * For the overflow case keep the existing fabric provided
1180 * ->data_length. Otherwise for the underflow case, reset
1181 * ->data_length to the smaller SCSI expected data transfer
1182 * length.
1184 if (size > cmd->data_length) {
1185 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1186 cmd->residual_count = (size - cmd->data_length);
1187 } else {
1188 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1189 cmd->residual_count = (cmd->data_length - size);
1190 cmd->data_length = size;
1194 return target_check_max_data_sg_nents(cmd, dev, size);
1199 * Used by fabric modules containing a local struct se_cmd within their
1200 * fabric dependent per I/O descriptor.
1202 * Preserves the value of @cmd->tag.
1204 void transport_init_se_cmd(
1205 struct se_cmd *cmd,
1206 const struct target_core_fabric_ops *tfo,
1207 struct se_session *se_sess,
1208 u32 data_length,
1209 int data_direction,
1210 int task_attr,
1211 unsigned char *sense_buffer)
1213 INIT_LIST_HEAD(&cmd->se_delayed_node);
1214 INIT_LIST_HEAD(&cmd->se_qf_node);
1215 INIT_LIST_HEAD(&cmd->se_cmd_list);
1216 INIT_LIST_HEAD(&cmd->state_list);
1217 init_completion(&cmd->t_transport_stop_comp);
1218 init_completion(&cmd->cmd_wait_comp);
1219 init_completion(&cmd->task_stop_comp);
1220 spin_lock_init(&cmd->t_state_lock);
1221 kref_init(&cmd->cmd_kref);
1222 cmd->transport_state = CMD_T_DEV_ACTIVE;
1224 cmd->se_tfo = tfo;
1225 cmd->se_sess = se_sess;
1226 cmd->data_length = data_length;
1227 cmd->data_direction = data_direction;
1228 cmd->sam_task_attr = task_attr;
1229 cmd->sense_buffer = sense_buffer;
1231 cmd->state_active = false;
1233 EXPORT_SYMBOL(transport_init_se_cmd);
1235 static sense_reason_t
1236 transport_check_alloc_task_attr(struct se_cmd *cmd)
1238 struct se_device *dev = cmd->se_dev;
1241 * Check if SAM Task Attribute emulation is enabled for this
1242 * struct se_device storage object
1244 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1245 return 0;
1247 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1248 pr_debug("SAM Task Attribute ACA"
1249 " emulation is not supported\n");
1250 return TCM_INVALID_CDB_FIELD;
1253 return 0;
1256 sense_reason_t
1257 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1259 struct se_device *dev = cmd->se_dev;
1260 sense_reason_t ret;
1263 * Ensure that the received CDB is less than the max (252 + 8) bytes
1264 * for VARIABLE_LENGTH_CMD
1266 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1267 pr_err("Received SCSI CDB with command_size: %d that"
1268 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1269 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1270 return TCM_INVALID_CDB_FIELD;
1273 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1274 * allocate the additional extended CDB buffer now.. Otherwise
1275 * setup the pointer from __t_task_cdb to t_task_cdb.
1277 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1278 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1279 GFP_KERNEL);
1280 if (!cmd->t_task_cdb) {
1281 pr_err("Unable to allocate cmd->t_task_cdb"
1282 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1283 scsi_command_size(cdb),
1284 (unsigned long)sizeof(cmd->__t_task_cdb));
1285 return TCM_OUT_OF_RESOURCES;
1287 } else
1288 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1290 * Copy the original CDB into cmd->
1292 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1294 trace_target_sequencer_start(cmd);
1296 ret = dev->transport->parse_cdb(cmd);
1297 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1298 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1299 cmd->se_tfo->get_fabric_name(),
1300 cmd->se_sess->se_node_acl->initiatorname,
1301 cmd->t_task_cdb[0]);
1302 if (ret)
1303 return ret;
1305 ret = transport_check_alloc_task_attr(cmd);
1306 if (ret)
1307 return ret;
1309 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1310 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1311 return 0;
1313 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1316 * Used by fabric module frontends to queue tasks directly.
1317 * Many only be used from process context only
1319 int transport_handle_cdb_direct(
1320 struct se_cmd *cmd)
1322 sense_reason_t ret;
1324 if (!cmd->se_lun) {
1325 dump_stack();
1326 pr_err("cmd->se_lun is NULL\n");
1327 return -EINVAL;
1329 if (in_interrupt()) {
1330 dump_stack();
1331 pr_err("transport_generic_handle_cdb cannot be called"
1332 " from interrupt context\n");
1333 return -EINVAL;
1336 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1337 * outstanding descriptors are handled correctly during shutdown via
1338 * transport_wait_for_tasks()
1340 * Also, we don't take cmd->t_state_lock here as we only expect
1341 * this to be called for initial descriptor submission.
1343 cmd->t_state = TRANSPORT_NEW_CMD;
1344 cmd->transport_state |= CMD_T_ACTIVE;
1347 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1348 * so follow TRANSPORT_NEW_CMD processing thread context usage
1349 * and call transport_generic_request_failure() if necessary..
1351 ret = transport_generic_new_cmd(cmd);
1352 if (ret)
1353 transport_generic_request_failure(cmd, ret);
1354 return 0;
1356 EXPORT_SYMBOL(transport_handle_cdb_direct);
1358 sense_reason_t
1359 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1360 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1362 if (!sgl || !sgl_count)
1363 return 0;
1366 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1367 * scatterlists already have been set to follow what the fabric
1368 * passes for the original expected data transfer length.
1370 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1371 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1372 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1373 return TCM_INVALID_CDB_FIELD;
1376 cmd->t_data_sg = sgl;
1377 cmd->t_data_nents = sgl_count;
1378 cmd->t_bidi_data_sg = sgl_bidi;
1379 cmd->t_bidi_data_nents = sgl_bidi_count;
1381 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1382 return 0;
1386 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1387 * se_cmd + use pre-allocated SGL memory.
1389 * @se_cmd: command descriptor to submit
1390 * @se_sess: associated se_sess for endpoint
1391 * @cdb: pointer to SCSI CDB
1392 * @sense: pointer to SCSI sense buffer
1393 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1394 * @data_length: fabric expected data transfer length
1395 * @task_addr: SAM task attribute
1396 * @data_dir: DMA data direction
1397 * @flags: flags for command submission from target_sc_flags_tables
1398 * @sgl: struct scatterlist memory for unidirectional mapping
1399 * @sgl_count: scatterlist count for unidirectional mapping
1400 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1401 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1402 * @sgl_prot: struct scatterlist memory protection information
1403 * @sgl_prot_count: scatterlist count for protection information
1405 * Task tags are supported if the caller has set @se_cmd->tag.
1407 * Returns non zero to signal active I/O shutdown failure. All other
1408 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1409 * but still return zero here.
1411 * This may only be called from process context, and also currently
1412 * assumes internal allocation of fabric payload buffer by target-core.
1414 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1415 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1416 u32 data_length, int task_attr, int data_dir, int flags,
1417 struct scatterlist *sgl, u32 sgl_count,
1418 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1419 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1421 struct se_portal_group *se_tpg;
1422 sense_reason_t rc;
1423 int ret;
1425 se_tpg = se_sess->se_tpg;
1426 BUG_ON(!se_tpg);
1427 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1428 BUG_ON(in_interrupt());
1430 * Initialize se_cmd for target operation. From this point
1431 * exceptions are handled by sending exception status via
1432 * target_core_fabric_ops->queue_status() callback
1434 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1435 data_length, data_dir, task_attr, sense);
1436 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1437 se_cmd->unknown_data_length = 1;
1439 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1440 * se_sess->sess_cmd_list. A second kref_get here is necessary
1441 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1442 * kref_put() to happen during fabric packet acknowledgement.
1444 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1445 if (ret)
1446 return ret;
1448 * Signal bidirectional data payloads to target-core
1450 if (flags & TARGET_SCF_BIDI_OP)
1451 se_cmd->se_cmd_flags |= SCF_BIDI;
1453 * Locate se_lun pointer and attach it to struct se_cmd
1455 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1456 if (rc) {
1457 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1458 target_put_sess_cmd(se_cmd);
1459 return 0;
1462 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1463 if (rc != 0) {
1464 transport_generic_request_failure(se_cmd, rc);
1465 return 0;
1469 * Save pointers for SGLs containing protection information,
1470 * if present.
1472 if (sgl_prot_count) {
1473 se_cmd->t_prot_sg = sgl_prot;
1474 se_cmd->t_prot_nents = sgl_prot_count;
1475 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1479 * When a non zero sgl_count has been passed perform SGL passthrough
1480 * mapping for pre-allocated fabric memory instead of having target
1481 * core perform an internal SGL allocation..
1483 if (sgl_count != 0) {
1484 BUG_ON(!sgl);
1487 * A work-around for tcm_loop as some userspace code via
1488 * scsi-generic do not memset their associated read buffers,
1489 * so go ahead and do that here for type non-data CDBs. Also
1490 * note that this is currently guaranteed to be a single SGL
1491 * for this case by target core in target_setup_cmd_from_cdb()
1492 * -> transport_generic_cmd_sequencer().
1494 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1495 se_cmd->data_direction == DMA_FROM_DEVICE) {
1496 unsigned char *buf = NULL;
1498 if (sgl)
1499 buf = kmap(sg_page(sgl)) + sgl->offset;
1501 if (buf) {
1502 memset(buf, 0, sgl->length);
1503 kunmap(sg_page(sgl));
1507 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1508 sgl_bidi, sgl_bidi_count);
1509 if (rc != 0) {
1510 transport_generic_request_failure(se_cmd, rc);
1511 return 0;
1516 * Check if we need to delay processing because of ALUA
1517 * Active/NonOptimized primary access state..
1519 core_alua_check_nonop_delay(se_cmd);
1521 transport_handle_cdb_direct(se_cmd);
1522 return 0;
1524 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1527 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1529 * @se_cmd: command descriptor to submit
1530 * @se_sess: associated se_sess for endpoint
1531 * @cdb: pointer to SCSI CDB
1532 * @sense: pointer to SCSI sense buffer
1533 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1534 * @data_length: fabric expected data transfer length
1535 * @task_addr: SAM task attribute
1536 * @data_dir: DMA data direction
1537 * @flags: flags for command submission from target_sc_flags_tables
1539 * Task tags are supported if the caller has set @se_cmd->tag.
1541 * Returns non zero to signal active I/O shutdown failure. All other
1542 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1543 * but still return zero here.
1545 * This may only be called from process context, and also currently
1546 * assumes internal allocation of fabric payload buffer by target-core.
1548 * It also assumes interal target core SGL memory allocation.
1550 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1551 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1552 u32 data_length, int task_attr, int data_dir, int flags)
1554 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1555 unpacked_lun, data_length, task_attr, data_dir,
1556 flags, NULL, 0, NULL, 0, NULL, 0);
1558 EXPORT_SYMBOL(target_submit_cmd);
1560 static void target_complete_tmr_failure(struct work_struct *work)
1562 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1564 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1565 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1567 transport_cmd_check_stop_to_fabric(se_cmd);
1571 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1572 * for TMR CDBs
1574 * @se_cmd: command descriptor to submit
1575 * @se_sess: associated se_sess for endpoint
1576 * @sense: pointer to SCSI sense buffer
1577 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1578 * @fabric_context: fabric context for TMR req
1579 * @tm_type: Type of TM request
1580 * @gfp: gfp type for caller
1581 * @tag: referenced task tag for TMR_ABORT_TASK
1582 * @flags: submit cmd flags
1584 * Callable from all contexts.
1587 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1588 unsigned char *sense, u64 unpacked_lun,
1589 void *fabric_tmr_ptr, unsigned char tm_type,
1590 gfp_t gfp, unsigned int tag, int flags)
1592 struct se_portal_group *se_tpg;
1593 int ret;
1595 se_tpg = se_sess->se_tpg;
1596 BUG_ON(!se_tpg);
1598 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1599 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1601 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1602 * allocation failure.
1604 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1605 if (ret < 0)
1606 return -ENOMEM;
1608 if (tm_type == TMR_ABORT_TASK)
1609 se_cmd->se_tmr_req->ref_task_tag = tag;
1611 /* See target_submit_cmd for commentary */
1612 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1613 if (ret) {
1614 core_tmr_release_req(se_cmd->se_tmr_req);
1615 return ret;
1618 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1619 if (ret) {
1621 * For callback during failure handling, push this work off
1622 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1624 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1625 schedule_work(&se_cmd->work);
1626 return 0;
1628 transport_generic_handle_tmr(se_cmd);
1629 return 0;
1631 EXPORT_SYMBOL(target_submit_tmr);
1634 * If the cmd is active, request it to be stopped and sleep until it
1635 * has completed.
1637 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1638 __releases(&cmd->t_state_lock)
1639 __acquires(&cmd->t_state_lock)
1641 bool was_active = false;
1643 if (cmd->transport_state & CMD_T_BUSY) {
1644 cmd->transport_state |= CMD_T_REQUEST_STOP;
1645 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1647 pr_debug("cmd %p waiting to complete\n", cmd);
1648 wait_for_completion(&cmd->task_stop_comp);
1649 pr_debug("cmd %p stopped successfully\n", cmd);
1651 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1652 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1653 cmd->transport_state &= ~CMD_T_BUSY;
1654 was_active = true;
1657 return was_active;
1661 * Handle SAM-esque emulation for generic transport request failures.
1663 void transport_generic_request_failure(struct se_cmd *cmd,
1664 sense_reason_t sense_reason)
1666 int ret = 0, post_ret = 0;
1668 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1669 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1670 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1671 cmd->se_tfo->get_cmd_state(cmd),
1672 cmd->t_state, sense_reason);
1673 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1674 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1675 (cmd->transport_state & CMD_T_STOP) != 0,
1676 (cmd->transport_state & CMD_T_SENT) != 0);
1679 * For SAM Task Attribute emulation for failed struct se_cmd
1681 transport_complete_task_attr(cmd);
1683 * Handle special case for COMPARE_AND_WRITE failure, where the
1684 * callback is expected to drop the per device ->caw_sem.
1686 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1687 cmd->transport_complete_callback)
1688 cmd->transport_complete_callback(cmd, false, &post_ret);
1690 switch (sense_reason) {
1691 case TCM_NON_EXISTENT_LUN:
1692 case TCM_UNSUPPORTED_SCSI_OPCODE:
1693 case TCM_INVALID_CDB_FIELD:
1694 case TCM_INVALID_PARAMETER_LIST:
1695 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1696 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1697 case TCM_UNKNOWN_MODE_PAGE:
1698 case TCM_WRITE_PROTECTED:
1699 case TCM_ADDRESS_OUT_OF_RANGE:
1700 case TCM_CHECK_CONDITION_ABORT_CMD:
1701 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1702 case TCM_CHECK_CONDITION_NOT_READY:
1703 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1704 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1705 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1706 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1707 break;
1708 case TCM_OUT_OF_RESOURCES:
1709 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1710 break;
1711 case TCM_RESERVATION_CONFLICT:
1713 * No SENSE Data payload for this case, set SCSI Status
1714 * and queue the response to $FABRIC_MOD.
1716 * Uses linux/include/scsi/scsi.h SAM status codes defs
1718 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1720 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1721 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1722 * CONFLICT STATUS.
1724 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1726 if (cmd->se_sess &&
1727 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1728 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1729 cmd->orig_fe_lun, 0x2C,
1730 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1732 trace_target_cmd_complete(cmd);
1733 ret = cmd->se_tfo->queue_status(cmd);
1734 if (ret == -EAGAIN || ret == -ENOMEM)
1735 goto queue_full;
1736 goto check_stop;
1737 default:
1738 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1739 cmd->t_task_cdb[0], sense_reason);
1740 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1741 break;
1744 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1745 if (ret == -EAGAIN || ret == -ENOMEM)
1746 goto queue_full;
1748 check_stop:
1749 transport_lun_remove_cmd(cmd);
1750 transport_cmd_check_stop_to_fabric(cmd);
1751 return;
1753 queue_full:
1754 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1755 transport_handle_queue_full(cmd, cmd->se_dev);
1757 EXPORT_SYMBOL(transport_generic_request_failure);
1759 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1761 sense_reason_t ret;
1763 if (!cmd->execute_cmd) {
1764 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1765 goto err;
1767 if (do_checks) {
1769 * Check for an existing UNIT ATTENTION condition after
1770 * target_handle_task_attr() has done SAM task attr
1771 * checking, and possibly have already defered execution
1772 * out to target_restart_delayed_cmds() context.
1774 ret = target_scsi3_ua_check(cmd);
1775 if (ret)
1776 goto err;
1778 ret = target_alua_state_check(cmd);
1779 if (ret)
1780 goto err;
1782 ret = target_check_reservation(cmd);
1783 if (ret) {
1784 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1785 goto err;
1789 ret = cmd->execute_cmd(cmd);
1790 if (!ret)
1791 return;
1792 err:
1793 spin_lock_irq(&cmd->t_state_lock);
1794 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1795 spin_unlock_irq(&cmd->t_state_lock);
1797 transport_generic_request_failure(cmd, ret);
1800 static int target_write_prot_action(struct se_cmd *cmd)
1802 u32 sectors;
1804 * Perform WRITE_INSERT of PI using software emulation when backend
1805 * device has PI enabled, if the transport has not already generated
1806 * PI using hardware WRITE_INSERT offload.
1808 switch (cmd->prot_op) {
1809 case TARGET_PROT_DOUT_INSERT:
1810 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1811 sbc_dif_generate(cmd);
1812 break;
1813 case TARGET_PROT_DOUT_STRIP:
1814 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1815 break;
1817 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1818 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1819 sectors, 0, cmd->t_prot_sg, 0);
1820 if (unlikely(cmd->pi_err)) {
1821 spin_lock_irq(&cmd->t_state_lock);
1822 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1823 spin_unlock_irq(&cmd->t_state_lock);
1824 transport_generic_request_failure(cmd, cmd->pi_err);
1825 return -1;
1827 break;
1828 default:
1829 break;
1832 return 0;
1835 static bool target_handle_task_attr(struct se_cmd *cmd)
1837 struct se_device *dev = cmd->se_dev;
1839 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1840 return false;
1842 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1845 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1846 * to allow the passed struct se_cmd list of tasks to the front of the list.
1848 switch (cmd->sam_task_attr) {
1849 case TCM_HEAD_TAG:
1850 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1851 cmd->t_task_cdb[0]);
1852 return false;
1853 case TCM_ORDERED_TAG:
1854 atomic_inc_mb(&dev->dev_ordered_sync);
1856 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1857 cmd->t_task_cdb[0]);
1860 * Execute an ORDERED command if no other older commands
1861 * exist that need to be completed first.
1863 if (!atomic_read(&dev->simple_cmds))
1864 return false;
1865 break;
1866 default:
1868 * For SIMPLE and UNTAGGED Task Attribute commands
1870 atomic_inc_mb(&dev->simple_cmds);
1871 break;
1874 if (atomic_read(&dev->dev_ordered_sync) == 0)
1875 return false;
1877 spin_lock(&dev->delayed_cmd_lock);
1878 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1879 spin_unlock(&dev->delayed_cmd_lock);
1881 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1882 cmd->t_task_cdb[0], cmd->sam_task_attr);
1883 return true;
1886 static int __transport_check_aborted_status(struct se_cmd *, int);
1888 void target_execute_cmd(struct se_cmd *cmd)
1891 * Determine if frontend context caller is requesting the stopping of
1892 * this command for frontend exceptions.
1894 * If the received CDB has aleady been aborted stop processing it here.
1896 spin_lock_irq(&cmd->t_state_lock);
1897 if (__transport_check_aborted_status(cmd, 1)) {
1898 spin_unlock_irq(&cmd->t_state_lock);
1899 return;
1901 if (cmd->transport_state & CMD_T_STOP) {
1902 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1903 __func__, __LINE__, cmd->tag);
1905 spin_unlock_irq(&cmd->t_state_lock);
1906 complete_all(&cmd->t_transport_stop_comp);
1907 return;
1910 cmd->t_state = TRANSPORT_PROCESSING;
1911 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1912 spin_unlock_irq(&cmd->t_state_lock);
1914 if (target_write_prot_action(cmd))
1915 return;
1917 if (target_handle_task_attr(cmd)) {
1918 spin_lock_irq(&cmd->t_state_lock);
1919 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1920 spin_unlock_irq(&cmd->t_state_lock);
1921 return;
1924 __target_execute_cmd(cmd, true);
1926 EXPORT_SYMBOL(target_execute_cmd);
1929 * Process all commands up to the last received ORDERED task attribute which
1930 * requires another blocking boundary
1932 static void target_restart_delayed_cmds(struct se_device *dev)
1934 for (;;) {
1935 struct se_cmd *cmd;
1937 spin_lock(&dev->delayed_cmd_lock);
1938 if (list_empty(&dev->delayed_cmd_list)) {
1939 spin_unlock(&dev->delayed_cmd_lock);
1940 break;
1943 cmd = list_entry(dev->delayed_cmd_list.next,
1944 struct se_cmd, se_delayed_node);
1945 list_del(&cmd->se_delayed_node);
1946 spin_unlock(&dev->delayed_cmd_lock);
1948 __target_execute_cmd(cmd, true);
1950 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1951 break;
1956 * Called from I/O completion to determine which dormant/delayed
1957 * and ordered cmds need to have their tasks added to the execution queue.
1959 static void transport_complete_task_attr(struct se_cmd *cmd)
1961 struct se_device *dev = cmd->se_dev;
1963 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1964 return;
1966 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
1967 goto restart;
1969 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1970 atomic_dec_mb(&dev->simple_cmds);
1971 dev->dev_cur_ordered_id++;
1972 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1973 dev->dev_cur_ordered_id);
1974 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1975 dev->dev_cur_ordered_id++;
1976 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1977 dev->dev_cur_ordered_id);
1978 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1979 atomic_dec_mb(&dev->dev_ordered_sync);
1981 dev->dev_cur_ordered_id++;
1982 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1983 dev->dev_cur_ordered_id);
1985 restart:
1986 target_restart_delayed_cmds(dev);
1989 static void transport_complete_qf(struct se_cmd *cmd)
1991 int ret = 0;
1993 transport_complete_task_attr(cmd);
1995 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1996 trace_target_cmd_complete(cmd);
1997 ret = cmd->se_tfo->queue_status(cmd);
1998 goto out;
2001 switch (cmd->data_direction) {
2002 case DMA_FROM_DEVICE:
2003 trace_target_cmd_complete(cmd);
2004 ret = cmd->se_tfo->queue_data_in(cmd);
2005 break;
2006 case DMA_TO_DEVICE:
2007 if (cmd->se_cmd_flags & SCF_BIDI) {
2008 ret = cmd->se_tfo->queue_data_in(cmd);
2009 break;
2011 /* Fall through for DMA_TO_DEVICE */
2012 case DMA_NONE:
2013 trace_target_cmd_complete(cmd);
2014 ret = cmd->se_tfo->queue_status(cmd);
2015 break;
2016 default:
2017 break;
2020 out:
2021 if (ret < 0) {
2022 transport_handle_queue_full(cmd, cmd->se_dev);
2023 return;
2025 transport_lun_remove_cmd(cmd);
2026 transport_cmd_check_stop_to_fabric(cmd);
2029 static void transport_handle_queue_full(
2030 struct se_cmd *cmd,
2031 struct se_device *dev)
2033 spin_lock_irq(&dev->qf_cmd_lock);
2034 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2035 atomic_inc_mb(&dev->dev_qf_count);
2036 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2038 schedule_work(&cmd->se_dev->qf_work_queue);
2041 static bool target_read_prot_action(struct se_cmd *cmd)
2043 switch (cmd->prot_op) {
2044 case TARGET_PROT_DIN_STRIP:
2045 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2046 u32 sectors = cmd->data_length >>
2047 ilog2(cmd->se_dev->dev_attrib.block_size);
2049 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2050 sectors, 0, cmd->t_prot_sg,
2052 if (cmd->pi_err)
2053 return true;
2055 break;
2056 case TARGET_PROT_DIN_INSERT:
2057 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2058 break;
2060 sbc_dif_generate(cmd);
2061 break;
2062 default:
2063 break;
2066 return false;
2069 static void target_complete_ok_work(struct work_struct *work)
2071 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2072 int ret;
2075 * Check if we need to move delayed/dormant tasks from cmds on the
2076 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2077 * Attribute.
2079 transport_complete_task_attr(cmd);
2082 * Check to schedule QUEUE_FULL work, or execute an existing
2083 * cmd->transport_qf_callback()
2085 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2086 schedule_work(&cmd->se_dev->qf_work_queue);
2089 * Check if we need to send a sense buffer from
2090 * the struct se_cmd in question.
2092 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2093 WARN_ON(!cmd->scsi_status);
2094 ret = transport_send_check_condition_and_sense(
2095 cmd, 0, 1);
2096 if (ret == -EAGAIN || ret == -ENOMEM)
2097 goto queue_full;
2099 transport_lun_remove_cmd(cmd);
2100 transport_cmd_check_stop_to_fabric(cmd);
2101 return;
2104 * Check for a callback, used by amongst other things
2105 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2107 if (cmd->transport_complete_callback) {
2108 sense_reason_t rc;
2109 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2110 bool zero_dl = !(cmd->data_length);
2111 int post_ret = 0;
2113 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2114 if (!rc && !post_ret) {
2115 if (caw && zero_dl)
2116 goto queue_rsp;
2118 return;
2119 } else if (rc) {
2120 ret = transport_send_check_condition_and_sense(cmd,
2121 rc, 0);
2122 if (ret == -EAGAIN || ret == -ENOMEM)
2123 goto queue_full;
2125 transport_lun_remove_cmd(cmd);
2126 transport_cmd_check_stop_to_fabric(cmd);
2127 return;
2131 queue_rsp:
2132 switch (cmd->data_direction) {
2133 case DMA_FROM_DEVICE:
2134 atomic_long_add(cmd->data_length,
2135 &cmd->se_lun->lun_stats.tx_data_octets);
2137 * Perform READ_STRIP of PI using software emulation when
2138 * backend had PI enabled, if the transport will not be
2139 * performing hardware READ_STRIP offload.
2141 if (target_read_prot_action(cmd)) {
2142 ret = transport_send_check_condition_and_sense(cmd,
2143 cmd->pi_err, 0);
2144 if (ret == -EAGAIN || ret == -ENOMEM)
2145 goto queue_full;
2147 transport_lun_remove_cmd(cmd);
2148 transport_cmd_check_stop_to_fabric(cmd);
2149 return;
2152 trace_target_cmd_complete(cmd);
2153 ret = cmd->se_tfo->queue_data_in(cmd);
2154 if (ret == -EAGAIN || ret == -ENOMEM)
2155 goto queue_full;
2156 break;
2157 case DMA_TO_DEVICE:
2158 atomic_long_add(cmd->data_length,
2159 &cmd->se_lun->lun_stats.rx_data_octets);
2161 * Check if we need to send READ payload for BIDI-COMMAND
2163 if (cmd->se_cmd_flags & SCF_BIDI) {
2164 atomic_long_add(cmd->data_length,
2165 &cmd->se_lun->lun_stats.tx_data_octets);
2166 ret = cmd->se_tfo->queue_data_in(cmd);
2167 if (ret == -EAGAIN || ret == -ENOMEM)
2168 goto queue_full;
2169 break;
2171 /* Fall through for DMA_TO_DEVICE */
2172 case DMA_NONE:
2173 trace_target_cmd_complete(cmd);
2174 ret = cmd->se_tfo->queue_status(cmd);
2175 if (ret == -EAGAIN || ret == -ENOMEM)
2176 goto queue_full;
2177 break;
2178 default:
2179 break;
2182 transport_lun_remove_cmd(cmd);
2183 transport_cmd_check_stop_to_fabric(cmd);
2184 return;
2186 queue_full:
2187 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2188 " data_direction: %d\n", cmd, cmd->data_direction);
2189 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2190 transport_handle_queue_full(cmd, cmd->se_dev);
2193 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2195 struct scatterlist *sg;
2196 int count;
2198 for_each_sg(sgl, sg, nents, count)
2199 __free_page(sg_page(sg));
2201 kfree(sgl);
2204 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2207 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2208 * emulation, and free + reset pointers if necessary..
2210 if (!cmd->t_data_sg_orig)
2211 return;
2213 kfree(cmd->t_data_sg);
2214 cmd->t_data_sg = cmd->t_data_sg_orig;
2215 cmd->t_data_sg_orig = NULL;
2216 cmd->t_data_nents = cmd->t_data_nents_orig;
2217 cmd->t_data_nents_orig = 0;
2220 static inline void transport_free_pages(struct se_cmd *cmd)
2222 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2223 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2224 cmd->t_prot_sg = NULL;
2225 cmd->t_prot_nents = 0;
2228 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2230 * Release special case READ buffer payload required for
2231 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2233 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2234 transport_free_sgl(cmd->t_bidi_data_sg,
2235 cmd->t_bidi_data_nents);
2236 cmd->t_bidi_data_sg = NULL;
2237 cmd->t_bidi_data_nents = 0;
2239 transport_reset_sgl_orig(cmd);
2240 return;
2242 transport_reset_sgl_orig(cmd);
2244 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2245 cmd->t_data_sg = NULL;
2246 cmd->t_data_nents = 0;
2248 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2249 cmd->t_bidi_data_sg = NULL;
2250 cmd->t_bidi_data_nents = 0;
2254 * transport_put_cmd - release a reference to a command
2255 * @cmd: command to release
2257 * This routine releases our reference to the command and frees it if possible.
2259 static int transport_put_cmd(struct se_cmd *cmd)
2261 BUG_ON(!cmd->se_tfo);
2263 * If this cmd has been setup with target_get_sess_cmd(), drop
2264 * the kref and call ->release_cmd() in kref callback.
2266 return target_put_sess_cmd(cmd);
2269 void *transport_kmap_data_sg(struct se_cmd *cmd)
2271 struct scatterlist *sg = cmd->t_data_sg;
2272 struct page **pages;
2273 int i;
2276 * We need to take into account a possible offset here for fabrics like
2277 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2278 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2280 if (!cmd->t_data_nents)
2281 return NULL;
2283 BUG_ON(!sg);
2284 if (cmd->t_data_nents == 1)
2285 return kmap(sg_page(sg)) + sg->offset;
2287 /* >1 page. use vmap */
2288 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2289 if (!pages)
2290 return NULL;
2292 /* convert sg[] to pages[] */
2293 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2294 pages[i] = sg_page(sg);
2297 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2298 kfree(pages);
2299 if (!cmd->t_data_vmap)
2300 return NULL;
2302 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2304 EXPORT_SYMBOL(transport_kmap_data_sg);
2306 void transport_kunmap_data_sg(struct se_cmd *cmd)
2308 if (!cmd->t_data_nents) {
2309 return;
2310 } else if (cmd->t_data_nents == 1) {
2311 kunmap(sg_page(cmd->t_data_sg));
2312 return;
2315 vunmap(cmd->t_data_vmap);
2316 cmd->t_data_vmap = NULL;
2318 EXPORT_SYMBOL(transport_kunmap_data_sg);
2321 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2322 bool zero_page)
2324 struct scatterlist *sg;
2325 struct page *page;
2326 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2327 unsigned int nent;
2328 int i = 0;
2330 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2331 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2332 if (!sg)
2333 return -ENOMEM;
2335 sg_init_table(sg, nent);
2337 while (length) {
2338 u32 page_len = min_t(u32, length, PAGE_SIZE);
2339 page = alloc_page(GFP_KERNEL | zero_flag);
2340 if (!page)
2341 goto out;
2343 sg_set_page(&sg[i], page, page_len, 0);
2344 length -= page_len;
2345 i++;
2347 *sgl = sg;
2348 *nents = nent;
2349 return 0;
2351 out:
2352 while (i > 0) {
2353 i--;
2354 __free_page(sg_page(&sg[i]));
2356 kfree(sg);
2357 return -ENOMEM;
2361 * Allocate any required resources to execute the command. For writes we
2362 * might not have the payload yet, so notify the fabric via a call to
2363 * ->write_pending instead. Otherwise place it on the execution queue.
2365 sense_reason_t
2366 transport_generic_new_cmd(struct se_cmd *cmd)
2368 int ret = 0;
2369 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2371 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2372 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2373 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2374 cmd->prot_length, true);
2375 if (ret < 0)
2376 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2380 * Determine is the TCM fabric module has already allocated physical
2381 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2382 * beforehand.
2384 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2385 cmd->data_length) {
2387 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2388 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2389 u32 bidi_length;
2391 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2392 bidi_length = cmd->t_task_nolb *
2393 cmd->se_dev->dev_attrib.block_size;
2394 else
2395 bidi_length = cmd->data_length;
2397 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2398 &cmd->t_bidi_data_nents,
2399 bidi_length, zero_flag);
2400 if (ret < 0)
2401 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2404 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2405 cmd->data_length, zero_flag);
2406 if (ret < 0)
2407 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2408 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2409 cmd->data_length) {
2411 * Special case for COMPARE_AND_WRITE with fabrics
2412 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2414 u32 caw_length = cmd->t_task_nolb *
2415 cmd->se_dev->dev_attrib.block_size;
2417 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2418 &cmd->t_bidi_data_nents,
2419 caw_length, zero_flag);
2420 if (ret < 0)
2421 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2424 * If this command is not a write we can execute it right here,
2425 * for write buffers we need to notify the fabric driver first
2426 * and let it call back once the write buffers are ready.
2428 target_add_to_state_list(cmd);
2429 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2430 target_execute_cmd(cmd);
2431 return 0;
2433 transport_cmd_check_stop(cmd, false, true);
2435 ret = cmd->se_tfo->write_pending(cmd);
2436 if (ret == -EAGAIN || ret == -ENOMEM)
2437 goto queue_full;
2439 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2440 WARN_ON(ret);
2442 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2444 queue_full:
2445 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2446 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2447 transport_handle_queue_full(cmd, cmd->se_dev);
2448 return 0;
2450 EXPORT_SYMBOL(transport_generic_new_cmd);
2452 static void transport_write_pending_qf(struct se_cmd *cmd)
2454 int ret;
2456 ret = cmd->se_tfo->write_pending(cmd);
2457 if (ret == -EAGAIN || ret == -ENOMEM) {
2458 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2459 cmd);
2460 transport_handle_queue_full(cmd, cmd->se_dev);
2464 static bool
2465 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2466 unsigned long *flags);
2468 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2470 unsigned long flags;
2472 spin_lock_irqsave(&cmd->t_state_lock, flags);
2473 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2474 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2477 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2479 int ret = 0;
2480 bool aborted = false, tas = false;
2482 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2483 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2484 target_wait_free_cmd(cmd, &aborted, &tas);
2486 if (!aborted || tas)
2487 ret = transport_put_cmd(cmd);
2488 } else {
2489 if (wait_for_tasks)
2490 target_wait_free_cmd(cmd, &aborted, &tas);
2492 * Handle WRITE failure case where transport_generic_new_cmd()
2493 * has already added se_cmd to state_list, but fabric has
2494 * failed command before I/O submission.
2496 if (cmd->state_active)
2497 target_remove_from_state_list(cmd);
2499 if (cmd->se_lun)
2500 transport_lun_remove_cmd(cmd);
2502 if (!aborted || tas)
2503 ret = transport_put_cmd(cmd);
2506 * If the task has been internally aborted due to TMR ABORT_TASK
2507 * or LUN_RESET, target_core_tmr.c is responsible for performing
2508 * the remaining calls to target_put_sess_cmd(), and not the
2509 * callers of this function.
2511 if (aborted) {
2512 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2513 wait_for_completion(&cmd->cmd_wait_comp);
2514 cmd->se_tfo->release_cmd(cmd);
2515 ret = 1;
2517 return ret;
2519 EXPORT_SYMBOL(transport_generic_free_cmd);
2521 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2522 * @se_cmd: command descriptor to add
2523 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2525 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2527 struct se_session *se_sess = se_cmd->se_sess;
2528 unsigned long flags;
2529 int ret = 0;
2532 * Add a second kref if the fabric caller is expecting to handle
2533 * fabric acknowledgement that requires two target_put_sess_cmd()
2534 * invocations before se_cmd descriptor release.
2536 if (ack_kref) {
2537 kref_get(&se_cmd->cmd_kref);
2538 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2541 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2542 if (se_sess->sess_tearing_down) {
2543 ret = -ESHUTDOWN;
2544 goto out;
2546 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2547 out:
2548 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2550 if (ret && ack_kref)
2551 target_put_sess_cmd(se_cmd);
2553 return ret;
2555 EXPORT_SYMBOL(target_get_sess_cmd);
2557 static void target_free_cmd_mem(struct se_cmd *cmd)
2559 transport_free_pages(cmd);
2561 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2562 core_tmr_release_req(cmd->se_tmr_req);
2563 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2564 kfree(cmd->t_task_cdb);
2567 static void target_release_cmd_kref(struct kref *kref)
2569 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2570 struct se_session *se_sess = se_cmd->se_sess;
2571 unsigned long flags;
2572 bool fabric_stop;
2574 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2576 spin_lock(&se_cmd->t_state_lock);
2577 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2578 (se_cmd->transport_state & CMD_T_ABORTED);
2579 spin_unlock(&se_cmd->t_state_lock);
2581 if (se_cmd->cmd_wait_set || fabric_stop) {
2582 list_del_init(&se_cmd->se_cmd_list);
2583 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2584 target_free_cmd_mem(se_cmd);
2585 complete(&se_cmd->cmd_wait_comp);
2586 return;
2588 list_del_init(&se_cmd->se_cmd_list);
2589 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2591 target_free_cmd_mem(se_cmd);
2592 se_cmd->se_tfo->release_cmd(se_cmd);
2595 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2596 * @se_cmd: command descriptor to drop
2598 int target_put_sess_cmd(struct se_cmd *se_cmd)
2600 struct se_session *se_sess = se_cmd->se_sess;
2602 if (!se_sess) {
2603 target_free_cmd_mem(se_cmd);
2604 se_cmd->se_tfo->release_cmd(se_cmd);
2605 return 1;
2607 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2609 EXPORT_SYMBOL(target_put_sess_cmd);
2611 /* target_sess_cmd_list_set_waiting - Flag all commands in
2612 * sess_cmd_list to complete cmd_wait_comp. Set
2613 * sess_tearing_down so no more commands are queued.
2614 * @se_sess: session to flag
2616 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2618 struct se_cmd *se_cmd;
2619 unsigned long flags;
2620 int rc;
2622 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2623 if (se_sess->sess_tearing_down) {
2624 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2625 return;
2627 se_sess->sess_tearing_down = 1;
2628 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2630 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2631 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2632 if (rc) {
2633 se_cmd->cmd_wait_set = 1;
2634 spin_lock(&se_cmd->t_state_lock);
2635 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2636 spin_unlock(&se_cmd->t_state_lock);
2640 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2642 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2644 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2645 * @se_sess: session to wait for active I/O
2647 void target_wait_for_sess_cmds(struct se_session *se_sess)
2649 struct se_cmd *se_cmd, *tmp_cmd;
2650 unsigned long flags;
2651 bool tas;
2653 list_for_each_entry_safe(se_cmd, tmp_cmd,
2654 &se_sess->sess_wait_list, se_cmd_list) {
2655 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2656 " %d\n", se_cmd, se_cmd->t_state,
2657 se_cmd->se_tfo->get_cmd_state(se_cmd));
2659 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2660 tas = (se_cmd->transport_state & CMD_T_TAS);
2661 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2663 if (!target_put_sess_cmd(se_cmd)) {
2664 if (tas)
2665 target_put_sess_cmd(se_cmd);
2668 wait_for_completion(&se_cmd->cmd_wait_comp);
2669 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2670 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2671 se_cmd->se_tfo->get_cmd_state(se_cmd));
2673 se_cmd->se_tfo->release_cmd(se_cmd);
2676 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2677 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2678 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2681 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2683 static void target_lun_confirm(struct percpu_ref *ref)
2685 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2687 complete(&lun->lun_ref_comp);
2690 void transport_clear_lun_ref(struct se_lun *lun)
2693 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2694 * the initial reference and schedule confirm kill to be
2695 * executed after one full RCU grace period has completed.
2697 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2699 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2700 * to call target_lun_confirm after lun->lun_ref has been marked
2701 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2702 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2703 * fails for all new incoming I/O.
2705 wait_for_completion(&lun->lun_ref_comp);
2707 * The second completion waits for percpu_ref_put_many() to
2708 * invoke ->release() after lun->lun_ref has switched to
2709 * atomic_t mode, and lun->lun_ref.count has reached zero.
2711 * At this point all target-core lun->lun_ref references have
2712 * been dropped via transport_lun_remove_cmd(), and it's safe
2713 * to proceed with the remaining LUN shutdown.
2715 wait_for_completion(&lun->lun_shutdown_comp);
2718 static bool
2719 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2720 bool *aborted, bool *tas, unsigned long *flags)
2721 __releases(&cmd->t_state_lock)
2722 __acquires(&cmd->t_state_lock)
2725 assert_spin_locked(&cmd->t_state_lock);
2726 WARN_ON_ONCE(!irqs_disabled());
2728 if (fabric_stop)
2729 cmd->transport_state |= CMD_T_FABRIC_STOP;
2731 if (cmd->transport_state & CMD_T_ABORTED)
2732 *aborted = true;
2734 if (cmd->transport_state & CMD_T_TAS)
2735 *tas = true;
2737 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2738 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2739 return false;
2741 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2742 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2743 return false;
2745 if (!(cmd->transport_state & CMD_T_ACTIVE))
2746 return false;
2748 if (fabric_stop && *aborted)
2749 return false;
2751 cmd->transport_state |= CMD_T_STOP;
2753 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2754 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2755 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2757 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2759 wait_for_completion(&cmd->t_transport_stop_comp);
2761 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2762 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2764 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2765 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2767 return true;
2771 * transport_wait_for_tasks - wait for completion to occur
2772 * @cmd: command to wait
2774 * Called from frontend fabric context to wait for storage engine
2775 * to pause and/or release frontend generated struct se_cmd.
2777 bool transport_wait_for_tasks(struct se_cmd *cmd)
2779 unsigned long flags;
2780 bool ret, aborted = false, tas = false;
2782 spin_lock_irqsave(&cmd->t_state_lock, flags);
2783 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2784 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2786 return ret;
2788 EXPORT_SYMBOL(transport_wait_for_tasks);
2790 struct sense_info {
2791 u8 key;
2792 u8 asc;
2793 u8 ascq;
2794 bool add_sector_info;
2797 static const struct sense_info sense_info_table[] = {
2798 [TCM_NO_SENSE] = {
2799 .key = NOT_READY
2801 [TCM_NON_EXISTENT_LUN] = {
2802 .key = ILLEGAL_REQUEST,
2803 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2805 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2806 .key = ILLEGAL_REQUEST,
2807 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2809 [TCM_SECTOR_COUNT_TOO_MANY] = {
2810 .key = ILLEGAL_REQUEST,
2811 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2813 [TCM_UNKNOWN_MODE_PAGE] = {
2814 .key = ILLEGAL_REQUEST,
2815 .asc = 0x24, /* INVALID FIELD IN CDB */
2817 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2818 .key = ABORTED_COMMAND,
2819 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2820 .ascq = 0x03,
2822 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2823 .key = ABORTED_COMMAND,
2824 .asc = 0x0c, /* WRITE ERROR */
2825 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2827 [TCM_INVALID_CDB_FIELD] = {
2828 .key = ILLEGAL_REQUEST,
2829 .asc = 0x24, /* INVALID FIELD IN CDB */
2831 [TCM_INVALID_PARAMETER_LIST] = {
2832 .key = ILLEGAL_REQUEST,
2833 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2835 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2836 .key = ILLEGAL_REQUEST,
2837 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2839 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2840 .key = ILLEGAL_REQUEST,
2841 .asc = 0x0c, /* WRITE ERROR */
2842 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2844 [TCM_SERVICE_CRC_ERROR] = {
2845 .key = ABORTED_COMMAND,
2846 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2847 .ascq = 0x05, /* N/A */
2849 [TCM_SNACK_REJECTED] = {
2850 .key = ABORTED_COMMAND,
2851 .asc = 0x11, /* READ ERROR */
2852 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2854 [TCM_WRITE_PROTECTED] = {
2855 .key = DATA_PROTECT,
2856 .asc = 0x27, /* WRITE PROTECTED */
2858 [TCM_ADDRESS_OUT_OF_RANGE] = {
2859 .key = ILLEGAL_REQUEST,
2860 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2862 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2863 .key = UNIT_ATTENTION,
2865 [TCM_CHECK_CONDITION_NOT_READY] = {
2866 .key = NOT_READY,
2868 [TCM_MISCOMPARE_VERIFY] = {
2869 .key = MISCOMPARE,
2870 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2871 .ascq = 0x00,
2873 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2874 .key = ABORTED_COMMAND,
2875 .asc = 0x10,
2876 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2877 .add_sector_info = true,
2879 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2880 .key = ABORTED_COMMAND,
2881 .asc = 0x10,
2882 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2883 .add_sector_info = true,
2885 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2886 .key = ABORTED_COMMAND,
2887 .asc = 0x10,
2888 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2889 .add_sector_info = true,
2891 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
2892 .key = COPY_ABORTED,
2893 .asc = 0x0d,
2894 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2897 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2899 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2900 * Solaris initiators. Returning NOT READY instead means the
2901 * operations will be retried a finite number of times and we
2902 * can survive intermittent errors.
2904 .key = NOT_READY,
2905 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2909 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2911 const struct sense_info *si;
2912 u8 *buffer = cmd->sense_buffer;
2913 int r = (__force int)reason;
2914 u8 asc, ascq;
2915 bool desc_format = target_sense_desc_format(cmd->se_dev);
2917 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2918 si = &sense_info_table[r];
2919 else
2920 si = &sense_info_table[(__force int)
2921 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2923 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2924 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2925 WARN_ON_ONCE(asc == 0);
2926 } else if (si->asc == 0) {
2927 WARN_ON_ONCE(cmd->scsi_asc == 0);
2928 asc = cmd->scsi_asc;
2929 ascq = cmd->scsi_ascq;
2930 } else {
2931 asc = si->asc;
2932 ascq = si->ascq;
2935 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2936 if (si->add_sector_info)
2937 return scsi_set_sense_information(buffer,
2938 cmd->scsi_sense_length,
2939 cmd->bad_sector);
2941 return 0;
2945 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2946 sense_reason_t reason, int from_transport)
2948 unsigned long flags;
2950 spin_lock_irqsave(&cmd->t_state_lock, flags);
2951 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2952 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2953 return 0;
2955 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2956 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2958 if (!from_transport) {
2959 int rc;
2961 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2962 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2963 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2964 rc = translate_sense_reason(cmd, reason);
2965 if (rc)
2966 return rc;
2969 trace_target_cmd_complete(cmd);
2970 return cmd->se_tfo->queue_status(cmd);
2972 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2974 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2975 __releases(&cmd->t_state_lock)
2976 __acquires(&cmd->t_state_lock)
2978 assert_spin_locked(&cmd->t_state_lock);
2979 WARN_ON_ONCE(!irqs_disabled());
2981 if (!(cmd->transport_state & CMD_T_ABORTED))
2982 return 0;
2984 * If cmd has been aborted but either no status is to be sent or it has
2985 * already been sent, just return
2987 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
2988 if (send_status)
2989 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2990 return 1;
2993 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2994 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
2996 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2997 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2998 trace_target_cmd_complete(cmd);
3000 spin_unlock_irq(&cmd->t_state_lock);
3001 cmd->se_tfo->queue_status(cmd);
3002 spin_lock_irq(&cmd->t_state_lock);
3004 return 1;
3007 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3009 int ret;
3011 spin_lock_irq(&cmd->t_state_lock);
3012 ret = __transport_check_aborted_status(cmd, send_status);
3013 spin_unlock_irq(&cmd->t_state_lock);
3015 return ret;
3017 EXPORT_SYMBOL(transport_check_aborted_status);
3019 void transport_send_task_abort(struct se_cmd *cmd)
3021 unsigned long flags;
3023 spin_lock_irqsave(&cmd->t_state_lock, flags);
3024 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3025 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3026 return;
3028 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3031 * If there are still expected incoming fabric WRITEs, we wait
3032 * until until they have completed before sending a TASK_ABORTED
3033 * response. This response with TASK_ABORTED status will be
3034 * queued back to fabric module by transport_check_aborted_status().
3036 if (cmd->data_direction == DMA_TO_DEVICE) {
3037 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3038 spin_lock_irqsave(&cmd->t_state_lock, flags);
3039 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3040 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3041 goto send_abort;
3043 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3044 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3045 return;
3048 send_abort:
3049 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3051 transport_lun_remove_cmd(cmd);
3053 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3054 cmd->t_task_cdb[0], cmd->tag);
3056 trace_target_cmd_complete(cmd);
3057 cmd->se_tfo->queue_status(cmd);
3060 static void target_tmr_work(struct work_struct *work)
3062 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3063 struct se_device *dev = cmd->se_dev;
3064 struct se_tmr_req *tmr = cmd->se_tmr_req;
3065 unsigned long flags;
3066 int ret;
3068 spin_lock_irqsave(&cmd->t_state_lock, flags);
3069 if (cmd->transport_state & CMD_T_ABORTED) {
3070 tmr->response = TMR_FUNCTION_REJECTED;
3071 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3072 goto check_stop;
3074 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3076 switch (tmr->function) {
3077 case TMR_ABORT_TASK:
3078 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3079 break;
3080 case TMR_ABORT_TASK_SET:
3081 case TMR_CLEAR_ACA:
3082 case TMR_CLEAR_TASK_SET:
3083 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3084 break;
3085 case TMR_LUN_RESET:
3086 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3087 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3088 TMR_FUNCTION_REJECTED;
3089 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3090 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3091 cmd->orig_fe_lun, 0x29,
3092 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3094 break;
3095 case TMR_TARGET_WARM_RESET:
3096 tmr->response = TMR_FUNCTION_REJECTED;
3097 break;
3098 case TMR_TARGET_COLD_RESET:
3099 tmr->response = TMR_FUNCTION_REJECTED;
3100 break;
3101 default:
3102 pr_err("Uknown TMR function: 0x%02x.\n",
3103 tmr->function);
3104 tmr->response = TMR_FUNCTION_REJECTED;
3105 break;
3108 spin_lock_irqsave(&cmd->t_state_lock, flags);
3109 if (cmd->transport_state & CMD_T_ABORTED) {
3110 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3111 goto check_stop;
3113 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3115 cmd->se_tfo->queue_tm_rsp(cmd);
3117 check_stop:
3118 transport_cmd_check_stop_to_fabric(cmd);
3121 int transport_generic_handle_tmr(
3122 struct se_cmd *cmd)
3124 unsigned long flags;
3125 bool aborted = false;
3127 spin_lock_irqsave(&cmd->t_state_lock, flags);
3128 if (cmd->transport_state & CMD_T_ABORTED) {
3129 aborted = true;
3130 } else {
3131 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3132 cmd->transport_state |= CMD_T_ACTIVE;
3134 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3136 if (aborted) {
3137 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3138 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3139 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3140 transport_cmd_check_stop_to_fabric(cmd);
3141 return 0;
3144 INIT_WORK(&cmd->work, target_tmr_work);
3145 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3146 return 0;
3148 EXPORT_SYMBOL(transport_generic_handle_tmr);
3150 bool
3151 target_check_wce(struct se_device *dev)
3153 bool wce = false;
3155 if (dev->transport->get_write_cache)
3156 wce = dev->transport->get_write_cache(dev);
3157 else if (dev->dev_attrib.emulate_write_cache > 0)
3158 wce = true;
3160 return wce;
3163 bool
3164 target_check_fua(struct se_device *dev)
3166 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;