x86: merge dwarf2 headers
[linux/fpc-iii.git] / drivers / serial / jsm / jsm_neo.c
blobb2d6f5b1a7c2c3c4fc21b4ecb8e4f31008f050a4
1 /************************************************************************
2 * Copyright 2003 Digi International (www.digi.com)
4 * Copyright (C) 2004 IBM Corporation. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14 * PURPOSE. See the GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19 * MA 02111-1307, USA.
21 * Contact Information:
22 * Scott H Kilau <Scott_Kilau@digi.com>
23 * Wendy Xiong <wendyx@us.ibm.com>
25 ***********************************************************************/
26 #include <linux/delay.h> /* For udelay */
27 #include <linux/serial_reg.h> /* For the various UART offsets */
28 #include <linux/tty.h>
29 #include <linux/pci.h>
30 #include <asm/io.h>
32 #include "jsm.h" /* Driver main header file */
34 static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
37 * This function allows calls to ensure that all outstanding
38 * PCI writes have been completed, by doing a PCI read against
39 * a non-destructive, read-only location on the Neo card.
41 * In this case, we are reading the DVID (Read-only Device Identification)
42 * value of the Neo card.
44 static inline void neo_pci_posting_flush(struct jsm_board *bd)
46 readb(bd->re_map_membase + 0x8D);
49 static void neo_set_cts_flow_control(struct jsm_channel *ch)
51 u8 ier, efr;
52 ier = readb(&ch->ch_neo_uart->ier);
53 efr = readb(&ch->ch_neo_uart->efr);
55 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
57 /* Turn on auto CTS flow control */
58 ier |= (UART_17158_IER_CTSDSR);
59 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
61 /* Turn off auto Xon flow control */
62 efr &= ~(UART_17158_EFR_IXON);
64 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
65 writeb(0, &ch->ch_neo_uart->efr);
67 /* Turn on UART enhanced bits */
68 writeb(efr, &ch->ch_neo_uart->efr);
70 /* Turn on table D, with 8 char hi/low watermarks */
71 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
73 /* Feed the UART our trigger levels */
74 writeb(8, &ch->ch_neo_uart->tfifo);
75 ch->ch_t_tlevel = 8;
77 writeb(ier, &ch->ch_neo_uart->ier);
80 static void neo_set_rts_flow_control(struct jsm_channel *ch)
82 u8 ier, efr;
83 ier = readb(&ch->ch_neo_uart->ier);
84 efr = readb(&ch->ch_neo_uart->efr);
86 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
88 /* Turn on auto RTS flow control */
89 ier |= (UART_17158_IER_RTSDTR);
90 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
92 /* Turn off auto Xoff flow control */
93 ier &= ~(UART_17158_IER_XOFF);
94 efr &= ~(UART_17158_EFR_IXOFF);
96 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
97 writeb(0, &ch->ch_neo_uart->efr);
99 /* Turn on UART enhanced bits */
100 writeb(efr, &ch->ch_neo_uart->efr);
102 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
103 ch->ch_r_watermark = 4;
105 writeb(56, &ch->ch_neo_uart->rfifo);
106 ch->ch_r_tlevel = 56;
108 writeb(ier, &ch->ch_neo_uart->ier);
111 * From the Neo UART spec sheet:
112 * The auto RTS/DTR function must be started by asserting
113 * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
114 * it is enabled.
116 ch->ch_mostat |= (UART_MCR_RTS);
120 static void neo_set_ixon_flow_control(struct jsm_channel *ch)
122 u8 ier, efr;
123 ier = readb(&ch->ch_neo_uart->ier);
124 efr = readb(&ch->ch_neo_uart->efr);
126 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
128 /* Turn off auto CTS flow control */
129 ier &= ~(UART_17158_IER_CTSDSR);
130 efr &= ~(UART_17158_EFR_CTSDSR);
132 /* Turn on auto Xon flow control */
133 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
135 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
136 writeb(0, &ch->ch_neo_uart->efr);
138 /* Turn on UART enhanced bits */
139 writeb(efr, &ch->ch_neo_uart->efr);
141 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
142 ch->ch_r_watermark = 4;
144 writeb(32, &ch->ch_neo_uart->rfifo);
145 ch->ch_r_tlevel = 32;
147 /* Tell UART what start/stop chars it should be looking for */
148 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
149 writeb(0, &ch->ch_neo_uart->xonchar2);
151 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
152 writeb(0, &ch->ch_neo_uart->xoffchar2);
154 writeb(ier, &ch->ch_neo_uart->ier);
157 static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
159 u8 ier, efr;
160 ier = readb(&ch->ch_neo_uart->ier);
161 efr = readb(&ch->ch_neo_uart->efr);
163 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
165 /* Turn off auto RTS flow control */
166 ier &= ~(UART_17158_IER_RTSDTR);
167 efr &= ~(UART_17158_EFR_RTSDTR);
169 /* Turn on auto Xoff flow control */
170 ier |= (UART_17158_IER_XOFF);
171 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
173 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
174 writeb(0, &ch->ch_neo_uart->efr);
176 /* Turn on UART enhanced bits */
177 writeb(efr, &ch->ch_neo_uart->efr);
179 /* Turn on table D, with 8 char hi/low watermarks */
180 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
182 writeb(8, &ch->ch_neo_uart->tfifo);
183 ch->ch_t_tlevel = 8;
185 /* Tell UART what start/stop chars it should be looking for */
186 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
187 writeb(0, &ch->ch_neo_uart->xonchar2);
189 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
190 writeb(0, &ch->ch_neo_uart->xoffchar2);
192 writeb(ier, &ch->ch_neo_uart->ier);
195 static void neo_set_no_input_flow_control(struct jsm_channel *ch)
197 u8 ier, efr;
198 ier = readb(&ch->ch_neo_uart->ier);
199 efr = readb(&ch->ch_neo_uart->efr);
201 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
203 /* Turn off auto RTS flow control */
204 ier &= ~(UART_17158_IER_RTSDTR);
205 efr &= ~(UART_17158_EFR_RTSDTR);
207 /* Turn off auto Xoff flow control */
208 ier &= ~(UART_17158_IER_XOFF);
209 if (ch->ch_c_iflag & IXON)
210 efr &= ~(UART_17158_EFR_IXOFF);
211 else
212 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
214 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
215 writeb(0, &ch->ch_neo_uart->efr);
217 /* Turn on UART enhanced bits */
218 writeb(efr, &ch->ch_neo_uart->efr);
220 /* Turn on table D, with 8 char hi/low watermarks */
221 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
223 ch->ch_r_watermark = 0;
225 writeb(16, &ch->ch_neo_uart->tfifo);
226 ch->ch_t_tlevel = 16;
228 writeb(16, &ch->ch_neo_uart->rfifo);
229 ch->ch_r_tlevel = 16;
231 writeb(ier, &ch->ch_neo_uart->ier);
234 static void neo_set_no_output_flow_control(struct jsm_channel *ch)
236 u8 ier, efr;
237 ier = readb(&ch->ch_neo_uart->ier);
238 efr = readb(&ch->ch_neo_uart->efr);
240 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
242 /* Turn off auto CTS flow control */
243 ier &= ~(UART_17158_IER_CTSDSR);
244 efr &= ~(UART_17158_EFR_CTSDSR);
246 /* Turn off auto Xon flow control */
247 if (ch->ch_c_iflag & IXOFF)
248 efr &= ~(UART_17158_EFR_IXON);
249 else
250 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
252 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
253 writeb(0, &ch->ch_neo_uart->efr);
255 /* Turn on UART enhanced bits */
256 writeb(efr, &ch->ch_neo_uart->efr);
258 /* Turn on table D, with 8 char hi/low watermarks */
259 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
261 ch->ch_r_watermark = 0;
263 writeb(16, &ch->ch_neo_uart->tfifo);
264 ch->ch_t_tlevel = 16;
266 writeb(16, &ch->ch_neo_uart->rfifo);
267 ch->ch_r_tlevel = 16;
269 writeb(ier, &ch->ch_neo_uart->ier);
272 static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
275 /* if hardware flow control is set, then skip this whole thing */
276 if (ch->ch_c_cflag & CRTSCTS)
277 return;
279 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "start\n");
281 /* Tell UART what start/stop chars it should be looking for */
282 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
283 writeb(0, &ch->ch_neo_uart->xonchar2);
285 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
286 writeb(0, &ch->ch_neo_uart->xoffchar2);
289 static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
291 int qleft = 0;
292 u8 linestatus = 0;
293 u8 error_mask = 0;
294 int n = 0;
295 int total = 0;
296 u16 head;
297 u16 tail;
299 if (!ch)
300 return;
302 /* cache head and tail of queue */
303 head = ch->ch_r_head & RQUEUEMASK;
304 tail = ch->ch_r_tail & RQUEUEMASK;
306 /* Get our cached LSR */
307 linestatus = ch->ch_cached_lsr;
308 ch->ch_cached_lsr = 0;
310 /* Store how much space we have left in the queue */
311 if ((qleft = tail - head - 1) < 0)
312 qleft += RQUEUEMASK + 1;
315 * If the UART is not in FIFO mode, force the FIFO copy to
316 * NOT be run, by setting total to 0.
318 * On the other hand, if the UART IS in FIFO mode, then ask
319 * the UART to give us an approximation of data it has RX'ed.
321 if (!(ch->ch_flags & CH_FIFO_ENABLED))
322 total = 0;
323 else {
324 total = readb(&ch->ch_neo_uart->rfifo);
327 * EXAR chip bug - RX FIFO COUNT - Fudge factor.
329 * This resolves a problem/bug with the Exar chip that sometimes
330 * returns a bogus value in the rfifo register.
331 * The count can be any where from 0-3 bytes "off".
332 * Bizarre, but true.
334 total -= 3;
338 * Finally, bound the copy to make sure we don't overflow
339 * our own queue...
340 * The byte by byte copy loop below this loop this will
341 * deal with the queue overflow possibility.
343 total = min(total, qleft);
345 while (total > 0) {
347 * Grab the linestatus register, we need to check
348 * to see if there are any errors in the FIFO.
350 linestatus = readb(&ch->ch_neo_uart->lsr);
353 * Break out if there is a FIFO error somewhere.
354 * This will allow us to go byte by byte down below,
355 * finding the exact location of the error.
357 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
358 break;
360 /* Make sure we don't go over the end of our queue */
361 n = min(((u32) total), (RQUEUESIZE - (u32) head));
364 * Cut down n even further if needed, this is to fix
365 * a problem with memcpy_fromio() with the Neo on the
366 * IBM pSeries platform.
367 * 15 bytes max appears to be the magic number.
369 n = min((u32) n, (u32) 12);
372 * Since we are grabbing the linestatus register, which
373 * will reset some bits after our read, we need to ensure
374 * we don't miss our TX FIFO emptys.
376 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
377 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
379 linestatus = 0;
381 /* Copy data from uart to the queue */
382 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
384 * Since RX_FIFO_DATA_ERROR was 0, we are guarenteed
385 * that all the data currently in the FIFO is free of
386 * breaks and parity/frame/orun errors.
388 memset(ch->ch_equeue + head, 0, n);
390 /* Add to and flip head if needed */
391 head = (head + n) & RQUEUEMASK;
392 total -= n;
393 qleft -= n;
394 ch->ch_rxcount += n;
398 * Create a mask to determine whether we should
399 * insert the character (if any) into our queue.
401 if (ch->ch_c_iflag & IGNBRK)
402 error_mask |= UART_LSR_BI;
405 * Now cleanup any leftover bytes still in the UART.
406 * Also deal with any possible queue overflow here as well.
408 while (1) {
411 * Its possible we have a linestatus from the loop above
412 * this, so we "OR" on any extra bits.
414 linestatus |= readb(&ch->ch_neo_uart->lsr);
417 * If the chip tells us there is no more data pending to
418 * be read, we can then leave.
419 * But before we do, cache the linestatus, just in case.
421 if (!(linestatus & UART_LSR_DR)) {
422 ch->ch_cached_lsr = linestatus;
423 break;
426 /* No need to store this bit */
427 linestatus &= ~UART_LSR_DR;
430 * Since we are grabbing the linestatus register, which
431 * will reset some bits after our read, we need to ensure
432 * we don't miss our TX FIFO emptys.
434 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
435 linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
436 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
440 * Discard character if we are ignoring the error mask.
442 if (linestatus & error_mask) {
443 u8 discard;
444 linestatus = 0;
445 memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
446 continue;
450 * If our queue is full, we have no choice but to drop some data.
451 * The assumption is that HWFLOW or SWFLOW should have stopped
452 * things way way before we got to this point.
454 * I decided that I wanted to ditch the oldest data first,
455 * I hope thats okay with everyone? Yes? Good.
457 while (qleft < 1) {
458 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
459 "Queue full, dropping DATA:%x LSR:%x\n",
460 ch->ch_rqueue[tail], ch->ch_equeue[tail]);
462 ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
463 ch->ch_err_overrun++;
464 qleft++;
467 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
468 ch->ch_equeue[head] = (u8) linestatus;
470 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
471 "DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head]);
473 /* Ditch any remaining linestatus value. */
474 linestatus = 0;
476 /* Add to and flip head if needed */
477 head = (head + 1) & RQUEUEMASK;
479 qleft--;
480 ch->ch_rxcount++;
484 * Write new final heads to channel structure.
486 ch->ch_r_head = head & RQUEUEMASK;
487 ch->ch_e_head = head & EQUEUEMASK;
488 jsm_input(ch);
491 static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
493 u16 head;
494 u16 tail;
495 int n;
496 int s;
497 int qlen;
498 u32 len_written = 0;
500 if (!ch)
501 return;
503 /* No data to write to the UART */
504 if (ch->ch_w_tail == ch->ch_w_head)
505 return;
507 /* If port is "stopped", don't send any data to the UART */
508 if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
509 return;
511 * If FIFOs are disabled. Send data directly to txrx register
513 if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
514 u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
516 ch->ch_cached_lsr |= lsrbits;
517 if (ch->ch_cached_lsr & UART_LSR_THRE) {
518 ch->ch_cached_lsr &= ~(UART_LSR_THRE);
520 writeb(ch->ch_wqueue[ch->ch_w_tail], &ch->ch_neo_uart->txrx);
521 jsm_printk(WRITE, INFO, &ch->ch_bd->pci_dev,
522 "Tx data: %x\n", ch->ch_wqueue[ch->ch_w_head]);
523 ch->ch_w_tail++;
524 ch->ch_w_tail &= WQUEUEMASK;
525 ch->ch_txcount++;
527 return;
531 * We have to do it this way, because of the EXAR TXFIFO count bug.
533 if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
534 return;
536 len_written = 0;
537 n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
539 /* cache head and tail of queue */
540 head = ch->ch_w_head & WQUEUEMASK;
541 tail = ch->ch_w_tail & WQUEUEMASK;
542 qlen = (head - tail) & WQUEUEMASK;
544 /* Find minimum of the FIFO space, versus queue length */
545 n = min(n, qlen);
547 while (n > 0) {
549 s = ((head >= tail) ? head : WQUEUESIZE) - tail;
550 s = min(s, n);
552 if (s <= 0)
553 break;
555 memcpy_toio(&ch->ch_neo_uart->txrxburst, ch->ch_wqueue + tail, s);
556 /* Add and flip queue if needed */
557 tail = (tail + s) & WQUEUEMASK;
558 n -= s;
559 ch->ch_txcount += s;
560 len_written += s;
563 /* Update the final tail */
564 ch->ch_w_tail = tail & WQUEUEMASK;
566 if (len_written >= ch->ch_t_tlevel)
567 ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
569 if (!jsm_tty_write(&ch->uart_port))
570 uart_write_wakeup(&ch->uart_port);
573 static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
575 u8 msignals = signals;
577 jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
578 "neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals);
580 if (!ch)
581 return;
583 /* Scrub off lower bits. They signify delta's, which I don't care about */
584 /* Keep DDCD and DDSR though */
585 msignals &= 0xf8;
587 if (msignals & UART_MSR_DDCD)
588 uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD);
589 if (msignals & UART_MSR_DDSR)
590 uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS);
591 if (msignals & UART_MSR_DCD)
592 ch->ch_mistat |= UART_MSR_DCD;
593 else
594 ch->ch_mistat &= ~UART_MSR_DCD;
596 if (msignals & UART_MSR_DSR)
597 ch->ch_mistat |= UART_MSR_DSR;
598 else
599 ch->ch_mistat &= ~UART_MSR_DSR;
601 if (msignals & UART_MSR_RI)
602 ch->ch_mistat |= UART_MSR_RI;
603 else
604 ch->ch_mistat &= ~UART_MSR_RI;
606 if (msignals & UART_MSR_CTS)
607 ch->ch_mistat |= UART_MSR_CTS;
608 else
609 ch->ch_mistat &= ~UART_MSR_CTS;
611 jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
612 "Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
613 ch->ch_portnum,
614 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
615 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
616 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
617 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
618 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
619 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
622 /* Make the UART raise any of the output signals we want up */
623 static void neo_assert_modem_signals(struct jsm_channel *ch)
625 u8 out;
627 if (!ch)
628 return;
630 out = ch->ch_mostat;
632 writeb(out, &ch->ch_neo_uart->mcr);
634 /* flush write operation */
635 neo_pci_posting_flush(ch->ch_bd);
639 * Flush the WRITE FIFO on the Neo.
641 * NOTE: Channel lock MUST be held before calling this function!
643 static void neo_flush_uart_write(struct jsm_channel *ch)
645 u8 tmp = 0;
646 int i = 0;
648 if (!ch)
649 return;
651 writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
653 for (i = 0; i < 10; i++) {
655 /* Check to see if the UART feels it completely flushed the FIFO. */
656 tmp = readb(&ch->ch_neo_uart->isr_fcr);
657 if (tmp & 4) {
658 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
659 "Still flushing TX UART... i: %d\n", i);
660 udelay(10);
662 else
663 break;
666 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
671 * Flush the READ FIFO on the Neo.
673 * NOTE: Channel lock MUST be held before calling this function!
675 static void neo_flush_uart_read(struct jsm_channel *ch)
677 u8 tmp = 0;
678 int i = 0;
680 if (!ch)
681 return;
683 writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
685 for (i = 0; i < 10; i++) {
687 /* Check to see if the UART feels it completely flushed the FIFO. */
688 tmp = readb(&ch->ch_neo_uart->isr_fcr);
689 if (tmp & 2) {
690 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
691 "Still flushing RX UART... i: %d\n", i);
692 udelay(10);
694 else
695 break;
700 * No locks are assumed to be held when calling this function.
702 static void neo_clear_break(struct jsm_channel *ch, int force)
704 unsigned long lock_flags;
706 spin_lock_irqsave(&ch->ch_lock, lock_flags);
708 /* Turn break off, and unset some variables */
709 if (ch->ch_flags & CH_BREAK_SENDING) {
710 u8 temp = readb(&ch->ch_neo_uart->lcr);
711 writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
713 ch->ch_flags &= ~(CH_BREAK_SENDING);
714 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
715 "clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies);
717 /* flush write operation */
718 neo_pci_posting_flush(ch->ch_bd);
720 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
724 * Parse the ISR register.
726 static inline void neo_parse_isr(struct jsm_board *brd, u32 port)
728 struct jsm_channel *ch;
729 u8 isr;
730 u8 cause;
731 unsigned long lock_flags;
733 if (!brd)
734 return;
736 if (port > brd->maxports)
737 return;
739 ch = brd->channels[port];
740 if (!ch)
741 return;
743 /* Here we try to figure out what caused the interrupt to happen */
744 while (1) {
746 isr = readb(&ch->ch_neo_uart->isr_fcr);
748 /* Bail if no pending interrupt */
749 if (isr & UART_IIR_NO_INT)
750 break;
753 * Yank off the upper 2 bits, which just show that the FIFO's are enabled.
755 isr &= ~(UART_17158_IIR_FIFO_ENABLED);
757 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
758 "%s:%d isr: %x\n", __FILE__, __LINE__, isr);
760 if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
761 /* Read data from uart -> queue */
762 neo_copy_data_from_uart_to_queue(ch);
764 /* Call our tty layer to enforce queue flow control if needed. */
765 spin_lock_irqsave(&ch->ch_lock, lock_flags);
766 jsm_check_queue_flow_control(ch);
767 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
770 if (isr & UART_IIR_THRI) {
771 /* Transfer data (if any) from Write Queue -> UART. */
772 spin_lock_irqsave(&ch->ch_lock, lock_flags);
773 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
774 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
775 neo_copy_data_from_queue_to_uart(ch);
778 if (isr & UART_17158_IIR_XONXOFF) {
779 cause = readb(&ch->ch_neo_uart->xoffchar1);
781 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
782 "Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause);
785 * Since the UART detected either an XON or
786 * XOFF match, we need to figure out which
787 * one it was, so we can suspend or resume data flow.
789 spin_lock_irqsave(&ch->ch_lock, lock_flags);
790 if (cause == UART_17158_XON_DETECT) {
791 /* Is output stopped right now, if so, resume it */
792 if (brd->channels[port]->ch_flags & CH_STOP) {
793 ch->ch_flags &= ~(CH_STOP);
795 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
796 "Port %d. XON detected in incoming data\n", port);
798 else if (cause == UART_17158_XOFF_DETECT) {
799 if (!(brd->channels[port]->ch_flags & CH_STOP)) {
800 ch->ch_flags |= CH_STOP;
801 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
802 "Setting CH_STOP\n");
804 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
805 "Port: %d. XOFF detected in incoming data\n", port);
807 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
810 if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
812 * If we get here, this means the hardware is doing auto flow control.
813 * Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
815 cause = readb(&ch->ch_neo_uart->mcr);
817 /* Which pin is doing auto flow? RTS or DTR? */
818 spin_lock_irqsave(&ch->ch_lock, lock_flags);
819 if ((cause & 0x4) == 0) {
820 if (cause & UART_MCR_RTS)
821 ch->ch_mostat |= UART_MCR_RTS;
822 else
823 ch->ch_mostat &= ~(UART_MCR_RTS);
824 } else {
825 if (cause & UART_MCR_DTR)
826 ch->ch_mostat |= UART_MCR_DTR;
827 else
828 ch->ch_mostat &= ~(UART_MCR_DTR);
830 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
833 /* Parse any modem signal changes */
834 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
835 "MOD_STAT: sending to parse_modem_sigs\n");
836 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
840 static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
842 struct jsm_channel *ch;
843 int linestatus;
844 unsigned long lock_flags;
846 if (!brd)
847 return;
849 if (port > brd->maxports)
850 return;
852 ch = brd->channels[port];
853 if (!ch)
854 return;
856 linestatus = readb(&ch->ch_neo_uart->lsr);
858 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
859 "%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus);
861 ch->ch_cached_lsr |= linestatus;
863 if (ch->ch_cached_lsr & UART_LSR_DR) {
864 /* Read data from uart -> queue */
865 neo_copy_data_from_uart_to_queue(ch);
866 spin_lock_irqsave(&ch->ch_lock, lock_flags);
867 jsm_check_queue_flow_control(ch);
868 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
872 * This is a special flag. It indicates that at least 1
873 * RX error (parity, framing, or break) has happened.
874 * Mark this in our struct, which will tell me that I have
875 *to do the special RX+LSR read for this FIFO load.
877 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
878 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
879 "%s:%d Port: %d Got an RX error, need to parse LSR\n",
880 __FILE__, __LINE__, port);
883 * The next 3 tests should *NOT* happen, as the above test
884 * should encapsulate all 3... At least, thats what Exar says.
887 if (linestatus & UART_LSR_PE) {
888 ch->ch_err_parity++;
889 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
890 "%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port);
893 if (linestatus & UART_LSR_FE) {
894 ch->ch_err_frame++;
895 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
896 "%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port);
899 if (linestatus & UART_LSR_BI) {
900 ch->ch_err_break++;
901 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
902 "%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port);
905 if (linestatus & UART_LSR_OE) {
907 * Rx Oruns. Exar says that an orun will NOT corrupt
908 * the FIFO. It will just replace the holding register
909 * with this new data byte. So basically just ignore this.
910 * Probably we should eventually have an orun stat in our driver...
912 ch->ch_err_overrun++;
913 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
914 "%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port);
917 if (linestatus & UART_LSR_THRE) {
918 spin_lock_irqsave(&ch->ch_lock, lock_flags);
919 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
920 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
922 /* Transfer data (if any) from Write Queue -> UART. */
923 neo_copy_data_from_queue_to_uart(ch);
925 else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
926 spin_lock_irqsave(&ch->ch_lock, lock_flags);
927 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
928 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
930 /* Transfer data (if any) from Write Queue -> UART. */
931 neo_copy_data_from_queue_to_uart(ch);
936 * neo_param()
937 * Send any/all changes to the line to the UART.
939 static void neo_param(struct jsm_channel *ch)
941 u8 lcr = 0;
942 u8 uart_lcr = 0;
943 u8 ier = 0;
944 u32 baud = 9600;
945 int quot = 0;
946 struct jsm_board *bd;
948 bd = ch->ch_bd;
949 if (!bd)
950 return;
953 * If baud rate is zero, flush queues, and set mval to drop DTR.
955 if ((ch->ch_c_cflag & (CBAUD)) == 0) {
956 ch->ch_r_head = ch->ch_r_tail = 0;
957 ch->ch_e_head = ch->ch_e_tail = 0;
958 ch->ch_w_head = ch->ch_w_tail = 0;
960 neo_flush_uart_write(ch);
961 neo_flush_uart_read(ch);
963 ch->ch_flags |= (CH_BAUD0);
964 ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
965 neo_assert_modem_signals(ch);
966 ch->ch_old_baud = 0;
967 return;
969 } else if (ch->ch_custom_speed) {
970 baud = ch->ch_custom_speed;
971 if (ch->ch_flags & CH_BAUD0)
972 ch->ch_flags &= ~(CH_BAUD0);
973 } else {
974 int i;
975 unsigned int cflag;
976 static struct {
977 unsigned int rate;
978 unsigned int cflag;
979 } baud_rates[] = {
980 { 921600, B921600 },
981 { 460800, B460800 },
982 { 230400, B230400 },
983 { 115200, B115200 },
984 { 57600, B57600 },
985 { 38400, B38400 },
986 { 19200, B19200 },
987 { 9600, B9600 },
988 { 4800, B4800 },
989 { 2400, B2400 },
990 { 1200, B1200 },
991 { 600, B600 },
992 { 300, B300 },
993 { 200, B200 },
994 { 150, B150 },
995 { 134, B134 },
996 { 110, B110 },
997 { 75, B75 },
998 { 50, B50 },
1001 cflag = C_BAUD(ch->uart_port.info->tty);
1002 baud = 9600;
1003 for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
1004 if (baud_rates[i].cflag == cflag) {
1005 baud = baud_rates[i].rate;
1006 break;
1010 if (ch->ch_flags & CH_BAUD0)
1011 ch->ch_flags &= ~(CH_BAUD0);
1014 if (ch->ch_c_cflag & PARENB)
1015 lcr |= UART_LCR_PARITY;
1017 if (!(ch->ch_c_cflag & PARODD))
1018 lcr |= UART_LCR_EPAR;
1021 * Not all platforms support mark/space parity,
1022 * so this will hide behind an ifdef.
1024 #ifdef CMSPAR
1025 if (ch->ch_c_cflag & CMSPAR)
1026 lcr |= UART_LCR_SPAR;
1027 #endif
1029 if (ch->ch_c_cflag & CSTOPB)
1030 lcr |= UART_LCR_STOP;
1032 switch (ch->ch_c_cflag & CSIZE) {
1033 case CS5:
1034 lcr |= UART_LCR_WLEN5;
1035 break;
1036 case CS6:
1037 lcr |= UART_LCR_WLEN6;
1038 break;
1039 case CS7:
1040 lcr |= UART_LCR_WLEN7;
1041 break;
1042 case CS8:
1043 default:
1044 lcr |= UART_LCR_WLEN8;
1045 break;
1048 ier = readb(&ch->ch_neo_uart->ier);
1049 uart_lcr = readb(&ch->ch_neo_uart->lcr);
1051 if (baud == 0)
1052 baud = 9600;
1054 quot = ch->ch_bd->bd_dividend / baud;
1056 if (quot != 0) {
1057 ch->ch_old_baud = baud;
1058 writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
1059 writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
1060 writeb((quot >> 8), &ch->ch_neo_uart->ier);
1061 writeb(lcr, &ch->ch_neo_uart->lcr);
1064 if (uart_lcr != lcr)
1065 writeb(lcr, &ch->ch_neo_uart->lcr);
1067 if (ch->ch_c_cflag & CREAD)
1068 ier |= (UART_IER_RDI | UART_IER_RLSI);
1070 ier |= (UART_IER_THRI | UART_IER_MSI);
1072 writeb(ier, &ch->ch_neo_uart->ier);
1074 /* Set new start/stop chars */
1075 neo_set_new_start_stop_chars(ch);
1077 if (ch->ch_c_cflag & CRTSCTS)
1078 neo_set_cts_flow_control(ch);
1079 else if (ch->ch_c_iflag & IXON) {
1080 /* If start/stop is set to disable, then we should disable flow control */
1081 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1082 neo_set_no_output_flow_control(ch);
1083 else
1084 neo_set_ixon_flow_control(ch);
1086 else
1087 neo_set_no_output_flow_control(ch);
1089 if (ch->ch_c_cflag & CRTSCTS)
1090 neo_set_rts_flow_control(ch);
1091 else if (ch->ch_c_iflag & IXOFF) {
1092 /* If start/stop is set to disable, then we should disable flow control */
1093 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1094 neo_set_no_input_flow_control(ch);
1095 else
1096 neo_set_ixoff_flow_control(ch);
1098 else
1099 neo_set_no_input_flow_control(ch);
1101 * Adjust the RX FIFO Trigger level if baud is less than 9600.
1102 * Not exactly elegant, but this is needed because of the Exar chip's
1103 * delay on firing off the RX FIFO interrupt on slower baud rates.
1105 if (baud < 9600) {
1106 writeb(1, &ch->ch_neo_uart->rfifo);
1107 ch->ch_r_tlevel = 1;
1110 neo_assert_modem_signals(ch);
1112 /* Get current status of the modem signals now */
1113 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
1114 return;
1118 * jsm_neo_intr()
1120 * Neo specific interrupt handler.
1122 static irqreturn_t neo_intr(int irq, void *voidbrd)
1124 struct jsm_board *brd = voidbrd;
1125 struct jsm_channel *ch;
1126 int port = 0;
1127 int type = 0;
1128 int current_port;
1129 u32 tmp;
1130 u32 uart_poll;
1131 unsigned long lock_flags;
1132 unsigned long lock_flags2;
1133 int outofloop_count = 0;
1135 brd->intr_count++;
1137 /* Lock out the slow poller from running on this board. */
1138 spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
1141 * Read in "extended" IRQ information from the 32bit Neo register.
1142 * Bits 0-7: What port triggered the interrupt.
1143 * Bits 8-31: Each 3bits indicate what type of interrupt occurred.
1145 uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
1147 jsm_printk(INTR, INFO, &brd->pci_dev,
1148 "%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll);
1150 if (!uart_poll) {
1151 jsm_printk(INTR, INFO, &brd->pci_dev,
1152 "Kernel interrupted to me, but no pending interrupts...\n");
1153 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1154 return IRQ_NONE;
1157 /* At this point, we have at least SOMETHING to service, dig further... */
1159 current_port = 0;
1161 /* Loop on each port */
1162 while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
1164 tmp = uart_poll;
1165 outofloop_count++;
1167 /* Check current port to see if it has interrupt pending */
1168 if ((tmp & jsm_offset_table[current_port]) != 0) {
1169 port = current_port;
1170 type = tmp >> (8 + (port * 3));
1171 type &= 0x7;
1172 } else {
1173 current_port++;
1174 continue;
1177 jsm_printk(INTR, INFO, &brd->pci_dev,
1178 "%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type);
1180 /* Remove this port + type from uart_poll */
1181 uart_poll &= ~(jsm_offset_table[port]);
1183 if (!type) {
1184 /* If no type, just ignore it, and move onto next port */
1185 jsm_printk(INTR, ERR, &brd->pci_dev,
1186 "Interrupt with no type! port: %d\n", port);
1187 continue;
1190 /* Switch on type of interrupt we have */
1191 switch (type) {
1193 case UART_17158_RXRDY_TIMEOUT:
1195 * RXRDY Time-out is cleared by reading data in the
1196 * RX FIFO until it falls below the trigger level.
1199 /* Verify the port is in range. */
1200 if (port > brd->nasync)
1201 continue;
1203 ch = brd->channels[port];
1204 neo_copy_data_from_uart_to_queue(ch);
1206 /* Call our tty layer to enforce queue flow control if needed. */
1207 spin_lock_irqsave(&ch->ch_lock, lock_flags2);
1208 jsm_check_queue_flow_control(ch);
1209 spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
1211 continue;
1213 case UART_17158_RX_LINE_STATUS:
1215 * RXRDY and RX LINE Status (logic OR of LSR[4:1])
1217 neo_parse_lsr(brd, port);
1218 continue;
1220 case UART_17158_TXRDY:
1222 * TXRDY interrupt clears after reading ISR register for the UART channel.
1226 * Yes, this is odd...
1227 * Why would I check EVERY possibility of type of
1228 * interrupt, when we know its TXRDY???
1229 * Becuz for some reason, even tho we got triggered for TXRDY,
1230 * it seems to be occassionally wrong. Instead of TX, which
1231 * it should be, I was getting things like RXDY too. Weird.
1233 neo_parse_isr(brd, port);
1234 continue;
1236 case UART_17158_MSR:
1238 * MSR or flow control was seen.
1240 neo_parse_isr(brd, port);
1241 continue;
1243 default:
1245 * The UART triggered us with a bogus interrupt type.
1246 * It appears the Exar chip, when REALLY bogged down, will throw
1247 * these once and awhile.
1248 * Its harmless, just ignore it and move on.
1250 jsm_printk(INTR, ERR, &brd->pci_dev,
1251 "%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type);
1252 continue;
1256 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1258 jsm_printk(INTR, INFO, &brd->pci_dev, "finish.\n");
1259 return IRQ_HANDLED;
1263 * Neo specific way of turning off the receiver.
1264 * Used as a way to enforce queue flow control when in
1265 * hardware flow control mode.
1267 static void neo_disable_receiver(struct jsm_channel *ch)
1269 u8 tmp = readb(&ch->ch_neo_uart->ier);
1270 tmp &= ~(UART_IER_RDI);
1271 writeb(tmp, &ch->ch_neo_uart->ier);
1273 /* flush write operation */
1274 neo_pci_posting_flush(ch->ch_bd);
1279 * Neo specific way of turning on the receiver.
1280 * Used as a way to un-enforce queue flow control when in
1281 * hardware flow control mode.
1283 static void neo_enable_receiver(struct jsm_channel *ch)
1285 u8 tmp = readb(&ch->ch_neo_uart->ier);
1286 tmp |= (UART_IER_RDI);
1287 writeb(tmp, &ch->ch_neo_uart->ier);
1289 /* flush write operation */
1290 neo_pci_posting_flush(ch->ch_bd);
1293 static void neo_send_start_character(struct jsm_channel *ch)
1295 if (!ch)
1296 return;
1298 if (ch->ch_startc != __DISABLED_CHAR) {
1299 ch->ch_xon_sends++;
1300 writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
1302 /* flush write operation */
1303 neo_pci_posting_flush(ch->ch_bd);
1307 static void neo_send_stop_character(struct jsm_channel *ch)
1309 if (!ch)
1310 return;
1312 if (ch->ch_stopc != __DISABLED_CHAR) {
1313 ch->ch_xoff_sends++;
1314 writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
1316 /* flush write operation */
1317 neo_pci_posting_flush(ch->ch_bd);
1322 * neo_uart_init
1324 static void neo_uart_init(struct jsm_channel *ch)
1326 writeb(0, &ch->ch_neo_uart->ier);
1327 writeb(0, &ch->ch_neo_uart->efr);
1328 writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
1330 /* Clear out UART and FIFO */
1331 readb(&ch->ch_neo_uart->txrx);
1332 writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
1333 readb(&ch->ch_neo_uart->lsr);
1334 readb(&ch->ch_neo_uart->msr);
1336 ch->ch_flags |= CH_FIFO_ENABLED;
1338 /* Assert any signals we want up */
1339 writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
1343 * Make the UART completely turn off.
1345 static void neo_uart_off(struct jsm_channel *ch)
1347 /* Turn off UART enhanced bits */
1348 writeb(0, &ch->ch_neo_uart->efr);
1350 /* Stop all interrupts from occurring. */
1351 writeb(0, &ch->ch_neo_uart->ier);
1354 static u32 neo_get_uart_bytes_left(struct jsm_channel *ch)
1356 u8 left = 0;
1357 u8 lsr = readb(&ch->ch_neo_uart->lsr);
1359 /* We must cache the LSR as some of the bits get reset once read... */
1360 ch->ch_cached_lsr |= lsr;
1362 /* Determine whether the Transmitter is empty or not */
1363 if (!(lsr & UART_LSR_TEMT))
1364 left = 1;
1365 else {
1366 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
1367 left = 0;
1370 return left;
1373 /* Channel lock MUST be held by the calling function! */
1374 static void neo_send_break(struct jsm_channel *ch)
1377 * Set the time we should stop sending the break.
1378 * If we are already sending a break, toss away the existing
1379 * time to stop, and use this new value instead.
1382 /* Tell the UART to start sending the break */
1383 if (!(ch->ch_flags & CH_BREAK_SENDING)) {
1384 u8 temp = readb(&ch->ch_neo_uart->lcr);
1385 writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
1386 ch->ch_flags |= (CH_BREAK_SENDING);
1388 /* flush write operation */
1389 neo_pci_posting_flush(ch->ch_bd);
1394 * neo_send_immediate_char.
1396 * Sends a specific character as soon as possible to the UART,
1397 * jumping over any bytes that might be in the write queue.
1399 * The channel lock MUST be held by the calling function.
1401 static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c)
1403 if (!ch)
1404 return;
1406 writeb(c, &ch->ch_neo_uart->txrx);
1408 /* flush write operation */
1409 neo_pci_posting_flush(ch->ch_bd);
1412 struct board_ops jsm_neo_ops = {
1413 .intr = neo_intr,
1414 .uart_init = neo_uart_init,
1415 .uart_off = neo_uart_off,
1416 .param = neo_param,
1417 .assert_modem_signals = neo_assert_modem_signals,
1418 .flush_uart_write = neo_flush_uart_write,
1419 .flush_uart_read = neo_flush_uart_read,
1420 .disable_receiver = neo_disable_receiver,
1421 .enable_receiver = neo_enable_receiver,
1422 .send_break = neo_send_break,
1423 .clear_break = neo_clear_break,
1424 .send_start_character = neo_send_start_character,
1425 .send_stop_character = neo_send_stop_character,
1426 .copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart,
1427 .get_uart_bytes_left = neo_get_uart_bytes_left,
1428 .send_immediate_char = neo_send_immediate_char