2 * Memory Migration functionality - linux/mm/migrate.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/pfn_t.h>
40 #include <linux/memremap.h>
41 #include <linux/userfaultfd_k.h>
42 #include <linux/balloon_compaction.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/page_idle.h>
45 #include <linux/page_owner.h>
46 #include <linux/sched/mm.h>
47 #include <linux/ptrace.h>
49 #include <asm/tlbflush.h>
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/migrate.h>
57 * migrate_prep() needs to be called before we start compiling a list of pages
58 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
59 * undesirable, use migrate_prep_local()
61 int migrate_prep(void)
64 * Clear the LRU lists so pages can be isolated.
65 * Note that pages may be moved off the LRU after we have
66 * drained them. Those pages will fail to migrate like other
67 * pages that may be busy.
74 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
75 int migrate_prep_local(void)
82 int isolate_movable_page(struct page
*page
, isolate_mode_t mode
)
84 struct address_space
*mapping
;
87 * Avoid burning cycles with pages that are yet under __free_pages(),
88 * or just got freed under us.
90 * In case we 'win' a race for a movable page being freed under us and
91 * raise its refcount preventing __free_pages() from doing its job
92 * the put_page() at the end of this block will take care of
93 * release this page, thus avoiding a nasty leakage.
95 if (unlikely(!get_page_unless_zero(page
)))
99 * Check PageMovable before holding a PG_lock because page's owner
100 * assumes anybody doesn't touch PG_lock of newly allocated page
101 * so unconditionally grapping the lock ruins page's owner side.
103 if (unlikely(!__PageMovable(page
)))
106 * As movable pages are not isolated from LRU lists, concurrent
107 * compaction threads can race against page migration functions
108 * as well as race against the releasing a page.
110 * In order to avoid having an already isolated movable page
111 * being (wrongly) re-isolated while it is under migration,
112 * or to avoid attempting to isolate pages being released,
113 * lets be sure we have the page lock
114 * before proceeding with the movable page isolation steps.
116 if (unlikely(!trylock_page(page
)))
119 if (!PageMovable(page
) || PageIsolated(page
))
120 goto out_no_isolated
;
122 mapping
= page_mapping(page
);
123 VM_BUG_ON_PAGE(!mapping
, page
);
125 if (!mapping
->a_ops
->isolate_page(page
, mode
))
126 goto out_no_isolated
;
128 /* Driver shouldn't use PG_isolated bit of page->flags */
129 WARN_ON_ONCE(PageIsolated(page
));
130 __SetPageIsolated(page
);
143 /* It should be called on page which is PG_movable */
144 void putback_movable_page(struct page
*page
)
146 struct address_space
*mapping
;
148 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
149 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
150 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
152 mapping
= page_mapping(page
);
153 mapping
->a_ops
->putback_page(page
);
154 __ClearPageIsolated(page
);
158 * Put previously isolated pages back onto the appropriate lists
159 * from where they were once taken off for compaction/migration.
161 * This function shall be used whenever the isolated pageset has been
162 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163 * and isolate_huge_page().
165 void putback_movable_pages(struct list_head
*l
)
170 list_for_each_entry_safe(page
, page2
, l
, lru
) {
171 if (unlikely(PageHuge(page
))) {
172 putback_active_hugepage(page
);
175 list_del(&page
->lru
);
177 * We isolated non-lru movable page so here we can use
178 * __PageMovable because LRU page's mapping cannot have
179 * PAGE_MAPPING_MOVABLE.
181 if (unlikely(__PageMovable(page
))) {
182 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
184 if (PageMovable(page
))
185 putback_movable_page(page
);
187 __ClearPageIsolated(page
);
191 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
192 page_is_file_cache(page
), -hpage_nr_pages(page
));
193 putback_lru_page(page
);
199 * Restore a potential migration pte to a working pte entry
201 static bool remove_migration_pte(struct page
*page
, struct vm_area_struct
*vma
,
202 unsigned long addr
, void *old
)
204 struct page_vma_mapped_walk pvmw
= {
208 .flags
= PVMW_SYNC
| PVMW_MIGRATION
,
214 VM_BUG_ON_PAGE(PageTail(page
), page
);
215 while (page_vma_mapped_walk(&pvmw
)) {
219 new = page
- pvmw
.page
->index
+
220 linear_page_index(vma
, pvmw
.address
);
222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223 /* PMD-mapped THP migration entry */
225 VM_BUG_ON_PAGE(PageHuge(page
) || !PageTransCompound(page
), page
);
226 remove_migration_pmd(&pvmw
, new);
232 pte
= pte_mkold(mk_pte(new, READ_ONCE(vma
->vm_page_prot
)));
233 if (pte_swp_soft_dirty(*pvmw
.pte
))
234 pte
= pte_mksoft_dirty(pte
);
237 * Recheck VMA as permissions can change since migration started
239 entry
= pte_to_swp_entry(*pvmw
.pte
);
240 if (is_write_migration_entry(entry
))
241 pte
= maybe_mkwrite(pte
, vma
);
243 if (unlikely(is_zone_device_page(new))) {
244 if (is_device_private_page(new)) {
245 entry
= make_device_private_entry(new, pte_write(pte
));
246 pte
= swp_entry_to_pte(entry
);
247 } else if (is_device_public_page(new)) {
248 pte
= pte_mkdevmap(pte
);
249 flush_dcache_page(new);
252 flush_dcache_page(new);
254 #ifdef CONFIG_HUGETLB_PAGE
256 pte
= pte_mkhuge(pte
);
257 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
258 set_huge_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
260 hugepage_add_anon_rmap(new, vma
, pvmw
.address
);
262 page_dup_rmap(new, true);
266 set_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
269 page_add_anon_rmap(new, vma
, pvmw
.address
, false);
271 page_add_file_rmap(new, false);
273 if (vma
->vm_flags
& VM_LOCKED
&& !PageTransCompound(new))
276 /* No need to invalidate - it was non-present before */
277 update_mmu_cache(vma
, pvmw
.address
, pvmw
.pte
);
284 * Get rid of all migration entries and replace them by
285 * references to the indicated page.
287 void remove_migration_ptes(struct page
*old
, struct page
*new, bool locked
)
289 struct rmap_walk_control rwc
= {
290 .rmap_one
= remove_migration_pte
,
295 rmap_walk_locked(new, &rwc
);
297 rmap_walk(new, &rwc
);
301 * Something used the pte of a page under migration. We need to
302 * get to the page and wait until migration is finished.
303 * When we return from this function the fault will be retried.
305 void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
314 if (!is_swap_pte(pte
))
317 entry
= pte_to_swp_entry(pte
);
318 if (!is_migration_entry(entry
))
321 page
= migration_entry_to_page(entry
);
324 * Once radix-tree replacement of page migration started, page_count
325 * *must* be zero. And, we don't want to call wait_on_page_locked()
326 * against a page without get_page().
327 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 if (!get_page_unless_zero(page
))
332 pte_unmap_unlock(ptep
, ptl
);
333 wait_on_page_locked(page
);
337 pte_unmap_unlock(ptep
, ptl
);
340 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
341 unsigned long address
)
343 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
344 pte_t
*ptep
= pte_offset_map(pmd
, address
);
345 __migration_entry_wait(mm
, ptep
, ptl
);
348 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
349 struct mm_struct
*mm
, pte_t
*pte
)
351 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
352 __migration_entry_wait(mm
, pte
, ptl
);
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
)
361 ptl
= pmd_lock(mm
, pmd
);
362 if (!is_pmd_migration_entry(*pmd
))
364 page
= migration_entry_to_page(pmd_to_swp_entry(*pmd
));
365 if (!get_page_unless_zero(page
))
368 wait_on_page_locked(page
);
377 /* Returns true if all buffers are successfully locked */
378 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
379 enum migrate_mode mode
)
381 struct buffer_head
*bh
= head
;
383 /* Simple case, sync compaction */
384 if (mode
!= MIGRATE_ASYNC
) {
388 bh
= bh
->b_this_page
;
390 } while (bh
!= head
);
395 /* async case, we cannot block on lock_buffer so use trylock_buffer */
398 if (!trylock_buffer(bh
)) {
400 * We failed to lock the buffer and cannot stall in
401 * async migration. Release the taken locks
403 struct buffer_head
*failed_bh
= bh
;
406 while (bh
!= failed_bh
) {
409 bh
= bh
->b_this_page
;
414 bh
= bh
->b_this_page
;
415 } while (bh
!= head
);
419 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
420 enum migrate_mode mode
)
424 #endif /* CONFIG_BLOCK */
427 * Replace the page in the mapping.
429 * The number of remaining references must be:
430 * 1 for anonymous pages without a mapping
431 * 2 for pages with a mapping
432 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
434 int migrate_page_move_mapping(struct address_space
*mapping
,
435 struct page
*newpage
, struct page
*page
,
436 struct buffer_head
*head
, enum migrate_mode mode
,
439 struct zone
*oldzone
, *newzone
;
441 int expected_count
= 1 + extra_count
;
445 * Device public or private pages have an extra refcount as they are
448 expected_count
+= is_device_private_page(page
);
449 expected_count
+= is_device_public_page(page
);
452 /* Anonymous page without mapping */
453 if (page_count(page
) != expected_count
)
456 /* No turning back from here */
457 newpage
->index
= page
->index
;
458 newpage
->mapping
= page
->mapping
;
459 if (PageSwapBacked(page
))
460 __SetPageSwapBacked(newpage
);
462 return MIGRATEPAGE_SUCCESS
;
465 oldzone
= page_zone(page
);
466 newzone
= page_zone(newpage
);
468 spin_lock_irq(&mapping
->tree_lock
);
470 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
473 expected_count
+= 1 + page_has_private(page
);
474 if (page_count(page
) != expected_count
||
475 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
476 spin_unlock_irq(&mapping
->tree_lock
);
480 if (!page_ref_freeze(page
, expected_count
)) {
481 spin_unlock_irq(&mapping
->tree_lock
);
486 * In the async migration case of moving a page with buffers, lock the
487 * buffers using trylock before the mapping is moved. If the mapping
488 * was moved, we later failed to lock the buffers and could not move
489 * the mapping back due to an elevated page count, we would have to
490 * block waiting on other references to be dropped.
492 if (mode
== MIGRATE_ASYNC
&& head
&&
493 !buffer_migrate_lock_buffers(head
, mode
)) {
494 page_ref_unfreeze(page
, expected_count
);
495 spin_unlock_irq(&mapping
->tree_lock
);
500 * Now we know that no one else is looking at the page:
501 * no turning back from here.
503 newpage
->index
= page
->index
;
504 newpage
->mapping
= page
->mapping
;
505 get_page(newpage
); /* add cache reference */
506 if (PageSwapBacked(page
)) {
507 __SetPageSwapBacked(newpage
);
508 if (PageSwapCache(page
)) {
509 SetPageSwapCache(newpage
);
510 set_page_private(newpage
, page_private(page
));
513 VM_BUG_ON_PAGE(PageSwapCache(page
), page
);
516 /* Move dirty while page refs frozen and newpage not yet exposed */
517 dirty
= PageDirty(page
);
519 ClearPageDirty(page
);
520 SetPageDirty(newpage
);
523 radix_tree_replace_slot(&mapping
->page_tree
, pslot
, newpage
);
526 * Drop cache reference from old page by unfreezing
527 * to one less reference.
528 * We know this isn't the last reference.
530 page_ref_unfreeze(page
, expected_count
- 1);
532 spin_unlock(&mapping
->tree_lock
);
533 /* Leave irq disabled to prevent preemption while updating stats */
536 * If moved to a different zone then also account
537 * the page for that zone. Other VM counters will be
538 * taken care of when we establish references to the
539 * new page and drop references to the old page.
541 * Note that anonymous pages are accounted for
542 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
543 * are mapped to swap space.
545 if (newzone
!= oldzone
) {
546 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_PAGES
);
547 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_PAGES
);
548 if (PageSwapBacked(page
) && !PageSwapCache(page
)) {
549 __dec_node_state(oldzone
->zone_pgdat
, NR_SHMEM
);
550 __inc_node_state(newzone
->zone_pgdat
, NR_SHMEM
);
552 if (dirty
&& mapping_cap_account_dirty(mapping
)) {
553 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_DIRTY
);
554 __dec_zone_state(oldzone
, NR_ZONE_WRITE_PENDING
);
555 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_DIRTY
);
556 __inc_zone_state(newzone
, NR_ZONE_WRITE_PENDING
);
561 return MIGRATEPAGE_SUCCESS
;
563 EXPORT_SYMBOL(migrate_page_move_mapping
);
566 * The expected number of remaining references is the same as that
567 * of migrate_page_move_mapping().
569 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
570 struct page
*newpage
, struct page
*page
)
575 spin_lock_irq(&mapping
->tree_lock
);
577 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
580 expected_count
= 2 + page_has_private(page
);
581 if (page_count(page
) != expected_count
||
582 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
583 spin_unlock_irq(&mapping
->tree_lock
);
587 if (!page_ref_freeze(page
, expected_count
)) {
588 spin_unlock_irq(&mapping
->tree_lock
);
592 newpage
->index
= page
->index
;
593 newpage
->mapping
= page
->mapping
;
597 radix_tree_replace_slot(&mapping
->page_tree
, pslot
, newpage
);
599 page_ref_unfreeze(page
, expected_count
- 1);
601 spin_unlock_irq(&mapping
->tree_lock
);
603 return MIGRATEPAGE_SUCCESS
;
607 * Gigantic pages are so large that we do not guarantee that page++ pointer
608 * arithmetic will work across the entire page. We need something more
611 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
615 struct page
*dst_base
= dst
;
616 struct page
*src_base
= src
;
618 for (i
= 0; i
< nr_pages
; ) {
620 copy_highpage(dst
, src
);
623 dst
= mem_map_next(dst
, dst_base
, i
);
624 src
= mem_map_next(src
, src_base
, i
);
628 static void copy_huge_page(struct page
*dst
, struct page
*src
)
635 struct hstate
*h
= page_hstate(src
);
636 nr_pages
= pages_per_huge_page(h
);
638 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
639 __copy_gigantic_page(dst
, src
, nr_pages
);
644 BUG_ON(!PageTransHuge(src
));
645 nr_pages
= hpage_nr_pages(src
);
648 for (i
= 0; i
< nr_pages
; i
++) {
650 copy_highpage(dst
+ i
, src
+ i
);
655 * Copy the page to its new location
657 void migrate_page_states(struct page
*newpage
, struct page
*page
)
662 SetPageError(newpage
);
663 if (PageReferenced(page
))
664 SetPageReferenced(newpage
);
665 if (PageUptodate(page
))
666 SetPageUptodate(newpage
);
667 if (TestClearPageActive(page
)) {
668 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
669 SetPageActive(newpage
);
670 } else if (TestClearPageUnevictable(page
))
671 SetPageUnevictable(newpage
);
672 if (PageChecked(page
))
673 SetPageChecked(newpage
);
674 if (PageMappedToDisk(page
))
675 SetPageMappedToDisk(newpage
);
677 /* Move dirty on pages not done by migrate_page_move_mapping() */
679 SetPageDirty(newpage
);
681 if (page_is_young(page
))
682 set_page_young(newpage
);
683 if (page_is_idle(page
))
684 set_page_idle(newpage
);
687 * Copy NUMA information to the new page, to prevent over-eager
688 * future migrations of this same page.
690 cpupid
= page_cpupid_xchg_last(page
, -1);
691 page_cpupid_xchg_last(newpage
, cpupid
);
693 ksm_migrate_page(newpage
, page
);
695 * Please do not reorder this without considering how mm/ksm.c's
696 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
698 if (PageSwapCache(page
))
699 ClearPageSwapCache(page
);
700 ClearPagePrivate(page
);
701 set_page_private(page
, 0);
704 * If any waiters have accumulated on the new page then
707 if (PageWriteback(newpage
))
708 end_page_writeback(newpage
);
710 copy_page_owner(page
, newpage
);
712 mem_cgroup_migrate(page
, newpage
);
714 EXPORT_SYMBOL(migrate_page_states
);
716 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
718 if (PageHuge(page
) || PageTransHuge(page
))
719 copy_huge_page(newpage
, page
);
721 copy_highpage(newpage
, page
);
723 migrate_page_states(newpage
, page
);
725 EXPORT_SYMBOL(migrate_page_copy
);
727 /************************************************************
728 * Migration functions
729 ***********************************************************/
732 * Common logic to directly migrate a single LRU page suitable for
733 * pages that do not use PagePrivate/PagePrivate2.
735 * Pages are locked upon entry and exit.
737 int migrate_page(struct address_space
*mapping
,
738 struct page
*newpage
, struct page
*page
,
739 enum migrate_mode mode
)
743 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
745 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
747 if (rc
!= MIGRATEPAGE_SUCCESS
)
750 if (mode
!= MIGRATE_SYNC_NO_COPY
)
751 migrate_page_copy(newpage
, page
);
753 migrate_page_states(newpage
, page
);
754 return MIGRATEPAGE_SUCCESS
;
756 EXPORT_SYMBOL(migrate_page
);
760 * Migration function for pages with buffers. This function can only be used
761 * if the underlying filesystem guarantees that no other references to "page"
764 int buffer_migrate_page(struct address_space
*mapping
,
765 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
767 struct buffer_head
*bh
, *head
;
770 if (!page_has_buffers(page
))
771 return migrate_page(mapping
, newpage
, page
, mode
);
773 head
= page_buffers(page
);
775 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
777 if (rc
!= MIGRATEPAGE_SUCCESS
)
781 * In the async case, migrate_page_move_mapping locked the buffers
782 * with an IRQ-safe spinlock held. In the sync case, the buffers
783 * need to be locked now
785 if (mode
!= MIGRATE_ASYNC
)
786 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
788 ClearPagePrivate(page
);
789 set_page_private(newpage
, page_private(page
));
790 set_page_private(page
, 0);
796 set_bh_page(bh
, newpage
, bh_offset(bh
));
797 bh
= bh
->b_this_page
;
799 } while (bh
!= head
);
801 SetPagePrivate(newpage
);
803 if (mode
!= MIGRATE_SYNC_NO_COPY
)
804 migrate_page_copy(newpage
, page
);
806 migrate_page_states(newpage
, page
);
812 bh
= bh
->b_this_page
;
814 } while (bh
!= head
);
816 return MIGRATEPAGE_SUCCESS
;
818 EXPORT_SYMBOL(buffer_migrate_page
);
822 * Writeback a page to clean the dirty state
824 static int writeout(struct address_space
*mapping
, struct page
*page
)
826 struct writeback_control wbc
= {
827 .sync_mode
= WB_SYNC_NONE
,
830 .range_end
= LLONG_MAX
,
835 if (!mapping
->a_ops
->writepage
)
836 /* No write method for the address space */
839 if (!clear_page_dirty_for_io(page
))
840 /* Someone else already triggered a write */
844 * A dirty page may imply that the underlying filesystem has
845 * the page on some queue. So the page must be clean for
846 * migration. Writeout may mean we loose the lock and the
847 * page state is no longer what we checked for earlier.
848 * At this point we know that the migration attempt cannot
851 remove_migration_ptes(page
, page
, false);
853 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
855 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
856 /* unlocked. Relock */
859 return (rc
< 0) ? -EIO
: -EAGAIN
;
863 * Default handling if a filesystem does not provide a migration function.
865 static int fallback_migrate_page(struct address_space
*mapping
,
866 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
868 if (PageDirty(page
)) {
869 /* Only writeback pages in full synchronous migration */
872 case MIGRATE_SYNC_NO_COPY
:
877 return writeout(mapping
, page
);
881 * Buffers may be managed in a filesystem specific way.
882 * We must have no buffers or drop them.
884 if (page_has_private(page
) &&
885 !try_to_release_page(page
, GFP_KERNEL
))
888 return migrate_page(mapping
, newpage
, page
, mode
);
892 * Move a page to a newly allocated page
893 * The page is locked and all ptes have been successfully removed.
895 * The new page will have replaced the old page if this function
900 * MIGRATEPAGE_SUCCESS - success
902 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
903 enum migrate_mode mode
)
905 struct address_space
*mapping
;
907 bool is_lru
= !__PageMovable(page
);
909 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
910 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
912 mapping
= page_mapping(page
);
914 if (likely(is_lru
)) {
916 rc
= migrate_page(mapping
, newpage
, page
, mode
);
917 else if (mapping
->a_ops
->migratepage
)
919 * Most pages have a mapping and most filesystems
920 * provide a migratepage callback. Anonymous pages
921 * are part of swap space which also has its own
922 * migratepage callback. This is the most common path
923 * for page migration.
925 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
928 rc
= fallback_migrate_page(mapping
, newpage
,
932 * In case of non-lru page, it could be released after
933 * isolation step. In that case, we shouldn't try migration.
935 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
936 if (!PageMovable(page
)) {
937 rc
= MIGRATEPAGE_SUCCESS
;
938 __ClearPageIsolated(page
);
942 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
944 WARN_ON_ONCE(rc
== MIGRATEPAGE_SUCCESS
&&
945 !PageIsolated(page
));
949 * When successful, old pagecache page->mapping must be cleared before
950 * page is freed; but stats require that PageAnon be left as PageAnon.
952 if (rc
== MIGRATEPAGE_SUCCESS
) {
953 if (__PageMovable(page
)) {
954 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
957 * We clear PG_movable under page_lock so any compactor
958 * cannot try to migrate this page.
960 __ClearPageIsolated(page
);
964 * Anonymous and movable page->mapping will be cleard by
965 * free_pages_prepare so don't reset it here for keeping
966 * the type to work PageAnon, for example.
968 if (!PageMappingFlags(page
))
969 page
->mapping
= NULL
;
975 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
976 int force
, enum migrate_mode mode
)
979 int page_was_mapped
= 0;
980 struct anon_vma
*anon_vma
= NULL
;
981 bool is_lru
= !__PageMovable(page
);
983 if (!trylock_page(page
)) {
984 if (!force
|| mode
== MIGRATE_ASYNC
)
988 * It's not safe for direct compaction to call lock_page.
989 * For example, during page readahead pages are added locked
990 * to the LRU. Later, when the IO completes the pages are
991 * marked uptodate and unlocked. However, the queueing
992 * could be merging multiple pages for one bio (e.g.
993 * mpage_readpages). If an allocation happens for the
994 * second or third page, the process can end up locking
995 * the same page twice and deadlocking. Rather than
996 * trying to be clever about what pages can be locked,
997 * avoid the use of lock_page for direct compaction
1000 if (current
->flags
& PF_MEMALLOC
)
1006 if (PageWriteback(page
)) {
1008 * Only in the case of a full synchronous migration is it
1009 * necessary to wait for PageWriteback. In the async case,
1010 * the retry loop is too short and in the sync-light case,
1011 * the overhead of stalling is too much
1015 case MIGRATE_SYNC_NO_COPY
:
1023 wait_on_page_writeback(page
);
1027 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1028 * we cannot notice that anon_vma is freed while we migrates a page.
1029 * This get_anon_vma() delays freeing anon_vma pointer until the end
1030 * of migration. File cache pages are no problem because of page_lock()
1031 * File Caches may use write_page() or lock_page() in migration, then,
1032 * just care Anon page here.
1034 * Only page_get_anon_vma() understands the subtleties of
1035 * getting a hold on an anon_vma from outside one of its mms.
1036 * But if we cannot get anon_vma, then we won't need it anyway,
1037 * because that implies that the anon page is no longer mapped
1038 * (and cannot be remapped so long as we hold the page lock).
1040 if (PageAnon(page
) && !PageKsm(page
))
1041 anon_vma
= page_get_anon_vma(page
);
1044 * Block others from accessing the new page when we get around to
1045 * establishing additional references. We are usually the only one
1046 * holding a reference to newpage at this point. We used to have a BUG
1047 * here if trylock_page(newpage) fails, but would like to allow for
1048 * cases where there might be a race with the previous use of newpage.
1049 * This is much like races on refcount of oldpage: just don't BUG().
1051 if (unlikely(!trylock_page(newpage
)))
1054 if (unlikely(!is_lru
)) {
1055 rc
= move_to_new_page(newpage
, page
, mode
);
1056 goto out_unlock_both
;
1060 * Corner case handling:
1061 * 1. When a new swap-cache page is read into, it is added to the LRU
1062 * and treated as swapcache but it has no rmap yet.
1063 * Calling try_to_unmap() against a page->mapping==NULL page will
1064 * trigger a BUG. So handle it here.
1065 * 2. An orphaned page (see truncate_complete_page) might have
1066 * fs-private metadata. The page can be picked up due to memory
1067 * offlining. Everywhere else except page reclaim, the page is
1068 * invisible to the vm, so the page can not be migrated. So try to
1069 * free the metadata, so the page can be freed.
1071 if (!page
->mapping
) {
1072 VM_BUG_ON_PAGE(PageAnon(page
), page
);
1073 if (page_has_private(page
)) {
1074 try_to_free_buffers(page
);
1075 goto out_unlock_both
;
1077 } else if (page_mapped(page
)) {
1078 /* Establish migration ptes */
1079 VM_BUG_ON_PAGE(PageAnon(page
) && !PageKsm(page
) && !anon_vma
,
1082 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1083 page_was_mapped
= 1;
1086 if (!page_mapped(page
))
1087 rc
= move_to_new_page(newpage
, page
, mode
);
1089 if (page_was_mapped
)
1090 remove_migration_ptes(page
,
1091 rc
== MIGRATEPAGE_SUCCESS
? newpage
: page
, false);
1094 unlock_page(newpage
);
1096 /* Drop an anon_vma reference if we took one */
1098 put_anon_vma(anon_vma
);
1102 * If migration is successful, decrease refcount of the newpage
1103 * which will not free the page because new page owner increased
1104 * refcounter. As well, if it is LRU page, add the page to LRU
1107 if (rc
== MIGRATEPAGE_SUCCESS
) {
1108 if (unlikely(__PageMovable(newpage
)))
1111 putback_lru_page(newpage
);
1118 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1121 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1122 #define ICE_noinline noinline
1124 #define ICE_noinline
1128 * Obtain the lock on page, remove all ptes and migrate the page
1129 * to the newly allocated page in newpage.
1131 static ICE_noinline
int unmap_and_move(new_page_t get_new_page
,
1132 free_page_t put_new_page
,
1133 unsigned long private, struct page
*page
,
1134 int force
, enum migrate_mode mode
,
1135 enum migrate_reason reason
)
1137 int rc
= MIGRATEPAGE_SUCCESS
;
1139 struct page
*newpage
;
1141 newpage
= get_new_page(page
, private, &result
);
1145 if (page_count(page
) == 1) {
1146 /* page was freed from under us. So we are done. */
1147 ClearPageActive(page
);
1148 ClearPageUnevictable(page
);
1149 if (unlikely(__PageMovable(page
))) {
1151 if (!PageMovable(page
))
1152 __ClearPageIsolated(page
);
1156 put_new_page(newpage
, private);
1162 if (unlikely(PageTransHuge(page
) && !PageTransHuge(newpage
))) {
1164 rc
= split_huge_page(page
);
1170 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
1171 if (rc
== MIGRATEPAGE_SUCCESS
)
1172 set_page_owner_migrate_reason(newpage
, reason
);
1175 if (rc
!= -EAGAIN
) {
1177 * A page that has been migrated has all references
1178 * removed and will be freed. A page that has not been
1179 * migrated will have kepts its references and be
1182 list_del(&page
->lru
);
1185 * Compaction can migrate also non-LRU pages which are
1186 * not accounted to NR_ISOLATED_*. They can be recognized
1189 if (likely(!__PageMovable(page
)))
1190 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
1191 page_is_file_cache(page
), -hpage_nr_pages(page
));
1195 * If migration is successful, releases reference grabbed during
1196 * isolation. Otherwise, restore the page to right list unless
1199 if (rc
== MIGRATEPAGE_SUCCESS
) {
1201 if (reason
== MR_MEMORY_FAILURE
) {
1203 * Set PG_HWPoison on just freed page
1204 * intentionally. Although it's rather weird,
1205 * it's how HWPoison flag works at the moment.
1207 if (!test_set_page_hwpoison(page
))
1208 num_poisoned_pages_inc();
1211 if (rc
!= -EAGAIN
) {
1212 if (likely(!__PageMovable(page
))) {
1213 putback_lru_page(page
);
1218 if (PageMovable(page
))
1219 putback_movable_page(page
);
1221 __ClearPageIsolated(page
);
1227 put_new_page(newpage
, private);
1236 *result
= page_to_nid(newpage
);
1242 * Counterpart of unmap_and_move_page() for hugepage migration.
1244 * This function doesn't wait the completion of hugepage I/O
1245 * because there is no race between I/O and migration for hugepage.
1246 * Note that currently hugepage I/O occurs only in direct I/O
1247 * where no lock is held and PG_writeback is irrelevant,
1248 * and writeback status of all subpages are counted in the reference
1249 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1250 * under direct I/O, the reference of the head page is 512 and a bit more.)
1251 * This means that when we try to migrate hugepage whose subpages are
1252 * doing direct I/O, some references remain after try_to_unmap() and
1253 * hugepage migration fails without data corruption.
1255 * There is also no race when direct I/O is issued on the page under migration,
1256 * because then pte is replaced with migration swap entry and direct I/O code
1257 * will wait in the page fault for migration to complete.
1259 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1260 free_page_t put_new_page
, unsigned long private,
1261 struct page
*hpage
, int force
,
1262 enum migrate_mode mode
, int reason
)
1266 int page_was_mapped
= 0;
1267 struct page
*new_hpage
;
1268 struct anon_vma
*anon_vma
= NULL
;
1271 * Movability of hugepages depends on architectures and hugepage size.
1272 * This check is necessary because some callers of hugepage migration
1273 * like soft offline and memory hotremove don't walk through page
1274 * tables or check whether the hugepage is pmd-based or not before
1275 * kicking migration.
1277 if (!hugepage_migration_supported(page_hstate(hpage
))) {
1278 putback_active_hugepage(hpage
);
1282 new_hpage
= get_new_page(hpage
, private, &result
);
1286 if (!trylock_page(hpage
)) {
1291 case MIGRATE_SYNC_NO_COPY
:
1299 if (PageAnon(hpage
))
1300 anon_vma
= page_get_anon_vma(hpage
);
1302 if (unlikely(!trylock_page(new_hpage
)))
1305 if (page_mapped(hpage
)) {
1307 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1308 page_was_mapped
= 1;
1311 if (!page_mapped(hpage
))
1312 rc
= move_to_new_page(new_hpage
, hpage
, mode
);
1314 if (page_was_mapped
)
1315 remove_migration_ptes(hpage
,
1316 rc
== MIGRATEPAGE_SUCCESS
? new_hpage
: hpage
, false);
1318 unlock_page(new_hpage
);
1322 put_anon_vma(anon_vma
);
1324 if (rc
== MIGRATEPAGE_SUCCESS
) {
1325 hugetlb_cgroup_migrate(hpage
, new_hpage
);
1326 put_new_page
= NULL
;
1327 set_page_owner_migrate_reason(new_hpage
, reason
);
1333 putback_active_hugepage(hpage
);
1334 if (reason
== MR_MEMORY_FAILURE
&& !test_set_page_hwpoison(hpage
))
1335 num_poisoned_pages_inc();
1338 * If migration was not successful and there's a freeing callback, use
1339 * it. Otherwise, put_page() will drop the reference grabbed during
1343 put_new_page(new_hpage
, private);
1345 putback_active_hugepage(new_hpage
);
1351 *result
= page_to_nid(new_hpage
);
1357 * migrate_pages - migrate the pages specified in a list, to the free pages
1358 * supplied as the target for the page migration
1360 * @from: The list of pages to be migrated.
1361 * @get_new_page: The function used to allocate free pages to be used
1362 * as the target of the page migration.
1363 * @put_new_page: The function used to free target pages if migration
1364 * fails, or NULL if no special handling is necessary.
1365 * @private: Private data to be passed on to get_new_page()
1366 * @mode: The migration mode that specifies the constraints for
1367 * page migration, if any.
1368 * @reason: The reason for page migration.
1370 * The function returns after 10 attempts or if no pages are movable any more
1371 * because the list has become empty or no retryable pages exist any more.
1372 * The caller should call putback_movable_pages() to return pages to the LRU
1373 * or free list only if ret != 0.
1375 * Returns the number of pages that were not migrated, or an error code.
1377 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1378 free_page_t put_new_page
, unsigned long private,
1379 enum migrate_mode mode
, int reason
)
1383 int nr_succeeded
= 0;
1387 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1391 current
->flags
|= PF_SWAPWRITE
;
1393 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1396 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1400 rc
= unmap_and_move_huge_page(get_new_page
,
1401 put_new_page
, private, page
,
1402 pass
> 2, mode
, reason
);
1404 rc
= unmap_and_move(get_new_page
, put_new_page
,
1405 private, page
, pass
> 2, mode
,
1415 case MIGRATEPAGE_SUCCESS
:
1420 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1421 * unlike -EAGAIN case, the failed page is
1422 * removed from migration page list and not
1423 * retried in the next outer loop.
1434 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1436 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1437 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1440 current
->flags
&= ~PF_SWAPWRITE
;
1447 * Move a list of individual pages
1449 struct page_to_node
{
1456 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1459 struct page_to_node
*pm
= (struct page_to_node
*)private;
1461 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1464 if (pm
->node
== MAX_NUMNODES
)
1467 *result
= &pm
->status
;
1470 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1472 else if (thp_migration_supported() && PageTransHuge(p
)) {
1475 thp
= alloc_pages_node(pm
->node
,
1476 (GFP_TRANSHUGE
| __GFP_THISNODE
) & ~__GFP_RECLAIM
,
1480 prep_transhuge_page(thp
);
1483 return __alloc_pages_node(pm
->node
,
1484 GFP_HIGHUSER_MOVABLE
| __GFP_THISNODE
, 0);
1488 * Move a set of pages as indicated in the pm array. The addr
1489 * field must be set to the virtual address of the page to be moved
1490 * and the node number must contain a valid target node.
1491 * The pm array ends with node = MAX_NUMNODES.
1493 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1494 struct page_to_node
*pm
,
1498 struct page_to_node
*pp
;
1499 LIST_HEAD(pagelist
);
1501 down_read(&mm
->mmap_sem
);
1504 * Build a list of pages to migrate
1506 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1507 struct vm_area_struct
*vma
;
1510 unsigned int follflags
;
1513 vma
= find_vma(mm
, pp
->addr
);
1514 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1517 /* FOLL_DUMP to ignore special (like zero) pages */
1518 follflags
= FOLL_GET
| FOLL_DUMP
;
1519 if (!thp_migration_supported())
1520 follflags
|= FOLL_SPLIT
;
1521 page
= follow_page(vma
, pp
->addr
, follflags
);
1523 err
= PTR_ERR(page
);
1531 err
= page_to_nid(page
);
1533 if (err
== pp
->node
)
1535 * Node already in the right place
1540 if (page_mapcount(page
) > 1 &&
1544 if (PageHuge(page
)) {
1545 if (PageHead(page
)) {
1546 isolate_huge_page(page
, &pagelist
);
1553 pp
->page
= compound_head(page
);
1554 head
= compound_head(page
);
1555 err
= isolate_lru_page(head
);
1557 list_add_tail(&head
->lru
, &pagelist
);
1558 mod_node_page_state(page_pgdat(head
),
1559 NR_ISOLATED_ANON
+ page_is_file_cache(head
),
1560 hpage_nr_pages(head
));
1564 * Either remove the duplicate refcount from
1565 * isolate_lru_page() or drop the page ref if it was
1574 if (!list_empty(&pagelist
)) {
1575 err
= migrate_pages(&pagelist
, new_page_node
, NULL
,
1576 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1578 putback_movable_pages(&pagelist
);
1581 up_read(&mm
->mmap_sem
);
1586 * Migrate an array of page address onto an array of nodes and fill
1587 * the corresponding array of status.
1589 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1590 unsigned long nr_pages
,
1591 const void __user
* __user
*pages
,
1592 const int __user
*nodes
,
1593 int __user
*status
, int flags
)
1595 struct page_to_node
*pm
;
1596 unsigned long chunk_nr_pages
;
1597 unsigned long chunk_start
;
1601 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1608 * Store a chunk of page_to_node array in a page,
1609 * but keep the last one as a marker
1611 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1613 for (chunk_start
= 0;
1614 chunk_start
< nr_pages
;
1615 chunk_start
+= chunk_nr_pages
) {
1618 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1619 chunk_nr_pages
= nr_pages
- chunk_start
;
1621 /* fill the chunk pm with addrs and nodes from user-space */
1622 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1623 const void __user
*p
;
1627 if (get_user(p
, pages
+ j
+ chunk_start
))
1629 pm
[j
].addr
= (unsigned long) p
;
1631 if (get_user(node
, nodes
+ j
+ chunk_start
))
1635 if (node
< 0 || node
>= MAX_NUMNODES
)
1638 if (!node_state(node
, N_MEMORY
))
1642 if (!node_isset(node
, task_nodes
))
1648 /* End marker for this chunk */
1649 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1651 /* Migrate this chunk */
1652 err
= do_move_page_to_node_array(mm
, pm
,
1653 flags
& MPOL_MF_MOVE_ALL
);
1657 /* Return status information */
1658 for (j
= 0; j
< chunk_nr_pages
; j
++)
1659 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1667 free_page((unsigned long)pm
);
1673 * Determine the nodes of an array of pages and store it in an array of status.
1675 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1676 const void __user
**pages
, int *status
)
1680 down_read(&mm
->mmap_sem
);
1682 for (i
= 0; i
< nr_pages
; i
++) {
1683 unsigned long addr
= (unsigned long)(*pages
);
1684 struct vm_area_struct
*vma
;
1688 vma
= find_vma(mm
, addr
);
1689 if (!vma
|| addr
< vma
->vm_start
)
1692 /* FOLL_DUMP to ignore special (like zero) pages */
1693 page
= follow_page(vma
, addr
, FOLL_DUMP
);
1695 err
= PTR_ERR(page
);
1699 err
= page
? page_to_nid(page
) : -ENOENT
;
1707 up_read(&mm
->mmap_sem
);
1711 * Determine the nodes of a user array of pages and store it in
1712 * a user array of status.
1714 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1715 const void __user
* __user
*pages
,
1718 #define DO_PAGES_STAT_CHUNK_NR 16
1719 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1720 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1723 unsigned long chunk_nr
;
1725 chunk_nr
= nr_pages
;
1726 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1727 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1729 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1732 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1734 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1739 nr_pages
-= chunk_nr
;
1741 return nr_pages
? -EFAULT
: 0;
1745 * Move a list of pages in the address space of the currently executing
1748 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1749 const void __user
* __user
*, pages
,
1750 const int __user
*, nodes
,
1751 int __user
*, status
, int, flags
)
1753 struct task_struct
*task
;
1754 struct mm_struct
*mm
;
1756 nodemask_t task_nodes
;
1759 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1762 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1765 /* Find the mm_struct */
1767 task
= pid
? find_task_by_vpid(pid
) : current
;
1772 get_task_struct(task
);
1775 * Check if this process has the right to modify the specified
1776 * process. Use the regular "ptrace_may_access()" checks.
1778 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1785 err
= security_task_movememory(task
);
1789 task_nodes
= cpuset_mems_allowed(task
);
1790 mm
= get_task_mm(task
);
1791 put_task_struct(task
);
1797 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1798 nodes
, status
, flags
);
1800 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1806 put_task_struct(task
);
1810 #ifdef CONFIG_NUMA_BALANCING
1812 * Returns true if this is a safe migration target node for misplaced NUMA
1813 * pages. Currently it only checks the watermarks which crude
1815 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1816 unsigned long nr_migrate_pages
)
1820 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1821 struct zone
*zone
= pgdat
->node_zones
+ z
;
1823 if (!populated_zone(zone
))
1826 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1827 if (!zone_watermark_ok(zone
, 0,
1828 high_wmark_pages(zone
) +
1837 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1841 int nid
= (int) data
;
1842 struct page
*newpage
;
1844 newpage
= __alloc_pages_node(nid
,
1845 (GFP_HIGHUSER_MOVABLE
|
1846 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1847 __GFP_NORETRY
| __GFP_NOWARN
) &
1854 * page migration rate limiting control.
1855 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1856 * window of time. Default here says do not migrate more than 1280M per second.
1858 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1859 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1861 /* Returns true if the node is migrate rate-limited after the update */
1862 static bool numamigrate_update_ratelimit(pg_data_t
*pgdat
,
1863 unsigned long nr_pages
)
1866 * Rate-limit the amount of data that is being migrated to a node.
1867 * Optimal placement is no good if the memory bus is saturated and
1868 * all the time is being spent migrating!
1870 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1871 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1872 pgdat
->numabalancing_migrate_nr_pages
= 0;
1873 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1874 msecs_to_jiffies(migrate_interval_millisecs
);
1875 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1877 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
) {
1878 trace_mm_numa_migrate_ratelimit(current
, pgdat
->node_id
,
1884 * This is an unlocked non-atomic update so errors are possible.
1885 * The consequences are failing to migrate when we potentiall should
1886 * have which is not severe enough to warrant locking. If it is ever
1887 * a problem, it can be converted to a per-cpu counter.
1889 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1893 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1897 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1899 /* Avoid migrating to a node that is nearly full */
1900 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1903 if (isolate_lru_page(page
))
1907 * migrate_misplaced_transhuge_page() skips page migration's usual
1908 * check on page_count(), so we must do it here, now that the page
1909 * has been isolated: a GUP pin, or any other pin, prevents migration.
1910 * The expected page count is 3: 1 for page's mapcount and 1 for the
1911 * caller's pin and 1 for the reference taken by isolate_lru_page().
1913 if (PageTransHuge(page
) && page_count(page
) != 3) {
1914 putback_lru_page(page
);
1918 page_lru
= page_is_file_cache(page
);
1919 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+ page_lru
,
1920 hpage_nr_pages(page
));
1923 * Isolating the page has taken another reference, so the
1924 * caller's reference can be safely dropped without the page
1925 * disappearing underneath us during migration.
1931 bool pmd_trans_migrating(pmd_t pmd
)
1933 struct page
*page
= pmd_page(pmd
);
1934 return PageLocked(page
);
1938 * Attempt to migrate a misplaced page to the specified destination
1939 * node. Caller is expected to have an elevated reference count on
1940 * the page that will be dropped by this function before returning.
1942 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1945 pg_data_t
*pgdat
= NODE_DATA(node
);
1948 LIST_HEAD(migratepages
);
1951 * Don't migrate file pages that are mapped in multiple processes
1952 * with execute permissions as they are probably shared libraries.
1954 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1955 (vma
->vm_flags
& VM_EXEC
))
1959 * Rate-limit the amount of data that is being migrated to a node.
1960 * Optimal placement is no good if the memory bus is saturated and
1961 * all the time is being spent migrating!
1963 if (numamigrate_update_ratelimit(pgdat
, 1))
1966 isolated
= numamigrate_isolate_page(pgdat
, page
);
1970 list_add(&page
->lru
, &migratepages
);
1971 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1972 NULL
, node
, MIGRATE_ASYNC
,
1975 if (!list_empty(&migratepages
)) {
1976 list_del(&page
->lru
);
1977 dec_node_page_state(page
, NR_ISOLATED_ANON
+
1978 page_is_file_cache(page
));
1979 putback_lru_page(page
);
1983 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1984 BUG_ON(!list_empty(&migratepages
));
1991 #endif /* CONFIG_NUMA_BALANCING */
1993 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1995 * Migrates a THP to a given target node. page must be locked and is unlocked
1998 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1999 struct vm_area_struct
*vma
,
2000 pmd_t
*pmd
, pmd_t entry
,
2001 unsigned long address
,
2002 struct page
*page
, int node
)
2005 pg_data_t
*pgdat
= NODE_DATA(node
);
2007 struct page
*new_page
= NULL
;
2008 int page_lru
= page_is_file_cache(page
);
2009 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
2010 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
2013 * Rate-limit the amount of data that is being migrated to a node.
2014 * Optimal placement is no good if the memory bus is saturated and
2015 * all the time is being spent migrating!
2017 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
2020 new_page
= alloc_pages_node(node
,
2021 (GFP_TRANSHUGE_LIGHT
| __GFP_THISNODE
),
2025 prep_transhuge_page(new_page
);
2027 isolated
= numamigrate_isolate_page(pgdat
, page
);
2033 /* Prepare a page as a migration target */
2034 __SetPageLocked(new_page
);
2035 if (PageSwapBacked(page
))
2036 __SetPageSwapBacked(new_page
);
2038 /* anon mapping, we can simply copy page->mapping to the new page: */
2039 new_page
->mapping
= page
->mapping
;
2040 new_page
->index
= page
->index
;
2041 migrate_page_copy(new_page
, page
);
2042 WARN_ON(PageLRU(new_page
));
2044 /* Recheck the target PMD */
2045 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2046 ptl
= pmd_lock(mm
, pmd
);
2047 if (unlikely(!pmd_same(*pmd
, entry
) || !page_ref_freeze(page
, 2))) {
2049 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2051 /* Reverse changes made by migrate_page_copy() */
2052 if (TestClearPageActive(new_page
))
2053 SetPageActive(page
);
2054 if (TestClearPageUnevictable(new_page
))
2055 SetPageUnevictable(page
);
2057 unlock_page(new_page
);
2058 put_page(new_page
); /* Free it */
2060 /* Retake the callers reference and putback on LRU */
2062 putback_lru_page(page
);
2063 mod_node_page_state(page_pgdat(page
),
2064 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
2069 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
2070 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
2073 * Clear the old entry under pagetable lock and establish the new PTE.
2074 * Any parallel GUP will either observe the old page blocking on the
2075 * page lock, block on the page table lock or observe the new page.
2076 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2077 * guarantee the copy is visible before the pagetable update.
2079 flush_cache_range(vma
, mmun_start
, mmun_end
);
2080 page_add_anon_rmap(new_page
, vma
, mmun_start
, true);
2081 pmdp_huge_clear_flush_notify(vma
, mmun_start
, pmd
);
2082 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
2083 update_mmu_cache_pmd(vma
, address
, &entry
);
2085 page_ref_unfreeze(page
, 2);
2086 mlock_migrate_page(new_page
, page
);
2087 page_remove_rmap(page
, true);
2088 set_page_owner_migrate_reason(new_page
, MR_NUMA_MISPLACED
);
2091 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2093 /* Take an "isolate" reference and put new page on the LRU. */
2095 putback_lru_page(new_page
);
2097 unlock_page(new_page
);
2099 put_page(page
); /* Drop the rmap reference */
2100 put_page(page
); /* Drop the LRU isolation reference */
2102 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
2103 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
2105 mod_node_page_state(page_pgdat(page
),
2106 NR_ISOLATED_ANON
+ page_lru
,
2111 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
2113 ptl
= pmd_lock(mm
, pmd
);
2114 if (pmd_same(*pmd
, entry
)) {
2115 entry
= pmd_modify(entry
, vma
->vm_page_prot
);
2116 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
2117 update_mmu_cache_pmd(vma
, address
, &entry
);
2126 #endif /* CONFIG_NUMA_BALANCING */
2128 #endif /* CONFIG_NUMA */
2130 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2131 struct migrate_vma
{
2132 struct vm_area_struct
*vma
;
2135 unsigned long cpages
;
2136 unsigned long npages
;
2137 unsigned long start
;
2141 static int migrate_vma_collect_hole(unsigned long start
,
2143 struct mm_walk
*walk
)
2145 struct migrate_vma
*migrate
= walk
->private;
2148 for (addr
= start
& PAGE_MASK
; addr
< end
; addr
+= PAGE_SIZE
) {
2149 migrate
->src
[migrate
->npages
++] = MIGRATE_PFN_MIGRATE
;
2150 migrate
->dst
[migrate
->npages
] = 0;
2157 static int migrate_vma_collect_skip(unsigned long start
,
2159 struct mm_walk
*walk
)
2161 struct migrate_vma
*migrate
= walk
->private;
2164 for (addr
= start
& PAGE_MASK
; addr
< end
; addr
+= PAGE_SIZE
) {
2165 migrate
->dst
[migrate
->npages
] = 0;
2166 migrate
->src
[migrate
->npages
++] = 0;
2172 static int migrate_vma_collect_pmd(pmd_t
*pmdp
,
2173 unsigned long start
,
2175 struct mm_walk
*walk
)
2177 struct migrate_vma
*migrate
= walk
->private;
2178 struct vm_area_struct
*vma
= walk
->vma
;
2179 struct mm_struct
*mm
= vma
->vm_mm
;
2180 unsigned long addr
= start
, unmapped
= 0;
2185 if (pmd_none(*pmdp
))
2186 return migrate_vma_collect_hole(start
, end
, walk
);
2188 if (pmd_trans_huge(*pmdp
)) {
2191 ptl
= pmd_lock(mm
, pmdp
);
2192 if (unlikely(!pmd_trans_huge(*pmdp
))) {
2197 page
= pmd_page(*pmdp
);
2198 if (is_huge_zero_page(page
)) {
2200 split_huge_pmd(vma
, pmdp
, addr
);
2201 if (pmd_trans_unstable(pmdp
))
2202 return migrate_vma_collect_skip(start
, end
,
2209 if (unlikely(!trylock_page(page
)))
2210 return migrate_vma_collect_skip(start
, end
,
2212 ret
= split_huge_page(page
);
2216 return migrate_vma_collect_skip(start
, end
,
2218 if (pmd_none(*pmdp
))
2219 return migrate_vma_collect_hole(start
, end
,
2224 if (unlikely(pmd_bad(*pmdp
)))
2225 return migrate_vma_collect_skip(start
, end
, walk
);
2227 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2228 arch_enter_lazy_mmu_mode();
2230 for (; addr
< end
; addr
+= PAGE_SIZE
, ptep
++) {
2231 unsigned long mpfn
, pfn
;
2239 if (pte_none(pte
)) {
2240 mpfn
= MIGRATE_PFN_MIGRATE
;
2246 if (!pte_present(pte
)) {
2250 * Only care about unaddressable device page special
2251 * page table entry. Other special swap entries are not
2252 * migratable, and we ignore regular swapped page.
2254 entry
= pte_to_swp_entry(pte
);
2255 if (!is_device_private_entry(entry
))
2258 page
= device_private_entry_to_page(entry
);
2259 mpfn
= migrate_pfn(page_to_pfn(page
))|
2260 MIGRATE_PFN_DEVICE
| MIGRATE_PFN_MIGRATE
;
2261 if (is_write_device_private_entry(entry
))
2262 mpfn
|= MIGRATE_PFN_WRITE
;
2264 if (is_zero_pfn(pfn
)) {
2265 mpfn
= MIGRATE_PFN_MIGRATE
;
2270 page
= _vm_normal_page(migrate
->vma
, addr
, pte
, true);
2271 mpfn
= migrate_pfn(pfn
) | MIGRATE_PFN_MIGRATE
;
2272 mpfn
|= pte_write(pte
) ? MIGRATE_PFN_WRITE
: 0;
2275 /* FIXME support THP */
2276 if (!page
|| !page
->mapping
|| PageTransCompound(page
)) {
2280 pfn
= page_to_pfn(page
);
2283 * By getting a reference on the page we pin it and that blocks
2284 * any kind of migration. Side effect is that it "freezes" the
2287 * We drop this reference after isolating the page from the lru
2288 * for non device page (device page are not on the lru and thus
2289 * can't be dropped from it).
2295 * Optimize for the common case where page is only mapped once
2296 * in one process. If we can lock the page, then we can safely
2297 * set up a special migration page table entry now.
2299 if (trylock_page(page
)) {
2302 mpfn
|= MIGRATE_PFN_LOCKED
;
2303 ptep_get_and_clear(mm
, addr
, ptep
);
2305 /* Setup special migration page table entry */
2306 entry
= make_migration_entry(page
, pte_write(pte
));
2307 swp_pte
= swp_entry_to_pte(entry
);
2308 if (pte_soft_dirty(pte
))
2309 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
2310 set_pte_at(mm
, addr
, ptep
, swp_pte
);
2313 * This is like regular unmap: we remove the rmap and
2314 * drop page refcount. Page won't be freed, as we took
2315 * a reference just above.
2317 page_remove_rmap(page
, false);
2320 if (pte_present(pte
))
2325 migrate
->dst
[migrate
->npages
] = 0;
2326 migrate
->src
[migrate
->npages
++] = mpfn
;
2328 arch_leave_lazy_mmu_mode();
2329 pte_unmap_unlock(ptep
- 1, ptl
);
2331 /* Only flush the TLB if we actually modified any entries */
2333 flush_tlb_range(walk
->vma
, start
, end
);
2339 * migrate_vma_collect() - collect pages over a range of virtual addresses
2340 * @migrate: migrate struct containing all migration information
2342 * This will walk the CPU page table. For each virtual address backed by a
2343 * valid page, it updates the src array and takes a reference on the page, in
2344 * order to pin the page until we lock it and unmap it.
2346 static void migrate_vma_collect(struct migrate_vma
*migrate
)
2348 struct mm_walk mm_walk
;
2350 mm_walk
.pmd_entry
= migrate_vma_collect_pmd
;
2351 mm_walk
.pte_entry
= NULL
;
2352 mm_walk
.pte_hole
= migrate_vma_collect_hole
;
2353 mm_walk
.hugetlb_entry
= NULL
;
2354 mm_walk
.test_walk
= NULL
;
2355 mm_walk
.vma
= migrate
->vma
;
2356 mm_walk
.mm
= migrate
->vma
->vm_mm
;
2357 mm_walk
.private = migrate
;
2359 mmu_notifier_invalidate_range_start(mm_walk
.mm
,
2362 walk_page_range(migrate
->start
, migrate
->end
, &mm_walk
);
2363 mmu_notifier_invalidate_range_end(mm_walk
.mm
,
2367 migrate
->end
= migrate
->start
+ (migrate
->npages
<< PAGE_SHIFT
);
2371 * migrate_vma_check_page() - check if page is pinned or not
2372 * @page: struct page to check
2374 * Pinned pages cannot be migrated. This is the same test as in
2375 * migrate_page_move_mapping(), except that here we allow migration of a
2378 static bool migrate_vma_check_page(struct page
*page
)
2381 * One extra ref because caller holds an extra reference, either from
2382 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2388 * FIXME support THP (transparent huge page), it is bit more complex to
2389 * check them than regular pages, because they can be mapped with a pmd
2390 * or with a pte (split pte mapping).
2392 if (PageCompound(page
))
2395 /* Page from ZONE_DEVICE have one extra reference */
2396 if (is_zone_device_page(page
)) {
2398 * Private page can never be pin as they have no valid pte and
2399 * GUP will fail for those. Yet if there is a pending migration
2400 * a thread might try to wait on the pte migration entry and
2401 * will bump the page reference count. Sadly there is no way to
2402 * differentiate a regular pin from migration wait. Hence to
2403 * avoid 2 racing thread trying to migrate back to CPU to enter
2404 * infinite loop (one stoping migration because the other is
2405 * waiting on pte migration entry). We always return true here.
2407 * FIXME proper solution is to rework migration_entry_wait() so
2408 * it does not need to take a reference on page.
2410 if (is_device_private_page(page
))
2414 * Only allow device public page to be migrated and account for
2415 * the extra reference count imply by ZONE_DEVICE pages.
2417 if (!is_device_public_page(page
))
2422 /* For file back page */
2423 if (page_mapping(page
))
2424 extra
+= 1 + page_has_private(page
);
2426 if ((page_count(page
) - extra
) > page_mapcount(page
))
2433 * migrate_vma_prepare() - lock pages and isolate them from the lru
2434 * @migrate: migrate struct containing all migration information
2436 * This locks pages that have been collected by migrate_vma_collect(). Once each
2437 * page is locked it is isolated from the lru (for non-device pages). Finally,
2438 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2439 * migrated by concurrent kernel threads.
2441 static void migrate_vma_prepare(struct migrate_vma
*migrate
)
2443 const unsigned long npages
= migrate
->npages
;
2444 const unsigned long start
= migrate
->start
;
2445 unsigned long addr
, i
, restore
= 0;
2446 bool allow_drain
= true;
2450 for (i
= 0; (i
< npages
) && migrate
->cpages
; i
++) {
2451 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2457 if (!(migrate
->src
[i
] & MIGRATE_PFN_LOCKED
)) {
2459 * Because we are migrating several pages there can be
2460 * a deadlock between 2 concurrent migration where each
2461 * are waiting on each other page lock.
2463 * Make migrate_vma() a best effort thing and backoff
2464 * for any page we can not lock right away.
2466 if (!trylock_page(page
)) {
2467 migrate
->src
[i
] = 0;
2473 migrate
->src
[i
] |= MIGRATE_PFN_LOCKED
;
2476 /* ZONE_DEVICE pages are not on LRU */
2477 if (!is_zone_device_page(page
)) {
2478 if (!PageLRU(page
) && allow_drain
) {
2479 /* Drain CPU's pagevec */
2480 lru_add_drain_all();
2481 allow_drain
= false;
2484 if (isolate_lru_page(page
)) {
2486 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2490 migrate
->src
[i
] = 0;
2498 /* Drop the reference we took in collect */
2502 if (!migrate_vma_check_page(page
)) {
2504 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2508 if (!is_zone_device_page(page
)) {
2510 putback_lru_page(page
);
2513 migrate
->src
[i
] = 0;
2517 if (!is_zone_device_page(page
))
2518 putback_lru_page(page
);
2525 for (i
= 0, addr
= start
; i
< npages
&& restore
; i
++, addr
+= PAGE_SIZE
) {
2526 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2528 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2531 remove_migration_pte(page
, migrate
->vma
, addr
, page
);
2533 migrate
->src
[i
] = 0;
2541 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2542 * @migrate: migrate struct containing all migration information
2544 * Replace page mapping (CPU page table pte) with a special migration pte entry
2545 * and check again if it has been pinned. Pinned pages are restored because we
2546 * cannot migrate them.
2548 * This is the last step before we call the device driver callback to allocate
2549 * destination memory and copy contents of original page over to new page.
2551 static void migrate_vma_unmap(struct migrate_vma
*migrate
)
2553 int flags
= TTU_MIGRATION
| TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
;
2554 const unsigned long npages
= migrate
->npages
;
2555 const unsigned long start
= migrate
->start
;
2556 unsigned long addr
, i
, restore
= 0;
2558 for (i
= 0; i
< npages
; i
++) {
2559 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2561 if (!page
|| !(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2564 if (page_mapped(page
)) {
2565 try_to_unmap(page
, flags
);
2566 if (page_mapped(page
))
2570 if (migrate_vma_check_page(page
))
2574 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2579 for (addr
= start
, i
= 0; i
< npages
&& restore
; addr
+= PAGE_SIZE
, i
++) {
2580 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2582 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2585 remove_migration_ptes(page
, page
, false);
2587 migrate
->src
[i
] = 0;
2591 if (is_zone_device_page(page
))
2594 putback_lru_page(page
);
2598 static void migrate_vma_insert_page(struct migrate_vma
*migrate
,
2604 struct vm_area_struct
*vma
= migrate
->vma
;
2605 struct mm_struct
*mm
= vma
->vm_mm
;
2606 struct mem_cgroup
*memcg
;
2616 /* Only allow populating anonymous memory */
2617 if (!vma_is_anonymous(vma
))
2620 pgdp
= pgd_offset(mm
, addr
);
2621 p4dp
= p4d_alloc(mm
, pgdp
, addr
);
2624 pudp
= pud_alloc(mm
, p4dp
, addr
);
2627 pmdp
= pmd_alloc(mm
, pudp
, addr
);
2631 if (pmd_trans_huge(*pmdp
) || pmd_devmap(*pmdp
))
2635 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2636 * pte_offset_map() on pmds where a huge pmd might be created
2637 * from a different thread.
2639 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2640 * parallel threads are excluded by other means.
2642 * Here we only have down_read(mmap_sem).
2644 if (pte_alloc(mm
, pmdp
, addr
))
2647 /* See the comment in pte_alloc_one_map() */
2648 if (unlikely(pmd_trans_unstable(pmdp
)))
2651 if (unlikely(anon_vma_prepare(vma
)))
2653 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
2657 * The memory barrier inside __SetPageUptodate makes sure that
2658 * preceding stores to the page contents become visible before
2659 * the set_pte_at() write.
2661 __SetPageUptodate(page
);
2663 if (is_zone_device_page(page
)) {
2664 if (is_device_private_page(page
)) {
2665 swp_entry_t swp_entry
;
2667 swp_entry
= make_device_private_entry(page
, vma
->vm_flags
& VM_WRITE
);
2668 entry
= swp_entry_to_pte(swp_entry
);
2669 } else if (is_device_public_page(page
)) {
2670 entry
= pte_mkold(mk_pte(page
, READ_ONCE(vma
->vm_page_prot
)));
2671 if (vma
->vm_flags
& VM_WRITE
)
2672 entry
= pte_mkwrite(pte_mkdirty(entry
));
2673 entry
= pte_mkdevmap(entry
);
2676 entry
= mk_pte(page
, vma
->vm_page_prot
);
2677 if (vma
->vm_flags
& VM_WRITE
)
2678 entry
= pte_mkwrite(pte_mkdirty(entry
));
2681 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2683 if (pte_present(*ptep
)) {
2684 unsigned long pfn
= pte_pfn(*ptep
);
2686 if (!is_zero_pfn(pfn
)) {
2687 pte_unmap_unlock(ptep
, ptl
);
2688 mem_cgroup_cancel_charge(page
, memcg
, false);
2692 } else if (!pte_none(*ptep
)) {
2693 pte_unmap_unlock(ptep
, ptl
);
2694 mem_cgroup_cancel_charge(page
, memcg
, false);
2699 * Check for usefaultfd but do not deliver the fault. Instead,
2702 if (userfaultfd_missing(vma
)) {
2703 pte_unmap_unlock(ptep
, ptl
);
2704 mem_cgroup_cancel_charge(page
, memcg
, false);
2708 inc_mm_counter(mm
, MM_ANONPAGES
);
2709 page_add_new_anon_rmap(page
, vma
, addr
, false);
2710 mem_cgroup_commit_charge(page
, memcg
, false, false);
2711 if (!is_zone_device_page(page
))
2712 lru_cache_add_active_or_unevictable(page
, vma
);
2716 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
2717 ptep_clear_flush_notify(vma
, addr
, ptep
);
2718 set_pte_at_notify(mm
, addr
, ptep
, entry
);
2719 update_mmu_cache(vma
, addr
, ptep
);
2721 /* No need to invalidate - it was non-present before */
2722 set_pte_at(mm
, addr
, ptep
, entry
);
2723 update_mmu_cache(vma
, addr
, ptep
);
2726 pte_unmap_unlock(ptep
, ptl
);
2727 *src
= MIGRATE_PFN_MIGRATE
;
2731 *src
&= ~MIGRATE_PFN_MIGRATE
;
2735 * migrate_vma_pages() - migrate meta-data from src page to dst page
2736 * @migrate: migrate struct containing all migration information
2738 * This migrates struct page meta-data from source struct page to destination
2739 * struct page. This effectively finishes the migration from source page to the
2742 static void migrate_vma_pages(struct migrate_vma
*migrate
)
2744 const unsigned long npages
= migrate
->npages
;
2745 const unsigned long start
= migrate
->start
;
2746 struct vm_area_struct
*vma
= migrate
->vma
;
2747 struct mm_struct
*mm
= vma
->vm_mm
;
2748 unsigned long addr
, i
, mmu_start
;
2749 bool notified
= false;
2751 for (i
= 0, addr
= start
; i
< npages
; addr
+= PAGE_SIZE
, i
++) {
2752 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2753 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2754 struct address_space
*mapping
;
2758 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2763 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
)) {
2769 mmu_notifier_invalidate_range_start(mm
,
2773 migrate_vma_insert_page(migrate
, addr
, newpage
,
2779 mapping
= page_mapping(page
);
2781 if (is_zone_device_page(newpage
)) {
2782 if (is_device_private_page(newpage
)) {
2784 * For now only support private anonymous when
2785 * migrating to un-addressable device memory.
2788 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2791 } else if (!is_device_public_page(newpage
)) {
2793 * Other types of ZONE_DEVICE page are not
2796 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2801 r
= migrate_page(mapping
, newpage
, page
, MIGRATE_SYNC_NO_COPY
);
2802 if (r
!= MIGRATEPAGE_SUCCESS
)
2803 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2807 mmu_notifier_invalidate_range_end(mm
, mmu_start
,
2812 * migrate_vma_finalize() - restore CPU page table entry
2813 * @migrate: migrate struct containing all migration information
2815 * This replaces the special migration pte entry with either a mapping to the
2816 * new page if migration was successful for that page, or to the original page
2819 * This also unlocks the pages and puts them back on the lru, or drops the extra
2820 * refcount, for device pages.
2822 static void migrate_vma_finalize(struct migrate_vma
*migrate
)
2824 const unsigned long npages
= migrate
->npages
;
2827 for (i
= 0; i
< npages
; i
++) {
2828 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2829 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2833 unlock_page(newpage
);
2839 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
) || !newpage
) {
2841 unlock_page(newpage
);
2847 remove_migration_ptes(page
, newpage
, false);
2851 if (is_zone_device_page(page
))
2854 putback_lru_page(page
);
2856 if (newpage
!= page
) {
2857 unlock_page(newpage
);
2858 if (is_zone_device_page(newpage
))
2861 putback_lru_page(newpage
);
2867 * migrate_vma() - migrate a range of memory inside vma
2869 * @ops: migration callback for allocating destination memory and copying
2870 * @vma: virtual memory area containing the range to be migrated
2871 * @start: start address of the range to migrate (inclusive)
2872 * @end: end address of the range to migrate (exclusive)
2873 * @src: array of hmm_pfn_t containing source pfns
2874 * @dst: array of hmm_pfn_t containing destination pfns
2875 * @private: pointer passed back to each of the callback
2876 * Returns: 0 on success, error code otherwise
2878 * This function tries to migrate a range of memory virtual address range, using
2879 * callbacks to allocate and copy memory from source to destination. First it
2880 * collects all the pages backing each virtual address in the range, saving this
2881 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2882 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2883 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2884 * in the corresponding src array entry. It then restores any pages that are
2885 * pinned, by remapping and unlocking those pages.
2887 * At this point it calls the alloc_and_copy() callback. For documentation on
2888 * what is expected from that callback, see struct migrate_vma_ops comments in
2889 * include/linux/migrate.h
2891 * After the alloc_and_copy() callback, this function goes over each entry in
2892 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2893 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2894 * then the function tries to migrate struct page information from the source
2895 * struct page to the destination struct page. If it fails to migrate the struct
2896 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2899 * At this point all successfully migrated pages have an entry in the src
2900 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2901 * array entry with MIGRATE_PFN_VALID flag set.
2903 * It then calls the finalize_and_map() callback. See comments for "struct
2904 * migrate_vma_ops", in include/linux/migrate.h for details about
2905 * finalize_and_map() behavior.
2907 * After the finalize_and_map() callback, for successfully migrated pages, this
2908 * function updates the CPU page table to point to new pages, otherwise it
2909 * restores the CPU page table to point to the original source pages.
2911 * Function returns 0 after the above steps, even if no pages were migrated
2912 * (The function only returns an error if any of the arguments are invalid.)
2914 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2915 * unsigned long entries.
2917 int migrate_vma(const struct migrate_vma_ops
*ops
,
2918 struct vm_area_struct
*vma
,
2919 unsigned long start
,
2925 struct migrate_vma migrate
;
2927 /* Sanity check the arguments */
2930 if (!vma
|| is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_SPECIAL
))
2932 if (start
< vma
->vm_start
|| start
>= vma
->vm_end
)
2934 if (end
<= vma
->vm_start
|| end
> vma
->vm_end
)
2936 if (!ops
|| !src
|| !dst
|| start
>= end
)
2939 memset(src
, 0, sizeof(*src
) * ((end
- start
) >> PAGE_SHIFT
));
2942 migrate
.start
= start
;
2948 /* Collect, and try to unmap source pages */
2949 migrate_vma_collect(&migrate
);
2950 if (!migrate
.cpages
)
2953 /* Lock and isolate page */
2954 migrate_vma_prepare(&migrate
);
2955 if (!migrate
.cpages
)
2959 migrate_vma_unmap(&migrate
);
2960 if (!migrate
.cpages
)
2964 * At this point pages are locked and unmapped, and thus they have
2965 * stable content and can safely be copied to destination memory that
2966 * is allocated by the callback.
2968 * Note that migration can fail in migrate_vma_struct_page() for each
2971 ops
->alloc_and_copy(vma
, src
, dst
, start
, end
, private);
2973 /* This does the real migration of struct page */
2974 migrate_vma_pages(&migrate
);
2976 ops
->finalize_and_map(vma
, src
, dst
, start
, end
, private);
2978 /* Unlock and remap pages */
2979 migrate_vma_finalize(&migrate
);
2983 EXPORT_SYMBOL(migrate_vma
);
2984 #endif /* defined(MIGRATE_VMA_HELPER) */