6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
48 #include <linux/uaccess.h>
49 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags) (0)
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min
= CONFIG_ARCH_MMAP_RND_BITS_MIN
;
61 const int mmap_rnd_bits_max
= CONFIG_ARCH_MMAP_RND_BITS_MAX
;
62 int mmap_rnd_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_BITS
;
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN
;
66 const int mmap_rnd_compat_bits_max
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX
;
67 int mmap_rnd_compat_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS
;
70 static bool ignore_rlimit_data
;
71 core_param(ignore_rlimit_data
, ignore_rlimit_data
, bool, 0644);
73 static void unmap_region(struct mm_struct
*mm
,
74 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
75 unsigned long start
, unsigned long end
);
77 /* description of effects of mapping type and prot in current implementation.
78 * this is due to the limited x86 page protection hardware. The expected
79 * behavior is in parens:
82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
84 * w: (no) no w: (no) no w: (yes) yes w: (no) no
85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
88 * w: (no) no w: (no) no w: (copy) copy w: (no) no
89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
97 pgprot_t protection_map
[16] __ro_after_init
= {
98 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
99 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
102 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
104 return __pgprot(pgprot_val(protection_map
[vm_flags
&
105 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
106 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
108 EXPORT_SYMBOL(vm_get_page_prot
);
110 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
112 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct
*vma
)
118 unsigned long vm_flags
= vma
->vm_flags
;
119 pgprot_t vm_page_prot
;
121 vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
122 if (vma_wants_writenotify(vma
, vm_page_prot
)) {
123 vm_flags
&= ~VM_SHARED
;
124 vm_page_prot
= vm_pgprot_modify(vm_page_prot
, vm_flags
);
126 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127 WRITE_ONCE(vma
->vm_page_prot
, vm_page_prot
);
131 * Requires inode->i_mapping->i_mmap_rwsem
133 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
134 struct file
*file
, struct address_space
*mapping
)
136 if (vma
->vm_flags
& VM_DENYWRITE
)
137 atomic_inc(&file_inode(file
)->i_writecount
);
138 if (vma
->vm_flags
& VM_SHARED
)
139 mapping_unmap_writable(mapping
);
141 flush_dcache_mmap_lock(mapping
);
142 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
143 flush_dcache_mmap_unlock(mapping
);
147 * Unlink a file-based vm structure from its interval tree, to hide
148 * vma from rmap and vmtruncate before freeing its page tables.
150 void unlink_file_vma(struct vm_area_struct
*vma
)
152 struct file
*file
= vma
->vm_file
;
155 struct address_space
*mapping
= file
->f_mapping
;
156 i_mmap_lock_write(mapping
);
157 __remove_shared_vm_struct(vma
, file
, mapping
);
158 i_mmap_unlock_write(mapping
);
163 * Close a vm structure and free it, returning the next.
165 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
167 struct vm_area_struct
*next
= vma
->vm_next
;
170 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
171 vma
->vm_ops
->close(vma
);
174 mpol_put(vma_policy(vma
));
175 kmem_cache_free(vm_area_cachep
, vma
);
179 static int do_brk(unsigned long addr
, unsigned long len
, struct list_head
*uf
);
181 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
183 unsigned long retval
;
184 unsigned long newbrk
, oldbrk
;
185 struct mm_struct
*mm
= current
->mm
;
186 struct vm_area_struct
*next
;
187 unsigned long min_brk
;
191 if (down_write_killable(&mm
->mmap_sem
))
194 #ifdef CONFIG_COMPAT_BRK
196 * CONFIG_COMPAT_BRK can still be overridden by setting
197 * randomize_va_space to 2, which will still cause mm->start_brk
198 * to be arbitrarily shifted
200 if (current
->brk_randomized
)
201 min_brk
= mm
->start_brk
;
203 min_brk
= mm
->end_data
;
205 min_brk
= mm
->start_brk
;
211 * Check against rlimit here. If this check is done later after the test
212 * of oldbrk with newbrk then it can escape the test and let the data
213 * segment grow beyond its set limit the in case where the limit is
214 * not page aligned -Ram Gupta
216 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
217 mm
->end_data
, mm
->start_data
))
220 newbrk
= PAGE_ALIGN(brk
);
221 oldbrk
= PAGE_ALIGN(mm
->brk
);
222 if (oldbrk
== newbrk
)
225 /* Always allow shrinking brk. */
226 if (brk
<= mm
->brk
) {
227 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
, &uf
))
232 /* Check against existing mmap mappings. */
233 next
= find_vma(mm
, oldbrk
);
234 if (next
&& newbrk
+ PAGE_SIZE
> vm_start_gap(next
))
237 /* Ok, looks good - let it rip. */
238 if (do_brk(oldbrk
, newbrk
-oldbrk
, &uf
) < 0)
243 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
244 up_write(&mm
->mmap_sem
);
245 userfaultfd_unmap_complete(mm
, &uf
);
247 mm_populate(oldbrk
, newbrk
- oldbrk
);
252 up_write(&mm
->mmap_sem
);
256 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
258 unsigned long max
, prev_end
, subtree_gap
;
261 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
262 * allow two stack_guard_gaps between them here, and when choosing
263 * an unmapped area; whereas when expanding we only require one.
264 * That's a little inconsistent, but keeps the code here simpler.
266 max
= vm_start_gap(vma
);
268 prev_end
= vm_end_gap(vma
->vm_prev
);
274 if (vma
->vm_rb
.rb_left
) {
275 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
276 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
277 if (subtree_gap
> max
)
280 if (vma
->vm_rb
.rb_right
) {
281 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
282 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
283 if (subtree_gap
> max
)
289 #ifdef CONFIG_DEBUG_VM_RB
290 static int browse_rb(struct mm_struct
*mm
)
292 struct rb_root
*root
= &mm
->mm_rb
;
293 int i
= 0, j
, bug
= 0;
294 struct rb_node
*nd
, *pn
= NULL
;
295 unsigned long prev
= 0, pend
= 0;
297 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
298 struct vm_area_struct
*vma
;
299 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
300 if (vma
->vm_start
< prev
) {
301 pr_emerg("vm_start %lx < prev %lx\n",
302 vma
->vm_start
, prev
);
305 if (vma
->vm_start
< pend
) {
306 pr_emerg("vm_start %lx < pend %lx\n",
307 vma
->vm_start
, pend
);
310 if (vma
->vm_start
> vma
->vm_end
) {
311 pr_emerg("vm_start %lx > vm_end %lx\n",
312 vma
->vm_start
, vma
->vm_end
);
315 spin_lock(&mm
->page_table_lock
);
316 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
317 pr_emerg("free gap %lx, correct %lx\n",
319 vma_compute_subtree_gap(vma
));
322 spin_unlock(&mm
->page_table_lock
);
325 prev
= vma
->vm_start
;
329 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
332 pr_emerg("backwards %d, forwards %d\n", j
, i
);
338 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
342 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
343 struct vm_area_struct
*vma
;
344 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
345 VM_BUG_ON_VMA(vma
!= ignore
&&
346 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
351 static void validate_mm(struct mm_struct
*mm
)
355 unsigned long highest_address
= 0;
356 struct vm_area_struct
*vma
= mm
->mmap
;
359 struct anon_vma
*anon_vma
= vma
->anon_vma
;
360 struct anon_vma_chain
*avc
;
363 anon_vma_lock_read(anon_vma
);
364 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
365 anon_vma_interval_tree_verify(avc
);
366 anon_vma_unlock_read(anon_vma
);
369 highest_address
= vm_end_gap(vma
);
373 if (i
!= mm
->map_count
) {
374 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
377 if (highest_address
!= mm
->highest_vm_end
) {
378 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
379 mm
->highest_vm_end
, highest_address
);
383 if (i
!= mm
->map_count
) {
385 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
388 VM_BUG_ON_MM(bug
, mm
);
391 #define validate_mm_rb(root, ignore) do { } while (0)
392 #define validate_mm(mm) do { } while (0)
395 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
396 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
399 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
400 * vma->vm_prev->vm_end values changed, without modifying the vma's position
403 static void vma_gap_update(struct vm_area_struct
*vma
)
406 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
407 * function that does exacltly what we want.
409 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
412 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
413 struct rb_root
*root
)
415 /* All rb_subtree_gap values must be consistent prior to insertion */
416 validate_mm_rb(root
, NULL
);
418 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
421 static void __vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
424 * Note rb_erase_augmented is a fairly large inline function,
425 * so make sure we instantiate it only once with our desired
426 * augmented rbtree callbacks.
428 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
431 static __always_inline
void vma_rb_erase_ignore(struct vm_area_struct
*vma
,
432 struct rb_root
*root
,
433 struct vm_area_struct
*ignore
)
436 * All rb_subtree_gap values must be consistent prior to erase,
437 * with the possible exception of the "next" vma being erased if
438 * next->vm_start was reduced.
440 validate_mm_rb(root
, ignore
);
442 __vma_rb_erase(vma
, root
);
445 static __always_inline
void vma_rb_erase(struct vm_area_struct
*vma
,
446 struct rb_root
*root
)
449 * All rb_subtree_gap values must be consistent prior to erase,
450 * with the possible exception of the vma being erased.
452 validate_mm_rb(root
, vma
);
454 __vma_rb_erase(vma
, root
);
458 * vma has some anon_vma assigned, and is already inserted on that
459 * anon_vma's interval trees.
461 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
462 * vma must be removed from the anon_vma's interval trees using
463 * anon_vma_interval_tree_pre_update_vma().
465 * After the update, the vma will be reinserted using
466 * anon_vma_interval_tree_post_update_vma().
468 * The entire update must be protected by exclusive mmap_sem and by
469 * the root anon_vma's mutex.
472 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
474 struct anon_vma_chain
*avc
;
476 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
477 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
481 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
483 struct anon_vma_chain
*avc
;
485 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
486 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
489 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
490 unsigned long end
, struct vm_area_struct
**pprev
,
491 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
493 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
495 __rb_link
= &mm
->mm_rb
.rb_node
;
496 rb_prev
= __rb_parent
= NULL
;
499 struct vm_area_struct
*vma_tmp
;
501 __rb_parent
= *__rb_link
;
502 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
504 if (vma_tmp
->vm_end
> addr
) {
505 /* Fail if an existing vma overlaps the area */
506 if (vma_tmp
->vm_start
< end
)
508 __rb_link
= &__rb_parent
->rb_left
;
510 rb_prev
= __rb_parent
;
511 __rb_link
= &__rb_parent
->rb_right
;
517 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
518 *rb_link
= __rb_link
;
519 *rb_parent
= __rb_parent
;
523 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
524 unsigned long addr
, unsigned long end
)
526 unsigned long nr_pages
= 0;
527 struct vm_area_struct
*vma
;
529 /* Find first overlaping mapping */
530 vma
= find_vma_intersection(mm
, addr
, end
);
534 nr_pages
= (min(end
, vma
->vm_end
) -
535 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
537 /* Iterate over the rest of the overlaps */
538 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
539 unsigned long overlap_len
;
541 if (vma
->vm_start
> end
)
544 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
545 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
551 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
552 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
554 /* Update tracking information for the gap following the new vma. */
556 vma_gap_update(vma
->vm_next
);
558 mm
->highest_vm_end
= vm_end_gap(vma
);
561 * vma->vm_prev wasn't known when we followed the rbtree to find the
562 * correct insertion point for that vma. As a result, we could not
563 * update the vma vm_rb parents rb_subtree_gap values on the way down.
564 * So, we first insert the vma with a zero rb_subtree_gap value
565 * (to be consistent with what we did on the way down), and then
566 * immediately update the gap to the correct value. Finally we
567 * rebalance the rbtree after all augmented values have been set.
569 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
570 vma
->rb_subtree_gap
= 0;
572 vma_rb_insert(vma
, &mm
->mm_rb
);
575 static void __vma_link_file(struct vm_area_struct
*vma
)
581 struct address_space
*mapping
= file
->f_mapping
;
583 if (vma
->vm_flags
& VM_DENYWRITE
)
584 atomic_dec(&file_inode(file
)->i_writecount
);
585 if (vma
->vm_flags
& VM_SHARED
)
586 atomic_inc(&mapping
->i_mmap_writable
);
588 flush_dcache_mmap_lock(mapping
);
589 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
590 flush_dcache_mmap_unlock(mapping
);
595 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
596 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
597 struct rb_node
*rb_parent
)
599 __vma_link_list(mm
, vma
, prev
, rb_parent
);
600 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
603 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
604 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
605 struct rb_node
*rb_parent
)
607 struct address_space
*mapping
= NULL
;
610 mapping
= vma
->vm_file
->f_mapping
;
611 i_mmap_lock_write(mapping
);
614 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
615 __vma_link_file(vma
);
618 i_mmap_unlock_write(mapping
);
625 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
626 * mm's list and rbtree. It has already been inserted into the interval tree.
628 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
630 struct vm_area_struct
*prev
;
631 struct rb_node
**rb_link
, *rb_parent
;
633 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
634 &prev
, &rb_link
, &rb_parent
))
636 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
640 static __always_inline
void __vma_unlink_common(struct mm_struct
*mm
,
641 struct vm_area_struct
*vma
,
642 struct vm_area_struct
*prev
,
644 struct vm_area_struct
*ignore
)
646 struct vm_area_struct
*next
;
648 vma_rb_erase_ignore(vma
, &mm
->mm_rb
, ignore
);
651 prev
->vm_next
= next
;
655 prev
->vm_next
= next
;
660 next
->vm_prev
= prev
;
663 vmacache_invalidate(mm
);
666 static inline void __vma_unlink_prev(struct mm_struct
*mm
,
667 struct vm_area_struct
*vma
,
668 struct vm_area_struct
*prev
)
670 __vma_unlink_common(mm
, vma
, prev
, true, vma
);
674 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
675 * is already present in an i_mmap tree without adjusting the tree.
676 * The following helper function should be used when such adjustments
677 * are necessary. The "insert" vma (if any) is to be inserted
678 * before we drop the necessary locks.
680 int __vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
681 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
,
682 struct vm_area_struct
*expand
)
684 struct mm_struct
*mm
= vma
->vm_mm
;
685 struct vm_area_struct
*next
= vma
->vm_next
, *orig_vma
= vma
;
686 struct address_space
*mapping
= NULL
;
687 struct rb_root
*root
= NULL
;
688 struct anon_vma
*anon_vma
= NULL
;
689 struct file
*file
= vma
->vm_file
;
690 bool start_changed
= false, end_changed
= false;
691 long adjust_next
= 0;
694 if (next
&& !insert
) {
695 struct vm_area_struct
*exporter
= NULL
, *importer
= NULL
;
697 if (end
>= next
->vm_end
) {
699 * vma expands, overlapping all the next, and
700 * perhaps the one after too (mprotect case 6).
701 * The only other cases that gets here are
702 * case 1, case 7 and case 8.
704 if (next
== expand
) {
706 * The only case where we don't expand "vma"
707 * and we expand "next" instead is case 8.
709 VM_WARN_ON(end
!= next
->vm_end
);
711 * remove_next == 3 means we're
712 * removing "vma" and that to do so we
713 * swapped "vma" and "next".
716 VM_WARN_ON(file
!= next
->vm_file
);
719 VM_WARN_ON(expand
!= vma
);
721 * case 1, 6, 7, remove_next == 2 is case 6,
722 * remove_next == 1 is case 1 or 7.
724 remove_next
= 1 + (end
> next
->vm_end
);
725 VM_WARN_ON(remove_next
== 2 &&
726 end
!= next
->vm_next
->vm_end
);
727 VM_WARN_ON(remove_next
== 1 &&
728 end
!= next
->vm_end
);
729 /* trim end to next, for case 6 first pass */
737 * If next doesn't have anon_vma, import from vma after
738 * next, if the vma overlaps with it.
740 if (remove_next
== 2 && !next
->anon_vma
)
741 exporter
= next
->vm_next
;
743 } else if (end
> next
->vm_start
) {
745 * vma expands, overlapping part of the next:
746 * mprotect case 5 shifting the boundary up.
748 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
751 VM_WARN_ON(expand
!= importer
);
752 } else if (end
< vma
->vm_end
) {
754 * vma shrinks, and !insert tells it's not
755 * split_vma inserting another: so it must be
756 * mprotect case 4 shifting the boundary down.
758 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
761 VM_WARN_ON(expand
!= importer
);
765 * Easily overlooked: when mprotect shifts the boundary,
766 * make sure the expanding vma has anon_vma set if the
767 * shrinking vma had, to cover any anon pages imported.
769 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
772 importer
->anon_vma
= exporter
->anon_vma
;
773 error
= anon_vma_clone(importer
, exporter
);
779 vma_adjust_trans_huge(orig_vma
, start
, end
, adjust_next
);
782 mapping
= file
->f_mapping
;
783 root
= &mapping
->i_mmap
;
784 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
787 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
789 i_mmap_lock_write(mapping
);
792 * Put into interval tree now, so instantiated pages
793 * are visible to arm/parisc __flush_dcache_page
794 * throughout; but we cannot insert into address
795 * space until vma start or end is updated.
797 __vma_link_file(insert
);
801 anon_vma
= vma
->anon_vma
;
802 if (!anon_vma
&& adjust_next
)
803 anon_vma
= next
->anon_vma
;
805 VM_WARN_ON(adjust_next
&& next
->anon_vma
&&
806 anon_vma
!= next
->anon_vma
);
807 anon_vma_lock_write(anon_vma
);
808 anon_vma_interval_tree_pre_update_vma(vma
);
810 anon_vma_interval_tree_pre_update_vma(next
);
814 flush_dcache_mmap_lock(mapping
);
815 vma_interval_tree_remove(vma
, root
);
817 vma_interval_tree_remove(next
, root
);
820 if (start
!= vma
->vm_start
) {
821 vma
->vm_start
= start
;
822 start_changed
= true;
824 if (end
!= vma
->vm_end
) {
828 vma
->vm_pgoff
= pgoff
;
830 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
831 next
->vm_pgoff
+= adjust_next
;
836 vma_interval_tree_insert(next
, root
);
837 vma_interval_tree_insert(vma
, root
);
838 flush_dcache_mmap_unlock(mapping
);
843 * vma_merge has merged next into vma, and needs
844 * us to remove next before dropping the locks.
846 if (remove_next
!= 3)
847 __vma_unlink_prev(mm
, next
, vma
);
850 * vma is not before next if they've been
853 * pre-swap() next->vm_start was reduced so
854 * tell validate_mm_rb to ignore pre-swap()
855 * "next" (which is stored in post-swap()
858 __vma_unlink_common(mm
, next
, NULL
, false, vma
);
860 __remove_shared_vm_struct(next
, file
, mapping
);
863 * split_vma has split insert from vma, and needs
864 * us to insert it before dropping the locks
865 * (it may either follow vma or precede it).
867 __insert_vm_struct(mm
, insert
);
873 mm
->highest_vm_end
= vm_end_gap(vma
);
874 else if (!adjust_next
)
875 vma_gap_update(next
);
880 anon_vma_interval_tree_post_update_vma(vma
);
882 anon_vma_interval_tree_post_update_vma(next
);
883 anon_vma_unlock_write(anon_vma
);
886 i_mmap_unlock_write(mapping
);
897 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
901 anon_vma_merge(vma
, next
);
903 mpol_put(vma_policy(next
));
904 kmem_cache_free(vm_area_cachep
, next
);
906 * In mprotect's case 6 (see comments on vma_merge),
907 * we must remove another next too. It would clutter
908 * up the code too much to do both in one go.
910 if (remove_next
!= 3) {
912 * If "next" was removed and vma->vm_end was
913 * expanded (up) over it, in turn
914 * "next->vm_prev->vm_end" changed and the
915 * "vma->vm_next" gap must be updated.
920 * For the scope of the comment "next" and
921 * "vma" considered pre-swap(): if "vma" was
922 * removed, next->vm_start was expanded (down)
923 * over it and the "next" gap must be updated.
924 * Because of the swap() the post-swap() "vma"
925 * actually points to pre-swap() "next"
926 * (post-swap() "next" as opposed is now a
931 if (remove_next
== 2) {
937 vma_gap_update(next
);
940 * If remove_next == 2 we obviously can't
943 * If remove_next == 3 we can't reach this
944 * path because pre-swap() next is always not
945 * NULL. pre-swap() "next" is not being
946 * removed and its next->vm_end is not altered
947 * (and furthermore "end" already matches
948 * next->vm_end in remove_next == 3).
950 * We reach this only in the remove_next == 1
951 * case if the "next" vma that was removed was
952 * the highest vma of the mm. However in such
953 * case next->vm_end == "end" and the extended
954 * "vma" has vma->vm_end == next->vm_end so
955 * mm->highest_vm_end doesn't need any update
956 * in remove_next == 1 case.
958 VM_WARN_ON(mm
->highest_vm_end
!= vm_end_gap(vma
));
970 * If the vma has a ->close operation then the driver probably needs to release
971 * per-vma resources, so we don't attempt to merge those.
973 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
974 struct file
*file
, unsigned long vm_flags
,
975 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
978 * VM_SOFTDIRTY should not prevent from VMA merging, if we
979 * match the flags but dirty bit -- the caller should mark
980 * merged VMA as dirty. If dirty bit won't be excluded from
981 * comparison, we increase pressue on the memory system forcing
982 * the kernel to generate new VMAs when old one could be
985 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
987 if (vma
->vm_file
!= file
)
989 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
991 if (!is_mergeable_vm_userfaultfd_ctx(vma
, vm_userfaultfd_ctx
))
996 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
997 struct anon_vma
*anon_vma2
,
998 struct vm_area_struct
*vma
)
1001 * The list_is_singular() test is to avoid merging VMA cloned from
1002 * parents. This can improve scalability caused by anon_vma lock.
1004 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
1005 list_is_singular(&vma
->anon_vma_chain
)))
1007 return anon_vma1
== anon_vma2
;
1011 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1012 * in front of (at a lower virtual address and file offset than) the vma.
1014 * We cannot merge two vmas if they have differently assigned (non-NULL)
1015 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1017 * We don't check here for the merged mmap wrapping around the end of pagecache
1018 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1019 * wrap, nor mmaps which cover the final page at index -1UL.
1022 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1023 struct anon_vma
*anon_vma
, struct file
*file
,
1025 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1027 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1028 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1029 if (vma
->vm_pgoff
== vm_pgoff
)
1036 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1037 * beyond (at a higher virtual address and file offset than) the vma.
1039 * We cannot merge two vmas if they have differently assigned (non-NULL)
1040 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1043 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1044 struct anon_vma
*anon_vma
, struct file
*file
,
1046 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1048 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1049 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1051 vm_pglen
= vma_pages(vma
);
1052 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
1059 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1060 * whether that can be merged with its predecessor or its successor.
1061 * Or both (it neatly fills a hole).
1063 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1064 * certain not to be mapped by the time vma_merge is called; but when
1065 * called for mprotect, it is certain to be already mapped (either at
1066 * an offset within prev, or at the start of next), and the flags of
1067 * this area are about to be changed to vm_flags - and the no-change
1068 * case has already been eliminated.
1070 * The following mprotect cases have to be considered, where AAAA is
1071 * the area passed down from mprotect_fixup, never extending beyond one
1072 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1074 * AAAA AAAA AAAA AAAA
1075 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1076 * cannot merge might become might become might become
1077 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1078 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1079 * mremap move: PPPPXXXXXXXX 8
1081 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1082 * might become case 1 below case 2 below case 3 below
1084 * It is important for case 8 that the the vma NNNN overlapping the
1085 * region AAAA is never going to extended over XXXX. Instead XXXX must
1086 * be extended in region AAAA and NNNN must be removed. This way in
1087 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1088 * rmap_locks, the properties of the merged vma will be already
1089 * correct for the whole merged range. Some of those properties like
1090 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1091 * be correct for the whole merged range immediately after the
1092 * rmap_locks are released. Otherwise if XXXX would be removed and
1093 * NNNN would be extended over the XXXX range, remove_migration_ptes
1094 * or other rmap walkers (if working on addresses beyond the "end"
1095 * parameter) may establish ptes with the wrong permissions of NNNN
1096 * instead of the right permissions of XXXX.
1098 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
1099 struct vm_area_struct
*prev
, unsigned long addr
,
1100 unsigned long end
, unsigned long vm_flags
,
1101 struct anon_vma
*anon_vma
, struct file
*file
,
1102 pgoff_t pgoff
, struct mempolicy
*policy
,
1103 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1105 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
1106 struct vm_area_struct
*area
, *next
;
1110 * We later require that vma->vm_flags == vm_flags,
1111 * so this tests vma->vm_flags & VM_SPECIAL, too.
1113 if (vm_flags
& VM_SPECIAL
)
1117 next
= prev
->vm_next
;
1121 if (area
&& area
->vm_end
== end
) /* cases 6, 7, 8 */
1122 next
= next
->vm_next
;
1124 /* verify some invariant that must be enforced by the caller */
1125 VM_WARN_ON(prev
&& addr
<= prev
->vm_start
);
1126 VM_WARN_ON(area
&& end
> area
->vm_end
);
1127 VM_WARN_ON(addr
>= end
);
1130 * Can it merge with the predecessor?
1132 if (prev
&& prev
->vm_end
== addr
&&
1133 mpol_equal(vma_policy(prev
), policy
) &&
1134 can_vma_merge_after(prev
, vm_flags
,
1135 anon_vma
, file
, pgoff
,
1136 vm_userfaultfd_ctx
)) {
1138 * OK, it can. Can we now merge in the successor as well?
1140 if (next
&& end
== next
->vm_start
&&
1141 mpol_equal(policy
, vma_policy(next
)) &&
1142 can_vma_merge_before(next
, vm_flags
,
1145 vm_userfaultfd_ctx
) &&
1146 is_mergeable_anon_vma(prev
->anon_vma
,
1147 next
->anon_vma
, NULL
)) {
1149 err
= __vma_adjust(prev
, prev
->vm_start
,
1150 next
->vm_end
, prev
->vm_pgoff
, NULL
,
1152 } else /* cases 2, 5, 7 */
1153 err
= __vma_adjust(prev
, prev
->vm_start
,
1154 end
, prev
->vm_pgoff
, NULL
, prev
);
1157 khugepaged_enter_vma_merge(prev
, vm_flags
);
1162 * Can this new request be merged in front of next?
1164 if (next
&& end
== next
->vm_start
&&
1165 mpol_equal(policy
, vma_policy(next
)) &&
1166 can_vma_merge_before(next
, vm_flags
,
1167 anon_vma
, file
, pgoff
+pglen
,
1168 vm_userfaultfd_ctx
)) {
1169 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1170 err
= __vma_adjust(prev
, prev
->vm_start
,
1171 addr
, prev
->vm_pgoff
, NULL
, next
);
1172 else { /* cases 3, 8 */
1173 err
= __vma_adjust(area
, addr
, next
->vm_end
,
1174 next
->vm_pgoff
- pglen
, NULL
, next
);
1176 * In case 3 area is already equal to next and
1177 * this is a noop, but in case 8 "area" has
1178 * been removed and next was expanded over it.
1184 khugepaged_enter_vma_merge(area
, vm_flags
);
1192 * Rough compatbility check to quickly see if it's even worth looking
1193 * at sharing an anon_vma.
1195 * They need to have the same vm_file, and the flags can only differ
1196 * in things that mprotect may change.
1198 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1199 * we can merge the two vma's. For example, we refuse to merge a vma if
1200 * there is a vm_ops->close() function, because that indicates that the
1201 * driver is doing some kind of reference counting. But that doesn't
1202 * really matter for the anon_vma sharing case.
1204 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1206 return a
->vm_end
== b
->vm_start
&&
1207 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1208 a
->vm_file
== b
->vm_file
&&
1209 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1210 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1214 * Do some basic sanity checking to see if we can re-use the anon_vma
1215 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1216 * the same as 'old', the other will be the new one that is trying
1217 * to share the anon_vma.
1219 * NOTE! This runs with mm_sem held for reading, so it is possible that
1220 * the anon_vma of 'old' is concurrently in the process of being set up
1221 * by another page fault trying to merge _that_. But that's ok: if it
1222 * is being set up, that automatically means that it will be a singleton
1223 * acceptable for merging, so we can do all of this optimistically. But
1224 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1226 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1227 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1228 * is to return an anon_vma that is "complex" due to having gone through
1231 * We also make sure that the two vma's are compatible (adjacent,
1232 * and with the same memory policies). That's all stable, even with just
1233 * a read lock on the mm_sem.
1235 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1237 if (anon_vma_compatible(a
, b
)) {
1238 struct anon_vma
*anon_vma
= READ_ONCE(old
->anon_vma
);
1240 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1247 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1248 * neighbouring vmas for a suitable anon_vma, before it goes off
1249 * to allocate a new anon_vma. It checks because a repetitive
1250 * sequence of mprotects and faults may otherwise lead to distinct
1251 * anon_vmas being allocated, preventing vma merge in subsequent
1254 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1256 struct anon_vma
*anon_vma
;
1257 struct vm_area_struct
*near
;
1259 near
= vma
->vm_next
;
1263 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1267 near
= vma
->vm_prev
;
1271 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1276 * There's no absolute need to look only at touching neighbours:
1277 * we could search further afield for "compatible" anon_vmas.
1278 * But it would probably just be a waste of time searching,
1279 * or lead to too many vmas hanging off the same anon_vma.
1280 * We're trying to allow mprotect remerging later on,
1281 * not trying to minimize memory used for anon_vmas.
1287 * If a hint addr is less than mmap_min_addr change hint to be as
1288 * low as possible but still greater than mmap_min_addr
1290 static inline unsigned long round_hint_to_min(unsigned long hint
)
1293 if (((void *)hint
!= NULL
) &&
1294 (hint
< mmap_min_addr
))
1295 return PAGE_ALIGN(mmap_min_addr
);
1299 static inline int mlock_future_check(struct mm_struct
*mm
,
1300 unsigned long flags
,
1303 unsigned long locked
, lock_limit
;
1305 /* mlock MCL_FUTURE? */
1306 if (flags
& VM_LOCKED
) {
1307 locked
= len
>> PAGE_SHIFT
;
1308 locked
+= mm
->locked_vm
;
1309 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1310 lock_limit
>>= PAGE_SHIFT
;
1311 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1318 * The caller must hold down_write(¤t->mm->mmap_sem).
1320 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1321 unsigned long len
, unsigned long prot
,
1322 unsigned long flags
, vm_flags_t vm_flags
,
1323 unsigned long pgoff
, unsigned long *populate
,
1324 struct list_head
*uf
)
1326 struct mm_struct
*mm
= current
->mm
;
1335 * Does the application expect PROT_READ to imply PROT_EXEC?
1337 * (the exception is when the underlying filesystem is noexec
1338 * mounted, in which case we dont add PROT_EXEC.)
1340 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1341 if (!(file
&& path_noexec(&file
->f_path
)))
1344 if (!(flags
& MAP_FIXED
))
1345 addr
= round_hint_to_min(addr
);
1347 /* Careful about overflows.. */
1348 len
= PAGE_ALIGN(len
);
1352 /* offset overflow? */
1353 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1356 /* Too many mappings? */
1357 if (mm
->map_count
> sysctl_max_map_count
)
1360 /* Obtain the address to map to. we verify (or select) it and ensure
1361 * that it represents a valid section of the address space.
1363 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1364 if (offset_in_page(addr
))
1367 if (prot
== PROT_EXEC
) {
1368 pkey
= execute_only_pkey(mm
);
1373 /* Do simple checking here so the lower-level routines won't have
1374 * to. we assume access permissions have been handled by the open
1375 * of the memory object, so we don't do any here.
1377 vm_flags
|= calc_vm_prot_bits(prot
, pkey
) | calc_vm_flag_bits(flags
) |
1378 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1380 if (flags
& MAP_LOCKED
)
1381 if (!can_do_mlock())
1384 if (mlock_future_check(mm
, vm_flags
, len
))
1388 struct inode
*inode
= file_inode(file
);
1390 switch (flags
& MAP_TYPE
) {
1392 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1396 * Make sure we don't allow writing to an append-only
1399 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1403 * Make sure there are no mandatory locks on the file.
1405 if (locks_verify_locked(file
))
1408 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1409 if (!(file
->f_mode
& FMODE_WRITE
))
1410 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1414 if (!(file
->f_mode
& FMODE_READ
))
1416 if (path_noexec(&file
->f_path
)) {
1417 if (vm_flags
& VM_EXEC
)
1419 vm_flags
&= ~VM_MAYEXEC
;
1422 if (!file
->f_op
->mmap
)
1424 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1432 switch (flags
& MAP_TYPE
) {
1434 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1440 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1444 * Set pgoff according to addr for anon_vma.
1446 pgoff
= addr
>> PAGE_SHIFT
;
1454 * Set 'VM_NORESERVE' if we should not account for the
1455 * memory use of this mapping.
1457 if (flags
& MAP_NORESERVE
) {
1458 /* We honor MAP_NORESERVE if allowed to overcommit */
1459 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1460 vm_flags
|= VM_NORESERVE
;
1462 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1463 if (file
&& is_file_hugepages(file
))
1464 vm_flags
|= VM_NORESERVE
;
1467 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
, uf
);
1468 if (!IS_ERR_VALUE(addr
) &&
1469 ((vm_flags
& VM_LOCKED
) ||
1470 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1475 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1476 unsigned long, prot
, unsigned long, flags
,
1477 unsigned long, fd
, unsigned long, pgoff
)
1479 struct file
*file
= NULL
;
1480 unsigned long retval
;
1482 if (!(flags
& MAP_ANONYMOUS
)) {
1483 audit_mmap_fd(fd
, flags
);
1487 if (is_file_hugepages(file
))
1488 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1490 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1492 } else if (flags
& MAP_HUGETLB
) {
1493 struct user_struct
*user
= NULL
;
1496 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1500 len
= ALIGN(len
, huge_page_size(hs
));
1502 * VM_NORESERVE is used because the reservations will be
1503 * taken when vm_ops->mmap() is called
1504 * A dummy user value is used because we are not locking
1505 * memory so no accounting is necessary
1507 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1509 &user
, HUGETLB_ANONHUGE_INODE
,
1510 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1512 return PTR_ERR(file
);
1515 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1517 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1524 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1525 struct mmap_arg_struct
{
1529 unsigned long flags
;
1531 unsigned long offset
;
1534 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1536 struct mmap_arg_struct a
;
1538 if (copy_from_user(&a
, arg
, sizeof(a
)))
1540 if (offset_in_page(a
.offset
))
1543 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1544 a
.offset
>> PAGE_SHIFT
);
1546 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1549 * Some shared mappigns will want the pages marked read-only
1550 * to track write events. If so, we'll downgrade vm_page_prot
1551 * to the private version (using protection_map[] without the
1554 int vma_wants_writenotify(struct vm_area_struct
*vma
, pgprot_t vm_page_prot
)
1556 vm_flags_t vm_flags
= vma
->vm_flags
;
1557 const struct vm_operations_struct
*vm_ops
= vma
->vm_ops
;
1559 /* If it was private or non-writable, the write bit is already clear */
1560 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1563 /* The backer wishes to know when pages are first written to? */
1564 if (vm_ops
&& (vm_ops
->page_mkwrite
|| vm_ops
->pfn_mkwrite
))
1567 /* The open routine did something to the protections that pgprot_modify
1568 * won't preserve? */
1569 if (pgprot_val(vm_page_prot
) !=
1570 pgprot_val(vm_pgprot_modify(vm_page_prot
, vm_flags
)))
1573 /* Do we need to track softdirty? */
1574 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1577 /* Specialty mapping? */
1578 if (vm_flags
& VM_PFNMAP
)
1581 /* Can the mapping track the dirty pages? */
1582 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1583 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1587 * We account for memory if it's a private writeable mapping,
1588 * not hugepages and VM_NORESERVE wasn't set.
1590 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1593 * hugetlb has its own accounting separate from the core VM
1594 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1596 if (file
&& is_file_hugepages(file
))
1599 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1602 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1603 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
,
1604 struct list_head
*uf
)
1606 struct mm_struct
*mm
= current
->mm
;
1607 struct vm_area_struct
*vma
, *prev
;
1609 struct rb_node
**rb_link
, *rb_parent
;
1610 unsigned long charged
= 0;
1612 /* Check against address space limit. */
1613 if (!may_expand_vm(mm
, vm_flags
, len
>> PAGE_SHIFT
)) {
1614 unsigned long nr_pages
;
1617 * MAP_FIXED may remove pages of mappings that intersects with
1618 * requested mapping. Account for the pages it would unmap.
1620 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1622 if (!may_expand_vm(mm
, vm_flags
,
1623 (len
>> PAGE_SHIFT
) - nr_pages
))
1627 /* Clear old maps */
1628 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
1630 if (do_munmap(mm
, addr
, len
, uf
))
1635 * Private writable mapping: check memory availability
1637 if (accountable_mapping(file
, vm_flags
)) {
1638 charged
= len
>> PAGE_SHIFT
;
1639 if (security_vm_enough_memory_mm(mm
, charged
))
1641 vm_flags
|= VM_ACCOUNT
;
1645 * Can we just expand an old mapping?
1647 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1648 NULL
, file
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
1653 * Determine the object being mapped and call the appropriate
1654 * specific mapper. the address has already been validated, but
1655 * not unmapped, but the maps are removed from the list.
1657 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1664 vma
->vm_start
= addr
;
1665 vma
->vm_end
= addr
+ len
;
1666 vma
->vm_flags
= vm_flags
;
1667 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1668 vma
->vm_pgoff
= pgoff
;
1669 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1672 if (vm_flags
& VM_DENYWRITE
) {
1673 error
= deny_write_access(file
);
1677 if (vm_flags
& VM_SHARED
) {
1678 error
= mapping_map_writable(file
->f_mapping
);
1680 goto allow_write_and_free_vma
;
1683 /* ->mmap() can change vma->vm_file, but must guarantee that
1684 * vma_link() below can deny write-access if VM_DENYWRITE is set
1685 * and map writably if VM_SHARED is set. This usually means the
1686 * new file must not have been exposed to user-space, yet.
1688 vma
->vm_file
= get_file(file
);
1689 error
= call_mmap(file
, vma
);
1691 goto unmap_and_free_vma
;
1693 /* Can addr have changed??
1695 * Answer: Yes, several device drivers can do it in their
1696 * f_op->mmap method. -DaveM
1697 * Bug: If addr is changed, prev, rb_link, rb_parent should
1698 * be updated for vma_link()
1700 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1702 addr
= vma
->vm_start
;
1703 vm_flags
= vma
->vm_flags
;
1704 } else if (vm_flags
& VM_SHARED
) {
1705 error
= shmem_zero_setup(vma
);
1710 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1711 /* Once vma denies write, undo our temporary denial count */
1713 if (vm_flags
& VM_SHARED
)
1714 mapping_unmap_writable(file
->f_mapping
);
1715 if (vm_flags
& VM_DENYWRITE
)
1716 allow_write_access(file
);
1718 file
= vma
->vm_file
;
1720 perf_event_mmap(vma
);
1722 vm_stat_account(mm
, vm_flags
, len
>> PAGE_SHIFT
);
1723 if (vm_flags
& VM_LOCKED
) {
1724 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1725 vma
== get_gate_vma(current
->mm
)))
1726 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1728 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
1735 * New (or expanded) vma always get soft dirty status.
1736 * Otherwise user-space soft-dirty page tracker won't
1737 * be able to distinguish situation when vma area unmapped,
1738 * then new mapped in-place (which must be aimed as
1739 * a completely new data area).
1741 vma
->vm_flags
|= VM_SOFTDIRTY
;
1743 vma_set_page_prot(vma
);
1748 vma
->vm_file
= NULL
;
1751 /* Undo any partial mapping done by a device driver. */
1752 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1754 if (vm_flags
& VM_SHARED
)
1755 mapping_unmap_writable(file
->f_mapping
);
1756 allow_write_and_free_vma
:
1757 if (vm_flags
& VM_DENYWRITE
)
1758 allow_write_access(file
);
1760 kmem_cache_free(vm_area_cachep
, vma
);
1763 vm_unacct_memory(charged
);
1767 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1770 * We implement the search by looking for an rbtree node that
1771 * immediately follows a suitable gap. That is,
1772 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1773 * - gap_end = vma->vm_start >= info->low_limit + length;
1774 * - gap_end - gap_start >= length
1777 struct mm_struct
*mm
= current
->mm
;
1778 struct vm_area_struct
*vma
;
1779 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1781 /* Adjust search length to account for worst case alignment overhead */
1782 length
= info
->length
+ info
->align_mask
;
1783 if (length
< info
->length
)
1786 /* Adjust search limits by the desired length */
1787 if (info
->high_limit
< length
)
1789 high_limit
= info
->high_limit
- length
;
1791 if (info
->low_limit
> high_limit
)
1793 low_limit
= info
->low_limit
+ length
;
1795 /* Check if rbtree root looks promising */
1796 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1798 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1799 if (vma
->rb_subtree_gap
< length
)
1803 /* Visit left subtree if it looks promising */
1804 gap_end
= vm_start_gap(vma
);
1805 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1806 struct vm_area_struct
*left
=
1807 rb_entry(vma
->vm_rb
.rb_left
,
1808 struct vm_area_struct
, vm_rb
);
1809 if (left
->rb_subtree_gap
>= length
) {
1815 gap_start
= vma
->vm_prev
? vm_end_gap(vma
->vm_prev
) : 0;
1817 /* Check if current node has a suitable gap */
1818 if (gap_start
> high_limit
)
1820 if (gap_end
>= low_limit
&&
1821 gap_end
> gap_start
&& gap_end
- gap_start
>= length
)
1824 /* Visit right subtree if it looks promising */
1825 if (vma
->vm_rb
.rb_right
) {
1826 struct vm_area_struct
*right
=
1827 rb_entry(vma
->vm_rb
.rb_right
,
1828 struct vm_area_struct
, vm_rb
);
1829 if (right
->rb_subtree_gap
>= length
) {
1835 /* Go back up the rbtree to find next candidate node */
1837 struct rb_node
*prev
= &vma
->vm_rb
;
1838 if (!rb_parent(prev
))
1840 vma
= rb_entry(rb_parent(prev
),
1841 struct vm_area_struct
, vm_rb
);
1842 if (prev
== vma
->vm_rb
.rb_left
) {
1843 gap_start
= vm_end_gap(vma
->vm_prev
);
1844 gap_end
= vm_start_gap(vma
);
1851 /* Check highest gap, which does not precede any rbtree node */
1852 gap_start
= mm
->highest_vm_end
;
1853 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1854 if (gap_start
> high_limit
)
1858 /* We found a suitable gap. Clip it with the original low_limit. */
1859 if (gap_start
< info
->low_limit
)
1860 gap_start
= info
->low_limit
;
1862 /* Adjust gap address to the desired alignment */
1863 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1865 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1866 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1870 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1872 struct mm_struct
*mm
= current
->mm
;
1873 struct vm_area_struct
*vma
;
1874 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1876 /* Adjust search length to account for worst case alignment overhead */
1877 length
= info
->length
+ info
->align_mask
;
1878 if (length
< info
->length
)
1882 * Adjust search limits by the desired length.
1883 * See implementation comment at top of unmapped_area().
1885 gap_end
= info
->high_limit
;
1886 if (gap_end
< length
)
1888 high_limit
= gap_end
- length
;
1890 if (info
->low_limit
> high_limit
)
1892 low_limit
= info
->low_limit
+ length
;
1894 /* Check highest gap, which does not precede any rbtree node */
1895 gap_start
= mm
->highest_vm_end
;
1896 if (gap_start
<= high_limit
)
1899 /* Check if rbtree root looks promising */
1900 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1902 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1903 if (vma
->rb_subtree_gap
< length
)
1907 /* Visit right subtree if it looks promising */
1908 gap_start
= vma
->vm_prev
? vm_end_gap(vma
->vm_prev
) : 0;
1909 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1910 struct vm_area_struct
*right
=
1911 rb_entry(vma
->vm_rb
.rb_right
,
1912 struct vm_area_struct
, vm_rb
);
1913 if (right
->rb_subtree_gap
>= length
) {
1920 /* Check if current node has a suitable gap */
1921 gap_end
= vm_start_gap(vma
);
1922 if (gap_end
< low_limit
)
1924 if (gap_start
<= high_limit
&&
1925 gap_end
> gap_start
&& gap_end
- gap_start
>= length
)
1928 /* Visit left subtree if it looks promising */
1929 if (vma
->vm_rb
.rb_left
) {
1930 struct vm_area_struct
*left
=
1931 rb_entry(vma
->vm_rb
.rb_left
,
1932 struct vm_area_struct
, vm_rb
);
1933 if (left
->rb_subtree_gap
>= length
) {
1939 /* Go back up the rbtree to find next candidate node */
1941 struct rb_node
*prev
= &vma
->vm_rb
;
1942 if (!rb_parent(prev
))
1944 vma
= rb_entry(rb_parent(prev
),
1945 struct vm_area_struct
, vm_rb
);
1946 if (prev
== vma
->vm_rb
.rb_right
) {
1947 gap_start
= vma
->vm_prev
?
1948 vm_end_gap(vma
->vm_prev
) : 0;
1955 /* We found a suitable gap. Clip it with the original high_limit. */
1956 if (gap_end
> info
->high_limit
)
1957 gap_end
= info
->high_limit
;
1960 /* Compute highest gap address at the desired alignment */
1961 gap_end
-= info
->length
;
1962 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1964 VM_BUG_ON(gap_end
< info
->low_limit
);
1965 VM_BUG_ON(gap_end
< gap_start
);
1969 /* Get an address range which is currently unmapped.
1970 * For shmat() with addr=0.
1972 * Ugly calling convention alert:
1973 * Return value with the low bits set means error value,
1975 * if (ret & ~PAGE_MASK)
1978 * This function "knows" that -ENOMEM has the bits set.
1980 #ifndef HAVE_ARCH_UNMAPPED_AREA
1982 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1983 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1985 struct mm_struct
*mm
= current
->mm
;
1986 struct vm_area_struct
*vma
, *prev
;
1987 struct vm_unmapped_area_info info
;
1989 if (len
> TASK_SIZE
- mmap_min_addr
)
1992 if (flags
& MAP_FIXED
)
1996 addr
= PAGE_ALIGN(addr
);
1997 vma
= find_vma_prev(mm
, addr
, &prev
);
1998 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1999 (!vma
|| addr
+ len
<= vm_start_gap(vma
)) &&
2000 (!prev
|| addr
>= vm_end_gap(prev
)))
2006 info
.low_limit
= mm
->mmap_base
;
2007 info
.high_limit
= TASK_SIZE
;
2008 info
.align_mask
= 0;
2009 return vm_unmapped_area(&info
);
2014 * This mmap-allocator allocates new areas top-down from below the
2015 * stack's low limit (the base):
2017 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2019 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
2020 const unsigned long len
, const unsigned long pgoff
,
2021 const unsigned long flags
)
2023 struct vm_area_struct
*vma
, *prev
;
2024 struct mm_struct
*mm
= current
->mm
;
2025 unsigned long addr
= addr0
;
2026 struct vm_unmapped_area_info info
;
2028 /* requested length too big for entire address space */
2029 if (len
> TASK_SIZE
- mmap_min_addr
)
2032 if (flags
& MAP_FIXED
)
2035 /* requesting a specific address */
2037 addr
= PAGE_ALIGN(addr
);
2038 vma
= find_vma_prev(mm
, addr
, &prev
);
2039 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
2040 (!vma
|| addr
+ len
<= vm_start_gap(vma
)) &&
2041 (!prev
|| addr
>= vm_end_gap(prev
)))
2045 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
2047 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
2048 info
.high_limit
= mm
->mmap_base
;
2049 info
.align_mask
= 0;
2050 addr
= vm_unmapped_area(&info
);
2053 * A failed mmap() very likely causes application failure,
2054 * so fall back to the bottom-up function here. This scenario
2055 * can happen with large stack limits and large mmap()
2058 if (offset_in_page(addr
)) {
2059 VM_BUG_ON(addr
!= -ENOMEM
);
2061 info
.low_limit
= TASK_UNMAPPED_BASE
;
2062 info
.high_limit
= TASK_SIZE
;
2063 addr
= vm_unmapped_area(&info
);
2071 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
2072 unsigned long pgoff
, unsigned long flags
)
2074 unsigned long (*get_area
)(struct file
*, unsigned long,
2075 unsigned long, unsigned long, unsigned long);
2077 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
2081 /* Careful about overflows.. */
2082 if (len
> TASK_SIZE
)
2085 get_area
= current
->mm
->get_unmapped_area
;
2087 if (file
->f_op
->get_unmapped_area
)
2088 get_area
= file
->f_op
->get_unmapped_area
;
2089 } else if (flags
& MAP_SHARED
) {
2091 * mmap_region() will call shmem_zero_setup() to create a file,
2092 * so use shmem's get_unmapped_area in case it can be huge.
2093 * do_mmap_pgoff() will clear pgoff, so match alignment.
2096 get_area
= shmem_get_unmapped_area
;
2099 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
2100 if (IS_ERR_VALUE(addr
))
2103 if (addr
> TASK_SIZE
- len
)
2105 if (offset_in_page(addr
))
2108 error
= security_mmap_addr(addr
);
2109 return error
? error
: addr
;
2112 EXPORT_SYMBOL(get_unmapped_area
);
2114 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2115 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
2117 struct rb_node
*rb_node
;
2118 struct vm_area_struct
*vma
;
2120 /* Check the cache first. */
2121 vma
= vmacache_find(mm
, addr
);
2125 rb_node
= mm
->mm_rb
.rb_node
;
2128 struct vm_area_struct
*tmp
;
2130 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2132 if (tmp
->vm_end
> addr
) {
2134 if (tmp
->vm_start
<= addr
)
2136 rb_node
= rb_node
->rb_left
;
2138 rb_node
= rb_node
->rb_right
;
2142 vmacache_update(addr
, vma
);
2146 EXPORT_SYMBOL(find_vma
);
2149 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2151 struct vm_area_struct
*
2152 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
2153 struct vm_area_struct
**pprev
)
2155 struct vm_area_struct
*vma
;
2157 vma
= find_vma(mm
, addr
);
2159 *pprev
= vma
->vm_prev
;
2161 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
2164 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2165 rb_node
= rb_node
->rb_right
;
2172 * Verify that the stack growth is acceptable and
2173 * update accounting. This is shared with both the
2174 * grow-up and grow-down cases.
2176 static int acct_stack_growth(struct vm_area_struct
*vma
,
2177 unsigned long size
, unsigned long grow
)
2179 struct mm_struct
*mm
= vma
->vm_mm
;
2180 unsigned long new_start
;
2182 /* address space limit tests */
2183 if (!may_expand_vm(mm
, vma
->vm_flags
, grow
))
2186 /* Stack limit test */
2187 if (size
> rlimit(RLIMIT_STACK
))
2190 /* mlock limit tests */
2191 if (vma
->vm_flags
& VM_LOCKED
) {
2192 unsigned long locked
;
2193 unsigned long limit
;
2194 locked
= mm
->locked_vm
+ grow
;
2195 limit
= rlimit(RLIMIT_MEMLOCK
);
2196 limit
>>= PAGE_SHIFT
;
2197 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2201 /* Check to ensure the stack will not grow into a hugetlb-only region */
2202 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2204 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2208 * Overcommit.. This must be the final test, as it will
2209 * update security statistics.
2211 if (security_vm_enough_memory_mm(mm
, grow
))
2217 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2219 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2220 * vma is the last one with address > vma->vm_end. Have to extend vma.
2222 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2224 struct mm_struct
*mm
= vma
->vm_mm
;
2225 struct vm_area_struct
*next
;
2226 unsigned long gap_addr
;
2229 if (!(vma
->vm_flags
& VM_GROWSUP
))
2232 /* Guard against exceeding limits of the address space. */
2233 address
&= PAGE_MASK
;
2234 if (address
>= (TASK_SIZE
& PAGE_MASK
))
2236 address
+= PAGE_SIZE
;
2238 /* Enforce stack_guard_gap */
2239 gap_addr
= address
+ stack_guard_gap
;
2241 /* Guard against overflow */
2242 if (gap_addr
< address
|| gap_addr
> TASK_SIZE
)
2243 gap_addr
= TASK_SIZE
;
2245 next
= vma
->vm_next
;
2246 if (next
&& next
->vm_start
< gap_addr
&&
2247 (next
->vm_flags
& (VM_WRITE
|VM_READ
|VM_EXEC
))) {
2248 if (!(next
->vm_flags
& VM_GROWSUP
))
2250 /* Check that both stack segments have the same anon_vma? */
2253 /* We must make sure the anon_vma is allocated. */
2254 if (unlikely(anon_vma_prepare(vma
)))
2258 * vma->vm_start/vm_end cannot change under us because the caller
2259 * is required to hold the mmap_sem in read mode. We need the
2260 * anon_vma lock to serialize against concurrent expand_stacks.
2262 anon_vma_lock_write(vma
->anon_vma
);
2264 /* Somebody else might have raced and expanded it already */
2265 if (address
> vma
->vm_end
) {
2266 unsigned long size
, grow
;
2268 size
= address
- vma
->vm_start
;
2269 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2272 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2273 error
= acct_stack_growth(vma
, size
, grow
);
2276 * vma_gap_update() doesn't support concurrent
2277 * updates, but we only hold a shared mmap_sem
2278 * lock here, so we need to protect against
2279 * concurrent vma expansions.
2280 * anon_vma_lock_write() doesn't help here, as
2281 * we don't guarantee that all growable vmas
2282 * in a mm share the same root anon vma.
2283 * So, we reuse mm->page_table_lock to guard
2284 * against concurrent vma expansions.
2286 spin_lock(&mm
->page_table_lock
);
2287 if (vma
->vm_flags
& VM_LOCKED
)
2288 mm
->locked_vm
+= grow
;
2289 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2290 anon_vma_interval_tree_pre_update_vma(vma
);
2291 vma
->vm_end
= address
;
2292 anon_vma_interval_tree_post_update_vma(vma
);
2294 vma_gap_update(vma
->vm_next
);
2296 mm
->highest_vm_end
= vm_end_gap(vma
);
2297 spin_unlock(&mm
->page_table_lock
);
2299 perf_event_mmap(vma
);
2303 anon_vma_unlock_write(vma
->anon_vma
);
2304 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2308 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2311 * vma is the first one with address < vma->vm_start. Have to extend vma.
2313 int expand_downwards(struct vm_area_struct
*vma
,
2314 unsigned long address
)
2316 struct mm_struct
*mm
= vma
->vm_mm
;
2317 struct vm_area_struct
*prev
;
2320 address
&= PAGE_MASK
;
2321 error
= security_mmap_addr(address
);
2325 /* Enforce stack_guard_gap */
2326 prev
= vma
->vm_prev
;
2327 /* Check that both stack segments have the same anon_vma? */
2328 if (prev
&& !(prev
->vm_flags
& VM_GROWSDOWN
) &&
2329 (prev
->vm_flags
& (VM_WRITE
|VM_READ
|VM_EXEC
))) {
2330 if (address
- prev
->vm_end
< stack_guard_gap
)
2334 /* We must make sure the anon_vma is allocated. */
2335 if (unlikely(anon_vma_prepare(vma
)))
2339 * vma->vm_start/vm_end cannot change under us because the caller
2340 * is required to hold the mmap_sem in read mode. We need the
2341 * anon_vma lock to serialize against concurrent expand_stacks.
2343 anon_vma_lock_write(vma
->anon_vma
);
2345 /* Somebody else might have raced and expanded it already */
2346 if (address
< vma
->vm_start
) {
2347 unsigned long size
, grow
;
2349 size
= vma
->vm_end
- address
;
2350 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2353 if (grow
<= vma
->vm_pgoff
) {
2354 error
= acct_stack_growth(vma
, size
, grow
);
2357 * vma_gap_update() doesn't support concurrent
2358 * updates, but we only hold a shared mmap_sem
2359 * lock here, so we need to protect against
2360 * concurrent vma expansions.
2361 * anon_vma_lock_write() doesn't help here, as
2362 * we don't guarantee that all growable vmas
2363 * in a mm share the same root anon vma.
2364 * So, we reuse mm->page_table_lock to guard
2365 * against concurrent vma expansions.
2367 spin_lock(&mm
->page_table_lock
);
2368 if (vma
->vm_flags
& VM_LOCKED
)
2369 mm
->locked_vm
+= grow
;
2370 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2371 anon_vma_interval_tree_pre_update_vma(vma
);
2372 vma
->vm_start
= address
;
2373 vma
->vm_pgoff
-= grow
;
2374 anon_vma_interval_tree_post_update_vma(vma
);
2375 vma_gap_update(vma
);
2376 spin_unlock(&mm
->page_table_lock
);
2378 perf_event_mmap(vma
);
2382 anon_vma_unlock_write(vma
->anon_vma
);
2383 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2388 /* enforced gap between the expanding stack and other mappings. */
2389 unsigned long stack_guard_gap
= 256UL<<PAGE_SHIFT
;
2391 static int __init
cmdline_parse_stack_guard_gap(char *p
)
2396 val
= simple_strtoul(p
, &endptr
, 10);
2398 stack_guard_gap
= val
<< PAGE_SHIFT
;
2402 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap
);
2404 #ifdef CONFIG_STACK_GROWSUP
2405 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2407 return expand_upwards(vma
, address
);
2410 struct vm_area_struct
*
2411 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2413 struct vm_area_struct
*vma
, *prev
;
2416 vma
= find_vma_prev(mm
, addr
, &prev
);
2417 if (vma
&& (vma
->vm_start
<= addr
))
2419 if (!prev
|| expand_stack(prev
, addr
))
2421 if (prev
->vm_flags
& VM_LOCKED
)
2422 populate_vma_page_range(prev
, addr
, prev
->vm_end
, NULL
);
2426 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2428 return expand_downwards(vma
, address
);
2431 struct vm_area_struct
*
2432 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2434 struct vm_area_struct
*vma
;
2435 unsigned long start
;
2438 vma
= find_vma(mm
, addr
);
2441 if (vma
->vm_start
<= addr
)
2443 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2445 start
= vma
->vm_start
;
2446 if (expand_stack(vma
, addr
))
2448 if (vma
->vm_flags
& VM_LOCKED
)
2449 populate_vma_page_range(vma
, addr
, start
, NULL
);
2454 EXPORT_SYMBOL_GPL(find_extend_vma
);
2457 * Ok - we have the memory areas we should free on the vma list,
2458 * so release them, and do the vma updates.
2460 * Called with the mm semaphore held.
2462 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2464 unsigned long nr_accounted
= 0;
2466 /* Update high watermark before we lower total_vm */
2467 update_hiwater_vm(mm
);
2469 long nrpages
= vma_pages(vma
);
2471 if (vma
->vm_flags
& VM_ACCOUNT
)
2472 nr_accounted
+= nrpages
;
2473 vm_stat_account(mm
, vma
->vm_flags
, -nrpages
);
2474 vma
= remove_vma(vma
);
2476 vm_unacct_memory(nr_accounted
);
2481 * Get rid of page table information in the indicated region.
2483 * Called with the mm semaphore held.
2485 static void unmap_region(struct mm_struct
*mm
,
2486 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2487 unsigned long start
, unsigned long end
)
2489 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2490 struct mmu_gather tlb
;
2493 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2494 update_hiwater_rss(mm
);
2495 unmap_vmas(&tlb
, vma
, start
, end
);
2496 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2497 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2498 tlb_finish_mmu(&tlb
, start
, end
);
2502 * Create a list of vma's touched by the unmap, removing them from the mm's
2503 * vma list as we go..
2506 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2507 struct vm_area_struct
*prev
, unsigned long end
)
2509 struct vm_area_struct
**insertion_point
;
2510 struct vm_area_struct
*tail_vma
= NULL
;
2512 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2513 vma
->vm_prev
= NULL
;
2515 vma_rb_erase(vma
, &mm
->mm_rb
);
2519 } while (vma
&& vma
->vm_start
< end
);
2520 *insertion_point
= vma
;
2522 vma
->vm_prev
= prev
;
2523 vma_gap_update(vma
);
2525 mm
->highest_vm_end
= prev
? vm_end_gap(prev
) : 0;
2526 tail_vma
->vm_next
= NULL
;
2528 /* Kill the cache */
2529 vmacache_invalidate(mm
);
2533 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2534 * has already been checked or doesn't make sense to fail.
2536 int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2537 unsigned long addr
, int new_below
)
2539 struct vm_area_struct
*new;
2542 if (is_vm_hugetlb_page(vma
) && (addr
&
2543 ~(huge_page_mask(hstate_vma(vma
)))))
2546 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2550 /* most fields are the same, copy all, and then fixup */
2553 INIT_LIST_HEAD(&new->anon_vma_chain
);
2558 new->vm_start
= addr
;
2559 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2562 err
= vma_dup_policy(vma
, new);
2566 err
= anon_vma_clone(new, vma
);
2571 get_file(new->vm_file
);
2573 if (new->vm_ops
&& new->vm_ops
->open
)
2574 new->vm_ops
->open(new);
2577 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2578 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2580 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2586 /* Clean everything up if vma_adjust failed. */
2587 if (new->vm_ops
&& new->vm_ops
->close
)
2588 new->vm_ops
->close(new);
2591 unlink_anon_vmas(new);
2593 mpol_put(vma_policy(new));
2595 kmem_cache_free(vm_area_cachep
, new);
2600 * Split a vma into two pieces at address 'addr', a new vma is allocated
2601 * either for the first part or the tail.
2603 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2604 unsigned long addr
, int new_below
)
2606 if (mm
->map_count
>= sysctl_max_map_count
)
2609 return __split_vma(mm
, vma
, addr
, new_below
);
2612 /* Munmap is split into 2 main parts -- this part which finds
2613 * what needs doing, and the areas themselves, which do the
2614 * work. This now handles partial unmappings.
2615 * Jeremy Fitzhardinge <jeremy@goop.org>
2617 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
,
2618 struct list_head
*uf
)
2621 struct vm_area_struct
*vma
, *prev
, *last
;
2623 if ((offset_in_page(start
)) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2626 len
= PAGE_ALIGN(len
);
2630 /* Find the first overlapping VMA */
2631 vma
= find_vma(mm
, start
);
2634 prev
= vma
->vm_prev
;
2635 /* we have start < vma->vm_end */
2637 /* if it doesn't overlap, we have nothing.. */
2639 if (vma
->vm_start
>= end
)
2643 int error
= userfaultfd_unmap_prep(vma
, start
, end
, uf
);
2650 * If we need to split any vma, do it now to save pain later.
2652 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2653 * unmapped vm_area_struct will remain in use: so lower split_vma
2654 * places tmp vma above, and higher split_vma places tmp vma below.
2656 if (start
> vma
->vm_start
) {
2660 * Make sure that map_count on return from munmap() will
2661 * not exceed its limit; but let map_count go just above
2662 * its limit temporarily, to help free resources as expected.
2664 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2667 error
= __split_vma(mm
, vma
, start
, 0);
2673 /* Does it split the last one? */
2674 last
= find_vma(mm
, end
);
2675 if (last
&& end
> last
->vm_start
) {
2676 int error
= __split_vma(mm
, last
, end
, 1);
2680 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2683 * unlock any mlock()ed ranges before detaching vmas
2685 if (mm
->locked_vm
) {
2686 struct vm_area_struct
*tmp
= vma
;
2687 while (tmp
&& tmp
->vm_start
< end
) {
2688 if (tmp
->vm_flags
& VM_LOCKED
) {
2689 mm
->locked_vm
-= vma_pages(tmp
);
2690 munlock_vma_pages_all(tmp
);
2697 * Remove the vma's, and unmap the actual pages
2699 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2700 unmap_region(mm
, vma
, prev
, start
, end
);
2702 arch_unmap(mm
, vma
, start
, end
);
2704 /* Fix up all other VM information */
2705 remove_vma_list(mm
, vma
);
2710 int vm_munmap(unsigned long start
, size_t len
)
2713 struct mm_struct
*mm
= current
->mm
;
2716 if (down_write_killable(&mm
->mmap_sem
))
2719 ret
= do_munmap(mm
, start
, len
, &uf
);
2720 up_write(&mm
->mmap_sem
);
2721 userfaultfd_unmap_complete(mm
, &uf
);
2724 EXPORT_SYMBOL(vm_munmap
);
2726 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2728 profile_munmap(addr
);
2729 return vm_munmap(addr
, len
);
2734 * Emulation of deprecated remap_file_pages() syscall.
2736 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2737 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2740 struct mm_struct
*mm
= current
->mm
;
2741 struct vm_area_struct
*vma
;
2742 unsigned long populate
= 0;
2743 unsigned long ret
= -EINVAL
;
2746 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2747 current
->comm
, current
->pid
);
2751 start
= start
& PAGE_MASK
;
2752 size
= size
& PAGE_MASK
;
2754 if (start
+ size
<= start
)
2757 /* Does pgoff wrap? */
2758 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2761 if (down_write_killable(&mm
->mmap_sem
))
2764 vma
= find_vma(mm
, start
);
2766 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2769 if (start
< vma
->vm_start
)
2772 if (start
+ size
> vma
->vm_end
) {
2773 struct vm_area_struct
*next
;
2775 for (next
= vma
->vm_next
; next
; next
= next
->vm_next
) {
2776 /* hole between vmas ? */
2777 if (next
->vm_start
!= next
->vm_prev
->vm_end
)
2780 if (next
->vm_file
!= vma
->vm_file
)
2783 if (next
->vm_flags
!= vma
->vm_flags
)
2786 if (start
+ size
<= next
->vm_end
)
2794 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2795 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2796 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2798 flags
&= MAP_NONBLOCK
;
2799 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2800 if (vma
->vm_flags
& VM_LOCKED
) {
2801 struct vm_area_struct
*tmp
;
2802 flags
|= MAP_LOCKED
;
2804 /* drop PG_Mlocked flag for over-mapped range */
2805 for (tmp
= vma
; tmp
->vm_start
>= start
+ size
;
2806 tmp
= tmp
->vm_next
) {
2808 * Split pmd and munlock page on the border
2811 vma_adjust_trans_huge(tmp
, start
, start
+ size
, 0);
2813 munlock_vma_pages_range(tmp
,
2814 max(tmp
->vm_start
, start
),
2815 min(tmp
->vm_end
, start
+ size
));
2819 file
= get_file(vma
->vm_file
);
2820 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2821 prot
, flags
, pgoff
, &populate
, NULL
);
2824 up_write(&mm
->mmap_sem
);
2826 mm_populate(ret
, populate
);
2827 if (!IS_ERR_VALUE(ret
))
2832 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2834 #ifdef CONFIG_DEBUG_VM
2835 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2837 up_read(&mm
->mmap_sem
);
2843 * this is really a simplified "do_mmap". it only handles
2844 * anonymous maps. eventually we may be able to do some
2845 * brk-specific accounting here.
2847 static int do_brk_flags(unsigned long addr
, unsigned long request
, unsigned long flags
, struct list_head
*uf
)
2849 struct mm_struct
*mm
= current
->mm
;
2850 struct vm_area_struct
*vma
, *prev
;
2852 struct rb_node
**rb_link
, *rb_parent
;
2853 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2856 len
= PAGE_ALIGN(request
);
2862 /* Until we need other flags, refuse anything except VM_EXEC. */
2863 if ((flags
& (~VM_EXEC
)) != 0)
2865 flags
|= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2867 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2868 if (offset_in_page(error
))
2871 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
2876 * mm->mmap_sem is required to protect against another thread
2877 * changing the mappings in case we sleep.
2879 verify_mm_writelocked(mm
);
2882 * Clear old maps. this also does some error checking for us
2884 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
2886 if (do_munmap(mm
, addr
, len
, uf
))
2890 /* Check against address space limits *after* clearing old maps... */
2891 if (!may_expand_vm(mm
, flags
, len
>> PAGE_SHIFT
))
2894 if (mm
->map_count
> sysctl_max_map_count
)
2897 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2900 /* Can we just expand an old private anonymous mapping? */
2901 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2902 NULL
, NULL
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
2907 * create a vma struct for an anonymous mapping
2909 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2911 vm_unacct_memory(len
>> PAGE_SHIFT
);
2915 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2917 vma
->vm_start
= addr
;
2918 vma
->vm_end
= addr
+ len
;
2919 vma
->vm_pgoff
= pgoff
;
2920 vma
->vm_flags
= flags
;
2921 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2922 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2924 perf_event_mmap(vma
);
2925 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2926 mm
->data_vm
+= len
>> PAGE_SHIFT
;
2927 if (flags
& VM_LOCKED
)
2928 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2929 vma
->vm_flags
|= VM_SOFTDIRTY
;
2933 static int do_brk(unsigned long addr
, unsigned long len
, struct list_head
*uf
)
2935 return do_brk_flags(addr
, len
, 0, uf
);
2938 int vm_brk_flags(unsigned long addr
, unsigned long len
, unsigned long flags
)
2940 struct mm_struct
*mm
= current
->mm
;
2945 if (down_write_killable(&mm
->mmap_sem
))
2948 ret
= do_brk_flags(addr
, len
, flags
, &uf
);
2949 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2950 up_write(&mm
->mmap_sem
);
2951 userfaultfd_unmap_complete(mm
, &uf
);
2952 if (populate
&& !ret
)
2953 mm_populate(addr
, len
);
2956 EXPORT_SYMBOL(vm_brk_flags
);
2958 int vm_brk(unsigned long addr
, unsigned long len
)
2960 return vm_brk_flags(addr
, len
, 0);
2962 EXPORT_SYMBOL(vm_brk
);
2964 /* Release all mmaps. */
2965 void exit_mmap(struct mm_struct
*mm
)
2967 struct mmu_gather tlb
;
2968 struct vm_area_struct
*vma
;
2969 unsigned long nr_accounted
= 0;
2971 /* mm's last user has gone, and its about to be pulled down */
2972 mmu_notifier_release(mm
);
2974 if (mm
->locked_vm
) {
2977 if (vma
->vm_flags
& VM_LOCKED
)
2978 munlock_vma_pages_all(vma
);
2986 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2991 tlb_gather_mmu(&tlb
, mm
, 0, -1);
2992 /* update_hiwater_rss(mm) here? but nobody should be looking */
2993 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2994 unmap_vmas(&tlb
, vma
, 0, -1);
2996 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
2997 tlb_finish_mmu(&tlb
, 0, -1);
3000 * Walk the list again, actually closing and freeing it,
3001 * with preemption enabled, without holding any MM locks.
3004 if (vma
->vm_flags
& VM_ACCOUNT
)
3005 nr_accounted
+= vma_pages(vma
);
3006 vma
= remove_vma(vma
);
3008 vm_unacct_memory(nr_accounted
);
3011 /* Insert vm structure into process list sorted by address
3012 * and into the inode's i_mmap tree. If vm_file is non-NULL
3013 * then i_mmap_rwsem is taken here.
3015 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
3017 struct vm_area_struct
*prev
;
3018 struct rb_node
**rb_link
, *rb_parent
;
3020 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
3021 &prev
, &rb_link
, &rb_parent
))
3023 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
3024 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
3028 * The vm_pgoff of a purely anonymous vma should be irrelevant
3029 * until its first write fault, when page's anon_vma and index
3030 * are set. But now set the vm_pgoff it will almost certainly
3031 * end up with (unless mremap moves it elsewhere before that
3032 * first wfault), so /proc/pid/maps tells a consistent story.
3034 * By setting it to reflect the virtual start address of the
3035 * vma, merges and splits can happen in a seamless way, just
3036 * using the existing file pgoff checks and manipulations.
3037 * Similarly in do_mmap_pgoff and in do_brk.
3039 if (vma_is_anonymous(vma
)) {
3040 BUG_ON(vma
->anon_vma
);
3041 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
3044 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
3049 * Copy the vma structure to a new location in the same mm,
3050 * prior to moving page table entries, to effect an mremap move.
3052 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
3053 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
3054 bool *need_rmap_locks
)
3056 struct vm_area_struct
*vma
= *vmap
;
3057 unsigned long vma_start
= vma
->vm_start
;
3058 struct mm_struct
*mm
= vma
->vm_mm
;
3059 struct vm_area_struct
*new_vma
, *prev
;
3060 struct rb_node
**rb_link
, *rb_parent
;
3061 bool faulted_in_anon_vma
= true;
3064 * If anonymous vma has not yet been faulted, update new pgoff
3065 * to match new location, to increase its chance of merging.
3067 if (unlikely(vma_is_anonymous(vma
) && !vma
->anon_vma
)) {
3068 pgoff
= addr
>> PAGE_SHIFT
;
3069 faulted_in_anon_vma
= false;
3072 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
3073 return NULL
; /* should never get here */
3074 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
3075 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
),
3076 vma
->vm_userfaultfd_ctx
);
3079 * Source vma may have been merged into new_vma
3081 if (unlikely(vma_start
>= new_vma
->vm_start
&&
3082 vma_start
< new_vma
->vm_end
)) {
3084 * The only way we can get a vma_merge with
3085 * self during an mremap is if the vma hasn't
3086 * been faulted in yet and we were allowed to
3087 * reset the dst vma->vm_pgoff to the
3088 * destination address of the mremap to allow
3089 * the merge to happen. mremap must change the
3090 * vm_pgoff linearity between src and dst vmas
3091 * (in turn preventing a vma_merge) to be
3092 * safe. It is only safe to keep the vm_pgoff
3093 * linear if there are no pages mapped yet.
3095 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
3096 *vmap
= vma
= new_vma
;
3098 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
3100 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
3104 new_vma
->vm_start
= addr
;
3105 new_vma
->vm_end
= addr
+ len
;
3106 new_vma
->vm_pgoff
= pgoff
;
3107 if (vma_dup_policy(vma
, new_vma
))
3109 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
3110 if (anon_vma_clone(new_vma
, vma
))
3111 goto out_free_mempol
;
3112 if (new_vma
->vm_file
)
3113 get_file(new_vma
->vm_file
);
3114 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
3115 new_vma
->vm_ops
->open(new_vma
);
3116 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
3117 *need_rmap_locks
= false;
3122 mpol_put(vma_policy(new_vma
));
3124 kmem_cache_free(vm_area_cachep
, new_vma
);
3130 * Return true if the calling process may expand its vm space by the passed
3133 bool may_expand_vm(struct mm_struct
*mm
, vm_flags_t flags
, unsigned long npages
)
3135 if (mm
->total_vm
+ npages
> rlimit(RLIMIT_AS
) >> PAGE_SHIFT
)
3138 if (is_data_mapping(flags
) &&
3139 mm
->data_vm
+ npages
> rlimit(RLIMIT_DATA
) >> PAGE_SHIFT
) {
3140 /* Workaround for Valgrind */
3141 if (rlimit(RLIMIT_DATA
) == 0 &&
3142 mm
->data_vm
+ npages
<= rlimit_max(RLIMIT_DATA
) >> PAGE_SHIFT
)
3144 if (!ignore_rlimit_data
) {
3145 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3146 current
->comm
, current
->pid
,
3147 (mm
->data_vm
+ npages
) << PAGE_SHIFT
,
3148 rlimit(RLIMIT_DATA
));
3156 void vm_stat_account(struct mm_struct
*mm
, vm_flags_t flags
, long npages
)
3158 mm
->total_vm
+= npages
;
3160 if (is_exec_mapping(flags
))
3161 mm
->exec_vm
+= npages
;
3162 else if (is_stack_mapping(flags
))
3163 mm
->stack_vm
+= npages
;
3164 else if (is_data_mapping(flags
))
3165 mm
->data_vm
+= npages
;
3168 static int special_mapping_fault(struct vm_fault
*vmf
);
3171 * Having a close hook prevents vma merging regardless of flags.
3173 static void special_mapping_close(struct vm_area_struct
*vma
)
3177 static const char *special_mapping_name(struct vm_area_struct
*vma
)
3179 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
3182 static int special_mapping_mremap(struct vm_area_struct
*new_vma
)
3184 struct vm_special_mapping
*sm
= new_vma
->vm_private_data
;
3186 if (WARN_ON_ONCE(current
->mm
!= new_vma
->vm_mm
))
3190 return sm
->mremap(sm
, new_vma
);
3195 static const struct vm_operations_struct special_mapping_vmops
= {
3196 .close
= special_mapping_close
,
3197 .fault
= special_mapping_fault
,
3198 .mremap
= special_mapping_mremap
,
3199 .name
= special_mapping_name
,
3202 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
3203 .close
= special_mapping_close
,
3204 .fault
= special_mapping_fault
,
3207 static int special_mapping_fault(struct vm_fault
*vmf
)
3209 struct vm_area_struct
*vma
= vmf
->vma
;
3211 struct page
**pages
;
3213 if (vma
->vm_ops
== &legacy_special_mapping_vmops
) {
3214 pages
= vma
->vm_private_data
;
3216 struct vm_special_mapping
*sm
= vma
->vm_private_data
;
3219 return sm
->fault(sm
, vmf
->vma
, vmf
);
3224 for (pgoff
= vmf
->pgoff
; pgoff
&& *pages
; ++pages
)
3228 struct page
*page
= *pages
;
3234 return VM_FAULT_SIGBUS
;
3237 static struct vm_area_struct
*__install_special_mapping(
3238 struct mm_struct
*mm
,
3239 unsigned long addr
, unsigned long len
,
3240 unsigned long vm_flags
, void *priv
,
3241 const struct vm_operations_struct
*ops
)
3244 struct vm_area_struct
*vma
;
3246 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
3247 if (unlikely(vma
== NULL
))
3248 return ERR_PTR(-ENOMEM
);
3250 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
3252 vma
->vm_start
= addr
;
3253 vma
->vm_end
= addr
+ len
;
3255 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
3256 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
3259 vma
->vm_private_data
= priv
;
3261 ret
= insert_vm_struct(mm
, vma
);
3265 vm_stat_account(mm
, vma
->vm_flags
, len
>> PAGE_SHIFT
);
3267 perf_event_mmap(vma
);
3272 kmem_cache_free(vm_area_cachep
, vma
);
3273 return ERR_PTR(ret
);
3276 bool vma_is_special_mapping(const struct vm_area_struct
*vma
,
3277 const struct vm_special_mapping
*sm
)
3279 return vma
->vm_private_data
== sm
&&
3280 (vma
->vm_ops
== &special_mapping_vmops
||
3281 vma
->vm_ops
== &legacy_special_mapping_vmops
);
3285 * Called with mm->mmap_sem held for writing.
3286 * Insert a new vma covering the given region, with the given flags.
3287 * Its pages are supplied by the given array of struct page *.
3288 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3289 * The region past the last page supplied will always produce SIGBUS.
3290 * The array pointer and the pages it points to are assumed to stay alive
3291 * for as long as this mapping might exist.
3293 struct vm_area_struct
*_install_special_mapping(
3294 struct mm_struct
*mm
,
3295 unsigned long addr
, unsigned long len
,
3296 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3298 return __install_special_mapping(mm
, addr
, len
, vm_flags
, (void *)spec
,
3299 &special_mapping_vmops
);
3302 int install_special_mapping(struct mm_struct
*mm
,
3303 unsigned long addr
, unsigned long len
,
3304 unsigned long vm_flags
, struct page
**pages
)
3306 struct vm_area_struct
*vma
= __install_special_mapping(
3307 mm
, addr
, len
, vm_flags
, (void *)pages
,
3308 &legacy_special_mapping_vmops
);
3310 return PTR_ERR_OR_ZERO(vma
);
3313 static DEFINE_MUTEX(mm_all_locks_mutex
);
3315 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3317 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3319 * The LSB of head.next can't change from under us
3320 * because we hold the mm_all_locks_mutex.
3322 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3324 * We can safely modify head.next after taking the
3325 * anon_vma->root->rwsem. If some other vma in this mm shares
3326 * the same anon_vma we won't take it again.
3328 * No need of atomic instructions here, head.next
3329 * can't change from under us thanks to the
3330 * anon_vma->root->rwsem.
3332 if (__test_and_set_bit(0, (unsigned long *)
3333 &anon_vma
->root
->rb_root
.rb_node
))
3338 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3340 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3342 * AS_MM_ALL_LOCKS can't change from under us because
3343 * we hold the mm_all_locks_mutex.
3345 * Operations on ->flags have to be atomic because
3346 * even if AS_MM_ALL_LOCKS is stable thanks to the
3347 * mm_all_locks_mutex, there may be other cpus
3348 * changing other bitflags in parallel to us.
3350 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3352 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3357 * This operation locks against the VM for all pte/vma/mm related
3358 * operations that could ever happen on a certain mm. This includes
3359 * vmtruncate, try_to_unmap, and all page faults.
3361 * The caller must take the mmap_sem in write mode before calling
3362 * mm_take_all_locks(). The caller isn't allowed to release the
3363 * mmap_sem until mm_drop_all_locks() returns.
3365 * mmap_sem in write mode is required in order to block all operations
3366 * that could modify pagetables and free pages without need of
3367 * altering the vma layout. It's also needed in write mode to avoid new
3368 * anon_vmas to be associated with existing vmas.
3370 * A single task can't take more than one mm_take_all_locks() in a row
3371 * or it would deadlock.
3373 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3374 * mapping->flags avoid to take the same lock twice, if more than one
3375 * vma in this mm is backed by the same anon_vma or address_space.
3377 * We take locks in following order, accordingly to comment at beginning
3379 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3381 * - all i_mmap_rwsem locks;
3382 * - all anon_vma->rwseml
3384 * We can take all locks within these types randomly because the VM code
3385 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3386 * mm_all_locks_mutex.
3388 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3389 * that may have to take thousand of locks.
3391 * mm_take_all_locks() can fail if it's interrupted by signals.
3393 int mm_take_all_locks(struct mm_struct
*mm
)
3395 struct vm_area_struct
*vma
;
3396 struct anon_vma_chain
*avc
;
3398 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3400 mutex_lock(&mm_all_locks_mutex
);
3402 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3403 if (signal_pending(current
))
3405 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3406 is_vm_hugetlb_page(vma
))
3407 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3410 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3411 if (signal_pending(current
))
3413 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3414 !is_vm_hugetlb_page(vma
))
3415 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3418 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3419 if (signal_pending(current
))
3422 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3423 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3429 mm_drop_all_locks(mm
);
3433 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3435 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3437 * The LSB of head.next can't change to 0 from under
3438 * us because we hold the mm_all_locks_mutex.
3440 * We must however clear the bitflag before unlocking
3441 * the vma so the users using the anon_vma->rb_root will
3442 * never see our bitflag.
3444 * No need of atomic instructions here, head.next
3445 * can't change from under us until we release the
3446 * anon_vma->root->rwsem.
3448 if (!__test_and_clear_bit(0, (unsigned long *)
3449 &anon_vma
->root
->rb_root
.rb_node
))
3451 anon_vma_unlock_write(anon_vma
);
3455 static void vm_unlock_mapping(struct address_space
*mapping
)
3457 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3459 * AS_MM_ALL_LOCKS can't change to 0 from under us
3460 * because we hold the mm_all_locks_mutex.
3462 i_mmap_unlock_write(mapping
);
3463 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3470 * The mmap_sem cannot be released by the caller until
3471 * mm_drop_all_locks() returns.
3473 void mm_drop_all_locks(struct mm_struct
*mm
)
3475 struct vm_area_struct
*vma
;
3476 struct anon_vma_chain
*avc
;
3478 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3479 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3481 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3483 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3484 vm_unlock_anon_vma(avc
->anon_vma
);
3485 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3486 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3489 mutex_unlock(&mm_all_locks_mutex
);
3493 * initialise the percpu counter for VM
3495 void __init
mmap_init(void)
3499 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3504 * Initialise sysctl_user_reserve_kbytes.
3506 * This is intended to prevent a user from starting a single memory hogging
3507 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3510 * The default value is min(3% of free memory, 128MB)
3511 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3513 static int init_user_reserve(void)
3515 unsigned long free_kbytes
;
3517 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3519 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3522 subsys_initcall(init_user_reserve
);
3525 * Initialise sysctl_admin_reserve_kbytes.
3527 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3528 * to log in and kill a memory hogging process.
3530 * Systems with more than 256MB will reserve 8MB, enough to recover
3531 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3532 * only reserve 3% of free pages by default.
3534 static int init_admin_reserve(void)
3536 unsigned long free_kbytes
;
3538 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3540 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3543 subsys_initcall(init_admin_reserve
);
3546 * Reinititalise user and admin reserves if memory is added or removed.
3548 * The default user reserve max is 128MB, and the default max for the
3549 * admin reserve is 8MB. These are usually, but not always, enough to
3550 * enable recovery from a memory hogging process using login/sshd, a shell,
3551 * and tools like top. It may make sense to increase or even disable the
3552 * reserve depending on the existence of swap or variations in the recovery
3553 * tools. So, the admin may have changed them.
3555 * If memory is added and the reserves have been eliminated or increased above
3556 * the default max, then we'll trust the admin.
3558 * If memory is removed and there isn't enough free memory, then we
3559 * need to reset the reserves.
3561 * Otherwise keep the reserve set by the admin.
3563 static int reserve_mem_notifier(struct notifier_block
*nb
,
3564 unsigned long action
, void *data
)
3566 unsigned long tmp
, free_kbytes
;
3570 /* Default max is 128MB. Leave alone if modified by operator. */
3571 tmp
= sysctl_user_reserve_kbytes
;
3572 if (0 < tmp
&& tmp
< (1UL << 17))
3573 init_user_reserve();
3575 /* Default max is 8MB. Leave alone if modified by operator. */
3576 tmp
= sysctl_admin_reserve_kbytes
;
3577 if (0 < tmp
&& tmp
< (1UL << 13))
3578 init_admin_reserve();
3582 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3584 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3585 init_user_reserve();
3586 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3587 sysctl_user_reserve_kbytes
);
3590 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3591 init_admin_reserve();
3592 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3593 sysctl_admin_reserve_kbytes
);
3602 static struct notifier_block reserve_mem_nb
= {
3603 .notifier_call
= reserve_mem_notifier
,
3606 static int __meminit
init_reserve_notifier(void)
3608 if (register_hotmemory_notifier(&reserve_mem_nb
))
3609 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3613 subsys_initcall(init_reserve_notifier
);