4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/version.h>
42 #include <linux/ctype.h>
44 #include <linux/compat.h>
45 #include <linux/syscalls.h>
46 #include <linux/kprobes.h>
47 #include <linux/user_namespace.h>
49 #include <linux/kmsg_dump.h>
50 /* Move somewhere else to avoid recompiling? */
51 #include <generated/utsrelease.h>
53 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
57 #ifndef SET_UNALIGN_CTL
58 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
60 #ifndef GET_UNALIGN_CTL
61 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
64 # define SET_FPEMU_CTL(a,b) (-EINVAL)
67 # define GET_FPEMU_CTL(a,b) (-EINVAL)
70 # define SET_FPEXC_CTL(a,b) (-EINVAL)
73 # define GET_FPEXC_CTL(a,b) (-EINVAL)
76 # define GET_ENDIAN(a,b) (-EINVAL)
79 # define SET_ENDIAN(a,b) (-EINVAL)
82 # define GET_TSC_CTL(a) (-EINVAL)
85 # define SET_TSC_CTL(a) (-EINVAL)
89 * this is where the system-wide overflow UID and GID are defined, for
90 * architectures that now have 32-bit UID/GID but didn't in the past
93 int overflowuid
= DEFAULT_OVERFLOWUID
;
94 int overflowgid
= DEFAULT_OVERFLOWGID
;
97 EXPORT_SYMBOL(overflowuid
);
98 EXPORT_SYMBOL(overflowgid
);
102 * the same as above, but for filesystems which can only store a 16-bit
103 * UID and GID. as such, this is needed on all architectures
106 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
107 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
109 EXPORT_SYMBOL(fs_overflowuid
);
110 EXPORT_SYMBOL(fs_overflowgid
);
113 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
118 EXPORT_SYMBOL(cad_pid
);
121 * If set, this is used for preparing the system to power off.
124 void (*pm_power_off_prepare
)(void);
127 * Returns true if current's euid is same as p's uid or euid,
128 * or has CAP_SYS_NICE to p's user_ns.
130 * Called with rcu_read_lock, creds are safe
132 static bool set_one_prio_perm(struct task_struct
*p
)
134 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
136 if (pcred
->user
->user_ns
== cred
->user
->user_ns
&&
137 (pcred
->uid
== cred
->euid
||
138 pcred
->euid
== cred
->euid
))
140 if (ns_capable(pcred
->user
->user_ns
, CAP_SYS_NICE
))
146 * set the priority of a task
147 * - the caller must hold the RCU read lock
149 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
153 if (!set_one_prio_perm(p
)) {
157 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
161 no_nice
= security_task_setnice(p
, niceval
);
168 set_user_nice(p
, niceval
);
173 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
175 struct task_struct
*g
, *p
;
176 struct user_struct
*user
;
177 const struct cred
*cred
= current_cred();
181 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
184 /* normalize: avoid signed division (rounding problems) */
192 read_lock(&tasklist_lock
);
196 p
= find_task_by_vpid(who
);
200 error
= set_one_prio(p
, niceval
, error
);
204 pgrp
= find_vpid(who
);
206 pgrp
= task_pgrp(current
);
207 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
208 error
= set_one_prio(p
, niceval
, error
);
209 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
212 user
= (struct user_struct
*) cred
->user
;
215 else if ((who
!= cred
->uid
) &&
216 !(user
= find_user(who
)))
217 goto out_unlock
; /* No processes for this user */
219 do_each_thread(g
, p
) {
220 if (__task_cred(p
)->uid
== who
)
221 error
= set_one_prio(p
, niceval
, error
);
222 } while_each_thread(g
, p
);
223 if (who
!= cred
->uid
)
224 free_uid(user
); /* For find_user() */
228 read_unlock(&tasklist_lock
);
235 * Ugh. To avoid negative return values, "getpriority()" will
236 * not return the normal nice-value, but a negated value that
237 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
238 * to stay compatible.
240 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
242 struct task_struct
*g
, *p
;
243 struct user_struct
*user
;
244 const struct cred
*cred
= current_cred();
245 long niceval
, retval
= -ESRCH
;
248 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
252 read_lock(&tasklist_lock
);
256 p
= find_task_by_vpid(who
);
260 niceval
= 20 - task_nice(p
);
261 if (niceval
> retval
)
267 pgrp
= find_vpid(who
);
269 pgrp
= task_pgrp(current
);
270 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
271 niceval
= 20 - task_nice(p
);
272 if (niceval
> retval
)
274 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
277 user
= (struct user_struct
*) cred
->user
;
280 else if ((who
!= cred
->uid
) &&
281 !(user
= find_user(who
)))
282 goto out_unlock
; /* No processes for this user */
284 do_each_thread(g
, p
) {
285 if (__task_cred(p
)->uid
== who
) {
286 niceval
= 20 - task_nice(p
);
287 if (niceval
> retval
)
290 } while_each_thread(g
, p
);
291 if (who
!= cred
->uid
)
292 free_uid(user
); /* for find_user() */
296 read_unlock(&tasklist_lock
);
303 * emergency_restart - reboot the system
305 * Without shutting down any hardware or taking any locks
306 * reboot the system. This is called when we know we are in
307 * trouble so this is our best effort to reboot. This is
308 * safe to call in interrupt context.
310 void emergency_restart(void)
312 kmsg_dump(KMSG_DUMP_EMERG
);
313 machine_emergency_restart();
315 EXPORT_SYMBOL_GPL(emergency_restart
);
317 void kernel_restart_prepare(char *cmd
)
319 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
320 system_state
= SYSTEM_RESTART
;
321 usermodehelper_disable();
327 * kernel_restart - reboot the system
328 * @cmd: pointer to buffer containing command to execute for restart
331 * Shutdown everything and perform a clean reboot.
332 * This is not safe to call in interrupt context.
334 void kernel_restart(char *cmd
)
336 kernel_restart_prepare(cmd
);
338 printk(KERN_EMERG
"Restarting system.\n");
340 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
341 kmsg_dump(KMSG_DUMP_RESTART
);
342 machine_restart(cmd
);
344 EXPORT_SYMBOL_GPL(kernel_restart
);
346 static void kernel_shutdown_prepare(enum system_states state
)
348 blocking_notifier_call_chain(&reboot_notifier_list
,
349 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
350 system_state
= state
;
351 usermodehelper_disable();
355 * kernel_halt - halt the system
357 * Shutdown everything and perform a clean system halt.
359 void kernel_halt(void)
361 kernel_shutdown_prepare(SYSTEM_HALT
);
363 printk(KERN_EMERG
"System halted.\n");
364 kmsg_dump(KMSG_DUMP_HALT
);
368 EXPORT_SYMBOL_GPL(kernel_halt
);
371 * kernel_power_off - power_off the system
373 * Shutdown everything and perform a clean system power_off.
375 void kernel_power_off(void)
377 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
378 if (pm_power_off_prepare
)
379 pm_power_off_prepare();
380 disable_nonboot_cpus();
382 printk(KERN_EMERG
"Power down.\n");
383 kmsg_dump(KMSG_DUMP_POWEROFF
);
386 EXPORT_SYMBOL_GPL(kernel_power_off
);
388 static DEFINE_MUTEX(reboot_mutex
);
391 * Reboot system call: for obvious reasons only root may call it,
392 * and even root needs to set up some magic numbers in the registers
393 * so that some mistake won't make this reboot the whole machine.
394 * You can also set the meaning of the ctrl-alt-del-key here.
396 * reboot doesn't sync: do that yourself before calling this.
398 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
404 /* We only trust the superuser with rebooting the system. */
405 if (!capable(CAP_SYS_BOOT
))
408 /* For safety, we require "magic" arguments. */
409 if (magic1
!= LINUX_REBOOT_MAGIC1
||
410 (magic2
!= LINUX_REBOOT_MAGIC2
&&
411 magic2
!= LINUX_REBOOT_MAGIC2A
&&
412 magic2
!= LINUX_REBOOT_MAGIC2B
&&
413 magic2
!= LINUX_REBOOT_MAGIC2C
))
416 /* Instead of trying to make the power_off code look like
417 * halt when pm_power_off is not set do it the easy way.
419 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
420 cmd
= LINUX_REBOOT_CMD_HALT
;
422 mutex_lock(&reboot_mutex
);
424 case LINUX_REBOOT_CMD_RESTART
:
425 kernel_restart(NULL
);
428 case LINUX_REBOOT_CMD_CAD_ON
:
432 case LINUX_REBOOT_CMD_CAD_OFF
:
436 case LINUX_REBOOT_CMD_HALT
:
439 panic("cannot halt");
441 case LINUX_REBOOT_CMD_POWER_OFF
:
446 case LINUX_REBOOT_CMD_RESTART2
:
447 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
451 buffer
[sizeof(buffer
) - 1] = '\0';
453 kernel_restart(buffer
);
457 case LINUX_REBOOT_CMD_KEXEC
:
458 ret
= kernel_kexec();
462 #ifdef CONFIG_HIBERNATION
463 case LINUX_REBOOT_CMD_SW_SUSPEND
:
472 mutex_unlock(&reboot_mutex
);
476 static void deferred_cad(struct work_struct
*dummy
)
478 kernel_restart(NULL
);
482 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
483 * As it's called within an interrupt, it may NOT sync: the only choice
484 * is whether to reboot at once, or just ignore the ctrl-alt-del.
486 void ctrl_alt_del(void)
488 static DECLARE_WORK(cad_work
, deferred_cad
);
491 schedule_work(&cad_work
);
493 kill_cad_pid(SIGINT
, 1);
497 * Unprivileged users may change the real gid to the effective gid
498 * or vice versa. (BSD-style)
500 * If you set the real gid at all, or set the effective gid to a value not
501 * equal to the real gid, then the saved gid is set to the new effective gid.
503 * This makes it possible for a setgid program to completely drop its
504 * privileges, which is often a useful assertion to make when you are doing
505 * a security audit over a program.
507 * The general idea is that a program which uses just setregid() will be
508 * 100% compatible with BSD. A program which uses just setgid() will be
509 * 100% compatible with POSIX with saved IDs.
511 * SMP: There are not races, the GIDs are checked only by filesystem
512 * operations (as far as semantic preservation is concerned).
514 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
516 const struct cred
*old
;
520 new = prepare_creds();
523 old
= current_cred();
526 if (rgid
!= (gid_t
) -1) {
527 if (old
->gid
== rgid
||
529 nsown_capable(CAP_SETGID
))
534 if (egid
!= (gid_t
) -1) {
535 if (old
->gid
== egid
||
538 nsown_capable(CAP_SETGID
))
544 if (rgid
!= (gid_t
) -1 ||
545 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
546 new->sgid
= new->egid
;
547 new->fsgid
= new->egid
;
549 return commit_creds(new);
557 * setgid() is implemented like SysV w/ SAVED_IDS
559 * SMP: Same implicit races as above.
561 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
563 const struct cred
*old
;
567 new = prepare_creds();
570 old
= current_cred();
573 if (nsown_capable(CAP_SETGID
))
574 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
575 else if (gid
== old
->gid
|| gid
== old
->sgid
)
576 new->egid
= new->fsgid
= gid
;
580 return commit_creds(new);
588 * change the user struct in a credentials set to match the new UID
590 static int set_user(struct cred
*new)
592 struct user_struct
*new_user
;
594 new_user
= alloc_uid(current_user_ns(), new->uid
);
598 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
599 new_user
!= INIT_USER
) {
605 new->user
= new_user
;
610 * Unprivileged users may change the real uid to the effective uid
611 * or vice versa. (BSD-style)
613 * If you set the real uid at all, or set the effective uid to a value not
614 * equal to the real uid, then the saved uid is set to the new effective uid.
616 * This makes it possible for a setuid program to completely drop its
617 * privileges, which is often a useful assertion to make when you are doing
618 * a security audit over a program.
620 * The general idea is that a program which uses just setreuid() will be
621 * 100% compatible with BSD. A program which uses just setuid() will be
622 * 100% compatible with POSIX with saved IDs.
624 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
626 const struct cred
*old
;
630 new = prepare_creds();
633 old
= current_cred();
636 if (ruid
!= (uid_t
) -1) {
638 if (old
->uid
!= ruid
&&
640 !nsown_capable(CAP_SETUID
))
644 if (euid
!= (uid_t
) -1) {
646 if (old
->uid
!= euid
&&
649 !nsown_capable(CAP_SETUID
))
653 if (new->uid
!= old
->uid
) {
654 retval
= set_user(new);
658 if (ruid
!= (uid_t
) -1 ||
659 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
660 new->suid
= new->euid
;
661 new->fsuid
= new->euid
;
663 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
667 return commit_creds(new);
675 * setuid() is implemented like SysV with SAVED_IDS
677 * Note that SAVED_ID's is deficient in that a setuid root program
678 * like sendmail, for example, cannot set its uid to be a normal
679 * user and then switch back, because if you're root, setuid() sets
680 * the saved uid too. If you don't like this, blame the bright people
681 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
682 * will allow a root program to temporarily drop privileges and be able to
683 * regain them by swapping the real and effective uid.
685 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
687 const struct cred
*old
;
691 new = prepare_creds();
694 old
= current_cred();
697 if (nsown_capable(CAP_SETUID
)) {
698 new->suid
= new->uid
= uid
;
699 if (uid
!= old
->uid
) {
700 retval
= set_user(new);
704 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
708 new->fsuid
= new->euid
= uid
;
710 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
714 return commit_creds(new);
723 * This function implements a generic ability to update ruid, euid,
724 * and suid. This allows you to implement the 4.4 compatible seteuid().
726 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
728 const struct cred
*old
;
732 new = prepare_creds();
736 old
= current_cred();
739 if (!nsown_capable(CAP_SETUID
)) {
740 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
741 ruid
!= old
->euid
&& ruid
!= old
->suid
)
743 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
744 euid
!= old
->euid
&& euid
!= old
->suid
)
746 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
747 suid
!= old
->euid
&& suid
!= old
->suid
)
751 if (ruid
!= (uid_t
) -1) {
753 if (ruid
!= old
->uid
) {
754 retval
= set_user(new);
759 if (euid
!= (uid_t
) -1)
761 if (suid
!= (uid_t
) -1)
763 new->fsuid
= new->euid
;
765 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
769 return commit_creds(new);
776 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
778 const struct cred
*cred
= current_cred();
781 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
782 !(retval
= put_user(cred
->euid
, euid
)))
783 retval
= put_user(cred
->suid
, suid
);
789 * Same as above, but for rgid, egid, sgid.
791 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
793 const struct cred
*old
;
797 new = prepare_creds();
800 old
= current_cred();
803 if (!nsown_capable(CAP_SETGID
)) {
804 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
805 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
807 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
808 egid
!= old
->egid
&& egid
!= old
->sgid
)
810 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
811 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
815 if (rgid
!= (gid_t
) -1)
817 if (egid
!= (gid_t
) -1)
819 if (sgid
!= (gid_t
) -1)
821 new->fsgid
= new->egid
;
823 return commit_creds(new);
830 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
832 const struct cred
*cred
= current_cred();
835 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
836 !(retval
= put_user(cred
->egid
, egid
)))
837 retval
= put_user(cred
->sgid
, sgid
);
844 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
845 * is used for "access()" and for the NFS daemon (letting nfsd stay at
846 * whatever uid it wants to). It normally shadows "euid", except when
847 * explicitly set by setfsuid() or for access..
849 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
851 const struct cred
*old
;
855 new = prepare_creds();
857 return current_fsuid();
858 old
= current_cred();
859 old_fsuid
= old
->fsuid
;
861 if (uid
== old
->uid
|| uid
== old
->euid
||
862 uid
== old
->suid
|| uid
== old
->fsuid
||
863 nsown_capable(CAP_SETUID
)) {
864 if (uid
!= old_fsuid
) {
866 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
880 * Samma på svenska..
882 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
884 const struct cred
*old
;
888 new = prepare_creds();
890 return current_fsgid();
891 old
= current_cred();
892 old_fsgid
= old
->fsgid
;
894 if (gid
== old
->gid
|| gid
== old
->egid
||
895 gid
== old
->sgid
|| gid
== old
->fsgid
||
896 nsown_capable(CAP_SETGID
)) {
897 if (gid
!= old_fsgid
) {
911 void do_sys_times(struct tms
*tms
)
913 cputime_t tgutime
, tgstime
, cutime
, cstime
;
915 spin_lock_irq(¤t
->sighand
->siglock
);
916 thread_group_times(current
, &tgutime
, &tgstime
);
917 cutime
= current
->signal
->cutime
;
918 cstime
= current
->signal
->cstime
;
919 spin_unlock_irq(¤t
->sighand
->siglock
);
920 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
921 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
922 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
923 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
926 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
932 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
935 force_successful_syscall_return();
936 return (long) jiffies_64_to_clock_t(get_jiffies_64());
940 * This needs some heavy checking ...
941 * I just haven't the stomach for it. I also don't fully
942 * understand sessions/pgrp etc. Let somebody who does explain it.
944 * OK, I think I have the protection semantics right.... this is really
945 * only important on a multi-user system anyway, to make sure one user
946 * can't send a signal to a process owned by another. -TYT, 12/12/91
948 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
951 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
953 struct task_struct
*p
;
954 struct task_struct
*group_leader
= current
->group_leader
;
959 pid
= task_pid_vnr(group_leader
);
966 /* From this point forward we keep holding onto the tasklist lock
967 * so that our parent does not change from under us. -DaveM
969 write_lock_irq(&tasklist_lock
);
972 p
= find_task_by_vpid(pid
);
977 if (!thread_group_leader(p
))
980 if (same_thread_group(p
->real_parent
, group_leader
)) {
982 if (task_session(p
) != task_session(group_leader
))
989 if (p
!= group_leader
)
994 if (p
->signal
->leader
)
999 struct task_struct
*g
;
1001 pgrp
= find_vpid(pgid
);
1002 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1003 if (!g
|| task_session(g
) != task_session(group_leader
))
1007 err
= security_task_setpgid(p
, pgid
);
1011 if (task_pgrp(p
) != pgrp
)
1012 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1016 /* All paths lead to here, thus we are safe. -DaveM */
1017 write_unlock_irq(&tasklist_lock
);
1022 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1024 struct task_struct
*p
;
1030 grp
= task_pgrp(current
);
1033 p
= find_task_by_vpid(pid
);
1040 retval
= security_task_getpgid(p
);
1044 retval
= pid_vnr(grp
);
1050 #ifdef __ARCH_WANT_SYS_GETPGRP
1052 SYSCALL_DEFINE0(getpgrp
)
1054 return sys_getpgid(0);
1059 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1061 struct task_struct
*p
;
1067 sid
= task_session(current
);
1070 p
= find_task_by_vpid(pid
);
1073 sid
= task_session(p
);
1077 retval
= security_task_getsid(p
);
1081 retval
= pid_vnr(sid
);
1087 SYSCALL_DEFINE0(setsid
)
1089 struct task_struct
*group_leader
= current
->group_leader
;
1090 struct pid
*sid
= task_pid(group_leader
);
1091 pid_t session
= pid_vnr(sid
);
1094 write_lock_irq(&tasklist_lock
);
1095 /* Fail if I am already a session leader */
1096 if (group_leader
->signal
->leader
)
1099 /* Fail if a process group id already exists that equals the
1100 * proposed session id.
1102 if (pid_task(sid
, PIDTYPE_PGID
))
1105 group_leader
->signal
->leader
= 1;
1106 __set_special_pids(sid
);
1108 proc_clear_tty(group_leader
);
1112 write_unlock_irq(&tasklist_lock
);
1114 proc_sid_connector(group_leader
);
1115 sched_autogroup_create_attach(group_leader
);
1120 DECLARE_RWSEM(uts_sem
);
1122 #ifdef COMPAT_UTS_MACHINE
1123 #define override_architecture(name) \
1124 (personality(current->personality) == PER_LINUX32 && \
1125 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1126 sizeof(COMPAT_UTS_MACHINE)))
1128 #define override_architecture(name) 0
1132 * Work around broken programs that cannot handle "Linux 3.0".
1133 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1135 static int override_release(char __user
*release
, int len
)
1140 if (current
->personality
& UNAME26
) {
1141 char *rest
= UTS_RELEASE
;
1146 if (*rest
== '.' && ++ndots
>= 3)
1148 if (!isdigit(*rest
) && *rest
!= '.')
1152 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 40;
1153 snprintf(buf
, len
, "2.6.%u%s", v
, rest
);
1154 ret
= copy_to_user(release
, buf
, len
);
1159 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1163 down_read(&uts_sem
);
1164 if (copy_to_user(name
, utsname(), sizeof *name
))
1168 if (!errno
&& override_release(name
->release
, sizeof(name
->release
)))
1170 if (!errno
&& override_architecture(name
))
1175 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1179 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1186 down_read(&uts_sem
);
1187 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1191 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1193 if (!error
&& override_architecture(name
))
1198 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1204 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1207 down_read(&uts_sem
);
1208 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1210 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1211 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1213 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1214 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1216 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1217 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1219 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1220 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1222 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1225 if (!error
&& override_architecture(name
))
1227 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1229 return error
? -EFAULT
: 0;
1233 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1236 char tmp
[__NEW_UTS_LEN
];
1238 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1241 if (len
< 0 || len
> __NEW_UTS_LEN
)
1243 down_write(&uts_sem
);
1245 if (!copy_from_user(tmp
, name
, len
)) {
1246 struct new_utsname
*u
= utsname();
1248 memcpy(u
->nodename
, tmp
, len
);
1249 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1256 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1258 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1261 struct new_utsname
*u
;
1265 down_read(&uts_sem
);
1267 i
= 1 + strlen(u
->nodename
);
1271 if (copy_to_user(name
, u
->nodename
, i
))
1280 * Only setdomainname; getdomainname can be implemented by calling
1283 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1286 char tmp
[__NEW_UTS_LEN
];
1288 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1290 if (len
< 0 || len
> __NEW_UTS_LEN
)
1293 down_write(&uts_sem
);
1295 if (!copy_from_user(tmp
, name
, len
)) {
1296 struct new_utsname
*u
= utsname();
1298 memcpy(u
->domainname
, tmp
, len
);
1299 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1306 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1308 struct rlimit value
;
1311 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1313 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1318 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1321 * Back compatibility for getrlimit. Needed for some apps.
1324 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1325 struct rlimit __user
*, rlim
)
1328 if (resource
>= RLIM_NLIMITS
)
1331 task_lock(current
->group_leader
);
1332 x
= current
->signal
->rlim
[resource
];
1333 task_unlock(current
->group_leader
);
1334 if (x
.rlim_cur
> 0x7FFFFFFF)
1335 x
.rlim_cur
= 0x7FFFFFFF;
1336 if (x
.rlim_max
> 0x7FFFFFFF)
1337 x
.rlim_max
= 0x7FFFFFFF;
1338 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1343 static inline bool rlim64_is_infinity(__u64 rlim64
)
1345 #if BITS_PER_LONG < 64
1346 return rlim64
>= ULONG_MAX
;
1348 return rlim64
== RLIM64_INFINITY
;
1352 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1354 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1355 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1357 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1358 if (rlim
->rlim_max
== RLIM_INFINITY
)
1359 rlim64
->rlim_max
= RLIM64_INFINITY
;
1361 rlim64
->rlim_max
= rlim
->rlim_max
;
1364 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1366 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1367 rlim
->rlim_cur
= RLIM_INFINITY
;
1369 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1370 if (rlim64_is_infinity(rlim64
->rlim_max
))
1371 rlim
->rlim_max
= RLIM_INFINITY
;
1373 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1376 /* make sure you are allowed to change @tsk limits before calling this */
1377 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1378 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1380 struct rlimit
*rlim
;
1383 if (resource
>= RLIM_NLIMITS
)
1386 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1388 if (resource
== RLIMIT_NOFILE
&&
1389 new_rlim
->rlim_max
> sysctl_nr_open
)
1393 /* protect tsk->signal and tsk->sighand from disappearing */
1394 read_lock(&tasklist_lock
);
1395 if (!tsk
->sighand
) {
1400 rlim
= tsk
->signal
->rlim
+ resource
;
1401 task_lock(tsk
->group_leader
);
1403 /* Keep the capable check against init_user_ns until
1404 cgroups can contain all limits */
1405 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1406 !capable(CAP_SYS_RESOURCE
))
1409 retval
= security_task_setrlimit(tsk
->group_leader
,
1410 resource
, new_rlim
);
1411 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1413 * The caller is asking for an immediate RLIMIT_CPU
1414 * expiry. But we use the zero value to mean "it was
1415 * never set". So let's cheat and make it one second
1418 new_rlim
->rlim_cur
= 1;
1427 task_unlock(tsk
->group_leader
);
1430 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1431 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1432 * very long-standing error, and fixing it now risks breakage of
1433 * applications, so we live with it
1435 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1436 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1437 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1439 read_unlock(&tasklist_lock
);
1443 /* rcu lock must be held */
1444 static int check_prlimit_permission(struct task_struct
*task
)
1446 const struct cred
*cred
= current_cred(), *tcred
;
1448 if (current
== task
)
1451 tcred
= __task_cred(task
);
1452 if (cred
->user
->user_ns
== tcred
->user
->user_ns
&&
1453 (cred
->uid
== tcred
->euid
&&
1454 cred
->uid
== tcred
->suid
&&
1455 cred
->uid
== tcred
->uid
&&
1456 cred
->gid
== tcred
->egid
&&
1457 cred
->gid
== tcred
->sgid
&&
1458 cred
->gid
== tcred
->gid
))
1460 if (ns_capable(tcred
->user
->user_ns
, CAP_SYS_RESOURCE
))
1466 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1467 const struct rlimit64 __user
*, new_rlim
,
1468 struct rlimit64 __user
*, old_rlim
)
1470 struct rlimit64 old64
, new64
;
1471 struct rlimit old
, new;
1472 struct task_struct
*tsk
;
1476 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1478 rlim64_to_rlim(&new64
, &new);
1482 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1487 ret
= check_prlimit_permission(tsk
);
1492 get_task_struct(tsk
);
1495 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1496 old_rlim
? &old
: NULL
);
1498 if (!ret
&& old_rlim
) {
1499 rlim_to_rlim64(&old
, &old64
);
1500 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1504 put_task_struct(tsk
);
1508 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1510 struct rlimit new_rlim
;
1512 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1514 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1518 * It would make sense to put struct rusage in the task_struct,
1519 * except that would make the task_struct be *really big*. After
1520 * task_struct gets moved into malloc'ed memory, it would
1521 * make sense to do this. It will make moving the rest of the information
1522 * a lot simpler! (Which we're not doing right now because we're not
1523 * measuring them yet).
1525 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1526 * races with threads incrementing their own counters. But since word
1527 * reads are atomic, we either get new values or old values and we don't
1528 * care which for the sums. We always take the siglock to protect reading
1529 * the c* fields from p->signal from races with exit.c updating those
1530 * fields when reaping, so a sample either gets all the additions of a
1531 * given child after it's reaped, or none so this sample is before reaping.
1534 * We need to take the siglock for CHILDEREN, SELF and BOTH
1535 * for the cases current multithreaded, non-current single threaded
1536 * non-current multithreaded. Thread traversal is now safe with
1538 * Strictly speaking, we donot need to take the siglock if we are current and
1539 * single threaded, as no one else can take our signal_struct away, no one
1540 * else can reap the children to update signal->c* counters, and no one else
1541 * can race with the signal-> fields. If we do not take any lock, the
1542 * signal-> fields could be read out of order while another thread was just
1543 * exiting. So we should place a read memory barrier when we avoid the lock.
1544 * On the writer side, write memory barrier is implied in __exit_signal
1545 * as __exit_signal releases the siglock spinlock after updating the signal->
1546 * fields. But we don't do this yet to keep things simple.
1550 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1552 r
->ru_nvcsw
+= t
->nvcsw
;
1553 r
->ru_nivcsw
+= t
->nivcsw
;
1554 r
->ru_minflt
+= t
->min_flt
;
1555 r
->ru_majflt
+= t
->maj_flt
;
1556 r
->ru_inblock
+= task_io_get_inblock(t
);
1557 r
->ru_oublock
+= task_io_get_oublock(t
);
1560 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1562 struct task_struct
*t
;
1563 unsigned long flags
;
1564 cputime_t tgutime
, tgstime
, utime
, stime
;
1565 unsigned long maxrss
= 0;
1567 memset((char *) r
, 0, sizeof *r
);
1568 utime
= stime
= cputime_zero
;
1570 if (who
== RUSAGE_THREAD
) {
1571 task_times(current
, &utime
, &stime
);
1572 accumulate_thread_rusage(p
, r
);
1573 maxrss
= p
->signal
->maxrss
;
1577 if (!lock_task_sighand(p
, &flags
))
1582 case RUSAGE_CHILDREN
:
1583 utime
= p
->signal
->cutime
;
1584 stime
= p
->signal
->cstime
;
1585 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1586 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1587 r
->ru_minflt
= p
->signal
->cmin_flt
;
1588 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1589 r
->ru_inblock
= p
->signal
->cinblock
;
1590 r
->ru_oublock
= p
->signal
->coublock
;
1591 maxrss
= p
->signal
->cmaxrss
;
1593 if (who
== RUSAGE_CHILDREN
)
1597 thread_group_times(p
, &tgutime
, &tgstime
);
1598 utime
= cputime_add(utime
, tgutime
);
1599 stime
= cputime_add(stime
, tgstime
);
1600 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1601 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1602 r
->ru_minflt
+= p
->signal
->min_flt
;
1603 r
->ru_majflt
+= p
->signal
->maj_flt
;
1604 r
->ru_inblock
+= p
->signal
->inblock
;
1605 r
->ru_oublock
+= p
->signal
->oublock
;
1606 if (maxrss
< p
->signal
->maxrss
)
1607 maxrss
= p
->signal
->maxrss
;
1610 accumulate_thread_rusage(t
, r
);
1618 unlock_task_sighand(p
, &flags
);
1621 cputime_to_timeval(utime
, &r
->ru_utime
);
1622 cputime_to_timeval(stime
, &r
->ru_stime
);
1624 if (who
!= RUSAGE_CHILDREN
) {
1625 struct mm_struct
*mm
= get_task_mm(p
);
1627 setmax_mm_hiwater_rss(&maxrss
, mm
);
1631 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1634 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1637 k_getrusage(p
, who
, &r
);
1638 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1641 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1643 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1644 who
!= RUSAGE_THREAD
)
1646 return getrusage(current
, who
, ru
);
1649 SYSCALL_DEFINE1(umask
, int, mask
)
1651 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1655 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1656 unsigned long, arg4
, unsigned long, arg5
)
1658 struct task_struct
*me
= current
;
1659 unsigned char comm
[sizeof(me
->comm
)];
1662 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1663 if (error
!= -ENOSYS
)
1668 case PR_SET_PDEATHSIG
:
1669 if (!valid_signal(arg2
)) {
1673 me
->pdeath_signal
= arg2
;
1676 case PR_GET_PDEATHSIG
:
1677 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1679 case PR_GET_DUMPABLE
:
1680 error
= get_dumpable(me
->mm
);
1682 case PR_SET_DUMPABLE
:
1683 if (arg2
< 0 || arg2
> 1) {
1687 set_dumpable(me
->mm
, arg2
);
1691 case PR_SET_UNALIGN
:
1692 error
= SET_UNALIGN_CTL(me
, arg2
);
1694 case PR_GET_UNALIGN
:
1695 error
= GET_UNALIGN_CTL(me
, arg2
);
1698 error
= SET_FPEMU_CTL(me
, arg2
);
1701 error
= GET_FPEMU_CTL(me
, arg2
);
1704 error
= SET_FPEXC_CTL(me
, arg2
);
1707 error
= GET_FPEXC_CTL(me
, arg2
);
1710 error
= PR_TIMING_STATISTICAL
;
1713 if (arg2
!= PR_TIMING_STATISTICAL
)
1720 comm
[sizeof(me
->comm
)-1] = 0;
1721 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1722 sizeof(me
->comm
) - 1) < 0)
1724 set_task_comm(me
, comm
);
1727 get_task_comm(comm
, me
);
1728 if (copy_to_user((char __user
*)arg2
, comm
,
1733 error
= GET_ENDIAN(me
, arg2
);
1736 error
= SET_ENDIAN(me
, arg2
);
1739 case PR_GET_SECCOMP
:
1740 error
= prctl_get_seccomp();
1742 case PR_SET_SECCOMP
:
1743 error
= prctl_set_seccomp(arg2
);
1746 error
= GET_TSC_CTL(arg2
);
1749 error
= SET_TSC_CTL(arg2
);
1751 case PR_TASK_PERF_EVENTS_DISABLE
:
1752 error
= perf_event_task_disable();
1754 case PR_TASK_PERF_EVENTS_ENABLE
:
1755 error
= perf_event_task_enable();
1757 case PR_GET_TIMERSLACK
:
1758 error
= current
->timer_slack_ns
;
1760 case PR_SET_TIMERSLACK
:
1762 current
->timer_slack_ns
=
1763 current
->default_timer_slack_ns
;
1765 current
->timer_slack_ns
= arg2
;
1772 case PR_MCE_KILL_CLEAR
:
1775 current
->flags
&= ~PF_MCE_PROCESS
;
1777 case PR_MCE_KILL_SET
:
1778 current
->flags
|= PF_MCE_PROCESS
;
1779 if (arg3
== PR_MCE_KILL_EARLY
)
1780 current
->flags
|= PF_MCE_EARLY
;
1781 else if (arg3
== PR_MCE_KILL_LATE
)
1782 current
->flags
&= ~PF_MCE_EARLY
;
1783 else if (arg3
== PR_MCE_KILL_DEFAULT
)
1785 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
1794 case PR_MCE_KILL_GET
:
1795 if (arg2
| arg3
| arg4
| arg5
)
1797 if (current
->flags
& PF_MCE_PROCESS
)
1798 error
= (current
->flags
& PF_MCE_EARLY
) ?
1799 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
1801 error
= PR_MCE_KILL_DEFAULT
;
1810 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1811 struct getcpu_cache __user
*, unused
)
1814 int cpu
= raw_smp_processor_id();
1816 err
|= put_user(cpu
, cpup
);
1818 err
|= put_user(cpu_to_node(cpu
), nodep
);
1819 return err
? -EFAULT
: 0;
1822 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1824 static void argv_cleanup(struct subprocess_info
*info
)
1826 argv_free(info
->argv
);
1830 * orderly_poweroff - Trigger an orderly system poweroff
1831 * @force: force poweroff if command execution fails
1833 * This may be called from any context to trigger a system shutdown.
1834 * If the orderly shutdown fails, it will force an immediate shutdown.
1836 int orderly_poweroff(bool force
)
1839 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1840 static char *envp
[] = {
1842 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1846 struct subprocess_info
*info
;
1849 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1850 __func__
, poweroff_cmd
);
1854 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1860 call_usermodehelper_setfns(info
, NULL
, argv_cleanup
, NULL
);
1862 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1866 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1867 "forcing the issue\n");
1869 /* I guess this should try to kick off some daemon to
1870 sync and poweroff asap. Or not even bother syncing
1871 if we're doing an emergency shutdown? */
1878 EXPORT_SYMBOL_GPL(orderly_poweroff
);