Staging: pohmelfs: Remove C99 comments
[linux/fpc-iii.git] / fs / ext4 / mballoc.c
blob519a0a686d946343ca646702aa5c4603c9a75308
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "mballoc.h"
25 #include <trace/events/ext4.h>
28 * MUSTDO:
29 * - test ext4_ext_search_left() and ext4_ext_search_right()
30 * - search for metadata in few groups
32 * TODO v4:
33 * - normalization should take into account whether file is still open
34 * - discard preallocations if no free space left (policy?)
35 * - don't normalize tails
36 * - quota
37 * - reservation for superuser
39 * TODO v3:
40 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
41 * - track min/max extents in each group for better group selection
42 * - mb_mark_used() may allocate chunk right after splitting buddy
43 * - tree of groups sorted by number of free blocks
44 * - error handling
48 * The allocation request involve request for multiple number of blocks
49 * near to the goal(block) value specified.
51 * During initialization phase of the allocator we decide to use the
52 * group preallocation or inode preallocation depending on the size of
53 * the file. The size of the file could be the resulting file size we
54 * would have after allocation, or the current file size, which ever
55 * is larger. If the size is less than sbi->s_mb_stream_request we
56 * select to use the group preallocation. The default value of
57 * s_mb_stream_request is 16 blocks. This can also be tuned via
58 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
59 * terms of number of blocks.
61 * The main motivation for having small file use group preallocation is to
62 * ensure that we have small files closer together on the disk.
64 * First stage the allocator looks at the inode prealloc list,
65 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
66 * spaces for this particular inode. The inode prealloc space is
67 * represented as:
69 * pa_lstart -> the logical start block for this prealloc space
70 * pa_pstart -> the physical start block for this prealloc space
71 * pa_len -> lenght for this prealloc space
72 * pa_free -> free space available in this prealloc space
74 * The inode preallocation space is used looking at the _logical_ start
75 * block. If only the logical file block falls within the range of prealloc
76 * space we will consume the particular prealloc space. This make sure that
77 * that the we have contiguous physical blocks representing the file blocks
79 * The important thing to be noted in case of inode prealloc space is that
80 * we don't modify the values associated to inode prealloc space except
81 * pa_free.
83 * If we are not able to find blocks in the inode prealloc space and if we
84 * have the group allocation flag set then we look at the locality group
85 * prealloc space. These are per CPU prealloc list repreasented as
87 * ext4_sb_info.s_locality_groups[smp_processor_id()]
89 * The reason for having a per cpu locality group is to reduce the contention
90 * between CPUs. It is possible to get scheduled at this point.
92 * The locality group prealloc space is used looking at whether we have
93 * enough free space (pa_free) withing the prealloc space.
95 * If we can't allocate blocks via inode prealloc or/and locality group
96 * prealloc then we look at the buddy cache. The buddy cache is represented
97 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
98 * mapped to the buddy and bitmap information regarding different
99 * groups. The buddy information is attached to buddy cache inode so that
100 * we can access them through the page cache. The information regarding
101 * each group is loaded via ext4_mb_load_buddy. The information involve
102 * block bitmap and buddy information. The information are stored in the
103 * inode as:
105 * { page }
106 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109 * one block each for bitmap and buddy information. So for each group we
110 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
111 * blocksize) blocks. So it can have information regarding groups_per_page
112 * which is blocks_per_page/2
114 * The buddy cache inode is not stored on disk. The inode is thrown
115 * away when the filesystem is unmounted.
117 * We look for count number of blocks in the buddy cache. If we were able
118 * to locate that many free blocks we return with additional information
119 * regarding rest of the contiguous physical block available
121 * Before allocating blocks via buddy cache we normalize the request
122 * blocks. This ensure we ask for more blocks that we needed. The extra
123 * blocks that we get after allocation is added to the respective prealloc
124 * list. In case of inode preallocation we follow a list of heuristics
125 * based on file size. This can be found in ext4_mb_normalize_request. If
126 * we are doing a group prealloc we try to normalize the request to
127 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
128 * 512 blocks. This can be tuned via
129 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
130 * terms of number of blocks. If we have mounted the file system with -O
131 * stripe=<value> option the group prealloc request is normalized to the
132 * stripe value (sbi->s_stripe)
134 * The regular allocator(using the buddy cache) supports few tunables.
136 * /sys/fs/ext4/<partition>/mb_min_to_scan
137 * /sys/fs/ext4/<partition>/mb_max_to_scan
138 * /sys/fs/ext4/<partition>/mb_order2_req
140 * The regular allocator uses buddy scan only if the request len is power of
141 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
142 * value of s_mb_order2_reqs can be tuned via
143 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
144 * stripe size (sbi->s_stripe), we try to search for contigous block in
145 * stripe size. This should result in better allocation on RAID setups. If
146 * not, we search in the specific group using bitmap for best extents. The
147 * tunable min_to_scan and max_to_scan control the behaviour here.
148 * min_to_scan indicate how long the mballoc __must__ look for a best
149 * extent and max_to_scan indicates how long the mballoc __can__ look for a
150 * best extent in the found extents. Searching for the blocks starts with
151 * the group specified as the goal value in allocation context via
152 * ac_g_ex. Each group is first checked based on the criteria whether it
153 * can used for allocation. ext4_mb_good_group explains how the groups are
154 * checked.
156 * Both the prealloc space are getting populated as above. So for the first
157 * request we will hit the buddy cache which will result in this prealloc
158 * space getting filled. The prealloc space is then later used for the
159 * subsequent request.
163 * mballoc operates on the following data:
164 * - on-disk bitmap
165 * - in-core buddy (actually includes buddy and bitmap)
166 * - preallocation descriptors (PAs)
168 * there are two types of preallocations:
169 * - inode
170 * assiged to specific inode and can be used for this inode only.
171 * it describes part of inode's space preallocated to specific
172 * physical blocks. any block from that preallocated can be used
173 * independent. the descriptor just tracks number of blocks left
174 * unused. so, before taking some block from descriptor, one must
175 * make sure corresponded logical block isn't allocated yet. this
176 * also means that freeing any block within descriptor's range
177 * must discard all preallocated blocks.
178 * - locality group
179 * assigned to specific locality group which does not translate to
180 * permanent set of inodes: inode can join and leave group. space
181 * from this type of preallocation can be used for any inode. thus
182 * it's consumed from the beginning to the end.
184 * relation between them can be expressed as:
185 * in-core buddy = on-disk bitmap + preallocation descriptors
187 * this mean blocks mballoc considers used are:
188 * - allocated blocks (persistent)
189 * - preallocated blocks (non-persistent)
191 * consistency in mballoc world means that at any time a block is either
192 * free or used in ALL structures. notice: "any time" should not be read
193 * literally -- time is discrete and delimited by locks.
195 * to keep it simple, we don't use block numbers, instead we count number of
196 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
198 * all operations can be expressed as:
199 * - init buddy: buddy = on-disk + PAs
200 * - new PA: buddy += N; PA = N
201 * - use inode PA: on-disk += N; PA -= N
202 * - discard inode PA buddy -= on-disk - PA; PA = 0
203 * - use locality group PA on-disk += N; PA -= N
204 * - discard locality group PA buddy -= PA; PA = 0
205 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
206 * is used in real operation because we can't know actual used
207 * bits from PA, only from on-disk bitmap
209 * if we follow this strict logic, then all operations above should be atomic.
210 * given some of them can block, we'd have to use something like semaphores
211 * killing performance on high-end SMP hardware. let's try to relax it using
212 * the following knowledge:
213 * 1) if buddy is referenced, it's already initialized
214 * 2) while block is used in buddy and the buddy is referenced,
215 * nobody can re-allocate that block
216 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
217 * bit set and PA claims same block, it's OK. IOW, one can set bit in
218 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
219 * block
221 * so, now we're building a concurrency table:
222 * - init buddy vs.
223 * - new PA
224 * blocks for PA are allocated in the buddy, buddy must be referenced
225 * until PA is linked to allocation group to avoid concurrent buddy init
226 * - use inode PA
227 * we need to make sure that either on-disk bitmap or PA has uptodate data
228 * given (3) we care that PA-=N operation doesn't interfere with init
229 * - discard inode PA
230 * the simplest way would be to have buddy initialized by the discard
231 * - use locality group PA
232 * again PA-=N must be serialized with init
233 * - discard locality group PA
234 * the simplest way would be to have buddy initialized by the discard
235 * - new PA vs.
236 * - use inode PA
237 * i_data_sem serializes them
238 * - discard inode PA
239 * discard process must wait until PA isn't used by another process
240 * - use locality group PA
241 * some mutex should serialize them
242 * - discard locality group PA
243 * discard process must wait until PA isn't used by another process
244 * - use inode PA
245 * - use inode PA
246 * i_data_sem or another mutex should serializes them
247 * - discard inode PA
248 * discard process must wait until PA isn't used by another process
249 * - use locality group PA
250 * nothing wrong here -- they're different PAs covering different blocks
251 * - discard locality group PA
252 * discard process must wait until PA isn't used by another process
254 * now we're ready to make few consequences:
255 * - PA is referenced and while it is no discard is possible
256 * - PA is referenced until block isn't marked in on-disk bitmap
257 * - PA changes only after on-disk bitmap
258 * - discard must not compete with init. either init is done before
259 * any discard or they're serialized somehow
260 * - buddy init as sum of on-disk bitmap and PAs is done atomically
262 * a special case when we've used PA to emptiness. no need to modify buddy
263 * in this case, but we should care about concurrent init
268 * Logic in few words:
270 * - allocation:
271 * load group
272 * find blocks
273 * mark bits in on-disk bitmap
274 * release group
276 * - use preallocation:
277 * find proper PA (per-inode or group)
278 * load group
279 * mark bits in on-disk bitmap
280 * release group
281 * release PA
283 * - free:
284 * load group
285 * mark bits in on-disk bitmap
286 * release group
288 * - discard preallocations in group:
289 * mark PAs deleted
290 * move them onto local list
291 * load on-disk bitmap
292 * load group
293 * remove PA from object (inode or locality group)
294 * mark free blocks in-core
296 * - discard inode's preallocations:
300 * Locking rules
302 * Locks:
303 * - bitlock on a group (group)
304 * - object (inode/locality) (object)
305 * - per-pa lock (pa)
307 * Paths:
308 * - new pa
309 * object
310 * group
312 * - find and use pa:
313 * pa
315 * - release consumed pa:
316 * pa
317 * group
318 * object
320 * - generate in-core bitmap:
321 * group
322 * pa
324 * - discard all for given object (inode, locality group):
325 * object
326 * pa
327 * group
329 * - discard all for given group:
330 * group
331 * pa
332 * group
333 * object
336 static struct kmem_cache *ext4_pspace_cachep;
337 static struct kmem_cache *ext4_ac_cachep;
338 static struct kmem_cache *ext4_free_ext_cachep;
339 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
340 ext4_group_t group);
341 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
342 ext4_group_t group);
343 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
345 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
347 #if BITS_PER_LONG == 64
348 *bit += ((unsigned long) addr & 7UL) << 3;
349 addr = (void *) ((unsigned long) addr & ~7UL);
350 #elif BITS_PER_LONG == 32
351 *bit += ((unsigned long) addr & 3UL) << 3;
352 addr = (void *) ((unsigned long) addr & ~3UL);
353 #else
354 #error "how many bits you are?!"
355 #endif
356 return addr;
359 static inline int mb_test_bit(int bit, void *addr)
362 * ext4_test_bit on architecture like powerpc
363 * needs unsigned long aligned address
365 addr = mb_correct_addr_and_bit(&bit, addr);
366 return ext4_test_bit(bit, addr);
369 static inline void mb_set_bit(int bit, void *addr)
371 addr = mb_correct_addr_and_bit(&bit, addr);
372 ext4_set_bit(bit, addr);
375 static inline void mb_clear_bit(int bit, void *addr)
377 addr = mb_correct_addr_and_bit(&bit, addr);
378 ext4_clear_bit(bit, addr);
381 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
383 int fix = 0, ret, tmpmax;
384 addr = mb_correct_addr_and_bit(&fix, addr);
385 tmpmax = max + fix;
386 start += fix;
388 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
389 if (ret > max)
390 return max;
391 return ret;
394 static inline int mb_find_next_bit(void *addr, int max, int start)
396 int fix = 0, ret, tmpmax;
397 addr = mb_correct_addr_and_bit(&fix, addr);
398 tmpmax = max + fix;
399 start += fix;
401 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
402 if (ret > max)
403 return max;
404 return ret;
407 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
409 char *bb;
411 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
412 BUG_ON(max == NULL);
414 if (order > e4b->bd_blkbits + 1) {
415 *max = 0;
416 return NULL;
419 /* at order 0 we see each particular block */
420 *max = 1 << (e4b->bd_blkbits + 3);
421 if (order == 0)
422 return EXT4_MB_BITMAP(e4b);
424 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
425 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
427 return bb;
430 #ifdef DOUBLE_CHECK
431 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
432 int first, int count)
434 int i;
435 struct super_block *sb = e4b->bd_sb;
437 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
438 return;
439 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
440 for (i = 0; i < count; i++) {
441 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
442 ext4_fsblk_t blocknr;
443 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
444 blocknr += first + i;
445 blocknr +=
446 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
447 ext4_grp_locked_error(sb, e4b->bd_group,
448 __func__, "double-free of inode"
449 " %lu's block %llu(bit %u in group %u)",
450 inode ? inode->i_ino : 0, blocknr,
451 first + i, e4b->bd_group);
453 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
457 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
459 int i;
461 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
462 return;
463 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
464 for (i = 0; i < count; i++) {
465 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
466 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
470 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
472 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
473 unsigned char *b1, *b2;
474 int i;
475 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
476 b2 = (unsigned char *) bitmap;
477 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
478 if (b1[i] != b2[i]) {
479 printk(KERN_ERR "corruption in group %u "
480 "at byte %u(%u): %x in copy != %x "
481 "on disk/prealloc\n",
482 e4b->bd_group, i, i * 8, b1[i], b2[i]);
483 BUG();
489 #else
490 static inline void mb_free_blocks_double(struct inode *inode,
491 struct ext4_buddy *e4b, int first, int count)
493 return;
495 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
496 int first, int count)
498 return;
500 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
502 return;
504 #endif
506 #ifdef AGGRESSIVE_CHECK
508 #define MB_CHECK_ASSERT(assert) \
509 do { \
510 if (!(assert)) { \
511 printk(KERN_EMERG \
512 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
513 function, file, line, # assert); \
514 BUG(); \
516 } while (0)
518 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
519 const char *function, int line)
521 struct super_block *sb = e4b->bd_sb;
522 int order = e4b->bd_blkbits + 1;
523 int max;
524 int max2;
525 int i;
526 int j;
527 int k;
528 int count;
529 struct ext4_group_info *grp;
530 int fragments = 0;
531 int fstart;
532 struct list_head *cur;
533 void *buddy;
534 void *buddy2;
537 static int mb_check_counter;
538 if (mb_check_counter++ % 100 != 0)
539 return 0;
542 while (order > 1) {
543 buddy = mb_find_buddy(e4b, order, &max);
544 MB_CHECK_ASSERT(buddy);
545 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
546 MB_CHECK_ASSERT(buddy2);
547 MB_CHECK_ASSERT(buddy != buddy2);
548 MB_CHECK_ASSERT(max * 2 == max2);
550 count = 0;
551 for (i = 0; i < max; i++) {
553 if (mb_test_bit(i, buddy)) {
554 /* only single bit in buddy2 may be 1 */
555 if (!mb_test_bit(i << 1, buddy2)) {
556 MB_CHECK_ASSERT(
557 mb_test_bit((i<<1)+1, buddy2));
558 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
559 MB_CHECK_ASSERT(
560 mb_test_bit(i << 1, buddy2));
562 continue;
565 /* both bits in buddy2 must be 0 */
566 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
567 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
569 for (j = 0; j < (1 << order); j++) {
570 k = (i * (1 << order)) + j;
571 MB_CHECK_ASSERT(
572 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
574 count++;
576 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
577 order--;
580 fstart = -1;
581 buddy = mb_find_buddy(e4b, 0, &max);
582 for (i = 0; i < max; i++) {
583 if (!mb_test_bit(i, buddy)) {
584 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
585 if (fstart == -1) {
586 fragments++;
587 fstart = i;
589 continue;
591 fstart = -1;
592 /* check used bits only */
593 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
594 buddy2 = mb_find_buddy(e4b, j, &max2);
595 k = i >> j;
596 MB_CHECK_ASSERT(k < max2);
597 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
600 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
601 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
603 grp = ext4_get_group_info(sb, e4b->bd_group);
604 buddy = mb_find_buddy(e4b, 0, &max);
605 list_for_each(cur, &grp->bb_prealloc_list) {
606 ext4_group_t groupnr;
607 struct ext4_prealloc_space *pa;
608 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
609 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
610 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
611 for (i = 0; i < pa->pa_len; i++)
612 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
614 return 0;
616 #undef MB_CHECK_ASSERT
617 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
618 __FILE__, __func__, __LINE__)
619 #else
620 #define mb_check_buddy(e4b)
621 #endif
623 /* FIXME!! need more doc */
624 static void ext4_mb_mark_free_simple(struct super_block *sb,
625 void *buddy, unsigned first, int len,
626 struct ext4_group_info *grp)
628 struct ext4_sb_info *sbi = EXT4_SB(sb);
629 unsigned short min;
630 unsigned short max;
631 unsigned short chunk;
632 unsigned short border;
634 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
636 border = 2 << sb->s_blocksize_bits;
638 while (len > 0) {
639 /* find how many blocks can be covered since this position */
640 max = ffs(first | border) - 1;
642 /* find how many blocks of power 2 we need to mark */
643 min = fls(len) - 1;
645 if (max < min)
646 min = max;
647 chunk = 1 << min;
649 /* mark multiblock chunks only */
650 grp->bb_counters[min]++;
651 if (min > 0)
652 mb_clear_bit(first >> min,
653 buddy + sbi->s_mb_offsets[min]);
655 len -= chunk;
656 first += chunk;
660 static void ext4_mb_generate_buddy(struct super_block *sb,
661 void *buddy, void *bitmap, ext4_group_t group)
663 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
664 unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
665 unsigned short i = 0;
666 unsigned short first;
667 unsigned short len;
668 unsigned free = 0;
669 unsigned fragments = 0;
670 unsigned long long period = get_cycles();
672 /* initialize buddy from bitmap which is aggregation
673 * of on-disk bitmap and preallocations */
674 i = mb_find_next_zero_bit(bitmap, max, 0);
675 grp->bb_first_free = i;
676 while (i < max) {
677 fragments++;
678 first = i;
679 i = mb_find_next_bit(bitmap, max, i);
680 len = i - first;
681 free += len;
682 if (len > 1)
683 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
684 else
685 grp->bb_counters[0]++;
686 if (i < max)
687 i = mb_find_next_zero_bit(bitmap, max, i);
689 grp->bb_fragments = fragments;
691 if (free != grp->bb_free) {
692 ext4_grp_locked_error(sb, group, __func__,
693 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
694 group, free, grp->bb_free);
696 * If we intent to continue, we consider group descritor
697 * corrupt and update bb_free using bitmap value
699 grp->bb_free = free;
702 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
704 period = get_cycles() - period;
705 spin_lock(&EXT4_SB(sb)->s_bal_lock);
706 EXT4_SB(sb)->s_mb_buddies_generated++;
707 EXT4_SB(sb)->s_mb_generation_time += period;
708 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
711 /* The buddy information is attached the buddy cache inode
712 * for convenience. The information regarding each group
713 * is loaded via ext4_mb_load_buddy. The information involve
714 * block bitmap and buddy information. The information are
715 * stored in the inode as
717 * { page }
718 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
721 * one block each for bitmap and buddy information.
722 * So for each group we take up 2 blocks. A page can
723 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
724 * So it can have information regarding groups_per_page which
725 * is blocks_per_page/2
728 static int ext4_mb_init_cache(struct page *page, char *incore)
730 ext4_group_t ngroups;
731 int blocksize;
732 int blocks_per_page;
733 int groups_per_page;
734 int err = 0;
735 int i;
736 ext4_group_t first_group;
737 int first_block;
738 struct super_block *sb;
739 struct buffer_head *bhs;
740 struct buffer_head **bh;
741 struct inode *inode;
742 char *data;
743 char *bitmap;
745 mb_debug("init page %lu\n", page->index);
747 inode = page->mapping->host;
748 sb = inode->i_sb;
749 ngroups = ext4_get_groups_count(sb);
750 blocksize = 1 << inode->i_blkbits;
751 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
753 groups_per_page = blocks_per_page >> 1;
754 if (groups_per_page == 0)
755 groups_per_page = 1;
757 /* allocate buffer_heads to read bitmaps */
758 if (groups_per_page > 1) {
759 err = -ENOMEM;
760 i = sizeof(struct buffer_head *) * groups_per_page;
761 bh = kzalloc(i, GFP_NOFS);
762 if (bh == NULL)
763 goto out;
764 } else
765 bh = &bhs;
767 first_group = page->index * blocks_per_page / 2;
769 /* read all groups the page covers into the cache */
770 for (i = 0; i < groups_per_page; i++) {
771 struct ext4_group_desc *desc;
773 if (first_group + i >= ngroups)
774 break;
776 err = -EIO;
777 desc = ext4_get_group_desc(sb, first_group + i, NULL);
778 if (desc == NULL)
779 goto out;
781 err = -ENOMEM;
782 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
783 if (bh[i] == NULL)
784 goto out;
786 if (bitmap_uptodate(bh[i]))
787 continue;
789 lock_buffer(bh[i]);
790 if (bitmap_uptodate(bh[i])) {
791 unlock_buffer(bh[i]);
792 continue;
794 ext4_lock_group(sb, first_group + i);
795 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
796 ext4_init_block_bitmap(sb, bh[i],
797 first_group + i, desc);
798 set_bitmap_uptodate(bh[i]);
799 set_buffer_uptodate(bh[i]);
800 ext4_unlock_group(sb, first_group + i);
801 unlock_buffer(bh[i]);
802 continue;
804 ext4_unlock_group(sb, first_group + i);
805 if (buffer_uptodate(bh[i])) {
807 * if not uninit if bh is uptodate,
808 * bitmap is also uptodate
810 set_bitmap_uptodate(bh[i]);
811 unlock_buffer(bh[i]);
812 continue;
814 get_bh(bh[i]);
816 * submit the buffer_head for read. We can
817 * safely mark the bitmap as uptodate now.
818 * We do it here so the bitmap uptodate bit
819 * get set with buffer lock held.
821 set_bitmap_uptodate(bh[i]);
822 bh[i]->b_end_io = end_buffer_read_sync;
823 submit_bh(READ, bh[i]);
824 mb_debug("read bitmap for group %u\n", first_group + i);
827 /* wait for I/O completion */
828 for (i = 0; i < groups_per_page && bh[i]; i++)
829 wait_on_buffer(bh[i]);
831 err = -EIO;
832 for (i = 0; i < groups_per_page && bh[i]; i++)
833 if (!buffer_uptodate(bh[i]))
834 goto out;
836 err = 0;
837 first_block = page->index * blocks_per_page;
838 /* init the page */
839 memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
840 for (i = 0; i < blocks_per_page; i++) {
841 int group;
842 struct ext4_group_info *grinfo;
844 group = (first_block + i) >> 1;
845 if (group >= ngroups)
846 break;
849 * data carry information regarding this
850 * particular group in the format specified
851 * above
854 data = page_address(page) + (i * blocksize);
855 bitmap = bh[group - first_group]->b_data;
858 * We place the buddy block and bitmap block
859 * close together
861 if ((first_block + i) & 1) {
862 /* this is block of buddy */
863 BUG_ON(incore == NULL);
864 mb_debug("put buddy for group %u in page %lu/%x\n",
865 group, page->index, i * blocksize);
866 grinfo = ext4_get_group_info(sb, group);
867 grinfo->bb_fragments = 0;
868 memset(grinfo->bb_counters, 0,
869 sizeof(unsigned short)*(sb->s_blocksize_bits+2));
871 * incore got set to the group block bitmap below
873 ext4_lock_group(sb, group);
874 ext4_mb_generate_buddy(sb, data, incore, group);
875 ext4_unlock_group(sb, group);
876 incore = NULL;
877 } else {
878 /* this is block of bitmap */
879 BUG_ON(incore != NULL);
880 mb_debug("put bitmap for group %u in page %lu/%x\n",
881 group, page->index, i * blocksize);
883 /* see comments in ext4_mb_put_pa() */
884 ext4_lock_group(sb, group);
885 memcpy(data, bitmap, blocksize);
887 /* mark all preallocated blks used in in-core bitmap */
888 ext4_mb_generate_from_pa(sb, data, group);
889 ext4_mb_generate_from_freelist(sb, data, group);
890 ext4_unlock_group(sb, group);
892 /* set incore so that the buddy information can be
893 * generated using this
895 incore = data;
898 SetPageUptodate(page);
900 out:
901 if (bh) {
902 for (i = 0; i < groups_per_page && bh[i]; i++)
903 brelse(bh[i]);
904 if (bh != &bhs)
905 kfree(bh);
907 return err;
910 static noinline_for_stack int
911 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
912 struct ext4_buddy *e4b)
914 int blocks_per_page;
915 int block;
916 int pnum;
917 int poff;
918 struct page *page;
919 int ret;
920 struct ext4_group_info *grp;
921 struct ext4_sb_info *sbi = EXT4_SB(sb);
922 struct inode *inode = sbi->s_buddy_cache;
924 mb_debug("load group %u\n", group);
926 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
927 grp = ext4_get_group_info(sb, group);
929 e4b->bd_blkbits = sb->s_blocksize_bits;
930 e4b->bd_info = ext4_get_group_info(sb, group);
931 e4b->bd_sb = sb;
932 e4b->bd_group = group;
933 e4b->bd_buddy_page = NULL;
934 e4b->bd_bitmap_page = NULL;
935 e4b->alloc_semp = &grp->alloc_sem;
937 /* Take the read lock on the group alloc
938 * sem. This would make sure a parallel
939 * ext4_mb_init_group happening on other
940 * groups mapped by the page is blocked
941 * till we are done with allocation
943 down_read(e4b->alloc_semp);
946 * the buddy cache inode stores the block bitmap
947 * and buddy information in consecutive blocks.
948 * So for each group we need two blocks.
950 block = group * 2;
951 pnum = block / blocks_per_page;
952 poff = block % blocks_per_page;
954 /* we could use find_or_create_page(), but it locks page
955 * what we'd like to avoid in fast path ... */
956 page = find_get_page(inode->i_mapping, pnum);
957 if (page == NULL || !PageUptodate(page)) {
958 if (page)
960 * drop the page reference and try
961 * to get the page with lock. If we
962 * are not uptodate that implies
963 * somebody just created the page but
964 * is yet to initialize the same. So
965 * wait for it to initialize.
967 page_cache_release(page);
968 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
969 if (page) {
970 BUG_ON(page->mapping != inode->i_mapping);
971 if (!PageUptodate(page)) {
972 ret = ext4_mb_init_cache(page, NULL);
973 if (ret) {
974 unlock_page(page);
975 goto err;
977 mb_cmp_bitmaps(e4b, page_address(page) +
978 (poff * sb->s_blocksize));
980 unlock_page(page);
983 if (page == NULL || !PageUptodate(page)) {
984 ret = -EIO;
985 goto err;
987 e4b->bd_bitmap_page = page;
988 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
989 mark_page_accessed(page);
991 block++;
992 pnum = block / blocks_per_page;
993 poff = block % blocks_per_page;
995 page = find_get_page(inode->i_mapping, pnum);
996 if (page == NULL || !PageUptodate(page)) {
997 if (page)
998 page_cache_release(page);
999 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1000 if (page) {
1001 BUG_ON(page->mapping != inode->i_mapping);
1002 if (!PageUptodate(page)) {
1003 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1004 if (ret) {
1005 unlock_page(page);
1006 goto err;
1009 unlock_page(page);
1012 if (page == NULL || !PageUptodate(page)) {
1013 ret = -EIO;
1014 goto err;
1016 e4b->bd_buddy_page = page;
1017 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1018 mark_page_accessed(page);
1020 BUG_ON(e4b->bd_bitmap_page == NULL);
1021 BUG_ON(e4b->bd_buddy_page == NULL);
1023 return 0;
1025 err:
1026 if (e4b->bd_bitmap_page)
1027 page_cache_release(e4b->bd_bitmap_page);
1028 if (e4b->bd_buddy_page)
1029 page_cache_release(e4b->bd_buddy_page);
1030 e4b->bd_buddy = NULL;
1031 e4b->bd_bitmap = NULL;
1033 /* Done with the buddy cache */
1034 up_read(e4b->alloc_semp);
1035 return ret;
1038 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1040 if (e4b->bd_bitmap_page)
1041 page_cache_release(e4b->bd_bitmap_page);
1042 if (e4b->bd_buddy_page)
1043 page_cache_release(e4b->bd_buddy_page);
1044 /* Done with the buddy cache */
1045 if (e4b->alloc_semp)
1046 up_read(e4b->alloc_semp);
1050 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1052 int order = 1;
1053 void *bb;
1055 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1056 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1058 bb = EXT4_MB_BUDDY(e4b);
1059 while (order <= e4b->bd_blkbits + 1) {
1060 block = block >> 1;
1061 if (!mb_test_bit(block, bb)) {
1062 /* this block is part of buddy of order 'order' */
1063 return order;
1065 bb += 1 << (e4b->bd_blkbits - order);
1066 order++;
1068 return 0;
1071 static void mb_clear_bits(void *bm, int cur, int len)
1073 __u32 *addr;
1075 len = cur + len;
1076 while (cur < len) {
1077 if ((cur & 31) == 0 && (len - cur) >= 32) {
1078 /* fast path: clear whole word at once */
1079 addr = bm + (cur >> 3);
1080 *addr = 0;
1081 cur += 32;
1082 continue;
1084 mb_clear_bit(cur, bm);
1085 cur++;
1089 static void mb_set_bits(void *bm, int cur, int len)
1091 __u32 *addr;
1093 len = cur + len;
1094 while (cur < len) {
1095 if ((cur & 31) == 0 && (len - cur) >= 32) {
1096 /* fast path: set whole word at once */
1097 addr = bm + (cur >> 3);
1098 *addr = 0xffffffff;
1099 cur += 32;
1100 continue;
1102 mb_set_bit(cur, bm);
1103 cur++;
1107 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1108 int first, int count)
1110 int block = 0;
1111 int max = 0;
1112 int order;
1113 void *buddy;
1114 void *buddy2;
1115 struct super_block *sb = e4b->bd_sb;
1117 BUG_ON(first + count > (sb->s_blocksize << 3));
1118 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1119 mb_check_buddy(e4b);
1120 mb_free_blocks_double(inode, e4b, first, count);
1122 e4b->bd_info->bb_free += count;
1123 if (first < e4b->bd_info->bb_first_free)
1124 e4b->bd_info->bb_first_free = first;
1126 /* let's maintain fragments counter */
1127 if (first != 0)
1128 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1129 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1130 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1131 if (block && max)
1132 e4b->bd_info->bb_fragments--;
1133 else if (!block && !max)
1134 e4b->bd_info->bb_fragments++;
1136 /* let's maintain buddy itself */
1137 while (count-- > 0) {
1138 block = first++;
1139 order = 0;
1141 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1142 ext4_fsblk_t blocknr;
1143 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1144 blocknr += block;
1145 blocknr +=
1146 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1147 ext4_grp_locked_error(sb, e4b->bd_group,
1148 __func__, "double-free of inode"
1149 " %lu's block %llu(bit %u in group %u)",
1150 inode ? inode->i_ino : 0, blocknr, block,
1151 e4b->bd_group);
1153 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1154 e4b->bd_info->bb_counters[order]++;
1156 /* start of the buddy */
1157 buddy = mb_find_buddy(e4b, order, &max);
1159 do {
1160 block &= ~1UL;
1161 if (mb_test_bit(block, buddy) ||
1162 mb_test_bit(block + 1, buddy))
1163 break;
1165 /* both the buddies are free, try to coalesce them */
1166 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1168 if (!buddy2)
1169 break;
1171 if (order > 0) {
1172 /* for special purposes, we don't set
1173 * free bits in bitmap */
1174 mb_set_bit(block, buddy);
1175 mb_set_bit(block + 1, buddy);
1177 e4b->bd_info->bb_counters[order]--;
1178 e4b->bd_info->bb_counters[order]--;
1180 block = block >> 1;
1181 order++;
1182 e4b->bd_info->bb_counters[order]++;
1184 mb_clear_bit(block, buddy2);
1185 buddy = buddy2;
1186 } while (1);
1188 mb_check_buddy(e4b);
1191 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1192 int needed, struct ext4_free_extent *ex)
1194 int next = block;
1195 int max;
1196 int ord;
1197 void *buddy;
1199 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1200 BUG_ON(ex == NULL);
1202 buddy = mb_find_buddy(e4b, order, &max);
1203 BUG_ON(buddy == NULL);
1204 BUG_ON(block >= max);
1205 if (mb_test_bit(block, buddy)) {
1206 ex->fe_len = 0;
1207 ex->fe_start = 0;
1208 ex->fe_group = 0;
1209 return 0;
1212 /* FIXME dorp order completely ? */
1213 if (likely(order == 0)) {
1214 /* find actual order */
1215 order = mb_find_order_for_block(e4b, block);
1216 block = block >> order;
1219 ex->fe_len = 1 << order;
1220 ex->fe_start = block << order;
1221 ex->fe_group = e4b->bd_group;
1223 /* calc difference from given start */
1224 next = next - ex->fe_start;
1225 ex->fe_len -= next;
1226 ex->fe_start += next;
1228 while (needed > ex->fe_len &&
1229 (buddy = mb_find_buddy(e4b, order, &max))) {
1231 if (block + 1 >= max)
1232 break;
1234 next = (block + 1) * (1 << order);
1235 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1236 break;
1238 ord = mb_find_order_for_block(e4b, next);
1240 order = ord;
1241 block = next >> order;
1242 ex->fe_len += 1 << order;
1245 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1246 return ex->fe_len;
1249 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1251 int ord;
1252 int mlen = 0;
1253 int max = 0;
1254 int cur;
1255 int start = ex->fe_start;
1256 int len = ex->fe_len;
1257 unsigned ret = 0;
1258 int len0 = len;
1259 void *buddy;
1261 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1262 BUG_ON(e4b->bd_group != ex->fe_group);
1263 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1264 mb_check_buddy(e4b);
1265 mb_mark_used_double(e4b, start, len);
1267 e4b->bd_info->bb_free -= len;
1268 if (e4b->bd_info->bb_first_free == start)
1269 e4b->bd_info->bb_first_free += len;
1271 /* let's maintain fragments counter */
1272 if (start != 0)
1273 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1274 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1275 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1276 if (mlen && max)
1277 e4b->bd_info->bb_fragments++;
1278 else if (!mlen && !max)
1279 e4b->bd_info->bb_fragments--;
1281 /* let's maintain buddy itself */
1282 while (len) {
1283 ord = mb_find_order_for_block(e4b, start);
1285 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1286 /* the whole chunk may be allocated at once! */
1287 mlen = 1 << ord;
1288 buddy = mb_find_buddy(e4b, ord, &max);
1289 BUG_ON((start >> ord) >= max);
1290 mb_set_bit(start >> ord, buddy);
1291 e4b->bd_info->bb_counters[ord]--;
1292 start += mlen;
1293 len -= mlen;
1294 BUG_ON(len < 0);
1295 continue;
1298 /* store for history */
1299 if (ret == 0)
1300 ret = len | (ord << 16);
1302 /* we have to split large buddy */
1303 BUG_ON(ord <= 0);
1304 buddy = mb_find_buddy(e4b, ord, &max);
1305 mb_set_bit(start >> ord, buddy);
1306 e4b->bd_info->bb_counters[ord]--;
1308 ord--;
1309 cur = (start >> ord) & ~1U;
1310 buddy = mb_find_buddy(e4b, ord, &max);
1311 mb_clear_bit(cur, buddy);
1312 mb_clear_bit(cur + 1, buddy);
1313 e4b->bd_info->bb_counters[ord]++;
1314 e4b->bd_info->bb_counters[ord]++;
1317 mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1318 mb_check_buddy(e4b);
1320 return ret;
1324 * Must be called under group lock!
1326 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1327 struct ext4_buddy *e4b)
1329 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1330 int ret;
1332 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1333 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1335 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1336 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1337 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1339 /* preallocation can change ac_b_ex, thus we store actually
1340 * allocated blocks for history */
1341 ac->ac_f_ex = ac->ac_b_ex;
1343 ac->ac_status = AC_STATUS_FOUND;
1344 ac->ac_tail = ret & 0xffff;
1345 ac->ac_buddy = ret >> 16;
1348 * take the page reference. We want the page to be pinned
1349 * so that we don't get a ext4_mb_init_cache_call for this
1350 * group until we update the bitmap. That would mean we
1351 * double allocate blocks. The reference is dropped
1352 * in ext4_mb_release_context
1354 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1355 get_page(ac->ac_bitmap_page);
1356 ac->ac_buddy_page = e4b->bd_buddy_page;
1357 get_page(ac->ac_buddy_page);
1358 /* on allocation we use ac to track the held semaphore */
1359 ac->alloc_semp = e4b->alloc_semp;
1360 e4b->alloc_semp = NULL;
1361 /* store last allocated for subsequent stream allocation */
1362 if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1363 spin_lock(&sbi->s_md_lock);
1364 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1365 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1366 spin_unlock(&sbi->s_md_lock);
1371 * regular allocator, for general purposes allocation
1374 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1375 struct ext4_buddy *e4b,
1376 int finish_group)
1378 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1379 struct ext4_free_extent *bex = &ac->ac_b_ex;
1380 struct ext4_free_extent *gex = &ac->ac_g_ex;
1381 struct ext4_free_extent ex;
1382 int max;
1384 if (ac->ac_status == AC_STATUS_FOUND)
1385 return;
1387 * We don't want to scan for a whole year
1389 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1390 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1391 ac->ac_status = AC_STATUS_BREAK;
1392 return;
1396 * Haven't found good chunk so far, let's continue
1398 if (bex->fe_len < gex->fe_len)
1399 return;
1401 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1402 && bex->fe_group == e4b->bd_group) {
1403 /* recheck chunk's availability - we don't know
1404 * when it was found (within this lock-unlock
1405 * period or not) */
1406 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1407 if (max >= gex->fe_len) {
1408 ext4_mb_use_best_found(ac, e4b);
1409 return;
1415 * The routine checks whether found extent is good enough. If it is,
1416 * then the extent gets marked used and flag is set to the context
1417 * to stop scanning. Otherwise, the extent is compared with the
1418 * previous found extent and if new one is better, then it's stored
1419 * in the context. Later, the best found extent will be used, if
1420 * mballoc can't find good enough extent.
1422 * FIXME: real allocation policy is to be designed yet!
1424 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1425 struct ext4_free_extent *ex,
1426 struct ext4_buddy *e4b)
1428 struct ext4_free_extent *bex = &ac->ac_b_ex;
1429 struct ext4_free_extent *gex = &ac->ac_g_ex;
1431 BUG_ON(ex->fe_len <= 0);
1432 BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1433 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1434 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1436 ac->ac_found++;
1439 * The special case - take what you catch first
1441 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1442 *bex = *ex;
1443 ext4_mb_use_best_found(ac, e4b);
1444 return;
1448 * Let's check whether the chuck is good enough
1450 if (ex->fe_len == gex->fe_len) {
1451 *bex = *ex;
1452 ext4_mb_use_best_found(ac, e4b);
1453 return;
1457 * If this is first found extent, just store it in the context
1459 if (bex->fe_len == 0) {
1460 *bex = *ex;
1461 return;
1465 * If new found extent is better, store it in the context
1467 if (bex->fe_len < gex->fe_len) {
1468 /* if the request isn't satisfied, any found extent
1469 * larger than previous best one is better */
1470 if (ex->fe_len > bex->fe_len)
1471 *bex = *ex;
1472 } else if (ex->fe_len > gex->fe_len) {
1473 /* if the request is satisfied, then we try to find
1474 * an extent that still satisfy the request, but is
1475 * smaller than previous one */
1476 if (ex->fe_len < bex->fe_len)
1477 *bex = *ex;
1480 ext4_mb_check_limits(ac, e4b, 0);
1483 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1484 struct ext4_buddy *e4b)
1486 struct ext4_free_extent ex = ac->ac_b_ex;
1487 ext4_group_t group = ex.fe_group;
1488 int max;
1489 int err;
1491 BUG_ON(ex.fe_len <= 0);
1492 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1493 if (err)
1494 return err;
1496 ext4_lock_group(ac->ac_sb, group);
1497 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1499 if (max > 0) {
1500 ac->ac_b_ex = ex;
1501 ext4_mb_use_best_found(ac, e4b);
1504 ext4_unlock_group(ac->ac_sb, group);
1505 ext4_mb_release_desc(e4b);
1507 return 0;
1510 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1511 struct ext4_buddy *e4b)
1513 ext4_group_t group = ac->ac_g_ex.fe_group;
1514 int max;
1515 int err;
1516 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1517 struct ext4_super_block *es = sbi->s_es;
1518 struct ext4_free_extent ex;
1520 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1521 return 0;
1523 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1524 if (err)
1525 return err;
1527 ext4_lock_group(ac->ac_sb, group);
1528 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1529 ac->ac_g_ex.fe_len, &ex);
1531 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1532 ext4_fsblk_t start;
1534 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1535 ex.fe_start + le32_to_cpu(es->s_first_data_block);
1536 /* use do_div to get remainder (would be 64-bit modulo) */
1537 if (do_div(start, sbi->s_stripe) == 0) {
1538 ac->ac_found++;
1539 ac->ac_b_ex = ex;
1540 ext4_mb_use_best_found(ac, e4b);
1542 } else if (max >= ac->ac_g_ex.fe_len) {
1543 BUG_ON(ex.fe_len <= 0);
1544 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1545 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1546 ac->ac_found++;
1547 ac->ac_b_ex = ex;
1548 ext4_mb_use_best_found(ac, e4b);
1549 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1550 /* Sometimes, caller may want to merge even small
1551 * number of blocks to an existing extent */
1552 BUG_ON(ex.fe_len <= 0);
1553 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1554 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1555 ac->ac_found++;
1556 ac->ac_b_ex = ex;
1557 ext4_mb_use_best_found(ac, e4b);
1559 ext4_unlock_group(ac->ac_sb, group);
1560 ext4_mb_release_desc(e4b);
1562 return 0;
1566 * The routine scans buddy structures (not bitmap!) from given order
1567 * to max order and tries to find big enough chunk to satisfy the req
1569 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1570 struct ext4_buddy *e4b)
1572 struct super_block *sb = ac->ac_sb;
1573 struct ext4_group_info *grp = e4b->bd_info;
1574 void *buddy;
1575 int i;
1576 int k;
1577 int max;
1579 BUG_ON(ac->ac_2order <= 0);
1580 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1581 if (grp->bb_counters[i] == 0)
1582 continue;
1584 buddy = mb_find_buddy(e4b, i, &max);
1585 BUG_ON(buddy == NULL);
1587 k = mb_find_next_zero_bit(buddy, max, 0);
1588 BUG_ON(k >= max);
1590 ac->ac_found++;
1592 ac->ac_b_ex.fe_len = 1 << i;
1593 ac->ac_b_ex.fe_start = k << i;
1594 ac->ac_b_ex.fe_group = e4b->bd_group;
1596 ext4_mb_use_best_found(ac, e4b);
1598 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1600 if (EXT4_SB(sb)->s_mb_stats)
1601 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1603 break;
1608 * The routine scans the group and measures all found extents.
1609 * In order to optimize scanning, caller must pass number of
1610 * free blocks in the group, so the routine can know upper limit.
1612 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1613 struct ext4_buddy *e4b)
1615 struct super_block *sb = ac->ac_sb;
1616 void *bitmap = EXT4_MB_BITMAP(e4b);
1617 struct ext4_free_extent ex;
1618 int i;
1619 int free;
1621 free = e4b->bd_info->bb_free;
1622 BUG_ON(free <= 0);
1624 i = e4b->bd_info->bb_first_free;
1626 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1627 i = mb_find_next_zero_bit(bitmap,
1628 EXT4_BLOCKS_PER_GROUP(sb), i);
1629 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1631 * IF we have corrupt bitmap, we won't find any
1632 * free blocks even though group info says we
1633 * we have free blocks
1635 ext4_grp_locked_error(sb, e4b->bd_group,
1636 __func__, "%d free blocks as per "
1637 "group info. But bitmap says 0",
1638 free);
1639 break;
1642 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1643 BUG_ON(ex.fe_len <= 0);
1644 if (free < ex.fe_len) {
1645 ext4_grp_locked_error(sb, e4b->bd_group,
1646 __func__, "%d free blocks as per "
1647 "group info. But got %d blocks",
1648 free, ex.fe_len);
1650 * The number of free blocks differs. This mostly
1651 * indicate that the bitmap is corrupt. So exit
1652 * without claiming the space.
1654 break;
1657 ext4_mb_measure_extent(ac, &ex, e4b);
1659 i += ex.fe_len;
1660 free -= ex.fe_len;
1663 ext4_mb_check_limits(ac, e4b, 1);
1667 * This is a special case for storages like raid5
1668 * we try to find stripe-aligned chunks for stripe-size requests
1669 * XXX should do so at least for multiples of stripe size as well
1671 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1672 struct ext4_buddy *e4b)
1674 struct super_block *sb = ac->ac_sb;
1675 struct ext4_sb_info *sbi = EXT4_SB(sb);
1676 void *bitmap = EXT4_MB_BITMAP(e4b);
1677 struct ext4_free_extent ex;
1678 ext4_fsblk_t first_group_block;
1679 ext4_fsblk_t a;
1680 ext4_grpblk_t i;
1681 int max;
1683 BUG_ON(sbi->s_stripe == 0);
1685 /* find first stripe-aligned block in group */
1686 first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1687 + le32_to_cpu(sbi->s_es->s_first_data_block);
1688 a = first_group_block + sbi->s_stripe - 1;
1689 do_div(a, sbi->s_stripe);
1690 i = (a * sbi->s_stripe) - first_group_block;
1692 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1693 if (!mb_test_bit(i, bitmap)) {
1694 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1695 if (max >= sbi->s_stripe) {
1696 ac->ac_found++;
1697 ac->ac_b_ex = ex;
1698 ext4_mb_use_best_found(ac, e4b);
1699 break;
1702 i += sbi->s_stripe;
1706 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1707 ext4_group_t group, int cr)
1709 unsigned free, fragments;
1710 unsigned i, bits;
1711 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1712 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1714 BUG_ON(cr < 0 || cr >= 4);
1715 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1717 free = grp->bb_free;
1718 fragments = grp->bb_fragments;
1719 if (free == 0)
1720 return 0;
1721 if (fragments == 0)
1722 return 0;
1724 switch (cr) {
1725 case 0:
1726 BUG_ON(ac->ac_2order == 0);
1728 /* Avoid using the first bg of a flexgroup for data files */
1729 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1730 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1731 ((group % flex_size) == 0))
1732 return 0;
1734 bits = ac->ac_sb->s_blocksize_bits + 1;
1735 for (i = ac->ac_2order; i <= bits; i++)
1736 if (grp->bb_counters[i] > 0)
1737 return 1;
1738 break;
1739 case 1:
1740 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1741 return 1;
1742 break;
1743 case 2:
1744 if (free >= ac->ac_g_ex.fe_len)
1745 return 1;
1746 break;
1747 case 3:
1748 return 1;
1749 default:
1750 BUG();
1753 return 0;
1757 * lock the group_info alloc_sem of all the groups
1758 * belonging to the same buddy cache page. This
1759 * make sure other parallel operation on the buddy
1760 * cache doesn't happen whild holding the buddy cache
1761 * lock
1763 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1765 int i;
1766 int block, pnum;
1767 int blocks_per_page;
1768 int groups_per_page;
1769 ext4_group_t ngroups = ext4_get_groups_count(sb);
1770 ext4_group_t first_group;
1771 struct ext4_group_info *grp;
1773 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1775 * the buddy cache inode stores the block bitmap
1776 * and buddy information in consecutive blocks.
1777 * So for each group we need two blocks.
1779 block = group * 2;
1780 pnum = block / blocks_per_page;
1781 first_group = pnum * blocks_per_page / 2;
1783 groups_per_page = blocks_per_page >> 1;
1784 if (groups_per_page == 0)
1785 groups_per_page = 1;
1786 /* read all groups the page covers into the cache */
1787 for (i = 0; i < groups_per_page; i++) {
1789 if ((first_group + i) >= ngroups)
1790 break;
1791 grp = ext4_get_group_info(sb, first_group + i);
1792 /* take all groups write allocation
1793 * semaphore. This make sure there is
1794 * no block allocation going on in any
1795 * of that groups
1797 down_write_nested(&grp->alloc_sem, i);
1799 return i;
1802 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1803 ext4_group_t group, int locked_group)
1805 int i;
1806 int block, pnum;
1807 int blocks_per_page;
1808 ext4_group_t first_group;
1809 struct ext4_group_info *grp;
1811 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1813 * the buddy cache inode stores the block bitmap
1814 * and buddy information in consecutive blocks.
1815 * So for each group we need two blocks.
1817 block = group * 2;
1818 pnum = block / blocks_per_page;
1819 first_group = pnum * blocks_per_page / 2;
1820 /* release locks on all the groups */
1821 for (i = 0; i < locked_group; i++) {
1823 grp = ext4_get_group_info(sb, first_group + i);
1824 /* take all groups write allocation
1825 * semaphore. This make sure there is
1826 * no block allocation going on in any
1827 * of that groups
1829 up_write(&grp->alloc_sem);
1834 static int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1837 int ret;
1838 void *bitmap;
1839 int blocks_per_page;
1840 int block, pnum, poff;
1841 int num_grp_locked = 0;
1842 struct ext4_group_info *this_grp;
1843 struct ext4_sb_info *sbi = EXT4_SB(sb);
1844 struct inode *inode = sbi->s_buddy_cache;
1845 struct page *page = NULL, *bitmap_page = NULL;
1847 mb_debug("init group %lu\n", group);
1848 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1849 this_grp = ext4_get_group_info(sb, group);
1851 * This ensures we don't add group
1852 * to this buddy cache via resize
1854 num_grp_locked = ext4_mb_get_buddy_cache_lock(sb, group);
1855 if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
1857 * somebody initialized the group
1858 * return without doing anything
1860 ret = 0;
1861 goto err;
1864 * the buddy cache inode stores the block bitmap
1865 * and buddy information in consecutive blocks.
1866 * So for each group we need two blocks.
1868 block = group * 2;
1869 pnum = block / blocks_per_page;
1870 poff = block % blocks_per_page;
1871 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1872 if (page) {
1873 BUG_ON(page->mapping != inode->i_mapping);
1874 ret = ext4_mb_init_cache(page, NULL);
1875 if (ret) {
1876 unlock_page(page);
1877 goto err;
1879 unlock_page(page);
1881 if (page == NULL || !PageUptodate(page)) {
1882 ret = -EIO;
1883 goto err;
1885 mark_page_accessed(page);
1886 bitmap_page = page;
1887 bitmap = page_address(page) + (poff * sb->s_blocksize);
1889 /* init buddy cache */
1890 block++;
1891 pnum = block / blocks_per_page;
1892 poff = block % blocks_per_page;
1893 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1894 if (page == bitmap_page) {
1896 * If both the bitmap and buddy are in
1897 * the same page we don't need to force
1898 * init the buddy
1900 unlock_page(page);
1901 } else if (page) {
1902 BUG_ON(page->mapping != inode->i_mapping);
1903 ret = ext4_mb_init_cache(page, bitmap);
1904 if (ret) {
1905 unlock_page(page);
1906 goto err;
1908 unlock_page(page);
1910 if (page == NULL || !PageUptodate(page)) {
1911 ret = -EIO;
1912 goto err;
1914 mark_page_accessed(page);
1915 err:
1916 ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1917 if (bitmap_page)
1918 page_cache_release(bitmap_page);
1919 if (page)
1920 page_cache_release(page);
1921 return ret;
1924 static noinline_for_stack int
1925 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1927 ext4_group_t ngroups, group, i;
1928 int cr;
1929 int err = 0;
1930 int bsbits;
1931 struct ext4_sb_info *sbi;
1932 struct super_block *sb;
1933 struct ext4_buddy e4b;
1934 loff_t size, isize;
1936 sb = ac->ac_sb;
1937 sbi = EXT4_SB(sb);
1938 ngroups = ext4_get_groups_count(sb);
1939 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1941 /* first, try the goal */
1942 err = ext4_mb_find_by_goal(ac, &e4b);
1943 if (err || ac->ac_status == AC_STATUS_FOUND)
1944 goto out;
1946 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1947 goto out;
1950 * ac->ac2_order is set only if the fe_len is a power of 2
1951 * if ac2_order is set we also set criteria to 0 so that we
1952 * try exact allocation using buddy.
1954 i = fls(ac->ac_g_ex.fe_len);
1955 ac->ac_2order = 0;
1957 * We search using buddy data only if the order of the request
1958 * is greater than equal to the sbi_s_mb_order2_reqs
1959 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1961 if (i >= sbi->s_mb_order2_reqs) {
1963 * This should tell if fe_len is exactly power of 2
1965 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1966 ac->ac_2order = i - 1;
1969 bsbits = ac->ac_sb->s_blocksize_bits;
1970 /* if stream allocation is enabled, use global goal */
1971 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1972 isize = i_size_read(ac->ac_inode) >> bsbits;
1973 if (size < isize)
1974 size = isize;
1976 if (size < sbi->s_mb_stream_request &&
1977 (ac->ac_flags & EXT4_MB_HINT_DATA)) {
1978 /* TBD: may be hot point */
1979 spin_lock(&sbi->s_md_lock);
1980 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1981 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1982 spin_unlock(&sbi->s_md_lock);
1984 /* Let's just scan groups to find more-less suitable blocks */
1985 cr = ac->ac_2order ? 0 : 1;
1987 * cr == 0 try to get exact allocation,
1988 * cr == 3 try to get anything
1990 repeat:
1991 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1992 ac->ac_criteria = cr;
1994 * searching for the right group start
1995 * from the goal value specified
1997 group = ac->ac_g_ex.fe_group;
1999 for (i = 0; i < ngroups; group++, i++) {
2000 struct ext4_group_info *grp;
2001 struct ext4_group_desc *desc;
2003 if (group == ngroups)
2004 group = 0;
2006 /* quick check to skip empty groups */
2007 grp = ext4_get_group_info(sb, group);
2008 if (grp->bb_free == 0)
2009 continue;
2012 * if the group is already init we check whether it is
2013 * a good group and if not we don't load the buddy
2015 if (EXT4_MB_GRP_NEED_INIT(grp)) {
2017 * we need full data about the group
2018 * to make a good selection
2020 err = ext4_mb_init_group(sb, group);
2021 if (err)
2022 goto out;
2026 * If the particular group doesn't satisfy our
2027 * criteria we continue with the next group
2029 if (!ext4_mb_good_group(ac, group, cr))
2030 continue;
2032 err = ext4_mb_load_buddy(sb, group, &e4b);
2033 if (err)
2034 goto out;
2036 ext4_lock_group(sb, group);
2037 if (!ext4_mb_good_group(ac, group, cr)) {
2038 /* someone did allocation from this group */
2039 ext4_unlock_group(sb, group);
2040 ext4_mb_release_desc(&e4b);
2041 continue;
2044 ac->ac_groups_scanned++;
2045 desc = ext4_get_group_desc(sb, group, NULL);
2046 if (cr == 0)
2047 ext4_mb_simple_scan_group(ac, &e4b);
2048 else if (cr == 1 &&
2049 ac->ac_g_ex.fe_len == sbi->s_stripe)
2050 ext4_mb_scan_aligned(ac, &e4b);
2051 else
2052 ext4_mb_complex_scan_group(ac, &e4b);
2054 ext4_unlock_group(sb, group);
2055 ext4_mb_release_desc(&e4b);
2057 if (ac->ac_status != AC_STATUS_CONTINUE)
2058 break;
2062 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2063 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2065 * We've been searching too long. Let's try to allocate
2066 * the best chunk we've found so far
2069 ext4_mb_try_best_found(ac, &e4b);
2070 if (ac->ac_status != AC_STATUS_FOUND) {
2072 * Someone more lucky has already allocated it.
2073 * The only thing we can do is just take first
2074 * found block(s)
2075 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2077 ac->ac_b_ex.fe_group = 0;
2078 ac->ac_b_ex.fe_start = 0;
2079 ac->ac_b_ex.fe_len = 0;
2080 ac->ac_status = AC_STATUS_CONTINUE;
2081 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2082 cr = 3;
2083 atomic_inc(&sbi->s_mb_lost_chunks);
2084 goto repeat;
2087 out:
2088 return err;
2091 #ifdef EXT4_MB_HISTORY
2092 struct ext4_mb_proc_session {
2093 struct ext4_mb_history *history;
2094 struct super_block *sb;
2095 int start;
2096 int max;
2099 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2100 struct ext4_mb_history *hs,
2101 int first)
2103 if (hs == s->history + s->max)
2104 hs = s->history;
2105 if (!first && hs == s->history + s->start)
2106 return NULL;
2107 while (hs->orig.fe_len == 0) {
2108 hs++;
2109 if (hs == s->history + s->max)
2110 hs = s->history;
2111 if (hs == s->history + s->start)
2112 return NULL;
2114 return hs;
2117 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2119 struct ext4_mb_proc_session *s = seq->private;
2120 struct ext4_mb_history *hs;
2121 int l = *pos;
2123 if (l == 0)
2124 return SEQ_START_TOKEN;
2125 hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2126 if (!hs)
2127 return NULL;
2128 while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2129 return hs;
2132 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2133 loff_t *pos)
2135 struct ext4_mb_proc_session *s = seq->private;
2136 struct ext4_mb_history *hs = v;
2138 ++*pos;
2139 if (v == SEQ_START_TOKEN)
2140 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2141 else
2142 return ext4_mb_history_skip_empty(s, ++hs, 0);
2145 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2147 char buf[25], buf2[25], buf3[25], *fmt;
2148 struct ext4_mb_history *hs = v;
2150 if (v == SEQ_START_TOKEN) {
2151 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2152 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
2153 "pid", "inode", "original", "goal", "result", "found",
2154 "grps", "cr", "flags", "merge", "tail", "broken");
2155 return 0;
2158 if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2159 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2160 "%-5u %-5s %-5u %-6u\n";
2161 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2162 hs->result.fe_start, hs->result.fe_len,
2163 hs->result.fe_logical);
2164 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2165 hs->orig.fe_start, hs->orig.fe_len,
2166 hs->orig.fe_logical);
2167 sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group,
2168 hs->goal.fe_start, hs->goal.fe_len,
2169 hs->goal.fe_logical);
2170 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2171 hs->found, hs->groups, hs->cr, hs->flags,
2172 hs->merged ? "M" : "", hs->tail,
2173 hs->buddy ? 1 << hs->buddy : 0);
2174 } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2175 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2176 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2177 hs->result.fe_start, hs->result.fe_len,
2178 hs->result.fe_logical);
2179 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2180 hs->orig.fe_start, hs->orig.fe_len,
2181 hs->orig.fe_logical);
2182 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2183 } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2184 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2185 hs->result.fe_start, hs->result.fe_len);
2186 seq_printf(seq, "%-5u %-8u %-23s discard\n",
2187 hs->pid, hs->ino, buf2);
2188 } else if (hs->op == EXT4_MB_HISTORY_FREE) {
2189 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2190 hs->result.fe_start, hs->result.fe_len);
2191 seq_printf(seq, "%-5u %-8u %-23s free\n",
2192 hs->pid, hs->ino, buf2);
2194 return 0;
2197 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2201 static struct seq_operations ext4_mb_seq_history_ops = {
2202 .start = ext4_mb_seq_history_start,
2203 .next = ext4_mb_seq_history_next,
2204 .stop = ext4_mb_seq_history_stop,
2205 .show = ext4_mb_seq_history_show,
2208 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2210 struct super_block *sb = PDE(inode)->data;
2211 struct ext4_sb_info *sbi = EXT4_SB(sb);
2212 struct ext4_mb_proc_session *s;
2213 int rc;
2214 int size;
2216 if (unlikely(sbi->s_mb_history == NULL))
2217 return -ENOMEM;
2218 s = kmalloc(sizeof(*s), GFP_KERNEL);
2219 if (s == NULL)
2220 return -ENOMEM;
2221 s->sb = sb;
2222 size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2223 s->history = kmalloc(size, GFP_KERNEL);
2224 if (s->history == NULL) {
2225 kfree(s);
2226 return -ENOMEM;
2229 spin_lock(&sbi->s_mb_history_lock);
2230 memcpy(s->history, sbi->s_mb_history, size);
2231 s->max = sbi->s_mb_history_max;
2232 s->start = sbi->s_mb_history_cur % s->max;
2233 spin_unlock(&sbi->s_mb_history_lock);
2235 rc = seq_open(file, &ext4_mb_seq_history_ops);
2236 if (rc == 0) {
2237 struct seq_file *m = (struct seq_file *)file->private_data;
2238 m->private = s;
2239 } else {
2240 kfree(s->history);
2241 kfree(s);
2243 return rc;
2247 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2249 struct seq_file *seq = (struct seq_file *)file->private_data;
2250 struct ext4_mb_proc_session *s = seq->private;
2251 kfree(s->history);
2252 kfree(s);
2253 return seq_release(inode, file);
2256 static ssize_t ext4_mb_seq_history_write(struct file *file,
2257 const char __user *buffer,
2258 size_t count, loff_t *ppos)
2260 struct seq_file *seq = (struct seq_file *)file->private_data;
2261 struct ext4_mb_proc_session *s = seq->private;
2262 struct super_block *sb = s->sb;
2263 char str[32];
2264 int value;
2266 if (count >= sizeof(str)) {
2267 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2268 "mb_history", (int)sizeof(str));
2269 return -EOVERFLOW;
2272 if (copy_from_user(str, buffer, count))
2273 return -EFAULT;
2275 value = simple_strtol(str, NULL, 0);
2276 if (value < 0)
2277 return -ERANGE;
2278 EXT4_SB(sb)->s_mb_history_filter = value;
2280 return count;
2283 static struct file_operations ext4_mb_seq_history_fops = {
2284 .owner = THIS_MODULE,
2285 .open = ext4_mb_seq_history_open,
2286 .read = seq_read,
2287 .write = ext4_mb_seq_history_write,
2288 .llseek = seq_lseek,
2289 .release = ext4_mb_seq_history_release,
2292 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2294 struct super_block *sb = seq->private;
2295 ext4_group_t group;
2297 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2298 return NULL;
2299 group = *pos + 1;
2300 return (void *) ((unsigned long) group);
2303 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2305 struct super_block *sb = seq->private;
2306 ext4_group_t group;
2308 ++*pos;
2309 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2310 return NULL;
2311 group = *pos + 1;
2312 return (void *) ((unsigned long) group);
2315 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2317 struct super_block *sb = seq->private;
2318 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2319 int i;
2320 int err;
2321 struct ext4_buddy e4b;
2322 struct sg {
2323 struct ext4_group_info info;
2324 unsigned short counters[16];
2325 } sg;
2327 group--;
2328 if (group == 0)
2329 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2330 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2331 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2332 "group", "free", "frags", "first",
2333 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2334 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2336 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2337 sizeof(struct ext4_group_info);
2338 err = ext4_mb_load_buddy(sb, group, &e4b);
2339 if (err) {
2340 seq_printf(seq, "#%-5u: I/O error\n", group);
2341 return 0;
2343 ext4_lock_group(sb, group);
2344 memcpy(&sg, ext4_get_group_info(sb, group), i);
2345 ext4_unlock_group(sb, group);
2346 ext4_mb_release_desc(&e4b);
2348 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2349 sg.info.bb_fragments, sg.info.bb_first_free);
2350 for (i = 0; i <= 13; i++)
2351 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2352 sg.info.bb_counters[i] : 0);
2353 seq_printf(seq, " ]\n");
2355 return 0;
2358 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2362 static struct seq_operations ext4_mb_seq_groups_ops = {
2363 .start = ext4_mb_seq_groups_start,
2364 .next = ext4_mb_seq_groups_next,
2365 .stop = ext4_mb_seq_groups_stop,
2366 .show = ext4_mb_seq_groups_show,
2369 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2371 struct super_block *sb = PDE(inode)->data;
2372 int rc;
2374 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2375 if (rc == 0) {
2376 struct seq_file *m = (struct seq_file *)file->private_data;
2377 m->private = sb;
2379 return rc;
2383 static struct file_operations ext4_mb_seq_groups_fops = {
2384 .owner = THIS_MODULE,
2385 .open = ext4_mb_seq_groups_open,
2386 .read = seq_read,
2387 .llseek = seq_lseek,
2388 .release = seq_release,
2391 static void ext4_mb_history_release(struct super_block *sb)
2393 struct ext4_sb_info *sbi = EXT4_SB(sb);
2395 if (sbi->s_proc != NULL) {
2396 remove_proc_entry("mb_groups", sbi->s_proc);
2397 if (sbi->s_mb_history_max)
2398 remove_proc_entry("mb_history", sbi->s_proc);
2400 kfree(sbi->s_mb_history);
2403 static void ext4_mb_history_init(struct super_block *sb)
2405 struct ext4_sb_info *sbi = EXT4_SB(sb);
2406 int i;
2408 if (sbi->s_proc != NULL) {
2409 if (sbi->s_mb_history_max)
2410 proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2411 &ext4_mb_seq_history_fops, sb);
2412 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2413 &ext4_mb_seq_groups_fops, sb);
2416 sbi->s_mb_history_cur = 0;
2417 spin_lock_init(&sbi->s_mb_history_lock);
2418 i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2419 sbi->s_mb_history = i ? kzalloc(i, GFP_KERNEL) : NULL;
2420 /* if we can't allocate history, then we simple won't use it */
2423 static noinline_for_stack void
2424 ext4_mb_store_history(struct ext4_allocation_context *ac)
2426 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2427 struct ext4_mb_history h;
2429 if (sbi->s_mb_history == NULL)
2430 return;
2432 if (!(ac->ac_op & sbi->s_mb_history_filter))
2433 return;
2435 h.op = ac->ac_op;
2436 h.pid = current->pid;
2437 h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2438 h.orig = ac->ac_o_ex;
2439 h.result = ac->ac_b_ex;
2440 h.flags = ac->ac_flags;
2441 h.found = ac->ac_found;
2442 h.groups = ac->ac_groups_scanned;
2443 h.cr = ac->ac_criteria;
2444 h.tail = ac->ac_tail;
2445 h.buddy = ac->ac_buddy;
2446 h.merged = 0;
2447 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2448 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2449 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2450 h.merged = 1;
2451 h.goal = ac->ac_g_ex;
2452 h.result = ac->ac_f_ex;
2455 spin_lock(&sbi->s_mb_history_lock);
2456 memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2457 if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2458 sbi->s_mb_history_cur = 0;
2459 spin_unlock(&sbi->s_mb_history_lock);
2462 #else
2463 #define ext4_mb_history_release(sb)
2464 #define ext4_mb_history_init(sb)
2465 #endif
2468 /* Create and initialize ext4_group_info data for the given group. */
2469 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2470 struct ext4_group_desc *desc)
2472 int i, len;
2473 int metalen = 0;
2474 struct ext4_sb_info *sbi = EXT4_SB(sb);
2475 struct ext4_group_info **meta_group_info;
2478 * First check if this group is the first of a reserved block.
2479 * If it's true, we have to allocate a new table of pointers
2480 * to ext4_group_info structures
2482 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2483 metalen = sizeof(*meta_group_info) <<
2484 EXT4_DESC_PER_BLOCK_BITS(sb);
2485 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2486 if (meta_group_info == NULL) {
2487 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2488 "buddy group\n");
2489 goto exit_meta_group_info;
2491 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2492 meta_group_info;
2496 * calculate needed size. if change bb_counters size,
2497 * don't forget about ext4_mb_generate_buddy()
2499 len = offsetof(typeof(**meta_group_info),
2500 bb_counters[sb->s_blocksize_bits + 2]);
2502 meta_group_info =
2503 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2504 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2506 meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2507 if (meta_group_info[i] == NULL) {
2508 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2509 goto exit_group_info;
2511 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2512 &(meta_group_info[i]->bb_state));
2515 * initialize bb_free to be able to skip
2516 * empty groups without initialization
2518 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2519 meta_group_info[i]->bb_free =
2520 ext4_free_blocks_after_init(sb, group, desc);
2521 } else {
2522 meta_group_info[i]->bb_free =
2523 ext4_free_blks_count(sb, desc);
2526 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2527 init_rwsem(&meta_group_info[i]->alloc_sem);
2528 meta_group_info[i]->bb_free_root.rb_node = NULL;;
2530 #ifdef DOUBLE_CHECK
2532 struct buffer_head *bh;
2533 meta_group_info[i]->bb_bitmap =
2534 kmalloc(sb->s_blocksize, GFP_KERNEL);
2535 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2536 bh = ext4_read_block_bitmap(sb, group);
2537 BUG_ON(bh == NULL);
2538 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2539 sb->s_blocksize);
2540 put_bh(bh);
2542 #endif
2544 return 0;
2546 exit_group_info:
2547 /* If a meta_group_info table has been allocated, release it now */
2548 if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2549 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2550 exit_meta_group_info:
2551 return -ENOMEM;
2552 } /* ext4_mb_add_groupinfo */
2555 * Update an existing group.
2556 * This function is used for online resize
2558 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2560 grp->bb_free += add;
2563 static int ext4_mb_init_backend(struct super_block *sb)
2565 ext4_group_t ngroups = ext4_get_groups_count(sb);
2566 ext4_group_t i;
2567 int metalen;
2568 struct ext4_sb_info *sbi = EXT4_SB(sb);
2569 struct ext4_super_block *es = sbi->s_es;
2570 int num_meta_group_infos;
2571 int num_meta_group_infos_max;
2572 int array_size;
2573 struct ext4_group_info **meta_group_info;
2574 struct ext4_group_desc *desc;
2576 /* This is the number of blocks used by GDT */
2577 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2578 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2581 * This is the total number of blocks used by GDT including
2582 * the number of reserved blocks for GDT.
2583 * The s_group_info array is allocated with this value
2584 * to allow a clean online resize without a complex
2585 * manipulation of pointer.
2586 * The drawback is the unused memory when no resize
2587 * occurs but it's very low in terms of pages
2588 * (see comments below)
2589 * Need to handle this properly when META_BG resizing is allowed
2591 num_meta_group_infos_max = num_meta_group_infos +
2592 le16_to_cpu(es->s_reserved_gdt_blocks);
2595 * array_size is the size of s_group_info array. We round it
2596 * to the next power of two because this approximation is done
2597 * internally by kmalloc so we can have some more memory
2598 * for free here (e.g. may be used for META_BG resize).
2600 array_size = 1;
2601 while (array_size < sizeof(*sbi->s_group_info) *
2602 num_meta_group_infos_max)
2603 array_size = array_size << 1;
2604 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2605 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2606 * So a two level scheme suffices for now. */
2607 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2608 if (sbi->s_group_info == NULL) {
2609 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2610 return -ENOMEM;
2612 sbi->s_buddy_cache = new_inode(sb);
2613 if (sbi->s_buddy_cache == NULL) {
2614 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2615 goto err_freesgi;
2617 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2619 metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2620 for (i = 0; i < num_meta_group_infos; i++) {
2621 if ((i + 1) == num_meta_group_infos)
2622 metalen = sizeof(*meta_group_info) *
2623 (ngroups -
2624 (i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2625 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2626 if (meta_group_info == NULL) {
2627 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2628 "buddy group\n");
2629 goto err_freemeta;
2631 sbi->s_group_info[i] = meta_group_info;
2634 for (i = 0; i < ngroups; i++) {
2635 desc = ext4_get_group_desc(sb, i, NULL);
2636 if (desc == NULL) {
2637 printk(KERN_ERR
2638 "EXT4-fs: can't read descriptor %u\n", i);
2639 goto err_freebuddy;
2641 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2642 goto err_freebuddy;
2645 return 0;
2647 err_freebuddy:
2648 while (i-- > 0)
2649 kfree(ext4_get_group_info(sb, i));
2650 i = num_meta_group_infos;
2651 err_freemeta:
2652 while (i-- > 0)
2653 kfree(sbi->s_group_info[i]);
2654 iput(sbi->s_buddy_cache);
2655 err_freesgi:
2656 kfree(sbi->s_group_info);
2657 return -ENOMEM;
2660 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2662 struct ext4_sb_info *sbi = EXT4_SB(sb);
2663 unsigned i, j;
2664 unsigned offset;
2665 unsigned max;
2666 int ret;
2668 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2670 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2671 if (sbi->s_mb_offsets == NULL) {
2672 return -ENOMEM;
2675 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int);
2676 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2677 if (sbi->s_mb_maxs == NULL) {
2678 kfree(sbi->s_mb_offsets);
2679 return -ENOMEM;
2682 /* order 0 is regular bitmap */
2683 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2684 sbi->s_mb_offsets[0] = 0;
2686 i = 1;
2687 offset = 0;
2688 max = sb->s_blocksize << 2;
2689 do {
2690 sbi->s_mb_offsets[i] = offset;
2691 sbi->s_mb_maxs[i] = max;
2692 offset += 1 << (sb->s_blocksize_bits - i);
2693 max = max >> 1;
2694 i++;
2695 } while (i <= sb->s_blocksize_bits + 1);
2697 /* init file for buddy data */
2698 ret = ext4_mb_init_backend(sb);
2699 if (ret != 0) {
2700 kfree(sbi->s_mb_offsets);
2701 kfree(sbi->s_mb_maxs);
2702 return ret;
2705 spin_lock_init(&sbi->s_md_lock);
2706 spin_lock_init(&sbi->s_bal_lock);
2708 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2709 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2710 sbi->s_mb_stats = MB_DEFAULT_STATS;
2711 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2712 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2713 sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2714 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2716 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2717 if (sbi->s_locality_groups == NULL) {
2718 kfree(sbi->s_mb_offsets);
2719 kfree(sbi->s_mb_maxs);
2720 return -ENOMEM;
2722 for_each_possible_cpu(i) {
2723 struct ext4_locality_group *lg;
2724 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2725 mutex_init(&lg->lg_mutex);
2726 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2727 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2728 spin_lock_init(&lg->lg_prealloc_lock);
2731 ext4_mb_history_init(sb);
2733 if (sbi->s_journal)
2734 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2736 printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2737 return 0;
2740 /* need to called with the ext4 group lock held */
2741 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2743 struct ext4_prealloc_space *pa;
2744 struct list_head *cur, *tmp;
2745 int count = 0;
2747 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2748 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2749 list_del(&pa->pa_group_list);
2750 count++;
2751 kmem_cache_free(ext4_pspace_cachep, pa);
2753 if (count)
2754 mb_debug("mballoc: %u PAs left\n", count);
2758 int ext4_mb_release(struct super_block *sb)
2760 ext4_group_t ngroups = ext4_get_groups_count(sb);
2761 ext4_group_t i;
2762 int num_meta_group_infos;
2763 struct ext4_group_info *grinfo;
2764 struct ext4_sb_info *sbi = EXT4_SB(sb);
2766 if (sbi->s_group_info) {
2767 for (i = 0; i < ngroups; i++) {
2768 grinfo = ext4_get_group_info(sb, i);
2769 #ifdef DOUBLE_CHECK
2770 kfree(grinfo->bb_bitmap);
2771 #endif
2772 ext4_lock_group(sb, i);
2773 ext4_mb_cleanup_pa(grinfo);
2774 ext4_unlock_group(sb, i);
2775 kfree(grinfo);
2777 num_meta_group_infos = (ngroups +
2778 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2779 EXT4_DESC_PER_BLOCK_BITS(sb);
2780 for (i = 0; i < num_meta_group_infos; i++)
2781 kfree(sbi->s_group_info[i]);
2782 kfree(sbi->s_group_info);
2784 kfree(sbi->s_mb_offsets);
2785 kfree(sbi->s_mb_maxs);
2786 if (sbi->s_buddy_cache)
2787 iput(sbi->s_buddy_cache);
2788 if (sbi->s_mb_stats) {
2789 printk(KERN_INFO
2790 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2791 atomic_read(&sbi->s_bal_allocated),
2792 atomic_read(&sbi->s_bal_reqs),
2793 atomic_read(&sbi->s_bal_success));
2794 printk(KERN_INFO
2795 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2796 "%u 2^N hits, %u breaks, %u lost\n",
2797 atomic_read(&sbi->s_bal_ex_scanned),
2798 atomic_read(&sbi->s_bal_goals),
2799 atomic_read(&sbi->s_bal_2orders),
2800 atomic_read(&sbi->s_bal_breaks),
2801 atomic_read(&sbi->s_mb_lost_chunks));
2802 printk(KERN_INFO
2803 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2804 sbi->s_mb_buddies_generated++,
2805 sbi->s_mb_generation_time);
2806 printk(KERN_INFO
2807 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2808 atomic_read(&sbi->s_mb_preallocated),
2809 atomic_read(&sbi->s_mb_discarded));
2812 free_percpu(sbi->s_locality_groups);
2813 ext4_mb_history_release(sb);
2815 return 0;
2819 * This function is called by the jbd2 layer once the commit has finished,
2820 * so we know we can free the blocks that were released with that commit.
2822 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2824 struct super_block *sb = journal->j_private;
2825 struct ext4_buddy e4b;
2826 struct ext4_group_info *db;
2827 int err, count = 0, count2 = 0;
2828 struct ext4_free_data *entry;
2829 ext4_fsblk_t discard_block;
2830 struct list_head *l, *ltmp;
2832 list_for_each_safe(l, ltmp, &txn->t_private_list) {
2833 entry = list_entry(l, struct ext4_free_data, list);
2835 mb_debug("gonna free %u blocks in group %u (0x%p):",
2836 entry->count, entry->group, entry);
2838 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2839 /* we expect to find existing buddy because it's pinned */
2840 BUG_ON(err != 0);
2842 db = e4b.bd_info;
2843 /* there are blocks to put in buddy to make them really free */
2844 count += entry->count;
2845 count2++;
2846 ext4_lock_group(sb, entry->group);
2847 /* Take it out of per group rb tree */
2848 rb_erase(&entry->node, &(db->bb_free_root));
2849 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2851 if (!db->bb_free_root.rb_node) {
2852 /* No more items in the per group rb tree
2853 * balance refcounts from ext4_mb_free_metadata()
2855 page_cache_release(e4b.bd_buddy_page);
2856 page_cache_release(e4b.bd_bitmap_page);
2858 ext4_unlock_group(sb, entry->group);
2859 discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2860 + entry->start_blk
2861 + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2862 trace_ext4_discard_blocks(sb, (unsigned long long)discard_block,
2863 entry->count);
2864 sb_issue_discard(sb, discard_block, entry->count);
2866 kmem_cache_free(ext4_free_ext_cachep, entry);
2867 ext4_mb_release_desc(&e4b);
2870 mb_debug("freed %u blocks in %u structures\n", count, count2);
2873 int __init init_ext4_mballoc(void)
2875 ext4_pspace_cachep =
2876 kmem_cache_create("ext4_prealloc_space",
2877 sizeof(struct ext4_prealloc_space),
2878 0, SLAB_RECLAIM_ACCOUNT, NULL);
2879 if (ext4_pspace_cachep == NULL)
2880 return -ENOMEM;
2882 ext4_ac_cachep =
2883 kmem_cache_create("ext4_alloc_context",
2884 sizeof(struct ext4_allocation_context),
2885 0, SLAB_RECLAIM_ACCOUNT, NULL);
2886 if (ext4_ac_cachep == NULL) {
2887 kmem_cache_destroy(ext4_pspace_cachep);
2888 return -ENOMEM;
2891 ext4_free_ext_cachep =
2892 kmem_cache_create("ext4_free_block_extents",
2893 sizeof(struct ext4_free_data),
2894 0, SLAB_RECLAIM_ACCOUNT, NULL);
2895 if (ext4_free_ext_cachep == NULL) {
2896 kmem_cache_destroy(ext4_pspace_cachep);
2897 kmem_cache_destroy(ext4_ac_cachep);
2898 return -ENOMEM;
2900 return 0;
2903 void exit_ext4_mballoc(void)
2905 /* XXX: synchronize_rcu(); */
2906 kmem_cache_destroy(ext4_pspace_cachep);
2907 kmem_cache_destroy(ext4_ac_cachep);
2908 kmem_cache_destroy(ext4_free_ext_cachep);
2913 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2914 * Returns 0 if success or error code
2916 static noinline_for_stack int
2917 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2918 handle_t *handle, unsigned int reserv_blks)
2920 struct buffer_head *bitmap_bh = NULL;
2921 struct ext4_super_block *es;
2922 struct ext4_group_desc *gdp;
2923 struct buffer_head *gdp_bh;
2924 struct ext4_sb_info *sbi;
2925 struct super_block *sb;
2926 ext4_fsblk_t block;
2927 int err, len;
2929 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2930 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2932 sb = ac->ac_sb;
2933 sbi = EXT4_SB(sb);
2934 es = sbi->s_es;
2937 err = -EIO;
2938 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2939 if (!bitmap_bh)
2940 goto out_err;
2942 err = ext4_journal_get_write_access(handle, bitmap_bh);
2943 if (err)
2944 goto out_err;
2946 err = -EIO;
2947 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2948 if (!gdp)
2949 goto out_err;
2951 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2952 ext4_free_blks_count(sb, gdp));
2954 err = ext4_journal_get_write_access(handle, gdp_bh);
2955 if (err)
2956 goto out_err;
2958 block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2959 + ac->ac_b_ex.fe_start
2960 + le32_to_cpu(es->s_first_data_block);
2962 len = ac->ac_b_ex.fe_len;
2963 if (!ext4_data_block_valid(sbi, block, len)) {
2964 ext4_error(sb, __func__,
2965 "Allocating blocks %llu-%llu which overlap "
2966 "fs metadata\n", block, block+len);
2967 /* File system mounted not to panic on error
2968 * Fix the bitmap and repeat the block allocation
2969 * We leak some of the blocks here.
2971 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2972 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2973 ac->ac_b_ex.fe_len);
2974 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2975 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2976 if (!err)
2977 err = -EAGAIN;
2978 goto out_err;
2981 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2982 #ifdef AGGRESSIVE_CHECK
2984 int i;
2985 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2986 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2987 bitmap_bh->b_data));
2990 #endif
2991 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
2992 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2993 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2994 ext4_free_blks_set(sb, gdp,
2995 ext4_free_blocks_after_init(sb,
2996 ac->ac_b_ex.fe_group, gdp));
2998 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
2999 ext4_free_blks_set(sb, gdp, len);
3000 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
3002 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3003 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
3005 * Now reduce the dirty block count also. Should not go negative
3007 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3008 /* release all the reserved blocks if non delalloc */
3009 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3010 else {
3011 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3012 ac->ac_b_ex.fe_len);
3013 /* convert reserved quota blocks to real quota blocks */
3014 vfs_dq_claim_block(ac->ac_inode, ac->ac_b_ex.fe_len);
3017 if (sbi->s_log_groups_per_flex) {
3018 ext4_group_t flex_group = ext4_flex_group(sbi,
3019 ac->ac_b_ex.fe_group);
3020 atomic_sub(ac->ac_b_ex.fe_len,
3021 &sbi->s_flex_groups[flex_group].free_blocks);
3024 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3025 if (err)
3026 goto out_err;
3027 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3029 out_err:
3030 sb->s_dirt = 1;
3031 brelse(bitmap_bh);
3032 return err;
3036 * here we normalize request for locality group
3037 * Group request are normalized to s_strip size if we set the same via mount
3038 * option. If not we set it to s_mb_group_prealloc which can be configured via
3039 * /sys/fs/ext4/<partition>/mb_group_prealloc
3041 * XXX: should we try to preallocate more than the group has now?
3043 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3045 struct super_block *sb = ac->ac_sb;
3046 struct ext4_locality_group *lg = ac->ac_lg;
3048 BUG_ON(lg == NULL);
3049 if (EXT4_SB(sb)->s_stripe)
3050 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3051 else
3052 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3053 mb_debug("#%u: goal %u blocks for locality group\n",
3054 current->pid, ac->ac_g_ex.fe_len);
3058 * Normalization means making request better in terms of
3059 * size and alignment
3061 static noinline_for_stack void
3062 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3063 struct ext4_allocation_request *ar)
3065 int bsbits, max;
3066 ext4_lblk_t end;
3067 loff_t size, orig_size, start_off;
3068 ext4_lblk_t start, orig_start;
3069 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3070 struct ext4_prealloc_space *pa;
3072 /* do normalize only data requests, metadata requests
3073 do not need preallocation */
3074 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3075 return;
3077 /* sometime caller may want exact blocks */
3078 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3079 return;
3081 /* caller may indicate that preallocation isn't
3082 * required (it's a tail, for example) */
3083 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3084 return;
3086 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3087 ext4_mb_normalize_group_request(ac);
3088 return ;
3091 bsbits = ac->ac_sb->s_blocksize_bits;
3093 /* first, let's learn actual file size
3094 * given current request is allocated */
3095 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3096 size = size << bsbits;
3097 if (size < i_size_read(ac->ac_inode))
3098 size = i_size_read(ac->ac_inode);
3100 /* max size of free chunks */
3101 max = 2 << bsbits;
3103 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3104 (req <= (size) || max <= (chunk_size))
3106 /* first, try to predict filesize */
3107 /* XXX: should this table be tunable? */
3108 start_off = 0;
3109 if (size <= 16 * 1024) {
3110 size = 16 * 1024;
3111 } else if (size <= 32 * 1024) {
3112 size = 32 * 1024;
3113 } else if (size <= 64 * 1024) {
3114 size = 64 * 1024;
3115 } else if (size <= 128 * 1024) {
3116 size = 128 * 1024;
3117 } else if (size <= 256 * 1024) {
3118 size = 256 * 1024;
3119 } else if (size <= 512 * 1024) {
3120 size = 512 * 1024;
3121 } else if (size <= 1024 * 1024) {
3122 size = 1024 * 1024;
3123 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3124 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3125 (21 - bsbits)) << 21;
3126 size = 2 * 1024 * 1024;
3127 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3128 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3129 (22 - bsbits)) << 22;
3130 size = 4 * 1024 * 1024;
3131 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3132 (8<<20)>>bsbits, max, 8 * 1024)) {
3133 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3134 (23 - bsbits)) << 23;
3135 size = 8 * 1024 * 1024;
3136 } else {
3137 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3138 size = ac->ac_o_ex.fe_len << bsbits;
3140 orig_size = size = size >> bsbits;
3141 orig_start = start = start_off >> bsbits;
3143 /* don't cover already allocated blocks in selected range */
3144 if (ar->pleft && start <= ar->lleft) {
3145 size -= ar->lleft + 1 - start;
3146 start = ar->lleft + 1;
3148 if (ar->pright && start + size - 1 >= ar->lright)
3149 size -= start + size - ar->lright;
3151 end = start + size;
3153 /* check we don't cross already preallocated blocks */
3154 rcu_read_lock();
3155 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3156 ext4_lblk_t pa_end;
3158 if (pa->pa_deleted)
3159 continue;
3160 spin_lock(&pa->pa_lock);
3161 if (pa->pa_deleted) {
3162 spin_unlock(&pa->pa_lock);
3163 continue;
3166 pa_end = pa->pa_lstart + pa->pa_len;
3168 /* PA must not overlap original request */
3169 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3170 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3172 /* skip PA normalized request doesn't overlap with */
3173 if (pa->pa_lstart >= end) {
3174 spin_unlock(&pa->pa_lock);
3175 continue;
3177 if (pa_end <= start) {
3178 spin_unlock(&pa->pa_lock);
3179 continue;
3181 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3183 if (pa_end <= ac->ac_o_ex.fe_logical) {
3184 BUG_ON(pa_end < start);
3185 start = pa_end;
3188 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3189 BUG_ON(pa->pa_lstart > end);
3190 end = pa->pa_lstart;
3192 spin_unlock(&pa->pa_lock);
3194 rcu_read_unlock();
3195 size = end - start;
3197 /* XXX: extra loop to check we really don't overlap preallocations */
3198 rcu_read_lock();
3199 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3200 ext4_lblk_t pa_end;
3201 spin_lock(&pa->pa_lock);
3202 if (pa->pa_deleted == 0) {
3203 pa_end = pa->pa_lstart + pa->pa_len;
3204 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3206 spin_unlock(&pa->pa_lock);
3208 rcu_read_unlock();
3210 if (start + size <= ac->ac_o_ex.fe_logical &&
3211 start > ac->ac_o_ex.fe_logical) {
3212 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3213 (unsigned long) start, (unsigned long) size,
3214 (unsigned long) ac->ac_o_ex.fe_logical);
3216 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3217 start > ac->ac_o_ex.fe_logical);
3218 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3220 /* now prepare goal request */
3222 /* XXX: is it better to align blocks WRT to logical
3223 * placement or satisfy big request as is */
3224 ac->ac_g_ex.fe_logical = start;
3225 ac->ac_g_ex.fe_len = size;
3227 /* define goal start in order to merge */
3228 if (ar->pright && (ar->lright == (start + size))) {
3229 /* merge to the right */
3230 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3231 &ac->ac_f_ex.fe_group,
3232 &ac->ac_f_ex.fe_start);
3233 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3235 if (ar->pleft && (ar->lleft + 1 == start)) {
3236 /* merge to the left */
3237 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3238 &ac->ac_f_ex.fe_group,
3239 &ac->ac_f_ex.fe_start);
3240 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3243 mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3244 (unsigned) orig_size, (unsigned) start);
3247 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3249 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3251 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3252 atomic_inc(&sbi->s_bal_reqs);
3253 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3254 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3255 atomic_inc(&sbi->s_bal_success);
3256 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3257 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3258 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3259 atomic_inc(&sbi->s_bal_goals);
3260 if (ac->ac_found > sbi->s_mb_max_to_scan)
3261 atomic_inc(&sbi->s_bal_breaks);
3264 ext4_mb_store_history(ac);
3268 * use blocks preallocated to inode
3270 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3271 struct ext4_prealloc_space *pa)
3273 ext4_fsblk_t start;
3274 ext4_fsblk_t end;
3275 int len;
3277 /* found preallocated blocks, use them */
3278 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3279 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3280 len = end - start;
3281 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3282 &ac->ac_b_ex.fe_start);
3283 ac->ac_b_ex.fe_len = len;
3284 ac->ac_status = AC_STATUS_FOUND;
3285 ac->ac_pa = pa;
3287 BUG_ON(start < pa->pa_pstart);
3288 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3289 BUG_ON(pa->pa_free < len);
3290 pa->pa_free -= len;
3292 mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3296 * use blocks preallocated to locality group
3298 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3299 struct ext4_prealloc_space *pa)
3301 unsigned int len = ac->ac_o_ex.fe_len;
3303 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3304 &ac->ac_b_ex.fe_group,
3305 &ac->ac_b_ex.fe_start);
3306 ac->ac_b_ex.fe_len = len;
3307 ac->ac_status = AC_STATUS_FOUND;
3308 ac->ac_pa = pa;
3310 /* we don't correct pa_pstart or pa_plen here to avoid
3311 * possible race when the group is being loaded concurrently
3312 * instead we correct pa later, after blocks are marked
3313 * in on-disk bitmap -- see ext4_mb_release_context()
3314 * Other CPUs are prevented from allocating from this pa by lg_mutex
3316 mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3320 * Return the prealloc space that have minimal distance
3321 * from the goal block. @cpa is the prealloc
3322 * space that is having currently known minimal distance
3323 * from the goal block.
3325 static struct ext4_prealloc_space *
3326 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3327 struct ext4_prealloc_space *pa,
3328 struct ext4_prealloc_space *cpa)
3330 ext4_fsblk_t cur_distance, new_distance;
3332 if (cpa == NULL) {
3333 atomic_inc(&pa->pa_count);
3334 return pa;
3336 cur_distance = abs(goal_block - cpa->pa_pstart);
3337 new_distance = abs(goal_block - pa->pa_pstart);
3339 if (cur_distance < new_distance)
3340 return cpa;
3342 /* drop the previous reference */
3343 atomic_dec(&cpa->pa_count);
3344 atomic_inc(&pa->pa_count);
3345 return pa;
3349 * search goal blocks in preallocated space
3351 static noinline_for_stack int
3352 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3354 int order, i;
3355 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3356 struct ext4_locality_group *lg;
3357 struct ext4_prealloc_space *pa, *cpa = NULL;
3358 ext4_fsblk_t goal_block;
3360 /* only data can be preallocated */
3361 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3362 return 0;
3364 /* first, try per-file preallocation */
3365 rcu_read_lock();
3366 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3368 /* all fields in this condition don't change,
3369 * so we can skip locking for them */
3370 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3371 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3372 continue;
3374 /* found preallocated blocks, use them */
3375 spin_lock(&pa->pa_lock);
3376 if (pa->pa_deleted == 0 && pa->pa_free) {
3377 atomic_inc(&pa->pa_count);
3378 ext4_mb_use_inode_pa(ac, pa);
3379 spin_unlock(&pa->pa_lock);
3380 ac->ac_criteria = 10;
3381 rcu_read_unlock();
3382 return 1;
3384 spin_unlock(&pa->pa_lock);
3386 rcu_read_unlock();
3388 /* can we use group allocation? */
3389 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3390 return 0;
3392 /* inode may have no locality group for some reason */
3393 lg = ac->ac_lg;
3394 if (lg == NULL)
3395 return 0;
3396 order = fls(ac->ac_o_ex.fe_len) - 1;
3397 if (order > PREALLOC_TB_SIZE - 1)
3398 /* The max size of hash table is PREALLOC_TB_SIZE */
3399 order = PREALLOC_TB_SIZE - 1;
3401 goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3402 ac->ac_g_ex.fe_start +
3403 le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3405 * search for the prealloc space that is having
3406 * minimal distance from the goal block.
3408 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3409 rcu_read_lock();
3410 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3411 pa_inode_list) {
3412 spin_lock(&pa->pa_lock);
3413 if (pa->pa_deleted == 0 &&
3414 pa->pa_free >= ac->ac_o_ex.fe_len) {
3416 cpa = ext4_mb_check_group_pa(goal_block,
3417 pa, cpa);
3419 spin_unlock(&pa->pa_lock);
3421 rcu_read_unlock();
3423 if (cpa) {
3424 ext4_mb_use_group_pa(ac, cpa);
3425 ac->ac_criteria = 20;
3426 return 1;
3428 return 0;
3432 * the function goes through all block freed in the group
3433 * but not yet committed and marks them used in in-core bitmap.
3434 * buddy must be generated from this bitmap
3435 * Need to be called with the ext4 group lock held
3437 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3438 ext4_group_t group)
3440 struct rb_node *n;
3441 struct ext4_group_info *grp;
3442 struct ext4_free_data *entry;
3444 grp = ext4_get_group_info(sb, group);
3445 n = rb_first(&(grp->bb_free_root));
3447 while (n) {
3448 entry = rb_entry(n, struct ext4_free_data, node);
3449 mb_set_bits(bitmap, entry->start_blk, entry->count);
3450 n = rb_next(n);
3452 return;
3456 * the function goes through all preallocation in this group and marks them
3457 * used in in-core bitmap. buddy must be generated from this bitmap
3458 * Need to be called with ext4 group lock held
3460 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3461 ext4_group_t group)
3463 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3464 struct ext4_prealloc_space *pa;
3465 struct list_head *cur;
3466 ext4_group_t groupnr;
3467 ext4_grpblk_t start;
3468 int preallocated = 0;
3469 int count = 0;
3470 int len;
3472 /* all form of preallocation discards first load group,
3473 * so the only competing code is preallocation use.
3474 * we don't need any locking here
3475 * notice we do NOT ignore preallocations with pa_deleted
3476 * otherwise we could leave used blocks available for
3477 * allocation in buddy when concurrent ext4_mb_put_pa()
3478 * is dropping preallocation
3480 list_for_each(cur, &grp->bb_prealloc_list) {
3481 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3482 spin_lock(&pa->pa_lock);
3483 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3484 &groupnr, &start);
3485 len = pa->pa_len;
3486 spin_unlock(&pa->pa_lock);
3487 if (unlikely(len == 0))
3488 continue;
3489 BUG_ON(groupnr != group);
3490 mb_set_bits(bitmap, start, len);
3491 preallocated += len;
3492 count++;
3494 mb_debug("prellocated %u for group %u\n", preallocated, group);
3497 static void ext4_mb_pa_callback(struct rcu_head *head)
3499 struct ext4_prealloc_space *pa;
3500 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3501 kmem_cache_free(ext4_pspace_cachep, pa);
3505 * drops a reference to preallocated space descriptor
3506 * if this was the last reference and the space is consumed
3508 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3509 struct super_block *sb, struct ext4_prealloc_space *pa)
3511 ext4_group_t grp;
3512 ext4_fsblk_t grp_blk;
3514 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3515 return;
3517 /* in this short window concurrent discard can set pa_deleted */
3518 spin_lock(&pa->pa_lock);
3519 if (pa->pa_deleted == 1) {
3520 spin_unlock(&pa->pa_lock);
3521 return;
3524 pa->pa_deleted = 1;
3525 spin_unlock(&pa->pa_lock);
3527 grp_blk = pa->pa_pstart;
3529 * If doing group-based preallocation, pa_pstart may be in the
3530 * next group when pa is used up
3532 if (pa->pa_type == MB_GROUP_PA)
3533 grp_blk--;
3535 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3538 * possible race:
3540 * P1 (buddy init) P2 (regular allocation)
3541 * find block B in PA
3542 * copy on-disk bitmap to buddy
3543 * mark B in on-disk bitmap
3544 * drop PA from group
3545 * mark all PAs in buddy
3547 * thus, P1 initializes buddy with B available. to prevent this
3548 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3549 * against that pair
3551 ext4_lock_group(sb, grp);
3552 list_del(&pa->pa_group_list);
3553 ext4_unlock_group(sb, grp);
3555 spin_lock(pa->pa_obj_lock);
3556 list_del_rcu(&pa->pa_inode_list);
3557 spin_unlock(pa->pa_obj_lock);
3559 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3563 * creates new preallocated space for given inode
3565 static noinline_for_stack int
3566 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3568 struct super_block *sb = ac->ac_sb;
3569 struct ext4_prealloc_space *pa;
3570 struct ext4_group_info *grp;
3571 struct ext4_inode_info *ei;
3573 /* preallocate only when found space is larger then requested */
3574 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3575 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3576 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3578 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3579 if (pa == NULL)
3580 return -ENOMEM;
3582 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3583 int winl;
3584 int wins;
3585 int win;
3586 int offs;
3588 /* we can't allocate as much as normalizer wants.
3589 * so, found space must get proper lstart
3590 * to cover original request */
3591 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3592 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3594 /* we're limited by original request in that
3595 * logical block must be covered any way
3596 * winl is window we can move our chunk within */
3597 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3599 /* also, we should cover whole original request */
3600 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3602 /* the smallest one defines real window */
3603 win = min(winl, wins);
3605 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3606 if (offs && offs < win)
3607 win = offs;
3609 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3610 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3611 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3614 /* preallocation can change ac_b_ex, thus we store actually
3615 * allocated blocks for history */
3616 ac->ac_f_ex = ac->ac_b_ex;
3618 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3619 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3620 pa->pa_len = ac->ac_b_ex.fe_len;
3621 pa->pa_free = pa->pa_len;
3622 atomic_set(&pa->pa_count, 1);
3623 spin_lock_init(&pa->pa_lock);
3624 INIT_LIST_HEAD(&pa->pa_inode_list);
3625 INIT_LIST_HEAD(&pa->pa_group_list);
3626 pa->pa_deleted = 0;
3627 pa->pa_type = MB_INODE_PA;
3629 mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3630 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3631 trace_ext4_mb_new_inode_pa(ac, pa);
3633 ext4_mb_use_inode_pa(ac, pa);
3634 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3636 ei = EXT4_I(ac->ac_inode);
3637 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3639 pa->pa_obj_lock = &ei->i_prealloc_lock;
3640 pa->pa_inode = ac->ac_inode;
3642 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3643 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3644 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3646 spin_lock(pa->pa_obj_lock);
3647 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3648 spin_unlock(pa->pa_obj_lock);
3650 return 0;
3654 * creates new preallocated space for locality group inodes belongs to
3656 static noinline_for_stack int
3657 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3659 struct super_block *sb = ac->ac_sb;
3660 struct ext4_locality_group *lg;
3661 struct ext4_prealloc_space *pa;
3662 struct ext4_group_info *grp;
3664 /* preallocate only when found space is larger then requested */
3665 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3666 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3667 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3669 BUG_ON(ext4_pspace_cachep == NULL);
3670 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3671 if (pa == NULL)
3672 return -ENOMEM;
3674 /* preallocation can change ac_b_ex, thus we store actually
3675 * allocated blocks for history */
3676 ac->ac_f_ex = ac->ac_b_ex;
3678 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3679 pa->pa_lstart = pa->pa_pstart;
3680 pa->pa_len = ac->ac_b_ex.fe_len;
3681 pa->pa_free = pa->pa_len;
3682 atomic_set(&pa->pa_count, 1);
3683 spin_lock_init(&pa->pa_lock);
3684 INIT_LIST_HEAD(&pa->pa_inode_list);
3685 INIT_LIST_HEAD(&pa->pa_group_list);
3686 pa->pa_deleted = 0;
3687 pa->pa_type = MB_GROUP_PA;
3689 mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3690 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3691 trace_ext4_mb_new_group_pa(ac, pa);
3693 ext4_mb_use_group_pa(ac, pa);
3694 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3696 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3697 lg = ac->ac_lg;
3698 BUG_ON(lg == NULL);
3700 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3701 pa->pa_inode = NULL;
3703 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3704 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3705 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3708 * We will later add the new pa to the right bucket
3709 * after updating the pa_free in ext4_mb_release_context
3711 return 0;
3714 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3716 int err;
3718 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3719 err = ext4_mb_new_group_pa(ac);
3720 else
3721 err = ext4_mb_new_inode_pa(ac);
3722 return err;
3726 * finds all unused blocks in on-disk bitmap, frees them in
3727 * in-core bitmap and buddy.
3728 * @pa must be unlinked from inode and group lists, so that
3729 * nobody else can find/use it.
3730 * the caller MUST hold group/inode locks.
3731 * TODO: optimize the case when there are no in-core structures yet
3733 static noinline_for_stack int
3734 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3735 struct ext4_prealloc_space *pa,
3736 struct ext4_allocation_context *ac)
3738 struct super_block *sb = e4b->bd_sb;
3739 struct ext4_sb_info *sbi = EXT4_SB(sb);
3740 unsigned int end;
3741 unsigned int next;
3742 ext4_group_t group;
3743 ext4_grpblk_t bit;
3744 unsigned long long grp_blk_start;
3745 sector_t start;
3746 int err = 0;
3747 int free = 0;
3749 BUG_ON(pa->pa_deleted == 0);
3750 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3751 grp_blk_start = pa->pa_pstart - bit;
3752 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3753 end = bit + pa->pa_len;
3755 if (ac) {
3756 ac->ac_sb = sb;
3757 ac->ac_inode = pa->pa_inode;
3758 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3761 while (bit < end) {
3762 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3763 if (bit >= end)
3764 break;
3765 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3766 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3767 le32_to_cpu(sbi->s_es->s_first_data_block);
3768 mb_debug(" free preallocated %u/%u in group %u\n",
3769 (unsigned) start, (unsigned) next - bit,
3770 (unsigned) group);
3771 free += next - bit;
3773 if (ac) {
3774 ac->ac_b_ex.fe_group = group;
3775 ac->ac_b_ex.fe_start = bit;
3776 ac->ac_b_ex.fe_len = next - bit;
3777 ac->ac_b_ex.fe_logical = 0;
3778 ext4_mb_store_history(ac);
3781 trace_ext4_mb_release_inode_pa(ac, pa, grp_blk_start + bit,
3782 next - bit);
3783 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3784 bit = next + 1;
3786 if (free != pa->pa_free) {
3787 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3788 pa, (unsigned long) pa->pa_lstart,
3789 (unsigned long) pa->pa_pstart,
3790 (unsigned long) pa->pa_len);
3791 ext4_grp_locked_error(sb, group,
3792 __func__, "free %u, pa_free %u",
3793 free, pa->pa_free);
3795 * pa is already deleted so we use the value obtained
3796 * from the bitmap and continue.
3799 atomic_add(free, &sbi->s_mb_discarded);
3801 return err;
3804 static noinline_for_stack int
3805 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3806 struct ext4_prealloc_space *pa,
3807 struct ext4_allocation_context *ac)
3809 struct super_block *sb = e4b->bd_sb;
3810 ext4_group_t group;
3811 ext4_grpblk_t bit;
3813 if (ac)
3814 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3816 trace_ext4_mb_release_group_pa(ac, pa);
3817 BUG_ON(pa->pa_deleted == 0);
3818 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3819 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3820 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3821 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3823 if (ac) {
3824 ac->ac_sb = sb;
3825 ac->ac_inode = NULL;
3826 ac->ac_b_ex.fe_group = group;
3827 ac->ac_b_ex.fe_start = bit;
3828 ac->ac_b_ex.fe_len = pa->pa_len;
3829 ac->ac_b_ex.fe_logical = 0;
3830 ext4_mb_store_history(ac);
3833 return 0;
3837 * releases all preallocations in given group
3839 * first, we need to decide discard policy:
3840 * - when do we discard
3841 * 1) ENOSPC
3842 * - how many do we discard
3843 * 1) how many requested
3845 static noinline_for_stack int
3846 ext4_mb_discard_group_preallocations(struct super_block *sb,
3847 ext4_group_t group, int needed)
3849 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3850 struct buffer_head *bitmap_bh = NULL;
3851 struct ext4_prealloc_space *pa, *tmp;
3852 struct ext4_allocation_context *ac;
3853 struct list_head list;
3854 struct ext4_buddy e4b;
3855 int err;
3856 int busy = 0;
3857 int free = 0;
3859 mb_debug("discard preallocation for group %u\n", group);
3861 if (list_empty(&grp->bb_prealloc_list))
3862 return 0;
3864 bitmap_bh = ext4_read_block_bitmap(sb, group);
3865 if (bitmap_bh == NULL) {
3866 ext4_error(sb, __func__, "Error in reading block "
3867 "bitmap for %u", group);
3868 return 0;
3871 err = ext4_mb_load_buddy(sb, group, &e4b);
3872 if (err) {
3873 ext4_error(sb, __func__, "Error in loading buddy "
3874 "information for %u", group);
3875 put_bh(bitmap_bh);
3876 return 0;
3879 if (needed == 0)
3880 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3882 INIT_LIST_HEAD(&list);
3883 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3884 if (ac)
3885 ac->ac_sb = sb;
3886 repeat:
3887 ext4_lock_group(sb, group);
3888 list_for_each_entry_safe(pa, tmp,
3889 &grp->bb_prealloc_list, pa_group_list) {
3890 spin_lock(&pa->pa_lock);
3891 if (atomic_read(&pa->pa_count)) {
3892 spin_unlock(&pa->pa_lock);
3893 busy = 1;
3894 continue;
3896 if (pa->pa_deleted) {
3897 spin_unlock(&pa->pa_lock);
3898 continue;
3901 /* seems this one can be freed ... */
3902 pa->pa_deleted = 1;
3904 /* we can trust pa_free ... */
3905 free += pa->pa_free;
3907 spin_unlock(&pa->pa_lock);
3909 list_del(&pa->pa_group_list);
3910 list_add(&pa->u.pa_tmp_list, &list);
3913 /* if we still need more blocks and some PAs were used, try again */
3914 if (free < needed && busy) {
3915 busy = 0;
3916 ext4_unlock_group(sb, group);
3918 * Yield the CPU here so that we don't get soft lockup
3919 * in non preempt case.
3921 yield();
3922 goto repeat;
3925 /* found anything to free? */
3926 if (list_empty(&list)) {
3927 BUG_ON(free != 0);
3928 goto out;
3931 /* now free all selected PAs */
3932 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3934 /* remove from object (inode or locality group) */
3935 spin_lock(pa->pa_obj_lock);
3936 list_del_rcu(&pa->pa_inode_list);
3937 spin_unlock(pa->pa_obj_lock);
3939 if (pa->pa_type == MB_GROUP_PA)
3940 ext4_mb_release_group_pa(&e4b, pa, ac);
3941 else
3942 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3944 list_del(&pa->u.pa_tmp_list);
3945 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3948 out:
3949 ext4_unlock_group(sb, group);
3950 if (ac)
3951 kmem_cache_free(ext4_ac_cachep, ac);
3952 ext4_mb_release_desc(&e4b);
3953 put_bh(bitmap_bh);
3954 return free;
3958 * releases all non-used preallocated blocks for given inode
3960 * It's important to discard preallocations under i_data_sem
3961 * We don't want another block to be served from the prealloc
3962 * space when we are discarding the inode prealloc space.
3964 * FIXME!! Make sure it is valid at all the call sites
3966 void ext4_discard_preallocations(struct inode *inode)
3968 struct ext4_inode_info *ei = EXT4_I(inode);
3969 struct super_block *sb = inode->i_sb;
3970 struct buffer_head *bitmap_bh = NULL;
3971 struct ext4_prealloc_space *pa, *tmp;
3972 struct ext4_allocation_context *ac;
3973 ext4_group_t group = 0;
3974 struct list_head list;
3975 struct ext4_buddy e4b;
3976 int err;
3978 if (!S_ISREG(inode->i_mode)) {
3979 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3980 return;
3983 mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
3984 trace_ext4_discard_preallocations(inode);
3986 INIT_LIST_HEAD(&list);
3988 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3989 if (ac) {
3990 ac->ac_sb = sb;
3991 ac->ac_inode = inode;
3993 repeat:
3994 /* first, collect all pa's in the inode */
3995 spin_lock(&ei->i_prealloc_lock);
3996 while (!list_empty(&ei->i_prealloc_list)) {
3997 pa = list_entry(ei->i_prealloc_list.next,
3998 struct ext4_prealloc_space, pa_inode_list);
3999 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4000 spin_lock(&pa->pa_lock);
4001 if (atomic_read(&pa->pa_count)) {
4002 /* this shouldn't happen often - nobody should
4003 * use preallocation while we're discarding it */
4004 spin_unlock(&pa->pa_lock);
4005 spin_unlock(&ei->i_prealloc_lock);
4006 printk(KERN_ERR "uh-oh! used pa while discarding\n");
4007 WARN_ON(1);
4008 schedule_timeout_uninterruptible(HZ);
4009 goto repeat;
4012 if (pa->pa_deleted == 0) {
4013 pa->pa_deleted = 1;
4014 spin_unlock(&pa->pa_lock);
4015 list_del_rcu(&pa->pa_inode_list);
4016 list_add(&pa->u.pa_tmp_list, &list);
4017 continue;
4020 /* someone is deleting pa right now */
4021 spin_unlock(&pa->pa_lock);
4022 spin_unlock(&ei->i_prealloc_lock);
4024 /* we have to wait here because pa_deleted
4025 * doesn't mean pa is already unlinked from
4026 * the list. as we might be called from
4027 * ->clear_inode() the inode will get freed
4028 * and concurrent thread which is unlinking
4029 * pa from inode's list may access already
4030 * freed memory, bad-bad-bad */
4032 /* XXX: if this happens too often, we can
4033 * add a flag to force wait only in case
4034 * of ->clear_inode(), but not in case of
4035 * regular truncate */
4036 schedule_timeout_uninterruptible(HZ);
4037 goto repeat;
4039 spin_unlock(&ei->i_prealloc_lock);
4041 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4042 BUG_ON(pa->pa_type != MB_INODE_PA);
4043 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4045 err = ext4_mb_load_buddy(sb, group, &e4b);
4046 if (err) {
4047 ext4_error(sb, __func__, "Error in loading buddy "
4048 "information for %u", group);
4049 continue;
4052 bitmap_bh = ext4_read_block_bitmap(sb, group);
4053 if (bitmap_bh == NULL) {
4054 ext4_error(sb, __func__, "Error in reading block "
4055 "bitmap for %u", group);
4056 ext4_mb_release_desc(&e4b);
4057 continue;
4060 ext4_lock_group(sb, group);
4061 list_del(&pa->pa_group_list);
4062 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4063 ext4_unlock_group(sb, group);
4065 ext4_mb_release_desc(&e4b);
4066 put_bh(bitmap_bh);
4068 list_del(&pa->u.pa_tmp_list);
4069 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4071 if (ac)
4072 kmem_cache_free(ext4_ac_cachep, ac);
4076 * finds all preallocated spaces and return blocks being freed to them
4077 * if preallocated space becomes full (no block is used from the space)
4078 * then the function frees space in buddy
4079 * XXX: at the moment, truncate (which is the only way to free blocks)
4080 * discards all preallocations
4082 static void ext4_mb_return_to_preallocation(struct inode *inode,
4083 struct ext4_buddy *e4b,
4084 sector_t block, int count)
4086 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4088 #ifdef MB_DEBUG
4089 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4091 struct super_block *sb = ac->ac_sb;
4092 ext4_group_t ngroups, i;
4094 printk(KERN_ERR "EXT4-fs: Can't allocate:"
4095 " Allocation context details:\n");
4096 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4097 ac->ac_status, ac->ac_flags);
4098 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4099 "best %lu/%lu/%lu@%lu cr %d\n",
4100 (unsigned long)ac->ac_o_ex.fe_group,
4101 (unsigned long)ac->ac_o_ex.fe_start,
4102 (unsigned long)ac->ac_o_ex.fe_len,
4103 (unsigned long)ac->ac_o_ex.fe_logical,
4104 (unsigned long)ac->ac_g_ex.fe_group,
4105 (unsigned long)ac->ac_g_ex.fe_start,
4106 (unsigned long)ac->ac_g_ex.fe_len,
4107 (unsigned long)ac->ac_g_ex.fe_logical,
4108 (unsigned long)ac->ac_b_ex.fe_group,
4109 (unsigned long)ac->ac_b_ex.fe_start,
4110 (unsigned long)ac->ac_b_ex.fe_len,
4111 (unsigned long)ac->ac_b_ex.fe_logical,
4112 (int)ac->ac_criteria);
4113 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4114 ac->ac_found);
4115 printk(KERN_ERR "EXT4-fs: groups: \n");
4116 ngroups = ext4_get_groups_count(sb);
4117 for (i = 0; i < ngroups; i++) {
4118 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4119 struct ext4_prealloc_space *pa;
4120 ext4_grpblk_t start;
4121 struct list_head *cur;
4122 ext4_lock_group(sb, i);
4123 list_for_each(cur, &grp->bb_prealloc_list) {
4124 pa = list_entry(cur, struct ext4_prealloc_space,
4125 pa_group_list);
4126 spin_lock(&pa->pa_lock);
4127 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4128 NULL, &start);
4129 spin_unlock(&pa->pa_lock);
4130 printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4131 start, pa->pa_len);
4133 ext4_unlock_group(sb, i);
4135 if (grp->bb_free == 0)
4136 continue;
4137 printk(KERN_ERR "%lu: %d/%d \n",
4138 i, grp->bb_free, grp->bb_fragments);
4140 printk(KERN_ERR "\n");
4142 #else
4143 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4145 return;
4147 #endif
4150 * We use locality group preallocation for small size file. The size of the
4151 * file is determined by the current size or the resulting size after
4152 * allocation which ever is larger
4154 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4156 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4158 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4159 int bsbits = ac->ac_sb->s_blocksize_bits;
4160 loff_t size, isize;
4162 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4163 return;
4165 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4166 isize = i_size_read(ac->ac_inode) >> bsbits;
4167 size = max(size, isize);
4169 /* don't use group allocation for large files */
4170 if (size >= sbi->s_mb_stream_request)
4171 return;
4173 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4174 return;
4176 BUG_ON(ac->ac_lg != NULL);
4178 * locality group prealloc space are per cpu. The reason for having
4179 * per cpu locality group is to reduce the contention between block
4180 * request from multiple CPUs.
4182 ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4184 /* we're going to use group allocation */
4185 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4187 /* serialize all allocations in the group */
4188 mutex_lock(&ac->ac_lg->lg_mutex);
4191 static noinline_for_stack int
4192 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4193 struct ext4_allocation_request *ar)
4195 struct super_block *sb = ar->inode->i_sb;
4196 struct ext4_sb_info *sbi = EXT4_SB(sb);
4197 struct ext4_super_block *es = sbi->s_es;
4198 ext4_group_t group;
4199 unsigned int len;
4200 ext4_fsblk_t goal;
4201 ext4_grpblk_t block;
4203 /* we can't allocate > group size */
4204 len = ar->len;
4206 /* just a dirty hack to filter too big requests */
4207 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4208 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4210 /* start searching from the goal */
4211 goal = ar->goal;
4212 if (goal < le32_to_cpu(es->s_first_data_block) ||
4213 goal >= ext4_blocks_count(es))
4214 goal = le32_to_cpu(es->s_first_data_block);
4215 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4217 /* set up allocation goals */
4218 ac->ac_b_ex.fe_logical = ar->logical;
4219 ac->ac_b_ex.fe_group = 0;
4220 ac->ac_b_ex.fe_start = 0;
4221 ac->ac_b_ex.fe_len = 0;
4222 ac->ac_status = AC_STATUS_CONTINUE;
4223 ac->ac_groups_scanned = 0;
4224 ac->ac_ex_scanned = 0;
4225 ac->ac_found = 0;
4226 ac->ac_sb = sb;
4227 ac->ac_inode = ar->inode;
4228 ac->ac_o_ex.fe_logical = ar->logical;
4229 ac->ac_o_ex.fe_group = group;
4230 ac->ac_o_ex.fe_start = block;
4231 ac->ac_o_ex.fe_len = len;
4232 ac->ac_g_ex.fe_logical = ar->logical;
4233 ac->ac_g_ex.fe_group = group;
4234 ac->ac_g_ex.fe_start = block;
4235 ac->ac_g_ex.fe_len = len;
4236 ac->ac_f_ex.fe_len = 0;
4237 ac->ac_flags = ar->flags;
4238 ac->ac_2order = 0;
4239 ac->ac_criteria = 0;
4240 ac->ac_pa = NULL;
4241 ac->ac_bitmap_page = NULL;
4242 ac->ac_buddy_page = NULL;
4243 ac->alloc_semp = NULL;
4244 ac->ac_lg = NULL;
4246 /* we have to define context: we'll we work with a file or
4247 * locality group. this is a policy, actually */
4248 ext4_mb_group_or_file(ac);
4250 mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4251 "left: %u/%u, right %u/%u to %swritable\n",
4252 (unsigned) ar->len, (unsigned) ar->logical,
4253 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4254 (unsigned) ar->lleft, (unsigned) ar->pleft,
4255 (unsigned) ar->lright, (unsigned) ar->pright,
4256 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4257 return 0;
4261 static noinline_for_stack void
4262 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4263 struct ext4_locality_group *lg,
4264 int order, int total_entries)
4266 ext4_group_t group = 0;
4267 struct ext4_buddy e4b;
4268 struct list_head discard_list;
4269 struct ext4_prealloc_space *pa, *tmp;
4270 struct ext4_allocation_context *ac;
4272 mb_debug("discard locality group preallocation\n");
4274 INIT_LIST_HEAD(&discard_list);
4275 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4276 if (ac)
4277 ac->ac_sb = sb;
4279 spin_lock(&lg->lg_prealloc_lock);
4280 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4281 pa_inode_list) {
4282 spin_lock(&pa->pa_lock);
4283 if (atomic_read(&pa->pa_count)) {
4285 * This is the pa that we just used
4286 * for block allocation. So don't
4287 * free that
4289 spin_unlock(&pa->pa_lock);
4290 continue;
4292 if (pa->pa_deleted) {
4293 spin_unlock(&pa->pa_lock);
4294 continue;
4296 /* only lg prealloc space */
4297 BUG_ON(pa->pa_type != MB_GROUP_PA);
4299 /* seems this one can be freed ... */
4300 pa->pa_deleted = 1;
4301 spin_unlock(&pa->pa_lock);
4303 list_del_rcu(&pa->pa_inode_list);
4304 list_add(&pa->u.pa_tmp_list, &discard_list);
4306 total_entries--;
4307 if (total_entries <= 5) {
4309 * we want to keep only 5 entries
4310 * allowing it to grow to 8. This
4311 * mak sure we don't call discard
4312 * soon for this list.
4314 break;
4317 spin_unlock(&lg->lg_prealloc_lock);
4319 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4321 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4322 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4323 ext4_error(sb, __func__, "Error in loading buddy "
4324 "information for %u", group);
4325 continue;
4327 ext4_lock_group(sb, group);
4328 list_del(&pa->pa_group_list);
4329 ext4_mb_release_group_pa(&e4b, pa, ac);
4330 ext4_unlock_group(sb, group);
4332 ext4_mb_release_desc(&e4b);
4333 list_del(&pa->u.pa_tmp_list);
4334 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4336 if (ac)
4337 kmem_cache_free(ext4_ac_cachep, ac);
4341 * We have incremented pa_count. So it cannot be freed at this
4342 * point. Also we hold lg_mutex. So no parallel allocation is
4343 * possible from this lg. That means pa_free cannot be updated.
4345 * A parallel ext4_mb_discard_group_preallocations is possible.
4346 * which can cause the lg_prealloc_list to be updated.
4349 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4351 int order, added = 0, lg_prealloc_count = 1;
4352 struct super_block *sb = ac->ac_sb;
4353 struct ext4_locality_group *lg = ac->ac_lg;
4354 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4356 order = fls(pa->pa_free) - 1;
4357 if (order > PREALLOC_TB_SIZE - 1)
4358 /* The max size of hash table is PREALLOC_TB_SIZE */
4359 order = PREALLOC_TB_SIZE - 1;
4360 /* Add the prealloc space to lg */
4361 rcu_read_lock();
4362 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4363 pa_inode_list) {
4364 spin_lock(&tmp_pa->pa_lock);
4365 if (tmp_pa->pa_deleted) {
4366 spin_unlock(&tmp_pa->pa_lock);
4367 continue;
4369 if (!added && pa->pa_free < tmp_pa->pa_free) {
4370 /* Add to the tail of the previous entry */
4371 list_add_tail_rcu(&pa->pa_inode_list,
4372 &tmp_pa->pa_inode_list);
4373 added = 1;
4375 * we want to count the total
4376 * number of entries in the list
4379 spin_unlock(&tmp_pa->pa_lock);
4380 lg_prealloc_count++;
4382 if (!added)
4383 list_add_tail_rcu(&pa->pa_inode_list,
4384 &lg->lg_prealloc_list[order]);
4385 rcu_read_unlock();
4387 /* Now trim the list to be not more than 8 elements */
4388 if (lg_prealloc_count > 8) {
4389 ext4_mb_discard_lg_preallocations(sb, lg,
4390 order, lg_prealloc_count);
4391 return;
4393 return ;
4397 * release all resource we used in allocation
4399 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4401 struct ext4_prealloc_space *pa = ac->ac_pa;
4402 if (pa) {
4403 if (pa->pa_type == MB_GROUP_PA) {
4404 /* see comment in ext4_mb_use_group_pa() */
4405 spin_lock(&pa->pa_lock);
4406 pa->pa_pstart += ac->ac_b_ex.fe_len;
4407 pa->pa_lstart += ac->ac_b_ex.fe_len;
4408 pa->pa_free -= ac->ac_b_ex.fe_len;
4409 pa->pa_len -= ac->ac_b_ex.fe_len;
4410 spin_unlock(&pa->pa_lock);
4413 if (ac->alloc_semp)
4414 up_read(ac->alloc_semp);
4415 if (pa) {
4417 * We want to add the pa to the right bucket.
4418 * Remove it from the list and while adding
4419 * make sure the list to which we are adding
4420 * doesn't grow big. We need to release
4421 * alloc_semp before calling ext4_mb_add_n_trim()
4423 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4424 spin_lock(pa->pa_obj_lock);
4425 list_del_rcu(&pa->pa_inode_list);
4426 spin_unlock(pa->pa_obj_lock);
4427 ext4_mb_add_n_trim(ac);
4429 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4431 if (ac->ac_bitmap_page)
4432 page_cache_release(ac->ac_bitmap_page);
4433 if (ac->ac_buddy_page)
4434 page_cache_release(ac->ac_buddy_page);
4435 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4436 mutex_unlock(&ac->ac_lg->lg_mutex);
4437 ext4_mb_collect_stats(ac);
4438 return 0;
4441 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4443 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4444 int ret;
4445 int freed = 0;
4447 trace_ext4_mb_discard_preallocations(sb, needed);
4448 for (i = 0; i < ngroups && needed > 0; i++) {
4449 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4450 freed += ret;
4451 needed -= ret;
4454 return freed;
4458 * Main entry point into mballoc to allocate blocks
4459 * it tries to use preallocation first, then falls back
4460 * to usual allocation
4462 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4463 struct ext4_allocation_request *ar, int *errp)
4465 int freed;
4466 struct ext4_allocation_context *ac = NULL;
4467 struct ext4_sb_info *sbi;
4468 struct super_block *sb;
4469 ext4_fsblk_t block = 0;
4470 unsigned int inquota = 0;
4471 unsigned int reserv_blks = 0;
4473 sb = ar->inode->i_sb;
4474 sbi = EXT4_SB(sb);
4476 trace_ext4_request_blocks(ar);
4479 * For delayed allocation, we could skip the ENOSPC and
4480 * EDQUOT check, as blocks and quotas have been already
4481 * reserved when data being copied into pagecache.
4483 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4484 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4485 else {
4486 /* Without delayed allocation we need to verify
4487 * there is enough free blocks to do block allocation
4488 * and verify allocation doesn't exceed the quota limits.
4490 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4491 /* let others to free the space */
4492 yield();
4493 ar->len = ar->len >> 1;
4495 if (!ar->len) {
4496 *errp = -ENOSPC;
4497 return 0;
4499 reserv_blks = ar->len;
4500 while (ar->len && vfs_dq_alloc_block(ar->inode, ar->len)) {
4501 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4502 ar->len--;
4504 inquota = ar->len;
4505 if (ar->len == 0) {
4506 *errp = -EDQUOT;
4507 goto out3;
4511 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4512 if (ac) {
4513 ac->ac_sb = sb;
4514 ac->ac_inode = ar->inode;
4515 } else {
4516 ar->len = 0;
4517 *errp = -ENOMEM;
4518 goto out1;
4521 *errp = ext4_mb_initialize_context(ac, ar);
4522 if (*errp) {
4523 ar->len = 0;
4524 goto out2;
4527 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4528 if (!ext4_mb_use_preallocated(ac)) {
4529 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4530 ext4_mb_normalize_request(ac, ar);
4531 repeat:
4532 /* allocate space in core */
4533 ext4_mb_regular_allocator(ac);
4535 /* as we've just preallocated more space than
4536 * user requested orinally, we store allocated
4537 * space in a special descriptor */
4538 if (ac->ac_status == AC_STATUS_FOUND &&
4539 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4540 ext4_mb_new_preallocation(ac);
4542 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4543 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4544 if (*errp == -EAGAIN) {
4546 * drop the reference that we took
4547 * in ext4_mb_use_best_found
4549 ext4_mb_release_context(ac);
4550 ac->ac_b_ex.fe_group = 0;
4551 ac->ac_b_ex.fe_start = 0;
4552 ac->ac_b_ex.fe_len = 0;
4553 ac->ac_status = AC_STATUS_CONTINUE;
4554 goto repeat;
4555 } else if (*errp) {
4556 ac->ac_b_ex.fe_len = 0;
4557 ar->len = 0;
4558 ext4_mb_show_ac(ac);
4559 } else {
4560 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4561 ar->len = ac->ac_b_ex.fe_len;
4563 } else {
4564 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4565 if (freed)
4566 goto repeat;
4567 *errp = -ENOSPC;
4568 ac->ac_b_ex.fe_len = 0;
4569 ar->len = 0;
4570 ext4_mb_show_ac(ac);
4573 ext4_mb_release_context(ac);
4575 out2:
4576 kmem_cache_free(ext4_ac_cachep, ac);
4577 out1:
4578 if (inquota && ar->len < inquota)
4579 vfs_dq_free_block(ar->inode, inquota - ar->len);
4580 out3:
4581 if (!ar->len) {
4582 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4583 /* release all the reserved blocks if non delalloc */
4584 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4585 reserv_blks);
4588 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4590 return block;
4594 * We can merge two free data extents only if the physical blocks
4595 * are contiguous, AND the extents were freed by the same transaction,
4596 * AND the blocks are associated with the same group.
4598 static int can_merge(struct ext4_free_data *entry1,
4599 struct ext4_free_data *entry2)
4601 if ((entry1->t_tid == entry2->t_tid) &&
4602 (entry1->group == entry2->group) &&
4603 ((entry1->start_blk + entry1->count) == entry2->start_blk))
4604 return 1;
4605 return 0;
4608 static noinline_for_stack int
4609 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4610 struct ext4_free_data *new_entry)
4612 ext4_grpblk_t block;
4613 struct ext4_free_data *entry;
4614 struct ext4_group_info *db = e4b->bd_info;
4615 struct super_block *sb = e4b->bd_sb;
4616 struct ext4_sb_info *sbi = EXT4_SB(sb);
4617 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4618 struct rb_node *parent = NULL, *new_node;
4620 BUG_ON(!ext4_handle_valid(handle));
4621 BUG_ON(e4b->bd_bitmap_page == NULL);
4622 BUG_ON(e4b->bd_buddy_page == NULL);
4624 new_node = &new_entry->node;
4625 block = new_entry->start_blk;
4627 if (!*n) {
4628 /* first free block exent. We need to
4629 protect buddy cache from being freed,
4630 * otherwise we'll refresh it from
4631 * on-disk bitmap and lose not-yet-available
4632 * blocks */
4633 page_cache_get(e4b->bd_buddy_page);
4634 page_cache_get(e4b->bd_bitmap_page);
4636 while (*n) {
4637 parent = *n;
4638 entry = rb_entry(parent, struct ext4_free_data, node);
4639 if (block < entry->start_blk)
4640 n = &(*n)->rb_left;
4641 else if (block >= (entry->start_blk + entry->count))
4642 n = &(*n)->rb_right;
4643 else {
4644 ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4645 "Double free of blocks %d (%d %d)",
4646 block, entry->start_blk, entry->count);
4647 return 0;
4651 rb_link_node(new_node, parent, n);
4652 rb_insert_color(new_node, &db->bb_free_root);
4654 /* Now try to see the extent can be merged to left and right */
4655 node = rb_prev(new_node);
4656 if (node) {
4657 entry = rb_entry(node, struct ext4_free_data, node);
4658 if (can_merge(entry, new_entry)) {
4659 new_entry->start_blk = entry->start_blk;
4660 new_entry->count += entry->count;
4661 rb_erase(node, &(db->bb_free_root));
4662 spin_lock(&sbi->s_md_lock);
4663 list_del(&entry->list);
4664 spin_unlock(&sbi->s_md_lock);
4665 kmem_cache_free(ext4_free_ext_cachep, entry);
4669 node = rb_next(new_node);
4670 if (node) {
4671 entry = rb_entry(node, struct ext4_free_data, node);
4672 if (can_merge(new_entry, entry)) {
4673 new_entry->count += entry->count;
4674 rb_erase(node, &(db->bb_free_root));
4675 spin_lock(&sbi->s_md_lock);
4676 list_del(&entry->list);
4677 spin_unlock(&sbi->s_md_lock);
4678 kmem_cache_free(ext4_free_ext_cachep, entry);
4681 /* Add the extent to transaction's private list */
4682 spin_lock(&sbi->s_md_lock);
4683 list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4684 spin_unlock(&sbi->s_md_lock);
4685 return 0;
4689 * Main entry point into mballoc to free blocks
4691 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4692 ext4_fsblk_t block, unsigned long count,
4693 int metadata, unsigned long *freed)
4695 struct buffer_head *bitmap_bh = NULL;
4696 struct super_block *sb = inode->i_sb;
4697 struct ext4_allocation_context *ac = NULL;
4698 struct ext4_group_desc *gdp;
4699 struct ext4_super_block *es;
4700 unsigned int overflow;
4701 ext4_grpblk_t bit;
4702 struct buffer_head *gd_bh;
4703 ext4_group_t block_group;
4704 struct ext4_sb_info *sbi;
4705 struct ext4_buddy e4b;
4706 int err = 0;
4707 int ret;
4709 *freed = 0;
4711 sbi = EXT4_SB(sb);
4712 es = EXT4_SB(sb)->s_es;
4713 if (block < le32_to_cpu(es->s_first_data_block) ||
4714 block + count < block ||
4715 block + count > ext4_blocks_count(es)) {
4716 ext4_error(sb, __func__,
4717 "Freeing blocks not in datazone - "
4718 "block = %llu, count = %lu", block, count);
4719 goto error_return;
4722 ext4_debug("freeing block %llu\n", block);
4723 trace_ext4_free_blocks(inode, block, count, metadata);
4725 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4726 if (ac) {
4727 ac->ac_op = EXT4_MB_HISTORY_FREE;
4728 ac->ac_inode = inode;
4729 ac->ac_sb = sb;
4732 do_more:
4733 overflow = 0;
4734 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4737 * Check to see if we are freeing blocks across a group
4738 * boundary.
4740 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4741 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4742 count -= overflow;
4744 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4745 if (!bitmap_bh) {
4746 err = -EIO;
4747 goto error_return;
4749 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4750 if (!gdp) {
4751 err = -EIO;
4752 goto error_return;
4755 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4756 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4757 in_range(block, ext4_inode_table(sb, gdp),
4758 EXT4_SB(sb)->s_itb_per_group) ||
4759 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4760 EXT4_SB(sb)->s_itb_per_group)) {
4762 ext4_error(sb, __func__,
4763 "Freeing blocks in system zone - "
4764 "Block = %llu, count = %lu", block, count);
4765 /* err = 0. ext4_std_error should be a no op */
4766 goto error_return;
4769 BUFFER_TRACE(bitmap_bh, "getting write access");
4770 err = ext4_journal_get_write_access(handle, bitmap_bh);
4771 if (err)
4772 goto error_return;
4775 * We are about to modify some metadata. Call the journal APIs
4776 * to unshare ->b_data if a currently-committing transaction is
4777 * using it
4779 BUFFER_TRACE(gd_bh, "get_write_access");
4780 err = ext4_journal_get_write_access(handle, gd_bh);
4781 if (err)
4782 goto error_return;
4783 #ifdef AGGRESSIVE_CHECK
4785 int i;
4786 for (i = 0; i < count; i++)
4787 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4789 #endif
4790 if (ac) {
4791 ac->ac_b_ex.fe_group = block_group;
4792 ac->ac_b_ex.fe_start = bit;
4793 ac->ac_b_ex.fe_len = count;
4794 ext4_mb_store_history(ac);
4797 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4798 if (err)
4799 goto error_return;
4800 if (metadata && ext4_handle_valid(handle)) {
4801 struct ext4_free_data *new_entry;
4803 * blocks being freed are metadata. these blocks shouldn't
4804 * be used until this transaction is committed
4806 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4807 new_entry->start_blk = bit;
4808 new_entry->group = block_group;
4809 new_entry->count = count;
4810 new_entry->t_tid = handle->h_transaction->t_tid;
4812 ext4_lock_group(sb, block_group);
4813 mb_clear_bits(bitmap_bh->b_data, bit, count);
4814 ext4_mb_free_metadata(handle, &e4b, new_entry);
4815 } else {
4816 /* need to update group_info->bb_free and bitmap
4817 * with group lock held. generate_buddy look at
4818 * them with group lock_held
4820 ext4_lock_group(sb, block_group);
4821 mb_clear_bits(bitmap_bh->b_data, bit, count);
4822 mb_free_blocks(inode, &e4b, bit, count);
4823 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4826 ret = ext4_free_blks_count(sb, gdp) + count;
4827 ext4_free_blks_set(sb, gdp, ret);
4828 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4829 ext4_unlock_group(sb, block_group);
4830 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4832 if (sbi->s_log_groups_per_flex) {
4833 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4834 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4837 ext4_mb_release_desc(&e4b);
4839 *freed += count;
4841 /* We dirtied the bitmap block */
4842 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4843 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4845 /* And the group descriptor block */
4846 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4847 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4848 if (!err)
4849 err = ret;
4851 if (overflow && !err) {
4852 block += count;
4853 count = overflow;
4854 put_bh(bitmap_bh);
4855 goto do_more;
4857 sb->s_dirt = 1;
4858 error_return:
4859 brelse(bitmap_bh);
4860 ext4_std_error(sb, err);
4861 if (ac)
4862 kmem_cache_free(ext4_ac_cachep, ac);
4863 return;