dmaengine: sort the Kconfig
[linux/fpc-iii.git] / fs / block_dev.c
blob198243717da567bd5f47ad7c94ab823a82506c62
1 /*
2 * linux/fs/block_dev.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <asm/uaccess.h>
32 #include "internal.h"
34 struct bdev_inode {
35 struct block_device bdev;
36 struct inode vfs_inode;
39 static const struct address_space_operations def_blk_aops;
41 static inline struct bdev_inode *BDEV_I(struct inode *inode)
43 return container_of(inode, struct bdev_inode, vfs_inode);
46 struct block_device *I_BDEV(struct inode *inode)
48 return &BDEV_I(inode)->bdev;
50 EXPORT_SYMBOL(I_BDEV);
52 static void bdev_write_inode(struct inode *inode)
54 spin_lock(&inode->i_lock);
55 while (inode->i_state & I_DIRTY) {
56 spin_unlock(&inode->i_lock);
57 WARN_ON_ONCE(write_inode_now(inode, true));
58 spin_lock(&inode->i_lock);
60 spin_unlock(&inode->i_lock);
63 /* Kill _all_ buffers and pagecache , dirty or not.. */
64 void kill_bdev(struct block_device *bdev)
66 struct address_space *mapping = bdev->bd_inode->i_mapping;
68 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
69 return;
71 invalidate_bh_lrus();
72 truncate_inode_pages(mapping, 0);
74 EXPORT_SYMBOL(kill_bdev);
76 /* Invalidate clean unused buffers and pagecache. */
77 void invalidate_bdev(struct block_device *bdev)
79 struct address_space *mapping = bdev->bd_inode->i_mapping;
81 if (mapping->nrpages == 0)
82 return;
84 invalidate_bh_lrus();
85 lru_add_drain_all(); /* make sure all lru add caches are flushed */
86 invalidate_mapping_pages(mapping, 0, -1);
87 /* 99% of the time, we don't need to flush the cleancache on the bdev.
88 * But, for the strange corners, lets be cautious
90 cleancache_invalidate_inode(mapping);
92 EXPORT_SYMBOL(invalidate_bdev);
94 int set_blocksize(struct block_device *bdev, int size)
96 /* Size must be a power of two, and between 512 and PAGE_SIZE */
97 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
98 return -EINVAL;
100 /* Size cannot be smaller than the size supported by the device */
101 if (size < bdev_logical_block_size(bdev))
102 return -EINVAL;
104 /* Don't change the size if it is same as current */
105 if (bdev->bd_block_size != size) {
106 sync_blockdev(bdev);
107 bdev->bd_block_size = size;
108 bdev->bd_inode->i_blkbits = blksize_bits(size);
109 kill_bdev(bdev);
111 return 0;
114 EXPORT_SYMBOL(set_blocksize);
116 int sb_set_blocksize(struct super_block *sb, int size)
118 if (set_blocksize(sb->s_bdev, size))
119 return 0;
120 /* If we get here, we know size is power of two
121 * and it's value is between 512 and PAGE_SIZE */
122 sb->s_blocksize = size;
123 sb->s_blocksize_bits = blksize_bits(size);
124 return sb->s_blocksize;
127 EXPORT_SYMBOL(sb_set_blocksize);
129 int sb_min_blocksize(struct super_block *sb, int size)
131 int minsize = bdev_logical_block_size(sb->s_bdev);
132 if (size < minsize)
133 size = minsize;
134 return sb_set_blocksize(sb, size);
137 EXPORT_SYMBOL(sb_min_blocksize);
139 static int
140 blkdev_get_block(struct inode *inode, sector_t iblock,
141 struct buffer_head *bh, int create)
143 bh->b_bdev = I_BDEV(inode);
144 bh->b_blocknr = iblock;
145 set_buffer_mapped(bh);
146 return 0;
149 static ssize_t
150 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
152 struct file *file = iocb->ki_filp;
153 struct inode *inode = file->f_mapping->host;
155 if (IS_DAX(inode))
156 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
157 NULL, DIO_SKIP_DIO_COUNT);
158 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
159 blkdev_get_block, NULL, NULL,
160 DIO_SKIP_DIO_COUNT);
163 int __sync_blockdev(struct block_device *bdev, int wait)
165 if (!bdev)
166 return 0;
167 if (!wait)
168 return filemap_flush(bdev->bd_inode->i_mapping);
169 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
173 * Write out and wait upon all the dirty data associated with a block
174 * device via its mapping. Does not take the superblock lock.
176 int sync_blockdev(struct block_device *bdev)
178 return __sync_blockdev(bdev, 1);
180 EXPORT_SYMBOL(sync_blockdev);
183 * Write out and wait upon all dirty data associated with this
184 * device. Filesystem data as well as the underlying block
185 * device. Takes the superblock lock.
187 int fsync_bdev(struct block_device *bdev)
189 struct super_block *sb = get_super(bdev);
190 if (sb) {
191 int res = sync_filesystem(sb);
192 drop_super(sb);
193 return res;
195 return sync_blockdev(bdev);
197 EXPORT_SYMBOL(fsync_bdev);
200 * freeze_bdev -- lock a filesystem and force it into a consistent state
201 * @bdev: blockdevice to lock
203 * If a superblock is found on this device, we take the s_umount semaphore
204 * on it to make sure nobody unmounts until the snapshot creation is done.
205 * The reference counter (bd_fsfreeze_count) guarantees that only the last
206 * unfreeze process can unfreeze the frozen filesystem actually when multiple
207 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
208 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
209 * actually.
211 struct super_block *freeze_bdev(struct block_device *bdev)
213 struct super_block *sb;
214 int error = 0;
216 mutex_lock(&bdev->bd_fsfreeze_mutex);
217 if (++bdev->bd_fsfreeze_count > 1) {
219 * We don't even need to grab a reference - the first call
220 * to freeze_bdev grab an active reference and only the last
221 * thaw_bdev drops it.
223 sb = get_super(bdev);
224 drop_super(sb);
225 mutex_unlock(&bdev->bd_fsfreeze_mutex);
226 return sb;
229 sb = get_active_super(bdev);
230 if (!sb)
231 goto out;
232 if (sb->s_op->freeze_super)
233 error = sb->s_op->freeze_super(sb);
234 else
235 error = freeze_super(sb);
236 if (error) {
237 deactivate_super(sb);
238 bdev->bd_fsfreeze_count--;
239 mutex_unlock(&bdev->bd_fsfreeze_mutex);
240 return ERR_PTR(error);
242 deactivate_super(sb);
243 out:
244 sync_blockdev(bdev);
245 mutex_unlock(&bdev->bd_fsfreeze_mutex);
246 return sb; /* thaw_bdev releases s->s_umount */
248 EXPORT_SYMBOL(freeze_bdev);
251 * thaw_bdev -- unlock filesystem
252 * @bdev: blockdevice to unlock
253 * @sb: associated superblock
255 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
257 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
259 int error = -EINVAL;
261 mutex_lock(&bdev->bd_fsfreeze_mutex);
262 if (!bdev->bd_fsfreeze_count)
263 goto out;
265 error = 0;
266 if (--bdev->bd_fsfreeze_count > 0)
267 goto out;
269 if (!sb)
270 goto out;
272 if (sb->s_op->thaw_super)
273 error = sb->s_op->thaw_super(sb);
274 else
275 error = thaw_super(sb);
276 if (error) {
277 bdev->bd_fsfreeze_count++;
278 mutex_unlock(&bdev->bd_fsfreeze_mutex);
279 return error;
281 out:
282 mutex_unlock(&bdev->bd_fsfreeze_mutex);
283 return 0;
285 EXPORT_SYMBOL(thaw_bdev);
287 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
289 return block_write_full_page(page, blkdev_get_block, wbc);
292 static int blkdev_readpage(struct file * file, struct page * page)
294 return block_read_full_page(page, blkdev_get_block);
297 static int blkdev_readpages(struct file *file, struct address_space *mapping,
298 struct list_head *pages, unsigned nr_pages)
300 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
303 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
304 loff_t pos, unsigned len, unsigned flags,
305 struct page **pagep, void **fsdata)
307 return block_write_begin(mapping, pos, len, flags, pagep,
308 blkdev_get_block);
311 static int blkdev_write_end(struct file *file, struct address_space *mapping,
312 loff_t pos, unsigned len, unsigned copied,
313 struct page *page, void *fsdata)
315 int ret;
316 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
318 unlock_page(page);
319 page_cache_release(page);
321 return ret;
325 * private llseek:
326 * for a block special file file_inode(file)->i_size is zero
327 * so we compute the size by hand (just as in block_read/write above)
329 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
331 struct inode *bd_inode = file->f_mapping->host;
332 loff_t retval;
334 mutex_lock(&bd_inode->i_mutex);
335 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
336 mutex_unlock(&bd_inode->i_mutex);
337 return retval;
340 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
342 struct inode *bd_inode = filp->f_mapping->host;
343 struct block_device *bdev = I_BDEV(bd_inode);
344 int error;
346 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
347 if (error)
348 return error;
351 * There is no need to serialise calls to blkdev_issue_flush with
352 * i_mutex and doing so causes performance issues with concurrent
353 * O_SYNC writers to a block device.
355 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
356 if (error == -EOPNOTSUPP)
357 error = 0;
359 return error;
361 EXPORT_SYMBOL(blkdev_fsync);
364 * bdev_read_page() - Start reading a page from a block device
365 * @bdev: The device to read the page from
366 * @sector: The offset on the device to read the page to (need not be aligned)
367 * @page: The page to read
369 * On entry, the page should be locked. It will be unlocked when the page
370 * has been read. If the block driver implements rw_page synchronously,
371 * that will be true on exit from this function, but it need not be.
373 * Errors returned by this function are usually "soft", eg out of memory, or
374 * queue full; callers should try a different route to read this page rather
375 * than propagate an error back up the stack.
377 * Return: negative errno if an error occurs, 0 if submission was successful.
379 int bdev_read_page(struct block_device *bdev, sector_t sector,
380 struct page *page)
382 const struct block_device_operations *ops = bdev->bd_disk->fops;
383 if (!ops->rw_page || bdev_get_integrity(bdev))
384 return -EOPNOTSUPP;
385 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
387 EXPORT_SYMBOL_GPL(bdev_read_page);
390 * bdev_write_page() - Start writing a page to a block device
391 * @bdev: The device to write the page to
392 * @sector: The offset on the device to write the page to (need not be aligned)
393 * @page: The page to write
394 * @wbc: The writeback_control for the write
396 * On entry, the page should be locked and not currently under writeback.
397 * On exit, if the write started successfully, the page will be unlocked and
398 * under writeback. If the write failed already (eg the driver failed to
399 * queue the page to the device), the page will still be locked. If the
400 * caller is a ->writepage implementation, it will need to unlock the page.
402 * Errors returned by this function are usually "soft", eg out of memory, or
403 * queue full; callers should try a different route to write this page rather
404 * than propagate an error back up the stack.
406 * Return: negative errno if an error occurs, 0 if submission was successful.
408 int bdev_write_page(struct block_device *bdev, sector_t sector,
409 struct page *page, struct writeback_control *wbc)
411 int result;
412 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
413 const struct block_device_operations *ops = bdev->bd_disk->fops;
414 if (!ops->rw_page || bdev_get_integrity(bdev))
415 return -EOPNOTSUPP;
416 set_page_writeback(page);
417 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
418 if (result)
419 end_page_writeback(page);
420 else
421 unlock_page(page);
422 return result;
424 EXPORT_SYMBOL_GPL(bdev_write_page);
427 * bdev_direct_access() - Get the address for directly-accessibly memory
428 * @bdev: The device containing the memory
429 * @sector: The offset within the device
430 * @addr: Where to put the address of the memory
431 * @pfn: The Page Frame Number for the memory
432 * @size: The number of bytes requested
434 * If a block device is made up of directly addressable memory, this function
435 * will tell the caller the PFN and the address of the memory. The address
436 * may be directly dereferenced within the kernel without the need to call
437 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
438 * page tables.
440 * Return: negative errno if an error occurs, otherwise the number of bytes
441 * accessible at this address.
443 long bdev_direct_access(struct block_device *bdev, sector_t sector,
444 void **addr, unsigned long *pfn, long size)
446 long avail;
447 const struct block_device_operations *ops = bdev->bd_disk->fops;
450 * The device driver is allowed to sleep, in order to make the
451 * memory directly accessible.
453 might_sleep();
455 if (size < 0)
456 return size;
457 if (!ops->direct_access)
458 return -EOPNOTSUPP;
459 if ((sector + DIV_ROUND_UP(size, 512)) >
460 part_nr_sects_read(bdev->bd_part))
461 return -ERANGE;
462 sector += get_start_sect(bdev);
463 if (sector % (PAGE_SIZE / 512))
464 return -EINVAL;
465 avail = ops->direct_access(bdev, sector, addr, pfn, size);
466 if (!avail)
467 return -ERANGE;
468 return min(avail, size);
470 EXPORT_SYMBOL_GPL(bdev_direct_access);
473 * pseudo-fs
476 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
477 static struct kmem_cache * bdev_cachep __read_mostly;
479 static struct inode *bdev_alloc_inode(struct super_block *sb)
481 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
482 if (!ei)
483 return NULL;
484 return &ei->vfs_inode;
487 static void bdev_i_callback(struct rcu_head *head)
489 struct inode *inode = container_of(head, struct inode, i_rcu);
490 struct bdev_inode *bdi = BDEV_I(inode);
492 kmem_cache_free(bdev_cachep, bdi);
495 static void bdev_destroy_inode(struct inode *inode)
497 call_rcu(&inode->i_rcu, bdev_i_callback);
500 static void init_once(void *foo)
502 struct bdev_inode *ei = (struct bdev_inode *) foo;
503 struct block_device *bdev = &ei->bdev;
505 memset(bdev, 0, sizeof(*bdev));
506 mutex_init(&bdev->bd_mutex);
507 INIT_LIST_HEAD(&bdev->bd_inodes);
508 INIT_LIST_HEAD(&bdev->bd_list);
509 #ifdef CONFIG_SYSFS
510 INIT_LIST_HEAD(&bdev->bd_holder_disks);
511 #endif
512 inode_init_once(&ei->vfs_inode);
513 /* Initialize mutex for freeze. */
514 mutex_init(&bdev->bd_fsfreeze_mutex);
517 static inline void __bd_forget(struct inode *inode)
519 list_del_init(&inode->i_devices);
520 inode->i_bdev = NULL;
521 inode->i_mapping = &inode->i_data;
524 static void bdev_evict_inode(struct inode *inode)
526 struct block_device *bdev = &BDEV_I(inode)->bdev;
527 struct list_head *p;
528 truncate_inode_pages_final(&inode->i_data);
529 invalidate_inode_buffers(inode); /* is it needed here? */
530 clear_inode(inode);
531 spin_lock(&bdev_lock);
532 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
533 __bd_forget(list_entry(p, struct inode, i_devices));
535 list_del_init(&bdev->bd_list);
536 spin_unlock(&bdev_lock);
539 static const struct super_operations bdev_sops = {
540 .statfs = simple_statfs,
541 .alloc_inode = bdev_alloc_inode,
542 .destroy_inode = bdev_destroy_inode,
543 .drop_inode = generic_delete_inode,
544 .evict_inode = bdev_evict_inode,
547 static struct dentry *bd_mount(struct file_system_type *fs_type,
548 int flags, const char *dev_name, void *data)
550 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
553 static struct file_system_type bd_type = {
554 .name = "bdev",
555 .mount = bd_mount,
556 .kill_sb = kill_anon_super,
559 struct super_block *blockdev_superblock __read_mostly;
560 EXPORT_SYMBOL_GPL(blockdev_superblock);
562 void __init bdev_cache_init(void)
564 int err;
565 static struct vfsmount *bd_mnt;
567 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
568 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
569 SLAB_MEM_SPREAD|SLAB_PANIC),
570 init_once);
571 err = register_filesystem(&bd_type);
572 if (err)
573 panic("Cannot register bdev pseudo-fs");
574 bd_mnt = kern_mount(&bd_type);
575 if (IS_ERR(bd_mnt))
576 panic("Cannot create bdev pseudo-fs");
577 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
581 * Most likely _very_ bad one - but then it's hardly critical for small
582 * /dev and can be fixed when somebody will need really large one.
583 * Keep in mind that it will be fed through icache hash function too.
585 static inline unsigned long hash(dev_t dev)
587 return MAJOR(dev)+MINOR(dev);
590 static int bdev_test(struct inode *inode, void *data)
592 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
595 static int bdev_set(struct inode *inode, void *data)
597 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
598 return 0;
601 static LIST_HEAD(all_bdevs);
603 struct block_device *bdget(dev_t dev)
605 struct block_device *bdev;
606 struct inode *inode;
608 inode = iget5_locked(blockdev_superblock, hash(dev),
609 bdev_test, bdev_set, &dev);
611 if (!inode)
612 return NULL;
614 bdev = &BDEV_I(inode)->bdev;
616 if (inode->i_state & I_NEW) {
617 bdev->bd_contains = NULL;
618 bdev->bd_super = NULL;
619 bdev->bd_inode = inode;
620 bdev->bd_block_size = (1 << inode->i_blkbits);
621 bdev->bd_part_count = 0;
622 bdev->bd_invalidated = 0;
623 inode->i_mode = S_IFBLK;
624 inode->i_rdev = dev;
625 inode->i_bdev = bdev;
626 inode->i_data.a_ops = &def_blk_aops;
627 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
628 spin_lock(&bdev_lock);
629 list_add(&bdev->bd_list, &all_bdevs);
630 spin_unlock(&bdev_lock);
631 unlock_new_inode(inode);
633 return bdev;
636 EXPORT_SYMBOL(bdget);
639 * bdgrab -- Grab a reference to an already referenced block device
640 * @bdev: Block device to grab a reference to.
642 struct block_device *bdgrab(struct block_device *bdev)
644 ihold(bdev->bd_inode);
645 return bdev;
647 EXPORT_SYMBOL(bdgrab);
649 long nr_blockdev_pages(void)
651 struct block_device *bdev;
652 long ret = 0;
653 spin_lock(&bdev_lock);
654 list_for_each_entry(bdev, &all_bdevs, bd_list) {
655 ret += bdev->bd_inode->i_mapping->nrpages;
657 spin_unlock(&bdev_lock);
658 return ret;
661 void bdput(struct block_device *bdev)
663 iput(bdev->bd_inode);
666 EXPORT_SYMBOL(bdput);
668 static struct block_device *bd_acquire(struct inode *inode)
670 struct block_device *bdev;
672 spin_lock(&bdev_lock);
673 bdev = inode->i_bdev;
674 if (bdev) {
675 ihold(bdev->bd_inode);
676 spin_unlock(&bdev_lock);
677 return bdev;
679 spin_unlock(&bdev_lock);
681 bdev = bdget(inode->i_rdev);
682 if (bdev) {
683 spin_lock(&bdev_lock);
684 if (!inode->i_bdev) {
686 * We take an additional reference to bd_inode,
687 * and it's released in clear_inode() of inode.
688 * So, we can access it via ->i_mapping always
689 * without igrab().
691 ihold(bdev->bd_inode);
692 inode->i_bdev = bdev;
693 inode->i_mapping = bdev->bd_inode->i_mapping;
694 list_add(&inode->i_devices, &bdev->bd_inodes);
696 spin_unlock(&bdev_lock);
698 return bdev;
701 /* Call when you free inode */
703 void bd_forget(struct inode *inode)
705 struct block_device *bdev = NULL;
707 spin_lock(&bdev_lock);
708 if (!sb_is_blkdev_sb(inode->i_sb))
709 bdev = inode->i_bdev;
710 __bd_forget(inode);
711 spin_unlock(&bdev_lock);
713 if (bdev)
714 iput(bdev->bd_inode);
718 * bd_may_claim - test whether a block device can be claimed
719 * @bdev: block device of interest
720 * @whole: whole block device containing @bdev, may equal @bdev
721 * @holder: holder trying to claim @bdev
723 * Test whether @bdev can be claimed by @holder.
725 * CONTEXT:
726 * spin_lock(&bdev_lock).
728 * RETURNS:
729 * %true if @bdev can be claimed, %false otherwise.
731 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
732 void *holder)
734 if (bdev->bd_holder == holder)
735 return true; /* already a holder */
736 else if (bdev->bd_holder != NULL)
737 return false; /* held by someone else */
738 else if (bdev->bd_contains == bdev)
739 return true; /* is a whole device which isn't held */
741 else if (whole->bd_holder == bd_may_claim)
742 return true; /* is a partition of a device that is being partitioned */
743 else if (whole->bd_holder != NULL)
744 return false; /* is a partition of a held device */
745 else
746 return true; /* is a partition of an un-held device */
750 * bd_prepare_to_claim - prepare to claim a block device
751 * @bdev: block device of interest
752 * @whole: the whole device containing @bdev, may equal @bdev
753 * @holder: holder trying to claim @bdev
755 * Prepare to claim @bdev. This function fails if @bdev is already
756 * claimed by another holder and waits if another claiming is in
757 * progress. This function doesn't actually claim. On successful
758 * return, the caller has ownership of bd_claiming and bd_holder[s].
760 * CONTEXT:
761 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
762 * it multiple times.
764 * RETURNS:
765 * 0 if @bdev can be claimed, -EBUSY otherwise.
767 static int bd_prepare_to_claim(struct block_device *bdev,
768 struct block_device *whole, void *holder)
770 retry:
771 /* if someone else claimed, fail */
772 if (!bd_may_claim(bdev, whole, holder))
773 return -EBUSY;
775 /* if claiming is already in progress, wait for it to finish */
776 if (whole->bd_claiming) {
777 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
778 DEFINE_WAIT(wait);
780 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
781 spin_unlock(&bdev_lock);
782 schedule();
783 finish_wait(wq, &wait);
784 spin_lock(&bdev_lock);
785 goto retry;
788 /* yay, all mine */
789 return 0;
793 * bd_start_claiming - start claiming a block device
794 * @bdev: block device of interest
795 * @holder: holder trying to claim @bdev
797 * @bdev is about to be opened exclusively. Check @bdev can be opened
798 * exclusively and mark that an exclusive open is in progress. Each
799 * successful call to this function must be matched with a call to
800 * either bd_finish_claiming() or bd_abort_claiming() (which do not
801 * fail).
803 * This function is used to gain exclusive access to the block device
804 * without actually causing other exclusive open attempts to fail. It
805 * should be used when the open sequence itself requires exclusive
806 * access but may subsequently fail.
808 * CONTEXT:
809 * Might sleep.
811 * RETURNS:
812 * Pointer to the block device containing @bdev on success, ERR_PTR()
813 * value on failure.
815 static struct block_device *bd_start_claiming(struct block_device *bdev,
816 void *holder)
818 struct gendisk *disk;
819 struct block_device *whole;
820 int partno, err;
822 might_sleep();
825 * @bdev might not have been initialized properly yet, look up
826 * and grab the outer block device the hard way.
828 disk = get_gendisk(bdev->bd_dev, &partno);
829 if (!disk)
830 return ERR_PTR(-ENXIO);
833 * Normally, @bdev should equal what's returned from bdget_disk()
834 * if partno is 0; however, some drivers (floppy) use multiple
835 * bdev's for the same physical device and @bdev may be one of the
836 * aliases. Keep @bdev if partno is 0. This means claimer
837 * tracking is broken for those devices but it has always been that
838 * way.
840 if (partno)
841 whole = bdget_disk(disk, 0);
842 else
843 whole = bdgrab(bdev);
845 module_put(disk->fops->owner);
846 put_disk(disk);
847 if (!whole)
848 return ERR_PTR(-ENOMEM);
850 /* prepare to claim, if successful, mark claiming in progress */
851 spin_lock(&bdev_lock);
853 err = bd_prepare_to_claim(bdev, whole, holder);
854 if (err == 0) {
855 whole->bd_claiming = holder;
856 spin_unlock(&bdev_lock);
857 return whole;
858 } else {
859 spin_unlock(&bdev_lock);
860 bdput(whole);
861 return ERR_PTR(err);
865 #ifdef CONFIG_SYSFS
866 struct bd_holder_disk {
867 struct list_head list;
868 struct gendisk *disk;
869 int refcnt;
872 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
873 struct gendisk *disk)
875 struct bd_holder_disk *holder;
877 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
878 if (holder->disk == disk)
879 return holder;
880 return NULL;
883 static int add_symlink(struct kobject *from, struct kobject *to)
885 return sysfs_create_link(from, to, kobject_name(to));
888 static void del_symlink(struct kobject *from, struct kobject *to)
890 sysfs_remove_link(from, kobject_name(to));
894 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
895 * @bdev: the claimed slave bdev
896 * @disk: the holding disk
898 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
900 * This functions creates the following sysfs symlinks.
902 * - from "slaves" directory of the holder @disk to the claimed @bdev
903 * - from "holders" directory of the @bdev to the holder @disk
905 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
906 * passed to bd_link_disk_holder(), then:
908 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
909 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
911 * The caller must have claimed @bdev before calling this function and
912 * ensure that both @bdev and @disk are valid during the creation and
913 * lifetime of these symlinks.
915 * CONTEXT:
916 * Might sleep.
918 * RETURNS:
919 * 0 on success, -errno on failure.
921 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
923 struct bd_holder_disk *holder;
924 int ret = 0;
926 mutex_lock(&bdev->bd_mutex);
928 WARN_ON_ONCE(!bdev->bd_holder);
930 /* FIXME: remove the following once add_disk() handles errors */
931 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
932 goto out_unlock;
934 holder = bd_find_holder_disk(bdev, disk);
935 if (holder) {
936 holder->refcnt++;
937 goto out_unlock;
940 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
941 if (!holder) {
942 ret = -ENOMEM;
943 goto out_unlock;
946 INIT_LIST_HEAD(&holder->list);
947 holder->disk = disk;
948 holder->refcnt = 1;
950 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
951 if (ret)
952 goto out_free;
954 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
955 if (ret)
956 goto out_del;
958 * bdev could be deleted beneath us which would implicitly destroy
959 * the holder directory. Hold on to it.
961 kobject_get(bdev->bd_part->holder_dir);
963 list_add(&holder->list, &bdev->bd_holder_disks);
964 goto out_unlock;
966 out_del:
967 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
968 out_free:
969 kfree(holder);
970 out_unlock:
971 mutex_unlock(&bdev->bd_mutex);
972 return ret;
974 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
977 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
978 * @bdev: the calimed slave bdev
979 * @disk: the holding disk
981 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
983 * CONTEXT:
984 * Might sleep.
986 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
988 struct bd_holder_disk *holder;
990 mutex_lock(&bdev->bd_mutex);
992 holder = bd_find_holder_disk(bdev, disk);
994 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
995 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
996 del_symlink(bdev->bd_part->holder_dir,
997 &disk_to_dev(disk)->kobj);
998 kobject_put(bdev->bd_part->holder_dir);
999 list_del_init(&holder->list);
1000 kfree(holder);
1003 mutex_unlock(&bdev->bd_mutex);
1005 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1006 #endif
1009 * flush_disk - invalidates all buffer-cache entries on a disk
1011 * @bdev: struct block device to be flushed
1012 * @kill_dirty: flag to guide handling of dirty inodes
1014 * Invalidates all buffer-cache entries on a disk. It should be called
1015 * when a disk has been changed -- either by a media change or online
1016 * resize.
1018 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1020 if (__invalidate_device(bdev, kill_dirty)) {
1021 char name[BDEVNAME_SIZE] = "";
1023 if (bdev->bd_disk)
1024 disk_name(bdev->bd_disk, 0, name);
1025 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1026 "resized disk %s\n", name);
1029 if (!bdev->bd_disk)
1030 return;
1031 if (disk_part_scan_enabled(bdev->bd_disk))
1032 bdev->bd_invalidated = 1;
1036 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1037 * @disk: struct gendisk to check
1038 * @bdev: struct bdev to adjust.
1040 * This routine checks to see if the bdev size does not match the disk size
1041 * and adjusts it if it differs.
1043 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1045 loff_t disk_size, bdev_size;
1047 disk_size = (loff_t)get_capacity(disk) << 9;
1048 bdev_size = i_size_read(bdev->bd_inode);
1049 if (disk_size != bdev_size) {
1050 char name[BDEVNAME_SIZE];
1052 disk_name(disk, 0, name);
1053 printk(KERN_INFO
1054 "%s: detected capacity change from %lld to %lld\n",
1055 name, bdev_size, disk_size);
1056 i_size_write(bdev->bd_inode, disk_size);
1057 flush_disk(bdev, false);
1060 EXPORT_SYMBOL(check_disk_size_change);
1063 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1064 * @disk: struct gendisk to be revalidated
1066 * This routine is a wrapper for lower-level driver's revalidate_disk
1067 * call-backs. It is used to do common pre and post operations needed
1068 * for all revalidate_disk operations.
1070 int revalidate_disk(struct gendisk *disk)
1072 struct block_device *bdev;
1073 int ret = 0;
1075 if (disk->fops->revalidate_disk)
1076 ret = disk->fops->revalidate_disk(disk);
1078 bdev = bdget_disk(disk, 0);
1079 if (!bdev)
1080 return ret;
1082 mutex_lock(&bdev->bd_mutex);
1083 check_disk_size_change(disk, bdev);
1084 bdev->bd_invalidated = 0;
1085 mutex_unlock(&bdev->bd_mutex);
1086 bdput(bdev);
1087 return ret;
1089 EXPORT_SYMBOL(revalidate_disk);
1092 * This routine checks whether a removable media has been changed,
1093 * and invalidates all buffer-cache-entries in that case. This
1094 * is a relatively slow routine, so we have to try to minimize using
1095 * it. Thus it is called only upon a 'mount' or 'open'. This
1096 * is the best way of combining speed and utility, I think.
1097 * People changing diskettes in the middle of an operation deserve
1098 * to lose :-)
1100 int check_disk_change(struct block_device *bdev)
1102 struct gendisk *disk = bdev->bd_disk;
1103 const struct block_device_operations *bdops = disk->fops;
1104 unsigned int events;
1106 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1107 DISK_EVENT_EJECT_REQUEST);
1108 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1109 return 0;
1111 flush_disk(bdev, true);
1112 if (bdops->revalidate_disk)
1113 bdops->revalidate_disk(bdev->bd_disk);
1114 return 1;
1117 EXPORT_SYMBOL(check_disk_change);
1119 void bd_set_size(struct block_device *bdev, loff_t size)
1121 unsigned bsize = bdev_logical_block_size(bdev);
1123 mutex_lock(&bdev->bd_inode->i_mutex);
1124 i_size_write(bdev->bd_inode, size);
1125 mutex_unlock(&bdev->bd_inode->i_mutex);
1126 while (bsize < PAGE_CACHE_SIZE) {
1127 if (size & bsize)
1128 break;
1129 bsize <<= 1;
1131 bdev->bd_block_size = bsize;
1132 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1134 EXPORT_SYMBOL(bd_set_size);
1136 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1139 * bd_mutex locking:
1141 * mutex_lock(part->bd_mutex)
1142 * mutex_lock_nested(whole->bd_mutex, 1)
1145 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1147 struct gendisk *disk;
1148 struct module *owner;
1149 int ret;
1150 int partno;
1151 int perm = 0;
1153 if (mode & FMODE_READ)
1154 perm |= MAY_READ;
1155 if (mode & FMODE_WRITE)
1156 perm |= MAY_WRITE;
1158 * hooks: /n/, see "layering violations".
1160 if (!for_part) {
1161 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1162 if (ret != 0) {
1163 bdput(bdev);
1164 return ret;
1168 restart:
1170 ret = -ENXIO;
1171 disk = get_gendisk(bdev->bd_dev, &partno);
1172 if (!disk)
1173 goto out;
1174 owner = disk->fops->owner;
1176 disk_block_events(disk);
1177 mutex_lock_nested(&bdev->bd_mutex, for_part);
1178 if (!bdev->bd_openers) {
1179 bdev->bd_disk = disk;
1180 bdev->bd_queue = disk->queue;
1181 bdev->bd_contains = bdev;
1182 bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0;
1183 if (!partno) {
1184 ret = -ENXIO;
1185 bdev->bd_part = disk_get_part(disk, partno);
1186 if (!bdev->bd_part)
1187 goto out_clear;
1189 ret = 0;
1190 if (disk->fops->open) {
1191 ret = disk->fops->open(bdev, mode);
1192 if (ret == -ERESTARTSYS) {
1193 /* Lost a race with 'disk' being
1194 * deleted, try again.
1195 * See md.c
1197 disk_put_part(bdev->bd_part);
1198 bdev->bd_part = NULL;
1199 bdev->bd_disk = NULL;
1200 bdev->bd_queue = NULL;
1201 mutex_unlock(&bdev->bd_mutex);
1202 disk_unblock_events(disk);
1203 put_disk(disk);
1204 module_put(owner);
1205 goto restart;
1209 if (!ret)
1210 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1213 * If the device is invalidated, rescan partition
1214 * if open succeeded or failed with -ENOMEDIUM.
1215 * The latter is necessary to prevent ghost
1216 * partitions on a removed medium.
1218 if (bdev->bd_invalidated) {
1219 if (!ret)
1220 rescan_partitions(disk, bdev);
1221 else if (ret == -ENOMEDIUM)
1222 invalidate_partitions(disk, bdev);
1224 if (ret)
1225 goto out_clear;
1226 } else {
1227 struct block_device *whole;
1228 whole = bdget_disk(disk, 0);
1229 ret = -ENOMEM;
1230 if (!whole)
1231 goto out_clear;
1232 BUG_ON(for_part);
1233 ret = __blkdev_get(whole, mode, 1);
1234 if (ret)
1235 goto out_clear;
1236 bdev->bd_contains = whole;
1237 bdev->bd_part = disk_get_part(disk, partno);
1238 if (!(disk->flags & GENHD_FL_UP) ||
1239 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1240 ret = -ENXIO;
1241 goto out_clear;
1243 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1245 } else {
1246 if (bdev->bd_contains == bdev) {
1247 ret = 0;
1248 if (bdev->bd_disk->fops->open)
1249 ret = bdev->bd_disk->fops->open(bdev, mode);
1250 /* the same as first opener case, read comment there */
1251 if (bdev->bd_invalidated) {
1252 if (!ret)
1253 rescan_partitions(bdev->bd_disk, bdev);
1254 else if (ret == -ENOMEDIUM)
1255 invalidate_partitions(bdev->bd_disk, bdev);
1257 if (ret)
1258 goto out_unlock_bdev;
1260 /* only one opener holds refs to the module and disk */
1261 put_disk(disk);
1262 module_put(owner);
1264 bdev->bd_openers++;
1265 if (for_part)
1266 bdev->bd_part_count++;
1267 mutex_unlock(&bdev->bd_mutex);
1268 disk_unblock_events(disk);
1269 return 0;
1271 out_clear:
1272 disk_put_part(bdev->bd_part);
1273 bdev->bd_disk = NULL;
1274 bdev->bd_part = NULL;
1275 bdev->bd_queue = NULL;
1276 if (bdev != bdev->bd_contains)
1277 __blkdev_put(bdev->bd_contains, mode, 1);
1278 bdev->bd_contains = NULL;
1279 out_unlock_bdev:
1280 mutex_unlock(&bdev->bd_mutex);
1281 disk_unblock_events(disk);
1282 put_disk(disk);
1283 module_put(owner);
1284 out:
1285 bdput(bdev);
1287 return ret;
1291 * blkdev_get - open a block device
1292 * @bdev: block_device to open
1293 * @mode: FMODE_* mask
1294 * @holder: exclusive holder identifier
1296 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1297 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1298 * @holder is invalid. Exclusive opens may nest for the same @holder.
1300 * On success, the reference count of @bdev is unchanged. On failure,
1301 * @bdev is put.
1303 * CONTEXT:
1304 * Might sleep.
1306 * RETURNS:
1307 * 0 on success, -errno on failure.
1309 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1311 struct block_device *whole = NULL;
1312 int res;
1314 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1316 if ((mode & FMODE_EXCL) && holder) {
1317 whole = bd_start_claiming(bdev, holder);
1318 if (IS_ERR(whole)) {
1319 bdput(bdev);
1320 return PTR_ERR(whole);
1324 res = __blkdev_get(bdev, mode, 0);
1326 if (whole) {
1327 struct gendisk *disk = whole->bd_disk;
1329 /* finish claiming */
1330 mutex_lock(&bdev->bd_mutex);
1331 spin_lock(&bdev_lock);
1333 if (!res) {
1334 BUG_ON(!bd_may_claim(bdev, whole, holder));
1336 * Note that for a whole device bd_holders
1337 * will be incremented twice, and bd_holder
1338 * will be set to bd_may_claim before being
1339 * set to holder
1341 whole->bd_holders++;
1342 whole->bd_holder = bd_may_claim;
1343 bdev->bd_holders++;
1344 bdev->bd_holder = holder;
1347 /* tell others that we're done */
1348 BUG_ON(whole->bd_claiming != holder);
1349 whole->bd_claiming = NULL;
1350 wake_up_bit(&whole->bd_claiming, 0);
1352 spin_unlock(&bdev_lock);
1355 * Block event polling for write claims if requested. Any
1356 * write holder makes the write_holder state stick until
1357 * all are released. This is good enough and tracking
1358 * individual writeable reference is too fragile given the
1359 * way @mode is used in blkdev_get/put().
1361 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1362 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1363 bdev->bd_write_holder = true;
1364 disk_block_events(disk);
1367 mutex_unlock(&bdev->bd_mutex);
1368 bdput(whole);
1371 return res;
1373 EXPORT_SYMBOL(blkdev_get);
1376 * blkdev_get_by_path - open a block device by name
1377 * @path: path to the block device to open
1378 * @mode: FMODE_* mask
1379 * @holder: exclusive holder identifier
1381 * Open the blockdevice described by the device file at @path. @mode
1382 * and @holder are identical to blkdev_get().
1384 * On success, the returned block_device has reference count of one.
1386 * CONTEXT:
1387 * Might sleep.
1389 * RETURNS:
1390 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1392 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1393 void *holder)
1395 struct block_device *bdev;
1396 int err;
1398 bdev = lookup_bdev(path);
1399 if (IS_ERR(bdev))
1400 return bdev;
1402 err = blkdev_get(bdev, mode, holder);
1403 if (err)
1404 return ERR_PTR(err);
1406 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1407 blkdev_put(bdev, mode);
1408 return ERR_PTR(-EACCES);
1411 return bdev;
1413 EXPORT_SYMBOL(blkdev_get_by_path);
1416 * blkdev_get_by_dev - open a block device by device number
1417 * @dev: device number of block device to open
1418 * @mode: FMODE_* mask
1419 * @holder: exclusive holder identifier
1421 * Open the blockdevice described by device number @dev. @mode and
1422 * @holder are identical to blkdev_get().
1424 * Use it ONLY if you really do not have anything better - i.e. when
1425 * you are behind a truly sucky interface and all you are given is a
1426 * device number. _Never_ to be used for internal purposes. If you
1427 * ever need it - reconsider your API.
1429 * On success, the returned block_device has reference count of one.
1431 * CONTEXT:
1432 * Might sleep.
1434 * RETURNS:
1435 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1437 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1439 struct block_device *bdev;
1440 int err;
1442 bdev = bdget(dev);
1443 if (!bdev)
1444 return ERR_PTR(-ENOMEM);
1446 err = blkdev_get(bdev, mode, holder);
1447 if (err)
1448 return ERR_PTR(err);
1450 return bdev;
1452 EXPORT_SYMBOL(blkdev_get_by_dev);
1454 static int blkdev_open(struct inode * inode, struct file * filp)
1456 struct block_device *bdev;
1459 * Preserve backwards compatibility and allow large file access
1460 * even if userspace doesn't ask for it explicitly. Some mkfs
1461 * binary needs it. We might want to drop this workaround
1462 * during an unstable branch.
1464 filp->f_flags |= O_LARGEFILE;
1466 if (filp->f_flags & O_NDELAY)
1467 filp->f_mode |= FMODE_NDELAY;
1468 if (filp->f_flags & O_EXCL)
1469 filp->f_mode |= FMODE_EXCL;
1470 if ((filp->f_flags & O_ACCMODE) == 3)
1471 filp->f_mode |= FMODE_WRITE_IOCTL;
1473 bdev = bd_acquire(inode);
1474 if (bdev == NULL)
1475 return -ENOMEM;
1477 filp->f_mapping = bdev->bd_inode->i_mapping;
1479 return blkdev_get(bdev, filp->f_mode, filp);
1482 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1484 struct gendisk *disk = bdev->bd_disk;
1485 struct block_device *victim = NULL;
1487 mutex_lock_nested(&bdev->bd_mutex, for_part);
1488 if (for_part)
1489 bdev->bd_part_count--;
1491 if (!--bdev->bd_openers) {
1492 WARN_ON_ONCE(bdev->bd_holders);
1493 sync_blockdev(bdev);
1494 kill_bdev(bdev);
1496 * ->release can cause the queue to disappear, so flush all
1497 * dirty data before.
1499 bdev_write_inode(bdev->bd_inode);
1501 if (bdev->bd_contains == bdev) {
1502 if (disk->fops->release)
1503 disk->fops->release(disk, mode);
1505 if (!bdev->bd_openers) {
1506 struct module *owner = disk->fops->owner;
1508 disk_put_part(bdev->bd_part);
1509 bdev->bd_part = NULL;
1510 bdev->bd_disk = NULL;
1511 if (bdev != bdev->bd_contains)
1512 victim = bdev->bd_contains;
1513 bdev->bd_contains = NULL;
1515 put_disk(disk);
1516 module_put(owner);
1518 mutex_unlock(&bdev->bd_mutex);
1519 bdput(bdev);
1520 if (victim)
1521 __blkdev_put(victim, mode, 1);
1524 void blkdev_put(struct block_device *bdev, fmode_t mode)
1526 mutex_lock(&bdev->bd_mutex);
1528 if (mode & FMODE_EXCL) {
1529 bool bdev_free;
1532 * Release a claim on the device. The holder fields
1533 * are protected with bdev_lock. bd_mutex is to
1534 * synchronize disk_holder unlinking.
1536 spin_lock(&bdev_lock);
1538 WARN_ON_ONCE(--bdev->bd_holders < 0);
1539 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1541 /* bd_contains might point to self, check in a separate step */
1542 if ((bdev_free = !bdev->bd_holders))
1543 bdev->bd_holder = NULL;
1544 if (!bdev->bd_contains->bd_holders)
1545 bdev->bd_contains->bd_holder = NULL;
1547 spin_unlock(&bdev_lock);
1550 * If this was the last claim, remove holder link and
1551 * unblock evpoll if it was a write holder.
1553 if (bdev_free && bdev->bd_write_holder) {
1554 disk_unblock_events(bdev->bd_disk);
1555 bdev->bd_write_holder = false;
1560 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1561 * event. This is to ensure detection of media removal commanded
1562 * from userland - e.g. eject(1).
1564 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1566 mutex_unlock(&bdev->bd_mutex);
1568 __blkdev_put(bdev, mode, 0);
1570 EXPORT_SYMBOL(blkdev_put);
1572 static int blkdev_close(struct inode * inode, struct file * filp)
1574 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1575 blkdev_put(bdev, filp->f_mode);
1576 return 0;
1579 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1581 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1582 fmode_t mode = file->f_mode;
1585 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1586 * to updated it before every ioctl.
1588 if (file->f_flags & O_NDELAY)
1589 mode |= FMODE_NDELAY;
1590 else
1591 mode &= ~FMODE_NDELAY;
1593 return blkdev_ioctl(bdev, mode, cmd, arg);
1597 * Write data to the block device. Only intended for the block device itself
1598 * and the raw driver which basically is a fake block device.
1600 * Does not take i_mutex for the write and thus is not for general purpose
1601 * use.
1603 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1605 struct file *file = iocb->ki_filp;
1606 struct inode *bd_inode = file->f_mapping->host;
1607 loff_t size = i_size_read(bd_inode);
1608 struct blk_plug plug;
1609 ssize_t ret;
1611 if (bdev_read_only(I_BDEV(bd_inode)))
1612 return -EPERM;
1614 if (!iov_iter_count(from))
1615 return 0;
1617 if (iocb->ki_pos >= size)
1618 return -ENOSPC;
1620 iov_iter_truncate(from, size - iocb->ki_pos);
1622 blk_start_plug(&plug);
1623 ret = __generic_file_write_iter(iocb, from);
1624 if (ret > 0) {
1625 ssize_t err;
1626 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1627 if (err < 0)
1628 ret = err;
1630 blk_finish_plug(&plug);
1631 return ret;
1633 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1635 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1637 struct file *file = iocb->ki_filp;
1638 struct inode *bd_inode = file->f_mapping->host;
1639 loff_t size = i_size_read(bd_inode);
1640 loff_t pos = iocb->ki_pos;
1642 if (pos >= size)
1643 return 0;
1645 size -= pos;
1646 iov_iter_truncate(to, size);
1647 return generic_file_read_iter(iocb, to);
1649 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1652 * Try to release a page associated with block device when the system
1653 * is under memory pressure.
1655 static int blkdev_releasepage(struct page *page, gfp_t wait)
1657 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1659 if (super && super->s_op->bdev_try_to_free_page)
1660 return super->s_op->bdev_try_to_free_page(super, page, wait);
1662 return try_to_free_buffers(page);
1665 static const struct address_space_operations def_blk_aops = {
1666 .readpage = blkdev_readpage,
1667 .readpages = blkdev_readpages,
1668 .writepage = blkdev_writepage,
1669 .write_begin = blkdev_write_begin,
1670 .write_end = blkdev_write_end,
1671 .writepages = generic_writepages,
1672 .releasepage = blkdev_releasepage,
1673 .direct_IO = blkdev_direct_IO,
1674 .is_dirty_writeback = buffer_check_dirty_writeback,
1677 const struct file_operations def_blk_fops = {
1678 .open = blkdev_open,
1679 .release = blkdev_close,
1680 .llseek = block_llseek,
1681 .read_iter = blkdev_read_iter,
1682 .write_iter = blkdev_write_iter,
1683 .mmap = generic_file_mmap,
1684 .fsync = blkdev_fsync,
1685 .unlocked_ioctl = block_ioctl,
1686 #ifdef CONFIG_COMPAT
1687 .compat_ioctl = compat_blkdev_ioctl,
1688 #endif
1689 .splice_read = generic_file_splice_read,
1690 .splice_write = iter_file_splice_write,
1693 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1695 int res;
1696 mm_segment_t old_fs = get_fs();
1697 set_fs(KERNEL_DS);
1698 res = blkdev_ioctl(bdev, 0, cmd, arg);
1699 set_fs(old_fs);
1700 return res;
1703 EXPORT_SYMBOL(ioctl_by_bdev);
1706 * lookup_bdev - lookup a struct block_device by name
1707 * @pathname: special file representing the block device
1709 * Get a reference to the blockdevice at @pathname in the current
1710 * namespace if possible and return it. Return ERR_PTR(error)
1711 * otherwise.
1713 struct block_device *lookup_bdev(const char *pathname)
1715 struct block_device *bdev;
1716 struct inode *inode;
1717 struct path path;
1718 int error;
1720 if (!pathname || !*pathname)
1721 return ERR_PTR(-EINVAL);
1723 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1724 if (error)
1725 return ERR_PTR(error);
1727 inode = d_backing_inode(path.dentry);
1728 error = -ENOTBLK;
1729 if (!S_ISBLK(inode->i_mode))
1730 goto fail;
1731 error = -EACCES;
1732 if (path.mnt->mnt_flags & MNT_NODEV)
1733 goto fail;
1734 error = -ENOMEM;
1735 bdev = bd_acquire(inode);
1736 if (!bdev)
1737 goto fail;
1738 out:
1739 path_put(&path);
1740 return bdev;
1741 fail:
1742 bdev = ERR_PTR(error);
1743 goto out;
1745 EXPORT_SYMBOL(lookup_bdev);
1747 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1749 struct super_block *sb = get_super(bdev);
1750 int res = 0;
1752 if (sb) {
1754 * no need to lock the super, get_super holds the
1755 * read mutex so the filesystem cannot go away
1756 * under us (->put_super runs with the write lock
1757 * hold).
1759 shrink_dcache_sb(sb);
1760 res = invalidate_inodes(sb, kill_dirty);
1761 drop_super(sb);
1763 invalidate_bdev(bdev);
1764 return res;
1766 EXPORT_SYMBOL(__invalidate_device);
1768 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1770 struct inode *inode, *old_inode = NULL;
1772 spin_lock(&inode_sb_list_lock);
1773 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1774 struct address_space *mapping = inode->i_mapping;
1776 spin_lock(&inode->i_lock);
1777 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1778 mapping->nrpages == 0) {
1779 spin_unlock(&inode->i_lock);
1780 continue;
1782 __iget(inode);
1783 spin_unlock(&inode->i_lock);
1784 spin_unlock(&inode_sb_list_lock);
1786 * We hold a reference to 'inode' so it couldn't have been
1787 * removed from s_inodes list while we dropped the
1788 * inode_sb_list_lock. We cannot iput the inode now as we can
1789 * be holding the last reference and we cannot iput it under
1790 * inode_sb_list_lock. So we keep the reference and iput it
1791 * later.
1793 iput(old_inode);
1794 old_inode = inode;
1796 func(I_BDEV(inode), arg);
1798 spin_lock(&inode_sb_list_lock);
1800 spin_unlock(&inode_sb_list_lock);
1801 iput(old_inode);