2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
36 * fill ring buffer with silence
37 * runtime->silence_start: starting pointer to silence area
38 * runtime->silence_filled: size filled with silence
39 * runtime->silence_threshold: threshold from application
40 * runtime->silence_size: maximal size from application
42 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44 void snd_pcm_playback_silence(struct snd_pcm_substream
*substream
, snd_pcm_uframes_t new_hw_ptr
)
46 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
47 snd_pcm_uframes_t frames
, ofs
, transfer
;
49 if (runtime
->silence_size
< runtime
->boundary
) {
50 snd_pcm_sframes_t noise_dist
, n
;
51 if (runtime
->silence_start
!= runtime
->control
->appl_ptr
) {
52 n
= runtime
->control
->appl_ptr
- runtime
->silence_start
;
54 n
+= runtime
->boundary
;
55 if ((snd_pcm_uframes_t
)n
< runtime
->silence_filled
)
56 runtime
->silence_filled
-= n
;
58 runtime
->silence_filled
= 0;
59 runtime
->silence_start
= runtime
->control
->appl_ptr
;
61 if (runtime
->silence_filled
>= runtime
->buffer_size
)
63 noise_dist
= snd_pcm_playback_hw_avail(runtime
) + runtime
->silence_filled
;
64 if (noise_dist
>= (snd_pcm_sframes_t
) runtime
->silence_threshold
)
66 frames
= runtime
->silence_threshold
- noise_dist
;
67 if (frames
> runtime
->silence_size
)
68 frames
= runtime
->silence_size
;
70 if (new_hw_ptr
== ULONG_MAX
) { /* initialization */
71 snd_pcm_sframes_t avail
= snd_pcm_playback_hw_avail(runtime
);
72 if (avail
> runtime
->buffer_size
)
73 avail
= runtime
->buffer_size
;
74 runtime
->silence_filled
= avail
> 0 ? avail
: 0;
75 runtime
->silence_start
= (runtime
->status
->hw_ptr
+
76 runtime
->silence_filled
) %
79 ofs
= runtime
->status
->hw_ptr
;
80 frames
= new_hw_ptr
- ofs
;
81 if ((snd_pcm_sframes_t
)frames
< 0)
82 frames
+= runtime
->boundary
;
83 runtime
->silence_filled
-= frames
;
84 if ((snd_pcm_sframes_t
)runtime
->silence_filled
< 0) {
85 runtime
->silence_filled
= 0;
86 runtime
->silence_start
= new_hw_ptr
;
88 runtime
->silence_start
= ofs
;
91 frames
= runtime
->buffer_size
- runtime
->silence_filled
;
93 if (snd_BUG_ON(frames
> runtime
->buffer_size
))
97 ofs
= runtime
->silence_start
% runtime
->buffer_size
;
99 transfer
= ofs
+ frames
> runtime
->buffer_size
? runtime
->buffer_size
- ofs
: frames
;
100 if (runtime
->access
== SNDRV_PCM_ACCESS_RW_INTERLEAVED
||
101 runtime
->access
== SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
) {
102 if (substream
->ops
->silence
) {
104 err
= substream
->ops
->silence(substream
, -1, ofs
, transfer
);
107 char *hwbuf
= runtime
->dma_area
+ frames_to_bytes(runtime
, ofs
);
108 snd_pcm_format_set_silence(runtime
->format
, hwbuf
, transfer
* runtime
->channels
);
112 unsigned int channels
= runtime
->channels
;
113 if (substream
->ops
->silence
) {
114 for (c
= 0; c
< channels
; ++c
) {
116 err
= substream
->ops
->silence(substream
, c
, ofs
, transfer
);
120 size_t dma_csize
= runtime
->dma_bytes
/ channels
;
121 for (c
= 0; c
< channels
; ++c
) {
122 char *hwbuf
= runtime
->dma_area
+ (c
* dma_csize
) + samples_to_bytes(runtime
, ofs
);
123 snd_pcm_format_set_silence(runtime
->format
, hwbuf
, transfer
);
127 runtime
->silence_filled
+= transfer
;
133 #ifdef CONFIG_SND_DEBUG
134 void snd_pcm_debug_name(struct snd_pcm_substream
*substream
,
135 char *name
, size_t len
)
137 snprintf(name
, len
, "pcmC%dD%d%c:%d",
138 substream
->pcm
->card
->number
,
139 substream
->pcm
->device
,
140 substream
->stream
? 'c' : 'p',
143 EXPORT_SYMBOL(snd_pcm_debug_name
);
146 #define XRUN_DEBUG_BASIC (1<<0)
147 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
148 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
149 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
150 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
151 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
152 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
156 #define xrun_debug(substream, mask) \
157 ((substream)->pstr->xrun_debug & (mask))
159 #define xrun_debug(substream, mask) 0
162 #define dump_stack_on_xrun(substream) do { \
163 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
167 static void xrun(struct snd_pcm_substream
*substream
)
169 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
171 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
)
172 snd_pcm_gettime(runtime
, (struct timespec
*)&runtime
->status
->tstamp
);
173 snd_pcm_stop(substream
, SNDRV_PCM_STATE_XRUN
);
174 if (xrun_debug(substream
, XRUN_DEBUG_BASIC
)) {
176 snd_pcm_debug_name(substream
, name
, sizeof(name
));
177 pcm_warn(substream
->pcm
, "XRUN: %s\n", name
);
178 dump_stack_on_xrun(substream
);
182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
183 #define hw_ptr_error(substream, fmt, args...) \
185 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
186 xrun_log_show(substream); \
187 pr_err_ratelimited("ALSA: PCM: " fmt, ##args); \
188 dump_stack_on_xrun(substream); \
192 #define XRUN_LOG_CNT 10
194 struct hwptr_log_entry
{
195 unsigned int in_interrupt
;
196 unsigned long jiffies
;
197 snd_pcm_uframes_t pos
;
198 snd_pcm_uframes_t period_size
;
199 snd_pcm_uframes_t buffer_size
;
200 snd_pcm_uframes_t old_hw_ptr
;
201 snd_pcm_uframes_t hw_ptr_base
;
204 struct snd_pcm_hwptr_log
{
207 struct hwptr_log_entry entries
[XRUN_LOG_CNT
];
210 static void xrun_log(struct snd_pcm_substream
*substream
,
211 snd_pcm_uframes_t pos
, int in_interrupt
)
213 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
214 struct snd_pcm_hwptr_log
*log
= runtime
->hwptr_log
;
215 struct hwptr_log_entry
*entry
;
218 log
= kzalloc(sizeof(*log
), GFP_ATOMIC
);
221 runtime
->hwptr_log
= log
;
223 if (xrun_debug(substream
, XRUN_DEBUG_LOGONCE
) && log
->hit
)
226 entry
= &log
->entries
[log
->idx
];
227 entry
->in_interrupt
= in_interrupt
;
228 entry
->jiffies
= jiffies
;
230 entry
->period_size
= runtime
->period_size
;
231 entry
->buffer_size
= runtime
->buffer_size
;
232 entry
->old_hw_ptr
= runtime
->status
->hw_ptr
;
233 entry
->hw_ptr_base
= runtime
->hw_ptr_base
;
234 log
->idx
= (log
->idx
+ 1) % XRUN_LOG_CNT
;
237 static void xrun_log_show(struct snd_pcm_substream
*substream
)
239 struct snd_pcm_hwptr_log
*log
= substream
->runtime
->hwptr_log
;
240 struct hwptr_log_entry
*entry
;
247 if (xrun_debug(substream
, XRUN_DEBUG_LOGONCE
) && log
->hit
)
249 snd_pcm_debug_name(substream
, name
, sizeof(name
));
250 for (cnt
= 0, idx
= log
->idx
; cnt
< XRUN_LOG_CNT
; cnt
++) {
251 entry
= &log
->entries
[idx
];
252 if (entry
->period_size
== 0)
254 pr_info("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
256 name
, entry
->in_interrupt
? "[Q] " : "",
258 (unsigned long)entry
->pos
,
259 (unsigned long)entry
->period_size
,
260 (unsigned long)entry
->buffer_size
,
261 (unsigned long)entry
->old_hw_ptr
,
262 (unsigned long)entry
->hw_ptr_base
);
269 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
271 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
272 #define xrun_log(substream, pos, in_interrupt) do { } while (0)
273 #define xrun_log_show(substream) do { } while (0)
277 int snd_pcm_update_state(struct snd_pcm_substream
*substream
,
278 struct snd_pcm_runtime
*runtime
)
280 snd_pcm_uframes_t avail
;
282 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
283 avail
= snd_pcm_playback_avail(runtime
);
285 avail
= snd_pcm_capture_avail(runtime
);
286 if (avail
> runtime
->avail_max
)
287 runtime
->avail_max
= avail
;
288 if (runtime
->status
->state
== SNDRV_PCM_STATE_DRAINING
) {
289 if (avail
>= runtime
->buffer_size
) {
290 snd_pcm_drain_done(substream
);
294 if (avail
>= runtime
->stop_threshold
) {
299 if (runtime
->twake
) {
300 if (avail
>= runtime
->twake
)
301 wake_up(&runtime
->tsleep
);
302 } else if (avail
>= runtime
->control
->avail_min
)
303 wake_up(&runtime
->sleep
);
307 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream
*substream
,
308 unsigned int in_interrupt
)
310 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
311 snd_pcm_uframes_t pos
;
312 snd_pcm_uframes_t old_hw_ptr
, new_hw_ptr
, hw_base
;
313 snd_pcm_sframes_t hdelta
, delta
;
314 unsigned long jdelta
;
315 unsigned long curr_jiffies
;
316 struct timespec curr_tstamp
;
317 struct timespec audio_tstamp
;
318 int crossed_boundary
= 0;
320 old_hw_ptr
= runtime
->status
->hw_ptr
;
323 * group pointer, time and jiffies reads to allow for more
324 * accurate correlations/corrections.
325 * The values are stored at the end of this routine after
326 * corrections for hw_ptr position
328 pos
= substream
->ops
->pointer(substream
);
329 curr_jiffies
= jiffies
;
330 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
) {
331 snd_pcm_gettime(runtime
, (struct timespec
*)&curr_tstamp
);
333 if ((runtime
->hw
.info
& SNDRV_PCM_INFO_HAS_WALL_CLOCK
) &&
334 (substream
->ops
->wall_clock
))
335 substream
->ops
->wall_clock(substream
, &audio_tstamp
);
338 if (pos
== SNDRV_PCM_POS_XRUN
) {
342 if (pos
>= runtime
->buffer_size
) {
343 if (printk_ratelimit()) {
345 snd_pcm_debug_name(substream
, name
, sizeof(name
));
346 xrun_log_show(substream
);
347 pcm_err(substream
->pcm
,
348 "XRUN: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
349 name
, pos
, runtime
->buffer_size
,
350 runtime
->period_size
);
354 pos
-= pos
% runtime
->min_align
;
355 if (xrun_debug(substream
, XRUN_DEBUG_LOG
))
356 xrun_log(substream
, pos
, in_interrupt
);
357 hw_base
= runtime
->hw_ptr_base
;
358 new_hw_ptr
= hw_base
+ pos
;
360 /* we know that one period was processed */
361 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
362 delta
= runtime
->hw_ptr_interrupt
+ runtime
->period_size
;
363 if (delta
> new_hw_ptr
) {
364 /* check for double acknowledged interrupts */
365 hdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
366 if (hdelta
> runtime
->hw_ptr_buffer_jiffies
/2) {
367 hw_base
+= runtime
->buffer_size
;
368 if (hw_base
>= runtime
->boundary
) {
372 new_hw_ptr
= hw_base
+ pos
;
377 /* new_hw_ptr might be lower than old_hw_ptr in case when */
378 /* pointer crosses the end of the ring buffer */
379 if (new_hw_ptr
< old_hw_ptr
) {
380 hw_base
+= runtime
->buffer_size
;
381 if (hw_base
>= runtime
->boundary
) {
385 new_hw_ptr
= hw_base
+ pos
;
388 delta
= new_hw_ptr
- old_hw_ptr
;
390 delta
+= runtime
->boundary
;
391 if (xrun_debug(substream
, in_interrupt
?
392 XRUN_DEBUG_PERIODUPDATE
: XRUN_DEBUG_HWPTRUPDATE
)) {
394 snd_pcm_debug_name(substream
, name
, sizeof(name
));
395 pcm_dbg(substream
->pcm
,
396 "%s_update: %s: pos=%u/%u/%u, hwptr=%ld/%ld/%ld/%ld\n",
397 in_interrupt
? "period" : "hwptr",
400 (unsigned int)runtime
->period_size
,
401 (unsigned int)runtime
->buffer_size
,
402 (unsigned long)delta
,
403 (unsigned long)old_hw_ptr
,
404 (unsigned long)new_hw_ptr
,
405 (unsigned long)runtime
->hw_ptr_base
);
408 if (runtime
->no_period_wakeup
) {
409 snd_pcm_sframes_t xrun_threshold
;
411 * Without regular period interrupts, we have to check
412 * the elapsed time to detect xruns.
414 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
415 if (jdelta
< runtime
->hw_ptr_buffer_jiffies
/ 2)
417 hdelta
= jdelta
- delta
* HZ
/ runtime
->rate
;
418 xrun_threshold
= runtime
->hw_ptr_buffer_jiffies
/ 2 + 1;
419 while (hdelta
> xrun_threshold
) {
420 delta
+= runtime
->buffer_size
;
421 hw_base
+= runtime
->buffer_size
;
422 if (hw_base
>= runtime
->boundary
) {
426 new_hw_ptr
= hw_base
+ pos
;
427 hdelta
-= runtime
->hw_ptr_buffer_jiffies
;
432 /* something must be really wrong */
433 if (delta
>= runtime
->buffer_size
+ runtime
->period_size
) {
434 hw_ptr_error(substream
,
435 "Unexpected hw_pointer value %s"
436 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
438 in_interrupt
? "[Q] " : "[P]",
439 substream
->stream
, (long)pos
,
440 (long)new_hw_ptr
, (long)old_hw_ptr
);
444 /* Do jiffies check only in xrun_debug mode */
445 if (!xrun_debug(substream
, XRUN_DEBUG_JIFFIESCHECK
))
446 goto no_jiffies_check
;
448 /* Skip the jiffies check for hardwares with BATCH flag.
449 * Such hardware usually just increases the position at each IRQ,
450 * thus it can't give any strange position.
452 if (runtime
->hw
.info
& SNDRV_PCM_INFO_BATCH
)
453 goto no_jiffies_check
;
455 if (hdelta
< runtime
->delay
)
456 goto no_jiffies_check
;
457 hdelta
-= runtime
->delay
;
458 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
459 if (((hdelta
* HZ
) / runtime
->rate
) > jdelta
+ HZ
/100) {
461 (((runtime
->period_size
* HZ
) / runtime
->rate
)
463 /* move new_hw_ptr according jiffies not pos variable */
464 new_hw_ptr
= old_hw_ptr
;
466 /* use loop to avoid checks for delta overflows */
467 /* the delta value is small or zero in most cases */
469 new_hw_ptr
+= runtime
->period_size
;
470 if (new_hw_ptr
>= runtime
->boundary
) {
471 new_hw_ptr
-= runtime
->boundary
;
476 /* align hw_base to buffer_size */
477 hw_ptr_error(substream
,
478 "hw_ptr skipping! %s"
479 "(pos=%ld, delta=%ld, period=%ld, "
480 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
481 in_interrupt
? "[Q] " : "",
482 (long)pos
, (long)hdelta
,
483 (long)runtime
->period_size
, jdelta
,
484 ((hdelta
* HZ
) / runtime
->rate
), hw_base
,
485 (unsigned long)old_hw_ptr
,
486 (unsigned long)new_hw_ptr
);
487 /* reset values to proper state */
489 hw_base
= new_hw_ptr
- (new_hw_ptr
% runtime
->buffer_size
);
492 if (delta
> runtime
->period_size
+ runtime
->period_size
/ 2) {
493 hw_ptr_error(substream
,
494 "Lost interrupts? %s"
495 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
497 in_interrupt
? "[Q] " : "",
498 substream
->stream
, (long)delta
,
504 if (runtime
->status
->hw_ptr
== new_hw_ptr
)
507 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
&&
508 runtime
->silence_size
> 0)
509 snd_pcm_playback_silence(substream
, new_hw_ptr
);
512 delta
= new_hw_ptr
- runtime
->hw_ptr_interrupt
;
514 delta
+= runtime
->boundary
;
515 delta
-= (snd_pcm_uframes_t
)delta
% runtime
->period_size
;
516 runtime
->hw_ptr_interrupt
+= delta
;
517 if (runtime
->hw_ptr_interrupt
>= runtime
->boundary
)
518 runtime
->hw_ptr_interrupt
-= runtime
->boundary
;
520 runtime
->hw_ptr_base
= hw_base
;
521 runtime
->status
->hw_ptr
= new_hw_ptr
;
522 runtime
->hw_ptr_jiffies
= curr_jiffies
;
523 if (crossed_boundary
) {
524 snd_BUG_ON(crossed_boundary
!= 1);
525 runtime
->hw_ptr_wrap
+= runtime
->boundary
;
527 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
) {
528 runtime
->status
->tstamp
= curr_tstamp
;
530 if (!(runtime
->hw
.info
& SNDRV_PCM_INFO_HAS_WALL_CLOCK
)) {
532 * no wall clock available, provide audio timestamp
533 * derived from pointer position+delay
535 u64 audio_frames
, audio_nsecs
;
537 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
538 audio_frames
= runtime
->hw_ptr_wrap
539 + runtime
->status
->hw_ptr
542 audio_frames
= runtime
->hw_ptr_wrap
543 + runtime
->status
->hw_ptr
545 audio_nsecs
= div_u64(audio_frames
* 1000000000LL,
547 audio_tstamp
= ns_to_timespec(audio_nsecs
);
549 runtime
->status
->audio_tstamp
= audio_tstamp
;
552 return snd_pcm_update_state(substream
, runtime
);
555 /* CAUTION: call it with irq disabled */
556 int snd_pcm_update_hw_ptr(struct snd_pcm_substream
*substream
)
558 return snd_pcm_update_hw_ptr0(substream
, 0);
562 * snd_pcm_set_ops - set the PCM operators
563 * @pcm: the pcm instance
564 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
565 * @ops: the operator table
567 * Sets the given PCM operators to the pcm instance.
569 void snd_pcm_set_ops(struct snd_pcm
*pcm
, int direction
,
570 const struct snd_pcm_ops
*ops
)
572 struct snd_pcm_str
*stream
= &pcm
->streams
[direction
];
573 struct snd_pcm_substream
*substream
;
575 for (substream
= stream
->substream
; substream
!= NULL
; substream
= substream
->next
)
576 substream
->ops
= ops
;
579 EXPORT_SYMBOL(snd_pcm_set_ops
);
582 * snd_pcm_sync - set the PCM sync id
583 * @substream: the pcm substream
585 * Sets the PCM sync identifier for the card.
587 void snd_pcm_set_sync(struct snd_pcm_substream
*substream
)
589 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
591 runtime
->sync
.id32
[0] = substream
->pcm
->card
->number
;
592 runtime
->sync
.id32
[1] = -1;
593 runtime
->sync
.id32
[2] = -1;
594 runtime
->sync
.id32
[3] = -1;
597 EXPORT_SYMBOL(snd_pcm_set_sync
);
600 * Standard ioctl routine
603 static inline unsigned int div32(unsigned int a
, unsigned int b
,
614 static inline unsigned int div_down(unsigned int a
, unsigned int b
)
621 static inline unsigned int div_up(unsigned int a
, unsigned int b
)
633 static inline unsigned int mul(unsigned int a
, unsigned int b
)
637 if (div_down(UINT_MAX
, a
) < b
)
642 static inline unsigned int muldiv32(unsigned int a
, unsigned int b
,
643 unsigned int c
, unsigned int *r
)
645 u_int64_t n
= (u_int64_t
) a
* b
;
651 n
= div_u64_rem(n
, c
, r
);
660 * snd_interval_refine - refine the interval value of configurator
661 * @i: the interval value to refine
662 * @v: the interval value to refer to
664 * Refines the interval value with the reference value.
665 * The interval is changed to the range satisfying both intervals.
666 * The interval status (min, max, integer, etc.) are evaluated.
668 * Return: Positive if the value is changed, zero if it's not changed, or a
669 * negative error code.
671 int snd_interval_refine(struct snd_interval
*i
, const struct snd_interval
*v
)
674 if (snd_BUG_ON(snd_interval_empty(i
)))
676 if (i
->min
< v
->min
) {
678 i
->openmin
= v
->openmin
;
680 } else if (i
->min
== v
->min
&& !i
->openmin
&& v
->openmin
) {
684 if (i
->max
> v
->max
) {
686 i
->openmax
= v
->openmax
;
688 } else if (i
->max
== v
->max
&& !i
->openmax
&& v
->openmax
) {
692 if (!i
->integer
&& v
->integer
) {
705 } else if (!i
->openmin
&& !i
->openmax
&& i
->min
== i
->max
)
707 if (snd_interval_checkempty(i
)) {
708 snd_interval_none(i
);
714 EXPORT_SYMBOL(snd_interval_refine
);
716 static int snd_interval_refine_first(struct snd_interval
*i
)
718 if (snd_BUG_ON(snd_interval_empty(i
)))
720 if (snd_interval_single(i
))
723 i
->openmax
= i
->openmin
;
729 static int snd_interval_refine_last(struct snd_interval
*i
)
731 if (snd_BUG_ON(snd_interval_empty(i
)))
733 if (snd_interval_single(i
))
736 i
->openmin
= i
->openmax
;
742 void snd_interval_mul(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
744 if (a
->empty
|| b
->empty
) {
745 snd_interval_none(c
);
749 c
->min
= mul(a
->min
, b
->min
);
750 c
->openmin
= (a
->openmin
|| b
->openmin
);
751 c
->max
= mul(a
->max
, b
->max
);
752 c
->openmax
= (a
->openmax
|| b
->openmax
);
753 c
->integer
= (a
->integer
&& b
->integer
);
757 * snd_interval_div - refine the interval value with division
764 * Returns non-zero if the value is changed, zero if not changed.
766 void snd_interval_div(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
769 if (a
->empty
|| b
->empty
) {
770 snd_interval_none(c
);
774 c
->min
= div32(a
->min
, b
->max
, &r
);
775 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
777 c
->max
= div32(a
->max
, b
->min
, &r
);
782 c
->openmax
= (a
->openmax
|| b
->openmin
);
791 * snd_interval_muldivk - refine the interval value
794 * @k: divisor (as integer)
799 * Returns non-zero if the value is changed, zero if not changed.
801 void snd_interval_muldivk(const struct snd_interval
*a
, const struct snd_interval
*b
,
802 unsigned int k
, struct snd_interval
*c
)
805 if (a
->empty
|| b
->empty
) {
806 snd_interval_none(c
);
810 c
->min
= muldiv32(a
->min
, b
->min
, k
, &r
);
811 c
->openmin
= (r
|| a
->openmin
|| b
->openmin
);
812 c
->max
= muldiv32(a
->max
, b
->max
, k
, &r
);
817 c
->openmax
= (a
->openmax
|| b
->openmax
);
822 * snd_interval_mulkdiv - refine the interval value
824 * @k: dividend 2 (as integer)
830 * Returns non-zero if the value is changed, zero if not changed.
832 void snd_interval_mulkdiv(const struct snd_interval
*a
, unsigned int k
,
833 const struct snd_interval
*b
, struct snd_interval
*c
)
836 if (a
->empty
|| b
->empty
) {
837 snd_interval_none(c
);
841 c
->min
= muldiv32(a
->min
, k
, b
->max
, &r
);
842 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
844 c
->max
= muldiv32(a
->max
, k
, b
->min
, &r
);
849 c
->openmax
= (a
->openmax
|| b
->openmin
);
861 * snd_interval_ratnum - refine the interval value
862 * @i: interval to refine
863 * @rats_count: number of ratnum_t
864 * @rats: ratnum_t array
865 * @nump: pointer to store the resultant numerator
866 * @denp: pointer to store the resultant denominator
868 * Return: Positive if the value is changed, zero if it's not changed, or a
869 * negative error code.
871 int snd_interval_ratnum(struct snd_interval
*i
,
872 unsigned int rats_count
, struct snd_ratnum
*rats
,
873 unsigned int *nump
, unsigned int *denp
)
875 unsigned int best_num
, best_den
;
878 struct snd_interval t
;
880 unsigned int result_num
, result_den
;
883 best_num
= best_den
= best_diff
= 0;
884 for (k
= 0; k
< rats_count
; ++k
) {
885 unsigned int num
= rats
[k
].num
;
887 unsigned int q
= i
->min
;
891 den
= div_up(num
, q
);
892 if (den
< rats
[k
].den_min
)
894 if (den
> rats
[k
].den_max
)
895 den
= rats
[k
].den_max
;
898 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
902 diff
= num
- q
* den
;
906 diff
* best_den
< best_diff
* den
) {
916 t
.min
= div_down(best_num
, best_den
);
917 t
.openmin
= !!(best_num
% best_den
);
919 result_num
= best_num
;
920 result_diff
= best_diff
;
921 result_den
= best_den
;
922 best_num
= best_den
= best_diff
= 0;
923 for (k
= 0; k
< rats_count
; ++k
) {
924 unsigned int num
= rats
[k
].num
;
926 unsigned int q
= i
->max
;
932 den
= div_down(num
, q
);
933 if (den
> rats
[k
].den_max
)
935 if (den
< rats
[k
].den_min
)
936 den
= rats
[k
].den_min
;
939 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
941 den
+= rats
[k
].den_step
- r
;
943 diff
= q
* den
- num
;
947 diff
* best_den
< best_diff
* den
) {
957 t
.max
= div_up(best_num
, best_den
);
958 t
.openmax
= !!(best_num
% best_den
);
960 err
= snd_interval_refine(i
, &t
);
964 if (snd_interval_single(i
)) {
965 if (best_diff
* result_den
< result_diff
* best_den
) {
966 result_num
= best_num
;
967 result_den
= best_den
;
977 EXPORT_SYMBOL(snd_interval_ratnum
);
980 * snd_interval_ratden - refine the interval value
981 * @i: interval to refine
982 * @rats_count: number of struct ratden
983 * @rats: struct ratden array
984 * @nump: pointer to store the resultant numerator
985 * @denp: pointer to store the resultant denominator
987 * Return: Positive if the value is changed, zero if it's not changed, or a
988 * negative error code.
990 static int snd_interval_ratden(struct snd_interval
*i
,
991 unsigned int rats_count
, struct snd_ratden
*rats
,
992 unsigned int *nump
, unsigned int *denp
)
994 unsigned int best_num
, best_diff
, best_den
;
996 struct snd_interval t
;
999 best_num
= best_den
= best_diff
= 0;
1000 for (k
= 0; k
< rats_count
; ++k
) {
1002 unsigned int den
= rats
[k
].den
;
1003 unsigned int q
= i
->min
;
1006 if (num
> rats
[k
].num_max
)
1008 if (num
< rats
[k
].num_min
)
1009 num
= rats
[k
].num_max
;
1012 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
1014 num
+= rats
[k
].num_step
- r
;
1016 diff
= num
- q
* den
;
1017 if (best_num
== 0 ||
1018 diff
* best_den
< best_diff
* den
) {
1024 if (best_den
== 0) {
1028 t
.min
= div_down(best_num
, best_den
);
1029 t
.openmin
= !!(best_num
% best_den
);
1031 best_num
= best_den
= best_diff
= 0;
1032 for (k
= 0; k
< rats_count
; ++k
) {
1034 unsigned int den
= rats
[k
].den
;
1035 unsigned int q
= i
->max
;
1038 if (num
< rats
[k
].num_min
)
1040 if (num
> rats
[k
].num_max
)
1041 num
= rats
[k
].num_max
;
1044 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
1048 diff
= q
* den
- num
;
1049 if (best_num
== 0 ||
1050 diff
* best_den
< best_diff
* den
) {
1056 if (best_den
== 0) {
1060 t
.max
= div_up(best_num
, best_den
);
1061 t
.openmax
= !!(best_num
% best_den
);
1063 err
= snd_interval_refine(i
, &t
);
1067 if (snd_interval_single(i
)) {
1077 * snd_interval_list - refine the interval value from the list
1078 * @i: the interval value to refine
1079 * @count: the number of elements in the list
1080 * @list: the value list
1081 * @mask: the bit-mask to evaluate
1083 * Refines the interval value from the list.
1084 * When mask is non-zero, only the elements corresponding to bit 1 are
1087 * Return: Positive if the value is changed, zero if it's not changed, or a
1088 * negative error code.
1090 int snd_interval_list(struct snd_interval
*i
, unsigned int count
,
1091 const unsigned int *list
, unsigned int mask
)
1094 struct snd_interval list_range
;
1100 snd_interval_any(&list_range
);
1101 list_range
.min
= UINT_MAX
;
1103 for (k
= 0; k
< count
; k
++) {
1104 if (mask
&& !(mask
& (1 << k
)))
1106 if (!snd_interval_test(i
, list
[k
]))
1108 list_range
.min
= min(list_range
.min
, list
[k
]);
1109 list_range
.max
= max(list_range
.max
, list
[k
]);
1111 return snd_interval_refine(i
, &list_range
);
1114 EXPORT_SYMBOL(snd_interval_list
);
1116 static int snd_interval_step(struct snd_interval
*i
, unsigned int step
)
1121 if (n
!= 0 || i
->openmin
) {
1127 if (n
!= 0 || i
->openmax
) {
1132 if (snd_interval_checkempty(i
)) {
1139 /* Info constraints helpers */
1142 * snd_pcm_hw_rule_add - add the hw-constraint rule
1143 * @runtime: the pcm runtime instance
1144 * @cond: condition bits
1145 * @var: the variable to evaluate
1146 * @func: the evaluation function
1147 * @private: the private data pointer passed to function
1148 * @dep: the dependent variables
1150 * Return: Zero if successful, or a negative error code on failure.
1152 int snd_pcm_hw_rule_add(struct snd_pcm_runtime
*runtime
, unsigned int cond
,
1154 snd_pcm_hw_rule_func_t func
, void *private,
1157 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1158 struct snd_pcm_hw_rule
*c
;
1161 va_start(args
, dep
);
1162 if (constrs
->rules_num
>= constrs
->rules_all
) {
1163 struct snd_pcm_hw_rule
*new;
1164 unsigned int new_rules
= constrs
->rules_all
+ 16;
1165 new = kcalloc(new_rules
, sizeof(*c
), GFP_KERNEL
);
1170 if (constrs
->rules
) {
1171 memcpy(new, constrs
->rules
,
1172 constrs
->rules_num
* sizeof(*c
));
1173 kfree(constrs
->rules
);
1175 constrs
->rules
= new;
1176 constrs
->rules_all
= new_rules
;
1178 c
= &constrs
->rules
[constrs
->rules_num
];
1182 c
->private = private;
1185 if (snd_BUG_ON(k
>= ARRAY_SIZE(c
->deps
))) {
1192 dep
= va_arg(args
, int);
1194 constrs
->rules_num
++;
1199 EXPORT_SYMBOL(snd_pcm_hw_rule_add
);
1202 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1203 * @runtime: PCM runtime instance
1204 * @var: hw_params variable to apply the mask
1205 * @mask: the bitmap mask
1207 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1209 * Return: Zero if successful, or a negative error code on failure.
1211 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1214 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1215 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1216 *maskp
->bits
&= mask
;
1217 memset(maskp
->bits
+ 1, 0, (SNDRV_MASK_MAX
-32) / 8); /* clear rest */
1218 if (*maskp
->bits
== 0)
1224 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1225 * @runtime: PCM runtime instance
1226 * @var: hw_params variable to apply the mask
1227 * @mask: the 64bit bitmap mask
1229 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1231 * Return: Zero if successful, or a negative error code on failure.
1233 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1236 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1237 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1238 maskp
->bits
[0] &= (u_int32_t
)mask
;
1239 maskp
->bits
[1] &= (u_int32_t
)(mask
>> 32);
1240 memset(maskp
->bits
+ 2, 0, (SNDRV_MASK_MAX
-64) / 8); /* clear rest */
1241 if (! maskp
->bits
[0] && ! maskp
->bits
[1])
1245 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64
);
1248 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1249 * @runtime: PCM runtime instance
1250 * @var: hw_params variable to apply the integer constraint
1252 * Apply the constraint of integer to an interval parameter.
1254 * Return: Positive if the value is changed, zero if it's not changed, or a
1255 * negative error code.
1257 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
)
1259 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1260 return snd_interval_setinteger(constrs_interval(constrs
, var
));
1263 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer
);
1266 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1267 * @runtime: PCM runtime instance
1268 * @var: hw_params variable to apply the range
1269 * @min: the minimal value
1270 * @max: the maximal value
1272 * Apply the min/max range constraint to an interval parameter.
1274 * Return: Positive if the value is changed, zero if it's not changed, or a
1275 * negative error code.
1277 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1278 unsigned int min
, unsigned int max
)
1280 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1281 struct snd_interval t
;
1284 t
.openmin
= t
.openmax
= 0;
1286 return snd_interval_refine(constrs_interval(constrs
, var
), &t
);
1289 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax
);
1291 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params
*params
,
1292 struct snd_pcm_hw_rule
*rule
)
1294 struct snd_pcm_hw_constraint_list
*list
= rule
->private;
1295 return snd_interval_list(hw_param_interval(params
, rule
->var
), list
->count
, list
->list
, list
->mask
);
1300 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1301 * @runtime: PCM runtime instance
1302 * @cond: condition bits
1303 * @var: hw_params variable to apply the list constraint
1306 * Apply the list of constraints to an interval parameter.
1308 * Return: Zero if successful, or a negative error code on failure.
1310 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime
*runtime
,
1312 snd_pcm_hw_param_t var
,
1313 const struct snd_pcm_hw_constraint_list
*l
)
1315 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1316 snd_pcm_hw_rule_list
, (void *)l
,
1320 EXPORT_SYMBOL(snd_pcm_hw_constraint_list
);
1322 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params
*params
,
1323 struct snd_pcm_hw_rule
*rule
)
1325 struct snd_pcm_hw_constraint_ratnums
*r
= rule
->private;
1326 unsigned int num
= 0, den
= 0;
1328 err
= snd_interval_ratnum(hw_param_interval(params
, rule
->var
),
1329 r
->nrats
, r
->rats
, &num
, &den
);
1330 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1331 params
->rate_num
= num
;
1332 params
->rate_den
= den
;
1338 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1339 * @runtime: PCM runtime instance
1340 * @cond: condition bits
1341 * @var: hw_params variable to apply the ratnums constraint
1342 * @r: struct snd_ratnums constriants
1344 * Return: Zero if successful, or a negative error code on failure.
1346 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime
*runtime
,
1348 snd_pcm_hw_param_t var
,
1349 struct snd_pcm_hw_constraint_ratnums
*r
)
1351 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1352 snd_pcm_hw_rule_ratnums
, r
,
1356 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums
);
1358 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params
*params
,
1359 struct snd_pcm_hw_rule
*rule
)
1361 struct snd_pcm_hw_constraint_ratdens
*r
= rule
->private;
1362 unsigned int num
= 0, den
= 0;
1363 int err
= snd_interval_ratden(hw_param_interval(params
, rule
->var
),
1364 r
->nrats
, r
->rats
, &num
, &den
);
1365 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1366 params
->rate_num
= num
;
1367 params
->rate_den
= den
;
1373 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1374 * @runtime: PCM runtime instance
1375 * @cond: condition bits
1376 * @var: hw_params variable to apply the ratdens constraint
1377 * @r: struct snd_ratdens constriants
1379 * Return: Zero if successful, or a negative error code on failure.
1381 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime
*runtime
,
1383 snd_pcm_hw_param_t var
,
1384 struct snd_pcm_hw_constraint_ratdens
*r
)
1386 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1387 snd_pcm_hw_rule_ratdens
, r
,
1391 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens
);
1393 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params
*params
,
1394 struct snd_pcm_hw_rule
*rule
)
1396 unsigned int l
= (unsigned long) rule
->private;
1397 int width
= l
& 0xffff;
1398 unsigned int msbits
= l
>> 16;
1399 struct snd_interval
*i
= hw_param_interval(params
, SNDRV_PCM_HW_PARAM_SAMPLE_BITS
);
1400 if (snd_interval_single(i
) && snd_interval_value(i
) == width
)
1401 params
->msbits
= msbits
;
1406 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1407 * @runtime: PCM runtime instance
1408 * @cond: condition bits
1409 * @width: sample bits width
1410 * @msbits: msbits width
1412 * Return: Zero if successful, or a negative error code on failure.
1414 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime
*runtime
,
1417 unsigned int msbits
)
1419 unsigned long l
= (msbits
<< 16) | width
;
1420 return snd_pcm_hw_rule_add(runtime
, cond
, -1,
1421 snd_pcm_hw_rule_msbits
,
1423 SNDRV_PCM_HW_PARAM_SAMPLE_BITS
, -1);
1426 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits
);
1428 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params
*params
,
1429 struct snd_pcm_hw_rule
*rule
)
1431 unsigned long step
= (unsigned long) rule
->private;
1432 return snd_interval_step(hw_param_interval(params
, rule
->var
), step
);
1436 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1437 * @runtime: PCM runtime instance
1438 * @cond: condition bits
1439 * @var: hw_params variable to apply the step constraint
1442 * Return: Zero if successful, or a negative error code on failure.
1444 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime
*runtime
,
1446 snd_pcm_hw_param_t var
,
1449 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1450 snd_pcm_hw_rule_step
, (void *) step
,
1454 EXPORT_SYMBOL(snd_pcm_hw_constraint_step
);
1456 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params
*params
, struct snd_pcm_hw_rule
*rule
)
1458 static unsigned int pow2_sizes
[] = {
1459 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1460 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1461 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1462 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1464 return snd_interval_list(hw_param_interval(params
, rule
->var
),
1465 ARRAY_SIZE(pow2_sizes
), pow2_sizes
, 0);
1469 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1470 * @runtime: PCM runtime instance
1471 * @cond: condition bits
1472 * @var: hw_params variable to apply the power-of-2 constraint
1474 * Return: Zero if successful, or a negative error code on failure.
1476 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime
*runtime
,
1478 snd_pcm_hw_param_t var
)
1480 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1481 snd_pcm_hw_rule_pow2
, NULL
,
1485 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2
);
1487 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params
*params
,
1488 struct snd_pcm_hw_rule
*rule
)
1490 unsigned int base_rate
= (unsigned int)(uintptr_t)rule
->private;
1491 struct snd_interval
*rate
;
1493 rate
= hw_param_interval(params
, SNDRV_PCM_HW_PARAM_RATE
);
1494 return snd_interval_list(rate
, 1, &base_rate
, 0);
1498 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1499 * @runtime: PCM runtime instance
1500 * @base_rate: the rate at which the hardware does not resample
1502 * Return: Zero if successful, or a negative error code on failure.
1504 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime
*runtime
,
1505 unsigned int base_rate
)
1507 return snd_pcm_hw_rule_add(runtime
, SNDRV_PCM_HW_PARAMS_NORESAMPLE
,
1508 SNDRV_PCM_HW_PARAM_RATE
,
1509 snd_pcm_hw_rule_noresample_func
,
1510 (void *)(uintptr_t)base_rate
,
1511 SNDRV_PCM_HW_PARAM_RATE
, -1);
1513 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample
);
1515 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params
*params
,
1516 snd_pcm_hw_param_t var
)
1518 if (hw_is_mask(var
)) {
1519 snd_mask_any(hw_param_mask(params
, var
));
1520 params
->cmask
|= 1 << var
;
1521 params
->rmask
|= 1 << var
;
1524 if (hw_is_interval(var
)) {
1525 snd_interval_any(hw_param_interval(params
, var
));
1526 params
->cmask
|= 1 << var
;
1527 params
->rmask
|= 1 << var
;
1533 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params
*params
)
1536 memset(params
, 0, sizeof(*params
));
1537 for (k
= SNDRV_PCM_HW_PARAM_FIRST_MASK
; k
<= SNDRV_PCM_HW_PARAM_LAST_MASK
; k
++)
1538 _snd_pcm_hw_param_any(params
, k
);
1539 for (k
= SNDRV_PCM_HW_PARAM_FIRST_INTERVAL
; k
<= SNDRV_PCM_HW_PARAM_LAST_INTERVAL
; k
++)
1540 _snd_pcm_hw_param_any(params
, k
);
1544 EXPORT_SYMBOL(_snd_pcm_hw_params_any
);
1547 * snd_pcm_hw_param_value - return @params field @var value
1548 * @params: the hw_params instance
1549 * @var: parameter to retrieve
1550 * @dir: pointer to the direction (-1,0,1) or %NULL
1552 * Return: The value for field @var if it's fixed in configuration space
1553 * defined by @params. -%EINVAL otherwise.
1555 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params
*params
,
1556 snd_pcm_hw_param_t var
, int *dir
)
1558 if (hw_is_mask(var
)) {
1559 const struct snd_mask
*mask
= hw_param_mask_c(params
, var
);
1560 if (!snd_mask_single(mask
))
1564 return snd_mask_value(mask
);
1566 if (hw_is_interval(var
)) {
1567 const struct snd_interval
*i
= hw_param_interval_c(params
, var
);
1568 if (!snd_interval_single(i
))
1572 return snd_interval_value(i
);
1577 EXPORT_SYMBOL(snd_pcm_hw_param_value
);
1579 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params
*params
,
1580 snd_pcm_hw_param_t var
)
1582 if (hw_is_mask(var
)) {
1583 snd_mask_none(hw_param_mask(params
, var
));
1584 params
->cmask
|= 1 << var
;
1585 params
->rmask
|= 1 << var
;
1586 } else if (hw_is_interval(var
)) {
1587 snd_interval_none(hw_param_interval(params
, var
));
1588 params
->cmask
|= 1 << var
;
1589 params
->rmask
|= 1 << var
;
1595 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty
);
1597 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params
*params
,
1598 snd_pcm_hw_param_t var
)
1601 if (hw_is_mask(var
))
1602 changed
= snd_mask_refine_first(hw_param_mask(params
, var
));
1603 else if (hw_is_interval(var
))
1604 changed
= snd_interval_refine_first(hw_param_interval(params
, var
));
1608 params
->cmask
|= 1 << var
;
1609 params
->rmask
|= 1 << var
;
1616 * snd_pcm_hw_param_first - refine config space and return minimum value
1617 * @pcm: PCM instance
1618 * @params: the hw_params instance
1619 * @var: parameter to retrieve
1620 * @dir: pointer to the direction (-1,0,1) or %NULL
1622 * Inside configuration space defined by @params remove from @var all
1623 * values > minimum. Reduce configuration space accordingly.
1625 * Return: The minimum, or a negative error code on failure.
1627 int snd_pcm_hw_param_first(struct snd_pcm_substream
*pcm
,
1628 struct snd_pcm_hw_params
*params
,
1629 snd_pcm_hw_param_t var
, int *dir
)
1631 int changed
= _snd_pcm_hw_param_first(params
, var
);
1634 if (params
->rmask
) {
1635 int err
= snd_pcm_hw_refine(pcm
, params
);
1636 if (snd_BUG_ON(err
< 0))
1639 return snd_pcm_hw_param_value(params
, var
, dir
);
1642 EXPORT_SYMBOL(snd_pcm_hw_param_first
);
1644 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params
*params
,
1645 snd_pcm_hw_param_t var
)
1648 if (hw_is_mask(var
))
1649 changed
= snd_mask_refine_last(hw_param_mask(params
, var
));
1650 else if (hw_is_interval(var
))
1651 changed
= snd_interval_refine_last(hw_param_interval(params
, var
));
1655 params
->cmask
|= 1 << var
;
1656 params
->rmask
|= 1 << var
;
1663 * snd_pcm_hw_param_last - refine config space and return maximum value
1664 * @pcm: PCM instance
1665 * @params: the hw_params instance
1666 * @var: parameter to retrieve
1667 * @dir: pointer to the direction (-1,0,1) or %NULL
1669 * Inside configuration space defined by @params remove from @var all
1670 * values < maximum. Reduce configuration space accordingly.
1672 * Return: The maximum, or a negative error code on failure.
1674 int snd_pcm_hw_param_last(struct snd_pcm_substream
*pcm
,
1675 struct snd_pcm_hw_params
*params
,
1676 snd_pcm_hw_param_t var
, int *dir
)
1678 int changed
= _snd_pcm_hw_param_last(params
, var
);
1681 if (params
->rmask
) {
1682 int err
= snd_pcm_hw_refine(pcm
, params
);
1683 if (snd_BUG_ON(err
< 0))
1686 return snd_pcm_hw_param_value(params
, var
, dir
);
1689 EXPORT_SYMBOL(snd_pcm_hw_param_last
);
1692 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1693 * @pcm: PCM instance
1694 * @params: the hw_params instance
1696 * Choose one configuration from configuration space defined by @params.
1697 * The configuration chosen is that obtained fixing in this order:
1698 * first access, first format, first subformat, min channels,
1699 * min rate, min period time, max buffer size, min tick time
1701 * Return: Zero if successful, or a negative error code on failure.
1703 int snd_pcm_hw_params_choose(struct snd_pcm_substream
*pcm
,
1704 struct snd_pcm_hw_params
*params
)
1706 static int vars
[] = {
1707 SNDRV_PCM_HW_PARAM_ACCESS
,
1708 SNDRV_PCM_HW_PARAM_FORMAT
,
1709 SNDRV_PCM_HW_PARAM_SUBFORMAT
,
1710 SNDRV_PCM_HW_PARAM_CHANNELS
,
1711 SNDRV_PCM_HW_PARAM_RATE
,
1712 SNDRV_PCM_HW_PARAM_PERIOD_TIME
,
1713 SNDRV_PCM_HW_PARAM_BUFFER_SIZE
,
1714 SNDRV_PCM_HW_PARAM_TICK_TIME
,
1719 for (v
= vars
; *v
!= -1; v
++) {
1720 if (*v
!= SNDRV_PCM_HW_PARAM_BUFFER_SIZE
)
1721 err
= snd_pcm_hw_param_first(pcm
, params
, *v
, NULL
);
1723 err
= snd_pcm_hw_param_last(pcm
, params
, *v
, NULL
);
1724 if (snd_BUG_ON(err
< 0))
1730 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream
*substream
,
1733 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1734 unsigned long flags
;
1735 snd_pcm_stream_lock_irqsave(substream
, flags
);
1736 if (snd_pcm_running(substream
) &&
1737 snd_pcm_update_hw_ptr(substream
) >= 0)
1738 runtime
->status
->hw_ptr
%= runtime
->buffer_size
;
1740 runtime
->status
->hw_ptr
= 0;
1741 runtime
->hw_ptr_wrap
= 0;
1743 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1747 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream
*substream
,
1750 struct snd_pcm_channel_info
*info
= arg
;
1751 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1753 if (!(runtime
->info
& SNDRV_PCM_INFO_MMAP
)) {
1757 width
= snd_pcm_format_physical_width(runtime
->format
);
1761 switch (runtime
->access
) {
1762 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
:
1763 case SNDRV_PCM_ACCESS_RW_INTERLEAVED
:
1764 info
->first
= info
->channel
* width
;
1765 info
->step
= runtime
->channels
* width
;
1767 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED
:
1768 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
:
1770 size_t size
= runtime
->dma_bytes
/ runtime
->channels
;
1771 info
->first
= info
->channel
* size
* 8;
1782 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream
*substream
,
1785 struct snd_pcm_hw_params
*params
= arg
;
1786 snd_pcm_format_t format
;
1790 params
->fifo_size
= substream
->runtime
->hw
.fifo_size
;
1791 if (!(substream
->runtime
->hw
.info
& SNDRV_PCM_INFO_FIFO_IN_FRAMES
)) {
1792 format
= params_format(params
);
1793 channels
= params_channels(params
);
1794 frame_size
= snd_pcm_format_size(format
, channels
);
1796 params
->fifo_size
/= (unsigned)frame_size
;
1802 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1803 * @substream: the pcm substream instance
1804 * @cmd: ioctl command
1805 * @arg: ioctl argument
1807 * Processes the generic ioctl commands for PCM.
1808 * Can be passed as the ioctl callback for PCM ops.
1810 * Return: Zero if successful, or a negative error code on failure.
1812 int snd_pcm_lib_ioctl(struct snd_pcm_substream
*substream
,
1813 unsigned int cmd
, void *arg
)
1816 case SNDRV_PCM_IOCTL1_INFO
:
1818 case SNDRV_PCM_IOCTL1_RESET
:
1819 return snd_pcm_lib_ioctl_reset(substream
, arg
);
1820 case SNDRV_PCM_IOCTL1_CHANNEL_INFO
:
1821 return snd_pcm_lib_ioctl_channel_info(substream
, arg
);
1822 case SNDRV_PCM_IOCTL1_FIFO_SIZE
:
1823 return snd_pcm_lib_ioctl_fifo_size(substream
, arg
);
1828 EXPORT_SYMBOL(snd_pcm_lib_ioctl
);
1831 * snd_pcm_period_elapsed - update the pcm status for the next period
1832 * @substream: the pcm substream instance
1834 * This function is called from the interrupt handler when the
1835 * PCM has processed the period size. It will update the current
1836 * pointer, wake up sleepers, etc.
1838 * Even if more than one periods have elapsed since the last call, you
1839 * have to call this only once.
1841 void snd_pcm_period_elapsed(struct snd_pcm_substream
*substream
)
1843 struct snd_pcm_runtime
*runtime
;
1844 unsigned long flags
;
1846 if (PCM_RUNTIME_CHECK(substream
))
1848 runtime
= substream
->runtime
;
1850 if (runtime
->transfer_ack_begin
)
1851 runtime
->transfer_ack_begin(substream
);
1853 snd_pcm_stream_lock_irqsave(substream
, flags
);
1854 if (!snd_pcm_running(substream
) ||
1855 snd_pcm_update_hw_ptr0(substream
, 1) < 0)
1858 if (substream
->timer_running
)
1859 snd_timer_interrupt(substream
->timer
, 1);
1861 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1862 if (runtime
->transfer_ack_end
)
1863 runtime
->transfer_ack_end(substream
);
1864 kill_fasync(&runtime
->fasync
, SIGIO
, POLL_IN
);
1867 EXPORT_SYMBOL(snd_pcm_period_elapsed
);
1870 * Wait until avail_min data becomes available
1871 * Returns a negative error code if any error occurs during operation.
1872 * The available space is stored on availp. When err = 0 and avail = 0
1873 * on the capture stream, it indicates the stream is in DRAINING state.
1875 static int wait_for_avail(struct snd_pcm_substream
*substream
,
1876 snd_pcm_uframes_t
*availp
)
1878 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1879 int is_playback
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
;
1882 snd_pcm_uframes_t avail
= 0;
1883 long wait_time
, tout
;
1885 init_waitqueue_entry(&wait
, current
);
1886 set_current_state(TASK_INTERRUPTIBLE
);
1887 add_wait_queue(&runtime
->tsleep
, &wait
);
1889 if (runtime
->no_period_wakeup
)
1890 wait_time
= MAX_SCHEDULE_TIMEOUT
;
1893 if (runtime
->rate
) {
1894 long t
= runtime
->period_size
* 2 / runtime
->rate
;
1895 wait_time
= max(t
, wait_time
);
1897 wait_time
= msecs_to_jiffies(wait_time
* 1000);
1901 if (signal_pending(current
)) {
1907 * We need to check if space became available already
1908 * (and thus the wakeup happened already) first to close
1909 * the race of space already having become available.
1910 * This check must happen after been added to the waitqueue
1911 * and having current state be INTERRUPTIBLE.
1914 avail
= snd_pcm_playback_avail(runtime
);
1916 avail
= snd_pcm_capture_avail(runtime
);
1917 if (avail
>= runtime
->twake
)
1919 snd_pcm_stream_unlock_irq(substream
);
1921 tout
= schedule_timeout(wait_time
);
1923 snd_pcm_stream_lock_irq(substream
);
1924 set_current_state(TASK_INTERRUPTIBLE
);
1925 switch (runtime
->status
->state
) {
1926 case SNDRV_PCM_STATE_SUSPENDED
:
1929 case SNDRV_PCM_STATE_XRUN
:
1932 case SNDRV_PCM_STATE_DRAINING
:
1936 avail
= 0; /* indicate draining */
1938 case SNDRV_PCM_STATE_OPEN
:
1939 case SNDRV_PCM_STATE_SETUP
:
1940 case SNDRV_PCM_STATE_DISCONNECTED
:
1943 case SNDRV_PCM_STATE_PAUSED
:
1947 pcm_dbg(substream
->pcm
,
1948 "%s write error (DMA or IRQ trouble?)\n",
1949 is_playback
? "playback" : "capture");
1955 set_current_state(TASK_RUNNING
);
1956 remove_wait_queue(&runtime
->tsleep
, &wait
);
1961 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream
*substream
,
1963 unsigned long data
, unsigned int off
,
1964 snd_pcm_uframes_t frames
)
1966 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1968 char __user
*buf
= (char __user
*) data
+ frames_to_bytes(runtime
, off
);
1969 if (substream
->ops
->copy
) {
1970 if ((err
= substream
->ops
->copy(substream
, -1, hwoff
, buf
, frames
)) < 0)
1973 char *hwbuf
= runtime
->dma_area
+ frames_to_bytes(runtime
, hwoff
);
1974 if (copy_from_user(hwbuf
, buf
, frames_to_bytes(runtime
, frames
)))
1980 typedef int (*transfer_f
)(struct snd_pcm_substream
*substream
, unsigned int hwoff
,
1981 unsigned long data
, unsigned int off
,
1982 snd_pcm_uframes_t size
);
1984 static snd_pcm_sframes_t
snd_pcm_lib_write1(struct snd_pcm_substream
*substream
,
1986 snd_pcm_uframes_t size
,
1988 transfer_f transfer
)
1990 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1991 snd_pcm_uframes_t xfer
= 0;
1992 snd_pcm_uframes_t offset
= 0;
1993 snd_pcm_uframes_t avail
;
1999 snd_pcm_stream_lock_irq(substream
);
2000 switch (runtime
->status
->state
) {
2001 case SNDRV_PCM_STATE_PREPARED
:
2002 case SNDRV_PCM_STATE_RUNNING
:
2003 case SNDRV_PCM_STATE_PAUSED
:
2005 case SNDRV_PCM_STATE_XRUN
:
2008 case SNDRV_PCM_STATE_SUSPENDED
:
2016 runtime
->twake
= runtime
->control
->avail_min
? : 1;
2017 if (runtime
->status
->state
== SNDRV_PCM_STATE_RUNNING
)
2018 snd_pcm_update_hw_ptr(substream
);
2019 avail
= snd_pcm_playback_avail(runtime
);
2021 snd_pcm_uframes_t frames
, appl_ptr
, appl_ofs
;
2022 snd_pcm_uframes_t cont
;
2028 runtime
->twake
= min_t(snd_pcm_uframes_t
, size
,
2029 runtime
->control
->avail_min
? : 1);
2030 err
= wait_for_avail(substream
, &avail
);
2034 frames
= size
> avail
? avail
: size
;
2035 cont
= runtime
->buffer_size
- runtime
->control
->appl_ptr
% runtime
->buffer_size
;
2038 if (snd_BUG_ON(!frames
)) {
2040 snd_pcm_stream_unlock_irq(substream
);
2043 appl_ptr
= runtime
->control
->appl_ptr
;
2044 appl_ofs
= appl_ptr
% runtime
->buffer_size
;
2045 snd_pcm_stream_unlock_irq(substream
);
2046 err
= transfer(substream
, appl_ofs
, data
, offset
, frames
);
2047 snd_pcm_stream_lock_irq(substream
);
2050 switch (runtime
->status
->state
) {
2051 case SNDRV_PCM_STATE_XRUN
:
2054 case SNDRV_PCM_STATE_SUSPENDED
:
2061 if (appl_ptr
>= runtime
->boundary
)
2062 appl_ptr
-= runtime
->boundary
;
2063 runtime
->control
->appl_ptr
= appl_ptr
;
2064 if (substream
->ops
->ack
)
2065 substream
->ops
->ack(substream
);
2071 if (runtime
->status
->state
== SNDRV_PCM_STATE_PREPARED
&&
2072 snd_pcm_playback_hw_avail(runtime
) >= (snd_pcm_sframes_t
)runtime
->start_threshold
) {
2073 err
= snd_pcm_start(substream
);
2080 if (xfer
> 0 && err
>= 0)
2081 snd_pcm_update_state(substream
, runtime
);
2082 snd_pcm_stream_unlock_irq(substream
);
2083 return xfer
> 0 ? (snd_pcm_sframes_t
)xfer
: err
;
2086 /* sanity-check for read/write methods */
2087 static int pcm_sanity_check(struct snd_pcm_substream
*substream
)
2089 struct snd_pcm_runtime
*runtime
;
2090 if (PCM_RUNTIME_CHECK(substream
))
2092 runtime
= substream
->runtime
;
2093 if (snd_BUG_ON(!substream
->ops
->copy
&& !runtime
->dma_area
))
2095 if (runtime
->status
->state
== SNDRV_PCM_STATE_OPEN
)
2100 snd_pcm_sframes_t
snd_pcm_lib_write(struct snd_pcm_substream
*substream
, const void __user
*buf
, snd_pcm_uframes_t size
)
2102 struct snd_pcm_runtime
*runtime
;
2106 err
= pcm_sanity_check(substream
);
2109 runtime
= substream
->runtime
;
2110 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2112 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_INTERLEAVED
&&
2113 runtime
->channels
> 1)
2115 return snd_pcm_lib_write1(substream
, (unsigned long)buf
, size
, nonblock
,
2116 snd_pcm_lib_write_transfer
);
2119 EXPORT_SYMBOL(snd_pcm_lib_write
);
2121 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream
*substream
,
2123 unsigned long data
, unsigned int off
,
2124 snd_pcm_uframes_t frames
)
2126 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2128 void __user
**bufs
= (void __user
**)data
;
2129 int channels
= runtime
->channels
;
2131 if (substream
->ops
->copy
) {
2132 if (snd_BUG_ON(!substream
->ops
->silence
))
2134 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2135 if (*bufs
== NULL
) {
2136 if ((err
= substream
->ops
->silence(substream
, c
, hwoff
, frames
)) < 0)
2139 char __user
*buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2140 if ((err
= substream
->ops
->copy(substream
, c
, hwoff
, buf
, frames
)) < 0)
2145 /* default transfer behaviour */
2146 size_t dma_csize
= runtime
->dma_bytes
/ channels
;
2147 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2148 char *hwbuf
= runtime
->dma_area
+ (c
* dma_csize
) + samples_to_bytes(runtime
, hwoff
);
2149 if (*bufs
== NULL
) {
2150 snd_pcm_format_set_silence(runtime
->format
, hwbuf
, frames
);
2152 char __user
*buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2153 if (copy_from_user(hwbuf
, buf
, samples_to_bytes(runtime
, frames
)))
2161 snd_pcm_sframes_t
snd_pcm_lib_writev(struct snd_pcm_substream
*substream
,
2163 snd_pcm_uframes_t frames
)
2165 struct snd_pcm_runtime
*runtime
;
2169 err
= pcm_sanity_check(substream
);
2172 runtime
= substream
->runtime
;
2173 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2175 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
)
2177 return snd_pcm_lib_write1(substream
, (unsigned long)bufs
, frames
,
2178 nonblock
, snd_pcm_lib_writev_transfer
);
2181 EXPORT_SYMBOL(snd_pcm_lib_writev
);
2183 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream
*substream
,
2185 unsigned long data
, unsigned int off
,
2186 snd_pcm_uframes_t frames
)
2188 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2190 char __user
*buf
= (char __user
*) data
+ frames_to_bytes(runtime
, off
);
2191 if (substream
->ops
->copy
) {
2192 if ((err
= substream
->ops
->copy(substream
, -1, hwoff
, buf
, frames
)) < 0)
2195 char *hwbuf
= runtime
->dma_area
+ frames_to_bytes(runtime
, hwoff
);
2196 if (copy_to_user(buf
, hwbuf
, frames_to_bytes(runtime
, frames
)))
2202 static snd_pcm_sframes_t
snd_pcm_lib_read1(struct snd_pcm_substream
*substream
,
2204 snd_pcm_uframes_t size
,
2206 transfer_f transfer
)
2208 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2209 snd_pcm_uframes_t xfer
= 0;
2210 snd_pcm_uframes_t offset
= 0;
2211 snd_pcm_uframes_t avail
;
2217 snd_pcm_stream_lock_irq(substream
);
2218 switch (runtime
->status
->state
) {
2219 case SNDRV_PCM_STATE_PREPARED
:
2220 if (size
>= runtime
->start_threshold
) {
2221 err
= snd_pcm_start(substream
);
2226 case SNDRV_PCM_STATE_DRAINING
:
2227 case SNDRV_PCM_STATE_RUNNING
:
2228 case SNDRV_PCM_STATE_PAUSED
:
2230 case SNDRV_PCM_STATE_XRUN
:
2233 case SNDRV_PCM_STATE_SUSPENDED
:
2241 runtime
->twake
= runtime
->control
->avail_min
? : 1;
2242 if (runtime
->status
->state
== SNDRV_PCM_STATE_RUNNING
)
2243 snd_pcm_update_hw_ptr(substream
);
2244 avail
= snd_pcm_capture_avail(runtime
);
2246 snd_pcm_uframes_t frames
, appl_ptr
, appl_ofs
;
2247 snd_pcm_uframes_t cont
;
2249 if (runtime
->status
->state
==
2250 SNDRV_PCM_STATE_DRAINING
) {
2251 snd_pcm_stop(substream
, SNDRV_PCM_STATE_SETUP
);
2258 runtime
->twake
= min_t(snd_pcm_uframes_t
, size
,
2259 runtime
->control
->avail_min
? : 1);
2260 err
= wait_for_avail(substream
, &avail
);
2264 continue; /* draining */
2266 frames
= size
> avail
? avail
: size
;
2267 cont
= runtime
->buffer_size
- runtime
->control
->appl_ptr
% runtime
->buffer_size
;
2270 if (snd_BUG_ON(!frames
)) {
2272 snd_pcm_stream_unlock_irq(substream
);
2275 appl_ptr
= runtime
->control
->appl_ptr
;
2276 appl_ofs
= appl_ptr
% runtime
->buffer_size
;
2277 snd_pcm_stream_unlock_irq(substream
);
2278 err
= transfer(substream
, appl_ofs
, data
, offset
, frames
);
2279 snd_pcm_stream_lock_irq(substream
);
2282 switch (runtime
->status
->state
) {
2283 case SNDRV_PCM_STATE_XRUN
:
2286 case SNDRV_PCM_STATE_SUSPENDED
:
2293 if (appl_ptr
>= runtime
->boundary
)
2294 appl_ptr
-= runtime
->boundary
;
2295 runtime
->control
->appl_ptr
= appl_ptr
;
2296 if (substream
->ops
->ack
)
2297 substream
->ops
->ack(substream
);
2306 if (xfer
> 0 && err
>= 0)
2307 snd_pcm_update_state(substream
, runtime
);
2308 snd_pcm_stream_unlock_irq(substream
);
2309 return xfer
> 0 ? (snd_pcm_sframes_t
)xfer
: err
;
2312 snd_pcm_sframes_t
snd_pcm_lib_read(struct snd_pcm_substream
*substream
, void __user
*buf
, snd_pcm_uframes_t size
)
2314 struct snd_pcm_runtime
*runtime
;
2318 err
= pcm_sanity_check(substream
);
2321 runtime
= substream
->runtime
;
2322 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2323 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_INTERLEAVED
)
2325 return snd_pcm_lib_read1(substream
, (unsigned long)buf
, size
, nonblock
, snd_pcm_lib_read_transfer
);
2328 EXPORT_SYMBOL(snd_pcm_lib_read
);
2330 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream
*substream
,
2332 unsigned long data
, unsigned int off
,
2333 snd_pcm_uframes_t frames
)
2335 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2337 void __user
**bufs
= (void __user
**)data
;
2338 int channels
= runtime
->channels
;
2340 if (substream
->ops
->copy
) {
2341 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2345 buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2346 if ((err
= substream
->ops
->copy(substream
, c
, hwoff
, buf
, frames
)) < 0)
2350 snd_pcm_uframes_t dma_csize
= runtime
->dma_bytes
/ channels
;
2351 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2357 hwbuf
= runtime
->dma_area
+ (c
* dma_csize
) + samples_to_bytes(runtime
, hwoff
);
2358 buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2359 if (copy_to_user(buf
, hwbuf
, samples_to_bytes(runtime
, frames
)))
2366 snd_pcm_sframes_t
snd_pcm_lib_readv(struct snd_pcm_substream
*substream
,
2368 snd_pcm_uframes_t frames
)
2370 struct snd_pcm_runtime
*runtime
;
2374 err
= pcm_sanity_check(substream
);
2377 runtime
= substream
->runtime
;
2378 if (runtime
->status
->state
== SNDRV_PCM_STATE_OPEN
)
2381 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2382 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
)
2384 return snd_pcm_lib_read1(substream
, (unsigned long)bufs
, frames
, nonblock
, snd_pcm_lib_readv_transfer
);
2387 EXPORT_SYMBOL(snd_pcm_lib_readv
);
2390 * standard channel mapping helpers
2393 /* default channel maps for multi-channel playbacks, up to 8 channels */
2394 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps
[] = {
2396 .map
= { SNDRV_CHMAP_MONO
} },
2398 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2400 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2401 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2403 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2404 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2405 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
} },
2407 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2408 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2409 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2410 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2413 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps
);
2415 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2416 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps
[] = {
2418 .map
= { SNDRV_CHMAP_MONO
} },
2420 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2422 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2423 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2425 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2426 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2427 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2429 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2430 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2431 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2432 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2435 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps
);
2437 static bool valid_chmap_channels(const struct snd_pcm_chmap
*info
, int ch
)
2439 if (ch
> info
->max_channels
)
2441 return !info
->channel_mask
|| (info
->channel_mask
& (1U << ch
));
2444 static int pcm_chmap_ctl_info(struct snd_kcontrol
*kcontrol
,
2445 struct snd_ctl_elem_info
*uinfo
)
2447 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2449 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
2451 uinfo
->count
= info
->max_channels
;
2452 uinfo
->value
.integer
.min
= 0;
2453 uinfo
->value
.integer
.max
= SNDRV_CHMAP_LAST
;
2457 /* get callback for channel map ctl element
2458 * stores the channel position firstly matching with the current channels
2460 static int pcm_chmap_ctl_get(struct snd_kcontrol
*kcontrol
,
2461 struct snd_ctl_elem_value
*ucontrol
)
2463 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2464 unsigned int idx
= snd_ctl_get_ioffidx(kcontrol
, &ucontrol
->id
);
2465 struct snd_pcm_substream
*substream
;
2466 const struct snd_pcm_chmap_elem
*map
;
2468 if (snd_BUG_ON(!info
->chmap
))
2470 substream
= snd_pcm_chmap_substream(info
, idx
);
2473 memset(ucontrol
->value
.integer
.value
, 0,
2474 sizeof(ucontrol
->value
.integer
.value
));
2475 if (!substream
->runtime
)
2476 return 0; /* no channels set */
2477 for (map
= info
->chmap
; map
->channels
; map
++) {
2479 if (map
->channels
== substream
->runtime
->channels
&&
2480 valid_chmap_channels(info
, map
->channels
)) {
2481 for (i
= 0; i
< map
->channels
; i
++)
2482 ucontrol
->value
.integer
.value
[i
] = map
->map
[i
];
2489 /* tlv callback for channel map ctl element
2490 * expands the pre-defined channel maps in a form of TLV
2492 static int pcm_chmap_ctl_tlv(struct snd_kcontrol
*kcontrol
, int op_flag
,
2493 unsigned int size
, unsigned int __user
*tlv
)
2495 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2496 const struct snd_pcm_chmap_elem
*map
;
2497 unsigned int __user
*dst
;
2500 if (snd_BUG_ON(!info
->chmap
))
2504 if (put_user(SNDRV_CTL_TLVT_CONTAINER
, tlv
))
2508 for (map
= info
->chmap
; map
->channels
; map
++) {
2509 int chs_bytes
= map
->channels
* 4;
2510 if (!valid_chmap_channels(info
, map
->channels
))
2514 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED
, dst
) ||
2515 put_user(chs_bytes
, dst
+ 1))
2520 if (size
< chs_bytes
)
2524 for (c
= 0; c
< map
->channels
; c
++) {
2525 if (put_user(map
->map
[c
], dst
))
2530 if (put_user(count
, tlv
+ 1))
2535 static void pcm_chmap_ctl_private_free(struct snd_kcontrol
*kcontrol
)
2537 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2538 info
->pcm
->streams
[info
->stream
].chmap_kctl
= NULL
;
2543 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2544 * @pcm: the assigned PCM instance
2545 * @stream: stream direction
2546 * @chmap: channel map elements (for query)
2547 * @max_channels: the max number of channels for the stream
2548 * @private_value: the value passed to each kcontrol's private_value field
2549 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2551 * Create channel-mapping control elements assigned to the given PCM stream(s).
2552 * Return: Zero if successful, or a negative error value.
2554 int snd_pcm_add_chmap_ctls(struct snd_pcm
*pcm
, int stream
,
2555 const struct snd_pcm_chmap_elem
*chmap
,
2557 unsigned long private_value
,
2558 struct snd_pcm_chmap
**info_ret
)
2560 struct snd_pcm_chmap
*info
;
2561 struct snd_kcontrol_new knew
= {
2562 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
2563 .access
= SNDRV_CTL_ELEM_ACCESS_READ
|
2564 SNDRV_CTL_ELEM_ACCESS_TLV_READ
|
2565 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK
,
2566 .info
= pcm_chmap_ctl_info
,
2567 .get
= pcm_chmap_ctl_get
,
2568 .tlv
.c
= pcm_chmap_ctl_tlv
,
2572 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2576 info
->stream
= stream
;
2577 info
->chmap
= chmap
;
2578 info
->max_channels
= max_channels
;
2579 if (stream
== SNDRV_PCM_STREAM_PLAYBACK
)
2580 knew
.name
= "Playback Channel Map";
2582 knew
.name
= "Capture Channel Map";
2583 knew
.device
= pcm
->device
;
2584 knew
.count
= pcm
->streams
[stream
].substream_count
;
2585 knew
.private_value
= private_value
;
2586 info
->kctl
= snd_ctl_new1(&knew
, info
);
2591 info
->kctl
->private_free
= pcm_chmap_ctl_private_free
;
2592 err
= snd_ctl_add(pcm
->card
, info
->kctl
);
2595 pcm
->streams
[stream
].chmap_kctl
= info
->kctl
;
2600 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls
);