thermal/drivers/cpu_cooling: Remove pointless test in power2state()
[linux/fpc-iii.git] / block / blk-mq.c
blobfc60ed7e940ead5ae7d7332ee9f64b9ffe922aca
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 int ddir, bytes, bucket;
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
51 bucket = ddir + 2*(ilog2(bytes) - 9);
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 return bucket;
62 * Check if any of the ctx, dispatch list or elevator
63 * have pending work in this hardware queue.
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 return !list_empty_careful(&hctx->dispatch) ||
68 sbitmap_any_bit_set(&hctx->ctx_map) ||
69 blk_mq_sched_has_work(hctx);
73 * Mark this ctx as having pending work in this hardware queue
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 struct blk_mq_ctx *ctx)
78 const int bit = ctx->index_hw[hctx->type];
80 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
81 sbitmap_set_bit(&hctx->ctx_map, bit);
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
87 const int bit = ctx->index_hw[hctx->type];
89 sbitmap_clear_bit(&hctx->ctx_map, bit);
92 struct mq_inflight {
93 struct hd_struct *part;
94 unsigned int *inflight;
97 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
98 struct request *rq, void *priv,
99 bool reserved)
101 struct mq_inflight *mi = priv;
104 * index[0] counts the specific partition that was asked for.
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
109 return true;
112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
114 unsigned inflight[2];
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 return inflight[0];
123 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
124 struct request *rq, void *priv,
125 bool reserved)
127 struct mq_inflight *mi = priv;
129 if (rq->part == mi->part)
130 mi->inflight[rq_data_dir(rq)]++;
132 return true;
135 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
136 unsigned int inflight[2])
138 struct mq_inflight mi = { .part = part, .inflight = inflight, };
140 inflight[0] = inflight[1] = 0;
141 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
144 void blk_freeze_queue_start(struct request_queue *q)
146 int freeze_depth;
148 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
149 if (freeze_depth == 1) {
150 percpu_ref_kill(&q->q_usage_counter);
151 if (queue_is_mq(q))
152 blk_mq_run_hw_queues(q, false);
155 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
157 void blk_mq_freeze_queue_wait(struct request_queue *q)
159 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
163 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
164 unsigned long timeout)
166 return wait_event_timeout(q->mq_freeze_wq,
167 percpu_ref_is_zero(&q->q_usage_counter),
168 timeout);
170 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
173 * Guarantee no request is in use, so we can change any data structure of
174 * the queue afterward.
176 void blk_freeze_queue(struct request_queue *q)
179 * In the !blk_mq case we are only calling this to kill the
180 * q_usage_counter, otherwise this increases the freeze depth
181 * and waits for it to return to zero. For this reason there is
182 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
183 * exported to drivers as the only user for unfreeze is blk_mq.
185 blk_freeze_queue_start(q);
186 blk_mq_freeze_queue_wait(q);
189 void blk_mq_freeze_queue(struct request_queue *q)
192 * ...just an alias to keep freeze and unfreeze actions balanced
193 * in the blk_mq_* namespace
195 blk_freeze_queue(q);
197 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
199 void blk_mq_unfreeze_queue(struct request_queue *q)
201 int freeze_depth;
203 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
204 WARN_ON_ONCE(freeze_depth < 0);
205 if (!freeze_depth) {
206 percpu_ref_resurrect(&q->q_usage_counter);
207 wake_up_all(&q->mq_freeze_wq);
210 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
213 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
214 * mpt3sas driver such that this function can be removed.
216 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
218 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
220 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
223 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
224 * @q: request queue.
226 * Note: this function does not prevent that the struct request end_io()
227 * callback function is invoked. Once this function is returned, we make
228 * sure no dispatch can happen until the queue is unquiesced via
229 * blk_mq_unquiesce_queue().
231 void blk_mq_quiesce_queue(struct request_queue *q)
233 struct blk_mq_hw_ctx *hctx;
234 unsigned int i;
235 bool rcu = false;
237 blk_mq_quiesce_queue_nowait(q);
239 queue_for_each_hw_ctx(q, hctx, i) {
240 if (hctx->flags & BLK_MQ_F_BLOCKING)
241 synchronize_srcu(hctx->srcu);
242 else
243 rcu = true;
245 if (rcu)
246 synchronize_rcu();
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252 * @q: request queue.
254 * This function recovers queue into the state before quiescing
255 * which is done by blk_mq_quiesce_queue.
257 void blk_mq_unquiesce_queue(struct request_queue *q)
259 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
261 /* dispatch requests which are inserted during quiescing */
262 blk_mq_run_hw_queues(q, true);
264 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
266 void blk_mq_wake_waiters(struct request_queue *q)
268 struct blk_mq_hw_ctx *hctx;
269 unsigned int i;
271 queue_for_each_hw_ctx(q, hctx, i)
272 if (blk_mq_hw_queue_mapped(hctx))
273 blk_mq_tag_wakeup_all(hctx->tags, true);
276 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
278 return blk_mq_has_free_tags(hctx->tags);
280 EXPORT_SYMBOL(blk_mq_can_queue);
283 * Only need start/end time stamping if we have stats enabled, or using
284 * an IO scheduler.
286 static inline bool blk_mq_need_time_stamp(struct request *rq)
288 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
291 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
292 unsigned int tag, unsigned int op)
294 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
295 struct request *rq = tags->static_rqs[tag];
296 req_flags_t rq_flags = 0;
298 if (data->flags & BLK_MQ_REQ_INTERNAL) {
299 rq->tag = -1;
300 rq->internal_tag = tag;
301 } else {
302 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
303 rq_flags = RQF_MQ_INFLIGHT;
304 atomic_inc(&data->hctx->nr_active);
306 rq->tag = tag;
307 rq->internal_tag = -1;
308 data->hctx->tags->rqs[rq->tag] = rq;
311 /* csd/requeue_work/fifo_time is initialized before use */
312 rq->q = data->q;
313 rq->mq_ctx = data->ctx;
314 rq->mq_hctx = data->hctx;
315 rq->rq_flags = rq_flags;
316 rq->cmd_flags = op;
317 if (data->flags & BLK_MQ_REQ_PREEMPT)
318 rq->rq_flags |= RQF_PREEMPT;
319 if (blk_queue_io_stat(data->q))
320 rq->rq_flags |= RQF_IO_STAT;
321 INIT_LIST_HEAD(&rq->queuelist);
322 INIT_HLIST_NODE(&rq->hash);
323 RB_CLEAR_NODE(&rq->rb_node);
324 rq->rq_disk = NULL;
325 rq->part = NULL;
326 if (blk_mq_need_time_stamp(rq))
327 rq->start_time_ns = ktime_get_ns();
328 else
329 rq->start_time_ns = 0;
330 rq->io_start_time_ns = 0;
331 rq->nr_phys_segments = 0;
332 #if defined(CONFIG_BLK_DEV_INTEGRITY)
333 rq->nr_integrity_segments = 0;
334 #endif
335 /* tag was already set */
336 rq->extra_len = 0;
337 WRITE_ONCE(rq->deadline, 0);
339 rq->timeout = 0;
341 rq->end_io = NULL;
342 rq->end_io_data = NULL;
344 data->ctx->rq_dispatched[op_is_sync(op)]++;
345 refcount_set(&rq->ref, 1);
346 return rq;
349 static struct request *blk_mq_get_request(struct request_queue *q,
350 struct bio *bio,
351 struct blk_mq_alloc_data *data)
353 struct elevator_queue *e = q->elevator;
354 struct request *rq;
355 unsigned int tag;
356 bool put_ctx_on_error = false;
358 blk_queue_enter_live(q);
359 data->q = q;
360 if (likely(!data->ctx)) {
361 data->ctx = blk_mq_get_ctx(q);
362 put_ctx_on_error = true;
364 if (likely(!data->hctx))
365 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
366 data->ctx);
367 if (data->cmd_flags & REQ_NOWAIT)
368 data->flags |= BLK_MQ_REQ_NOWAIT;
370 if (e) {
371 data->flags |= BLK_MQ_REQ_INTERNAL;
374 * Flush requests are special and go directly to the
375 * dispatch list. Don't include reserved tags in the
376 * limiting, as it isn't useful.
378 if (!op_is_flush(data->cmd_flags) &&
379 e->type->ops.limit_depth &&
380 !(data->flags & BLK_MQ_REQ_RESERVED))
381 e->type->ops.limit_depth(data->cmd_flags, data);
382 } else {
383 blk_mq_tag_busy(data->hctx);
386 tag = blk_mq_get_tag(data);
387 if (tag == BLK_MQ_TAG_FAIL) {
388 if (put_ctx_on_error) {
389 blk_mq_put_ctx(data->ctx);
390 data->ctx = NULL;
392 blk_queue_exit(q);
393 return NULL;
396 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
397 if (!op_is_flush(data->cmd_flags)) {
398 rq->elv.icq = NULL;
399 if (e && e->type->ops.prepare_request) {
400 if (e->type->icq_cache)
401 blk_mq_sched_assign_ioc(rq);
403 e->type->ops.prepare_request(rq, bio);
404 rq->rq_flags |= RQF_ELVPRIV;
407 data->hctx->queued++;
408 return rq;
411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
412 blk_mq_req_flags_t flags)
414 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
415 struct request *rq;
416 int ret;
418 ret = blk_queue_enter(q, flags);
419 if (ret)
420 return ERR_PTR(ret);
422 rq = blk_mq_get_request(q, NULL, &alloc_data);
423 blk_queue_exit(q);
425 if (!rq)
426 return ERR_PTR(-EWOULDBLOCK);
428 blk_mq_put_ctx(alloc_data.ctx);
430 rq->__data_len = 0;
431 rq->__sector = (sector_t) -1;
432 rq->bio = rq->biotail = NULL;
433 return rq;
435 EXPORT_SYMBOL(blk_mq_alloc_request);
437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
438 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
440 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
441 struct request *rq;
442 unsigned int cpu;
443 int ret;
446 * If the tag allocator sleeps we could get an allocation for a
447 * different hardware context. No need to complicate the low level
448 * allocator for this for the rare use case of a command tied to
449 * a specific queue.
451 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
452 return ERR_PTR(-EINVAL);
454 if (hctx_idx >= q->nr_hw_queues)
455 return ERR_PTR(-EIO);
457 ret = blk_queue_enter(q, flags);
458 if (ret)
459 return ERR_PTR(ret);
462 * Check if the hardware context is actually mapped to anything.
463 * If not tell the caller that it should skip this queue.
465 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
466 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
467 blk_queue_exit(q);
468 return ERR_PTR(-EXDEV);
470 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
471 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
473 rq = blk_mq_get_request(q, NULL, &alloc_data);
474 blk_queue_exit(q);
476 if (!rq)
477 return ERR_PTR(-EWOULDBLOCK);
479 return rq;
481 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
483 static void __blk_mq_free_request(struct request *rq)
485 struct request_queue *q = rq->q;
486 struct blk_mq_ctx *ctx = rq->mq_ctx;
487 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
488 const int sched_tag = rq->internal_tag;
490 blk_pm_mark_last_busy(rq);
491 rq->mq_hctx = NULL;
492 if (rq->tag != -1)
493 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
494 if (sched_tag != -1)
495 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
496 blk_mq_sched_restart(hctx);
497 blk_queue_exit(q);
500 void blk_mq_free_request(struct request *rq)
502 struct request_queue *q = rq->q;
503 struct elevator_queue *e = q->elevator;
504 struct blk_mq_ctx *ctx = rq->mq_ctx;
505 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
507 if (rq->rq_flags & RQF_ELVPRIV) {
508 if (e && e->type->ops.finish_request)
509 e->type->ops.finish_request(rq);
510 if (rq->elv.icq) {
511 put_io_context(rq->elv.icq->ioc);
512 rq->elv.icq = NULL;
516 ctx->rq_completed[rq_is_sync(rq)]++;
517 if (rq->rq_flags & RQF_MQ_INFLIGHT)
518 atomic_dec(&hctx->nr_active);
520 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
521 laptop_io_completion(q->backing_dev_info);
523 rq_qos_done(q, rq);
525 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
526 if (refcount_dec_and_test(&rq->ref))
527 __blk_mq_free_request(rq);
529 EXPORT_SYMBOL_GPL(blk_mq_free_request);
531 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
533 u64 now = 0;
535 if (blk_mq_need_time_stamp(rq))
536 now = ktime_get_ns();
538 if (rq->rq_flags & RQF_STATS) {
539 blk_mq_poll_stats_start(rq->q);
540 blk_stat_add(rq, now);
543 if (rq->internal_tag != -1)
544 blk_mq_sched_completed_request(rq, now);
546 blk_account_io_done(rq, now);
548 if (rq->end_io) {
549 rq_qos_done(rq->q, rq);
550 rq->end_io(rq, error);
551 } else {
552 blk_mq_free_request(rq);
555 EXPORT_SYMBOL(__blk_mq_end_request);
557 void blk_mq_end_request(struct request *rq, blk_status_t error)
559 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
560 BUG();
561 __blk_mq_end_request(rq, error);
563 EXPORT_SYMBOL(blk_mq_end_request);
565 static void __blk_mq_complete_request_remote(void *data)
567 struct request *rq = data;
568 struct request_queue *q = rq->q;
570 q->mq_ops->complete(rq);
573 static void __blk_mq_complete_request(struct request *rq)
575 struct blk_mq_ctx *ctx = rq->mq_ctx;
576 struct request_queue *q = rq->q;
577 bool shared = false;
578 int cpu;
580 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
582 * Most of single queue controllers, there is only one irq vector
583 * for handling IO completion, and the only irq's affinity is set
584 * as all possible CPUs. On most of ARCHs, this affinity means the
585 * irq is handled on one specific CPU.
587 * So complete IO reqeust in softirq context in case of single queue
588 * for not degrading IO performance by irqsoff latency.
590 if (q->nr_hw_queues == 1) {
591 __blk_complete_request(rq);
592 return;
596 * For a polled request, always complete locallly, it's pointless
597 * to redirect the completion.
599 if ((rq->cmd_flags & REQ_HIPRI) ||
600 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
601 q->mq_ops->complete(rq);
602 return;
605 cpu = get_cpu();
606 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
607 shared = cpus_share_cache(cpu, ctx->cpu);
609 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
610 rq->csd.func = __blk_mq_complete_request_remote;
611 rq->csd.info = rq;
612 rq->csd.flags = 0;
613 smp_call_function_single_async(ctx->cpu, &rq->csd);
614 } else {
615 q->mq_ops->complete(rq);
617 put_cpu();
620 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
621 __releases(hctx->srcu)
623 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
624 rcu_read_unlock();
625 else
626 srcu_read_unlock(hctx->srcu, srcu_idx);
629 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
630 __acquires(hctx->srcu)
632 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
633 /* shut up gcc false positive */
634 *srcu_idx = 0;
635 rcu_read_lock();
636 } else
637 *srcu_idx = srcu_read_lock(hctx->srcu);
641 * blk_mq_complete_request - end I/O on a request
642 * @rq: the request being processed
644 * Description:
645 * Ends all I/O on a request. It does not handle partial completions.
646 * The actual completion happens out-of-order, through a IPI handler.
648 bool blk_mq_complete_request(struct request *rq)
650 if (unlikely(blk_should_fake_timeout(rq->q)))
651 return false;
652 __blk_mq_complete_request(rq);
653 return true;
655 EXPORT_SYMBOL(blk_mq_complete_request);
657 void blk_mq_complete_request_sync(struct request *rq)
659 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
660 rq->q->mq_ops->complete(rq);
662 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync);
664 int blk_mq_request_started(struct request *rq)
666 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
668 EXPORT_SYMBOL_GPL(blk_mq_request_started);
670 void blk_mq_start_request(struct request *rq)
672 struct request_queue *q = rq->q;
674 blk_mq_sched_started_request(rq);
676 trace_block_rq_issue(q, rq);
678 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
679 rq->io_start_time_ns = ktime_get_ns();
680 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
681 rq->throtl_size = blk_rq_sectors(rq);
682 #endif
683 rq->rq_flags |= RQF_STATS;
684 rq_qos_issue(q, rq);
687 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
689 blk_add_timer(rq);
690 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
692 if (q->dma_drain_size && blk_rq_bytes(rq)) {
694 * Make sure space for the drain appears. We know we can do
695 * this because max_hw_segments has been adjusted to be one
696 * fewer than the device can handle.
698 rq->nr_phys_segments++;
701 EXPORT_SYMBOL(blk_mq_start_request);
703 static void __blk_mq_requeue_request(struct request *rq)
705 struct request_queue *q = rq->q;
707 blk_mq_put_driver_tag(rq);
709 trace_block_rq_requeue(q, rq);
710 rq_qos_requeue(q, rq);
712 if (blk_mq_request_started(rq)) {
713 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
714 rq->rq_flags &= ~RQF_TIMED_OUT;
715 if (q->dma_drain_size && blk_rq_bytes(rq))
716 rq->nr_phys_segments--;
720 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
722 __blk_mq_requeue_request(rq);
724 /* this request will be re-inserted to io scheduler queue */
725 blk_mq_sched_requeue_request(rq);
727 BUG_ON(!list_empty(&rq->queuelist));
728 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
730 EXPORT_SYMBOL(blk_mq_requeue_request);
732 static void blk_mq_requeue_work(struct work_struct *work)
734 struct request_queue *q =
735 container_of(work, struct request_queue, requeue_work.work);
736 LIST_HEAD(rq_list);
737 struct request *rq, *next;
739 spin_lock_irq(&q->requeue_lock);
740 list_splice_init(&q->requeue_list, &rq_list);
741 spin_unlock_irq(&q->requeue_lock);
743 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
744 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
745 continue;
747 rq->rq_flags &= ~RQF_SOFTBARRIER;
748 list_del_init(&rq->queuelist);
750 * If RQF_DONTPREP, rq has contained some driver specific
751 * data, so insert it to hctx dispatch list to avoid any
752 * merge.
754 if (rq->rq_flags & RQF_DONTPREP)
755 blk_mq_request_bypass_insert(rq, false);
756 else
757 blk_mq_sched_insert_request(rq, true, false, false);
760 while (!list_empty(&rq_list)) {
761 rq = list_entry(rq_list.next, struct request, queuelist);
762 list_del_init(&rq->queuelist);
763 blk_mq_sched_insert_request(rq, false, false, false);
766 blk_mq_run_hw_queues(q, false);
769 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
770 bool kick_requeue_list)
772 struct request_queue *q = rq->q;
773 unsigned long flags;
776 * We abuse this flag that is otherwise used by the I/O scheduler to
777 * request head insertion from the workqueue.
779 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
781 spin_lock_irqsave(&q->requeue_lock, flags);
782 if (at_head) {
783 rq->rq_flags |= RQF_SOFTBARRIER;
784 list_add(&rq->queuelist, &q->requeue_list);
785 } else {
786 list_add_tail(&rq->queuelist, &q->requeue_list);
788 spin_unlock_irqrestore(&q->requeue_lock, flags);
790 if (kick_requeue_list)
791 blk_mq_kick_requeue_list(q);
794 void blk_mq_kick_requeue_list(struct request_queue *q)
796 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
798 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
800 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
801 unsigned long msecs)
803 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
804 msecs_to_jiffies(msecs));
806 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
808 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
810 if (tag < tags->nr_tags) {
811 prefetch(tags->rqs[tag]);
812 return tags->rqs[tag];
815 return NULL;
817 EXPORT_SYMBOL(blk_mq_tag_to_rq);
819 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
820 void *priv, bool reserved)
823 * If we find a request that is inflight and the queue matches,
824 * we know the queue is busy. Return false to stop the iteration.
826 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
827 bool *busy = priv;
829 *busy = true;
830 return false;
833 return true;
836 bool blk_mq_queue_inflight(struct request_queue *q)
838 bool busy = false;
840 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
841 return busy;
843 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
845 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
847 req->rq_flags |= RQF_TIMED_OUT;
848 if (req->q->mq_ops->timeout) {
849 enum blk_eh_timer_return ret;
851 ret = req->q->mq_ops->timeout(req, reserved);
852 if (ret == BLK_EH_DONE)
853 return;
854 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
857 blk_add_timer(req);
860 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
862 unsigned long deadline;
864 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
865 return false;
866 if (rq->rq_flags & RQF_TIMED_OUT)
867 return false;
869 deadline = READ_ONCE(rq->deadline);
870 if (time_after_eq(jiffies, deadline))
871 return true;
873 if (*next == 0)
874 *next = deadline;
875 else if (time_after(*next, deadline))
876 *next = deadline;
877 return false;
880 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
881 struct request *rq, void *priv, bool reserved)
883 unsigned long *next = priv;
886 * Just do a quick check if it is expired before locking the request in
887 * so we're not unnecessarilly synchronizing across CPUs.
889 if (!blk_mq_req_expired(rq, next))
890 return true;
893 * We have reason to believe the request may be expired. Take a
894 * reference on the request to lock this request lifetime into its
895 * currently allocated context to prevent it from being reallocated in
896 * the event the completion by-passes this timeout handler.
898 * If the reference was already released, then the driver beat the
899 * timeout handler to posting a natural completion.
901 if (!refcount_inc_not_zero(&rq->ref))
902 return true;
905 * The request is now locked and cannot be reallocated underneath the
906 * timeout handler's processing. Re-verify this exact request is truly
907 * expired; if it is not expired, then the request was completed and
908 * reallocated as a new request.
910 if (blk_mq_req_expired(rq, next))
911 blk_mq_rq_timed_out(rq, reserved);
912 if (refcount_dec_and_test(&rq->ref))
913 __blk_mq_free_request(rq);
915 return true;
918 static void blk_mq_timeout_work(struct work_struct *work)
920 struct request_queue *q =
921 container_of(work, struct request_queue, timeout_work);
922 unsigned long next = 0;
923 struct blk_mq_hw_ctx *hctx;
924 int i;
926 /* A deadlock might occur if a request is stuck requiring a
927 * timeout at the same time a queue freeze is waiting
928 * completion, since the timeout code would not be able to
929 * acquire the queue reference here.
931 * That's why we don't use blk_queue_enter here; instead, we use
932 * percpu_ref_tryget directly, because we need to be able to
933 * obtain a reference even in the short window between the queue
934 * starting to freeze, by dropping the first reference in
935 * blk_freeze_queue_start, and the moment the last request is
936 * consumed, marked by the instant q_usage_counter reaches
937 * zero.
939 if (!percpu_ref_tryget(&q->q_usage_counter))
940 return;
942 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
944 if (next != 0) {
945 mod_timer(&q->timeout, next);
946 } else {
948 * Request timeouts are handled as a forward rolling timer. If
949 * we end up here it means that no requests are pending and
950 * also that no request has been pending for a while. Mark
951 * each hctx as idle.
953 queue_for_each_hw_ctx(q, hctx, i) {
954 /* the hctx may be unmapped, so check it here */
955 if (blk_mq_hw_queue_mapped(hctx))
956 blk_mq_tag_idle(hctx);
959 blk_queue_exit(q);
962 struct flush_busy_ctx_data {
963 struct blk_mq_hw_ctx *hctx;
964 struct list_head *list;
967 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
969 struct flush_busy_ctx_data *flush_data = data;
970 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
971 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
972 enum hctx_type type = hctx->type;
974 spin_lock(&ctx->lock);
975 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
976 sbitmap_clear_bit(sb, bitnr);
977 spin_unlock(&ctx->lock);
978 return true;
982 * Process software queues that have been marked busy, splicing them
983 * to the for-dispatch
985 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
987 struct flush_busy_ctx_data data = {
988 .hctx = hctx,
989 .list = list,
992 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
994 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
996 struct dispatch_rq_data {
997 struct blk_mq_hw_ctx *hctx;
998 struct request *rq;
1001 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1002 void *data)
1004 struct dispatch_rq_data *dispatch_data = data;
1005 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1006 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1007 enum hctx_type type = hctx->type;
1009 spin_lock(&ctx->lock);
1010 if (!list_empty(&ctx->rq_lists[type])) {
1011 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1012 list_del_init(&dispatch_data->rq->queuelist);
1013 if (list_empty(&ctx->rq_lists[type]))
1014 sbitmap_clear_bit(sb, bitnr);
1016 spin_unlock(&ctx->lock);
1018 return !dispatch_data->rq;
1021 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1022 struct blk_mq_ctx *start)
1024 unsigned off = start ? start->index_hw[hctx->type] : 0;
1025 struct dispatch_rq_data data = {
1026 .hctx = hctx,
1027 .rq = NULL,
1030 __sbitmap_for_each_set(&hctx->ctx_map, off,
1031 dispatch_rq_from_ctx, &data);
1033 return data.rq;
1036 static inline unsigned int queued_to_index(unsigned int queued)
1038 if (!queued)
1039 return 0;
1041 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1044 bool blk_mq_get_driver_tag(struct request *rq)
1046 struct blk_mq_alloc_data data = {
1047 .q = rq->q,
1048 .hctx = rq->mq_hctx,
1049 .flags = BLK_MQ_REQ_NOWAIT,
1050 .cmd_flags = rq->cmd_flags,
1052 bool shared;
1054 if (rq->tag != -1)
1055 goto done;
1057 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1058 data.flags |= BLK_MQ_REQ_RESERVED;
1060 shared = blk_mq_tag_busy(data.hctx);
1061 rq->tag = blk_mq_get_tag(&data);
1062 if (rq->tag >= 0) {
1063 if (shared) {
1064 rq->rq_flags |= RQF_MQ_INFLIGHT;
1065 atomic_inc(&data.hctx->nr_active);
1067 data.hctx->tags->rqs[rq->tag] = rq;
1070 done:
1071 return rq->tag != -1;
1074 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1075 int flags, void *key)
1077 struct blk_mq_hw_ctx *hctx;
1079 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1081 spin_lock(&hctx->dispatch_wait_lock);
1082 if (!list_empty(&wait->entry)) {
1083 struct sbitmap_queue *sbq;
1085 list_del_init(&wait->entry);
1086 sbq = &hctx->tags->bitmap_tags;
1087 atomic_dec(&sbq->ws_active);
1089 spin_unlock(&hctx->dispatch_wait_lock);
1091 blk_mq_run_hw_queue(hctx, true);
1092 return 1;
1096 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1097 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1098 * restart. For both cases, take care to check the condition again after
1099 * marking us as waiting.
1101 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1102 struct request *rq)
1104 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1105 struct wait_queue_head *wq;
1106 wait_queue_entry_t *wait;
1107 bool ret;
1109 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1110 blk_mq_sched_mark_restart_hctx(hctx);
1113 * It's possible that a tag was freed in the window between the
1114 * allocation failure and adding the hardware queue to the wait
1115 * queue.
1117 * Don't clear RESTART here, someone else could have set it.
1118 * At most this will cost an extra queue run.
1120 return blk_mq_get_driver_tag(rq);
1123 wait = &hctx->dispatch_wait;
1124 if (!list_empty_careful(&wait->entry))
1125 return false;
1127 wq = &bt_wait_ptr(sbq, hctx)->wait;
1129 spin_lock_irq(&wq->lock);
1130 spin_lock(&hctx->dispatch_wait_lock);
1131 if (!list_empty(&wait->entry)) {
1132 spin_unlock(&hctx->dispatch_wait_lock);
1133 spin_unlock_irq(&wq->lock);
1134 return false;
1137 atomic_inc(&sbq->ws_active);
1138 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1139 __add_wait_queue(wq, wait);
1142 * It's possible that a tag was freed in the window between the
1143 * allocation failure and adding the hardware queue to the wait
1144 * queue.
1146 ret = blk_mq_get_driver_tag(rq);
1147 if (!ret) {
1148 spin_unlock(&hctx->dispatch_wait_lock);
1149 spin_unlock_irq(&wq->lock);
1150 return false;
1154 * We got a tag, remove ourselves from the wait queue to ensure
1155 * someone else gets the wakeup.
1157 list_del_init(&wait->entry);
1158 atomic_dec(&sbq->ws_active);
1159 spin_unlock(&hctx->dispatch_wait_lock);
1160 spin_unlock_irq(&wq->lock);
1162 return true;
1165 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1166 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1168 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1169 * - EWMA is one simple way to compute running average value
1170 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1171 * - take 4 as factor for avoiding to get too small(0) result, and this
1172 * factor doesn't matter because EWMA decreases exponentially
1174 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1176 unsigned int ewma;
1178 if (hctx->queue->elevator)
1179 return;
1181 ewma = hctx->dispatch_busy;
1183 if (!ewma && !busy)
1184 return;
1186 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1187 if (busy)
1188 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1189 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1191 hctx->dispatch_busy = ewma;
1194 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1197 * Returns true if we did some work AND can potentially do more.
1199 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1200 bool got_budget)
1202 struct blk_mq_hw_ctx *hctx;
1203 struct request *rq, *nxt;
1204 bool no_tag = false;
1205 int errors, queued;
1206 blk_status_t ret = BLK_STS_OK;
1208 if (list_empty(list))
1209 return false;
1211 WARN_ON(!list_is_singular(list) && got_budget);
1214 * Now process all the entries, sending them to the driver.
1216 errors = queued = 0;
1217 do {
1218 struct blk_mq_queue_data bd;
1220 rq = list_first_entry(list, struct request, queuelist);
1222 hctx = rq->mq_hctx;
1223 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1224 break;
1226 if (!blk_mq_get_driver_tag(rq)) {
1228 * The initial allocation attempt failed, so we need to
1229 * rerun the hardware queue when a tag is freed. The
1230 * waitqueue takes care of that. If the queue is run
1231 * before we add this entry back on the dispatch list,
1232 * we'll re-run it below.
1234 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1235 blk_mq_put_dispatch_budget(hctx);
1237 * For non-shared tags, the RESTART check
1238 * will suffice.
1240 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1241 no_tag = true;
1242 break;
1246 list_del_init(&rq->queuelist);
1248 bd.rq = rq;
1251 * Flag last if we have no more requests, or if we have more
1252 * but can't assign a driver tag to it.
1254 if (list_empty(list))
1255 bd.last = true;
1256 else {
1257 nxt = list_first_entry(list, struct request, queuelist);
1258 bd.last = !blk_mq_get_driver_tag(nxt);
1261 ret = q->mq_ops->queue_rq(hctx, &bd);
1262 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1264 * If an I/O scheduler has been configured and we got a
1265 * driver tag for the next request already, free it
1266 * again.
1268 if (!list_empty(list)) {
1269 nxt = list_first_entry(list, struct request, queuelist);
1270 blk_mq_put_driver_tag(nxt);
1272 list_add(&rq->queuelist, list);
1273 __blk_mq_requeue_request(rq);
1274 break;
1277 if (unlikely(ret != BLK_STS_OK)) {
1278 errors++;
1279 blk_mq_end_request(rq, BLK_STS_IOERR);
1280 continue;
1283 queued++;
1284 } while (!list_empty(list));
1286 hctx->dispatched[queued_to_index(queued)]++;
1289 * Any items that need requeuing? Stuff them into hctx->dispatch,
1290 * that is where we will continue on next queue run.
1292 if (!list_empty(list)) {
1293 bool needs_restart;
1296 * If we didn't flush the entire list, we could have told
1297 * the driver there was more coming, but that turned out to
1298 * be a lie.
1300 if (q->mq_ops->commit_rqs)
1301 q->mq_ops->commit_rqs(hctx);
1303 spin_lock(&hctx->lock);
1304 list_splice_init(list, &hctx->dispatch);
1305 spin_unlock(&hctx->lock);
1308 * If SCHED_RESTART was set by the caller of this function and
1309 * it is no longer set that means that it was cleared by another
1310 * thread and hence that a queue rerun is needed.
1312 * If 'no_tag' is set, that means that we failed getting
1313 * a driver tag with an I/O scheduler attached. If our dispatch
1314 * waitqueue is no longer active, ensure that we run the queue
1315 * AFTER adding our entries back to the list.
1317 * If no I/O scheduler has been configured it is possible that
1318 * the hardware queue got stopped and restarted before requests
1319 * were pushed back onto the dispatch list. Rerun the queue to
1320 * avoid starvation. Notes:
1321 * - blk_mq_run_hw_queue() checks whether or not a queue has
1322 * been stopped before rerunning a queue.
1323 * - Some but not all block drivers stop a queue before
1324 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1325 * and dm-rq.
1327 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1328 * bit is set, run queue after a delay to avoid IO stalls
1329 * that could otherwise occur if the queue is idle.
1331 needs_restart = blk_mq_sched_needs_restart(hctx);
1332 if (!needs_restart ||
1333 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1334 blk_mq_run_hw_queue(hctx, true);
1335 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1336 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1338 blk_mq_update_dispatch_busy(hctx, true);
1339 return false;
1340 } else
1341 blk_mq_update_dispatch_busy(hctx, false);
1344 * If the host/device is unable to accept more work, inform the
1345 * caller of that.
1347 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1348 return false;
1350 return (queued + errors) != 0;
1353 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1355 int srcu_idx;
1358 * We should be running this queue from one of the CPUs that
1359 * are mapped to it.
1361 * There are at least two related races now between setting
1362 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1363 * __blk_mq_run_hw_queue():
1365 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1366 * but later it becomes online, then this warning is harmless
1367 * at all
1369 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1370 * but later it becomes offline, then the warning can't be
1371 * triggered, and we depend on blk-mq timeout handler to
1372 * handle dispatched requests to this hctx
1374 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1375 cpu_online(hctx->next_cpu)) {
1376 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1377 raw_smp_processor_id(),
1378 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1379 dump_stack();
1383 * We can't run the queue inline with ints disabled. Ensure that
1384 * we catch bad users of this early.
1386 WARN_ON_ONCE(in_interrupt());
1388 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1390 hctx_lock(hctx, &srcu_idx);
1391 blk_mq_sched_dispatch_requests(hctx);
1392 hctx_unlock(hctx, srcu_idx);
1395 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1397 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1399 if (cpu >= nr_cpu_ids)
1400 cpu = cpumask_first(hctx->cpumask);
1401 return cpu;
1405 * It'd be great if the workqueue API had a way to pass
1406 * in a mask and had some smarts for more clever placement.
1407 * For now we just round-robin here, switching for every
1408 * BLK_MQ_CPU_WORK_BATCH queued items.
1410 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1412 bool tried = false;
1413 int next_cpu = hctx->next_cpu;
1415 if (hctx->queue->nr_hw_queues == 1)
1416 return WORK_CPU_UNBOUND;
1418 if (--hctx->next_cpu_batch <= 0) {
1419 select_cpu:
1420 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1421 cpu_online_mask);
1422 if (next_cpu >= nr_cpu_ids)
1423 next_cpu = blk_mq_first_mapped_cpu(hctx);
1424 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1428 * Do unbound schedule if we can't find a online CPU for this hctx,
1429 * and it should only happen in the path of handling CPU DEAD.
1431 if (!cpu_online(next_cpu)) {
1432 if (!tried) {
1433 tried = true;
1434 goto select_cpu;
1438 * Make sure to re-select CPU next time once after CPUs
1439 * in hctx->cpumask become online again.
1441 hctx->next_cpu = next_cpu;
1442 hctx->next_cpu_batch = 1;
1443 return WORK_CPU_UNBOUND;
1446 hctx->next_cpu = next_cpu;
1447 return next_cpu;
1450 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1451 unsigned long msecs)
1453 if (unlikely(blk_mq_hctx_stopped(hctx)))
1454 return;
1456 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1457 int cpu = get_cpu();
1458 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1459 __blk_mq_run_hw_queue(hctx);
1460 put_cpu();
1461 return;
1464 put_cpu();
1467 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1468 msecs_to_jiffies(msecs));
1471 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1473 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1475 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1477 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1479 int srcu_idx;
1480 bool need_run;
1483 * When queue is quiesced, we may be switching io scheduler, or
1484 * updating nr_hw_queues, or other things, and we can't run queue
1485 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1487 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1488 * quiesced.
1490 hctx_lock(hctx, &srcu_idx);
1491 need_run = !blk_queue_quiesced(hctx->queue) &&
1492 blk_mq_hctx_has_pending(hctx);
1493 hctx_unlock(hctx, srcu_idx);
1495 if (need_run) {
1496 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1497 return true;
1500 return false;
1502 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1504 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1506 struct blk_mq_hw_ctx *hctx;
1507 int i;
1509 queue_for_each_hw_ctx(q, hctx, i) {
1510 if (blk_mq_hctx_stopped(hctx))
1511 continue;
1513 blk_mq_run_hw_queue(hctx, async);
1516 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1519 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1520 * @q: request queue.
1522 * The caller is responsible for serializing this function against
1523 * blk_mq_{start,stop}_hw_queue().
1525 bool blk_mq_queue_stopped(struct request_queue *q)
1527 struct blk_mq_hw_ctx *hctx;
1528 int i;
1530 queue_for_each_hw_ctx(q, hctx, i)
1531 if (blk_mq_hctx_stopped(hctx))
1532 return true;
1534 return false;
1536 EXPORT_SYMBOL(blk_mq_queue_stopped);
1539 * This function is often used for pausing .queue_rq() by driver when
1540 * there isn't enough resource or some conditions aren't satisfied, and
1541 * BLK_STS_RESOURCE is usually returned.
1543 * We do not guarantee that dispatch can be drained or blocked
1544 * after blk_mq_stop_hw_queue() returns. Please use
1545 * blk_mq_quiesce_queue() for that requirement.
1547 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1549 cancel_delayed_work(&hctx->run_work);
1551 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1553 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1556 * This function is often used for pausing .queue_rq() by driver when
1557 * there isn't enough resource or some conditions aren't satisfied, and
1558 * BLK_STS_RESOURCE is usually returned.
1560 * We do not guarantee that dispatch can be drained or blocked
1561 * after blk_mq_stop_hw_queues() returns. Please use
1562 * blk_mq_quiesce_queue() for that requirement.
1564 void blk_mq_stop_hw_queues(struct request_queue *q)
1566 struct blk_mq_hw_ctx *hctx;
1567 int i;
1569 queue_for_each_hw_ctx(q, hctx, i)
1570 blk_mq_stop_hw_queue(hctx);
1572 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1574 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1576 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1578 blk_mq_run_hw_queue(hctx, false);
1580 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1582 void blk_mq_start_hw_queues(struct request_queue *q)
1584 struct blk_mq_hw_ctx *hctx;
1585 int i;
1587 queue_for_each_hw_ctx(q, hctx, i)
1588 blk_mq_start_hw_queue(hctx);
1590 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1592 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1594 if (!blk_mq_hctx_stopped(hctx))
1595 return;
1597 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1598 blk_mq_run_hw_queue(hctx, async);
1600 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1602 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1604 struct blk_mq_hw_ctx *hctx;
1605 int i;
1607 queue_for_each_hw_ctx(q, hctx, i)
1608 blk_mq_start_stopped_hw_queue(hctx, async);
1610 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1612 static void blk_mq_run_work_fn(struct work_struct *work)
1614 struct blk_mq_hw_ctx *hctx;
1616 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1619 * If we are stopped, don't run the queue.
1621 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1622 return;
1624 __blk_mq_run_hw_queue(hctx);
1627 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1628 struct request *rq,
1629 bool at_head)
1631 struct blk_mq_ctx *ctx = rq->mq_ctx;
1632 enum hctx_type type = hctx->type;
1634 lockdep_assert_held(&ctx->lock);
1636 trace_block_rq_insert(hctx->queue, rq);
1638 if (at_head)
1639 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1640 else
1641 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1644 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1645 bool at_head)
1647 struct blk_mq_ctx *ctx = rq->mq_ctx;
1649 lockdep_assert_held(&ctx->lock);
1651 __blk_mq_insert_req_list(hctx, rq, at_head);
1652 blk_mq_hctx_mark_pending(hctx, ctx);
1656 * Should only be used carefully, when the caller knows we want to
1657 * bypass a potential IO scheduler on the target device.
1659 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1661 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1663 spin_lock(&hctx->lock);
1664 list_add_tail(&rq->queuelist, &hctx->dispatch);
1665 spin_unlock(&hctx->lock);
1667 if (run_queue)
1668 blk_mq_run_hw_queue(hctx, false);
1671 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1672 struct list_head *list)
1675 struct request *rq;
1676 enum hctx_type type = hctx->type;
1679 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1680 * offline now
1682 list_for_each_entry(rq, list, queuelist) {
1683 BUG_ON(rq->mq_ctx != ctx);
1684 trace_block_rq_insert(hctx->queue, rq);
1687 spin_lock(&ctx->lock);
1688 list_splice_tail_init(list, &ctx->rq_lists[type]);
1689 blk_mq_hctx_mark_pending(hctx, ctx);
1690 spin_unlock(&ctx->lock);
1693 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1695 struct request *rqa = container_of(a, struct request, queuelist);
1696 struct request *rqb = container_of(b, struct request, queuelist);
1698 if (rqa->mq_ctx < rqb->mq_ctx)
1699 return -1;
1700 else if (rqa->mq_ctx > rqb->mq_ctx)
1701 return 1;
1702 else if (rqa->mq_hctx < rqb->mq_hctx)
1703 return -1;
1704 else if (rqa->mq_hctx > rqb->mq_hctx)
1705 return 1;
1707 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1710 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1712 struct blk_mq_hw_ctx *this_hctx;
1713 struct blk_mq_ctx *this_ctx;
1714 struct request_queue *this_q;
1715 struct request *rq;
1716 LIST_HEAD(list);
1717 LIST_HEAD(rq_list);
1718 unsigned int depth;
1720 list_splice_init(&plug->mq_list, &list);
1722 if (plug->rq_count > 2 && plug->multiple_queues)
1723 list_sort(NULL, &list, plug_rq_cmp);
1725 plug->rq_count = 0;
1727 this_q = NULL;
1728 this_hctx = NULL;
1729 this_ctx = NULL;
1730 depth = 0;
1732 while (!list_empty(&list)) {
1733 rq = list_entry_rq(list.next);
1734 list_del_init(&rq->queuelist);
1735 BUG_ON(!rq->q);
1736 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1737 if (this_hctx) {
1738 trace_block_unplug(this_q, depth, !from_schedule);
1739 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1740 &rq_list,
1741 from_schedule);
1744 this_q = rq->q;
1745 this_ctx = rq->mq_ctx;
1746 this_hctx = rq->mq_hctx;
1747 depth = 0;
1750 depth++;
1751 list_add_tail(&rq->queuelist, &rq_list);
1755 * If 'this_hctx' is set, we know we have entries to complete
1756 * on 'rq_list'. Do those.
1758 if (this_hctx) {
1759 trace_block_unplug(this_q, depth, !from_schedule);
1760 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1761 from_schedule);
1765 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1767 blk_init_request_from_bio(rq, bio);
1769 blk_account_io_start(rq, true);
1772 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1773 struct request *rq,
1774 blk_qc_t *cookie, bool last)
1776 struct request_queue *q = rq->q;
1777 struct blk_mq_queue_data bd = {
1778 .rq = rq,
1779 .last = last,
1781 blk_qc_t new_cookie;
1782 blk_status_t ret;
1784 new_cookie = request_to_qc_t(hctx, rq);
1787 * For OK queue, we are done. For error, caller may kill it.
1788 * Any other error (busy), just add it to our list as we
1789 * previously would have done.
1791 ret = q->mq_ops->queue_rq(hctx, &bd);
1792 switch (ret) {
1793 case BLK_STS_OK:
1794 blk_mq_update_dispatch_busy(hctx, false);
1795 *cookie = new_cookie;
1796 break;
1797 case BLK_STS_RESOURCE:
1798 case BLK_STS_DEV_RESOURCE:
1799 blk_mq_update_dispatch_busy(hctx, true);
1800 __blk_mq_requeue_request(rq);
1801 break;
1802 default:
1803 blk_mq_update_dispatch_busy(hctx, false);
1804 *cookie = BLK_QC_T_NONE;
1805 break;
1808 return ret;
1811 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1812 struct request *rq,
1813 blk_qc_t *cookie,
1814 bool bypass_insert, bool last)
1816 struct request_queue *q = rq->q;
1817 bool run_queue = true;
1820 * RCU or SRCU read lock is needed before checking quiesced flag.
1822 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1823 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1824 * and avoid driver to try to dispatch again.
1826 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1827 run_queue = false;
1828 bypass_insert = false;
1829 goto insert;
1832 if (q->elevator && !bypass_insert)
1833 goto insert;
1835 if (!blk_mq_get_dispatch_budget(hctx))
1836 goto insert;
1838 if (!blk_mq_get_driver_tag(rq)) {
1839 blk_mq_put_dispatch_budget(hctx);
1840 goto insert;
1843 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1844 insert:
1845 if (bypass_insert)
1846 return BLK_STS_RESOURCE;
1848 blk_mq_request_bypass_insert(rq, run_queue);
1849 return BLK_STS_OK;
1852 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1853 struct request *rq, blk_qc_t *cookie)
1855 blk_status_t ret;
1856 int srcu_idx;
1858 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1860 hctx_lock(hctx, &srcu_idx);
1862 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1863 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1864 blk_mq_request_bypass_insert(rq, true);
1865 else if (ret != BLK_STS_OK)
1866 blk_mq_end_request(rq, ret);
1868 hctx_unlock(hctx, srcu_idx);
1871 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1873 blk_status_t ret;
1874 int srcu_idx;
1875 blk_qc_t unused_cookie;
1876 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1878 hctx_lock(hctx, &srcu_idx);
1879 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1880 hctx_unlock(hctx, srcu_idx);
1882 return ret;
1885 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1886 struct list_head *list)
1888 while (!list_empty(list)) {
1889 blk_status_t ret;
1890 struct request *rq = list_first_entry(list, struct request,
1891 queuelist);
1893 list_del_init(&rq->queuelist);
1894 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1895 if (ret != BLK_STS_OK) {
1896 if (ret == BLK_STS_RESOURCE ||
1897 ret == BLK_STS_DEV_RESOURCE) {
1898 blk_mq_request_bypass_insert(rq,
1899 list_empty(list));
1900 break;
1902 blk_mq_end_request(rq, ret);
1907 * If we didn't flush the entire list, we could have told
1908 * the driver there was more coming, but that turned out to
1909 * be a lie.
1911 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1912 hctx->queue->mq_ops->commit_rqs(hctx);
1915 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1917 list_add_tail(&rq->queuelist, &plug->mq_list);
1918 plug->rq_count++;
1919 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1920 struct request *tmp;
1922 tmp = list_first_entry(&plug->mq_list, struct request,
1923 queuelist);
1924 if (tmp->q != rq->q)
1925 plug->multiple_queues = true;
1929 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1931 const int is_sync = op_is_sync(bio->bi_opf);
1932 const int is_flush_fua = op_is_flush(bio->bi_opf);
1933 struct blk_mq_alloc_data data = { .flags = 0};
1934 struct request *rq;
1935 struct blk_plug *plug;
1936 struct request *same_queue_rq = NULL;
1937 blk_qc_t cookie;
1939 blk_queue_bounce(q, &bio);
1941 blk_queue_split(q, &bio);
1943 if (!bio_integrity_prep(bio))
1944 return BLK_QC_T_NONE;
1946 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1947 blk_attempt_plug_merge(q, bio, &same_queue_rq))
1948 return BLK_QC_T_NONE;
1950 if (blk_mq_sched_bio_merge(q, bio))
1951 return BLK_QC_T_NONE;
1953 rq_qos_throttle(q, bio);
1955 data.cmd_flags = bio->bi_opf;
1956 rq = blk_mq_get_request(q, bio, &data);
1957 if (unlikely(!rq)) {
1958 rq_qos_cleanup(q, bio);
1959 if (bio->bi_opf & REQ_NOWAIT)
1960 bio_wouldblock_error(bio);
1961 return BLK_QC_T_NONE;
1964 trace_block_getrq(q, bio, bio->bi_opf);
1966 rq_qos_track(q, rq, bio);
1968 cookie = request_to_qc_t(data.hctx, rq);
1970 plug = current->plug;
1971 if (unlikely(is_flush_fua)) {
1972 blk_mq_put_ctx(data.ctx);
1973 blk_mq_bio_to_request(rq, bio);
1975 /* bypass scheduler for flush rq */
1976 blk_insert_flush(rq);
1977 blk_mq_run_hw_queue(data.hctx, true);
1978 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1980 * Use plugging if we have a ->commit_rqs() hook as well, as
1981 * we know the driver uses bd->last in a smart fashion.
1983 unsigned int request_count = plug->rq_count;
1984 struct request *last = NULL;
1986 blk_mq_put_ctx(data.ctx);
1987 blk_mq_bio_to_request(rq, bio);
1989 if (!request_count)
1990 trace_block_plug(q);
1991 else
1992 last = list_entry_rq(plug->mq_list.prev);
1994 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1995 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1996 blk_flush_plug_list(plug, false);
1997 trace_block_plug(q);
2000 blk_add_rq_to_plug(plug, rq);
2001 } else if (plug && !blk_queue_nomerges(q)) {
2002 blk_mq_bio_to_request(rq, bio);
2005 * We do limited plugging. If the bio can be merged, do that.
2006 * Otherwise the existing request in the plug list will be
2007 * issued. So the plug list will have one request at most
2008 * The plug list might get flushed before this. If that happens,
2009 * the plug list is empty, and same_queue_rq is invalid.
2011 if (list_empty(&plug->mq_list))
2012 same_queue_rq = NULL;
2013 if (same_queue_rq) {
2014 list_del_init(&same_queue_rq->queuelist);
2015 plug->rq_count--;
2017 blk_add_rq_to_plug(plug, rq);
2018 trace_block_plug(q);
2020 blk_mq_put_ctx(data.ctx);
2022 if (same_queue_rq) {
2023 data.hctx = same_queue_rq->mq_hctx;
2024 trace_block_unplug(q, 1, true);
2025 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2026 &cookie);
2028 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2029 !data.hctx->dispatch_busy)) {
2030 blk_mq_put_ctx(data.ctx);
2031 blk_mq_bio_to_request(rq, bio);
2032 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2033 } else {
2034 blk_mq_put_ctx(data.ctx);
2035 blk_mq_bio_to_request(rq, bio);
2036 blk_mq_sched_insert_request(rq, false, true, true);
2039 return cookie;
2042 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2043 unsigned int hctx_idx)
2045 struct page *page;
2047 if (tags->rqs && set->ops->exit_request) {
2048 int i;
2050 for (i = 0; i < tags->nr_tags; i++) {
2051 struct request *rq = tags->static_rqs[i];
2053 if (!rq)
2054 continue;
2055 set->ops->exit_request(set, rq, hctx_idx);
2056 tags->static_rqs[i] = NULL;
2060 while (!list_empty(&tags->page_list)) {
2061 page = list_first_entry(&tags->page_list, struct page, lru);
2062 list_del_init(&page->lru);
2064 * Remove kmemleak object previously allocated in
2065 * blk_mq_init_rq_map().
2067 kmemleak_free(page_address(page));
2068 __free_pages(page, page->private);
2072 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2074 kfree(tags->rqs);
2075 tags->rqs = NULL;
2076 kfree(tags->static_rqs);
2077 tags->static_rqs = NULL;
2079 blk_mq_free_tags(tags);
2082 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2083 unsigned int hctx_idx,
2084 unsigned int nr_tags,
2085 unsigned int reserved_tags)
2087 struct blk_mq_tags *tags;
2088 int node;
2090 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2091 if (node == NUMA_NO_NODE)
2092 node = set->numa_node;
2094 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2095 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2096 if (!tags)
2097 return NULL;
2099 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2100 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2101 node);
2102 if (!tags->rqs) {
2103 blk_mq_free_tags(tags);
2104 return NULL;
2107 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2108 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2109 node);
2110 if (!tags->static_rqs) {
2111 kfree(tags->rqs);
2112 blk_mq_free_tags(tags);
2113 return NULL;
2116 return tags;
2119 static size_t order_to_size(unsigned int order)
2121 return (size_t)PAGE_SIZE << order;
2124 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2125 unsigned int hctx_idx, int node)
2127 int ret;
2129 if (set->ops->init_request) {
2130 ret = set->ops->init_request(set, rq, hctx_idx, node);
2131 if (ret)
2132 return ret;
2135 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2136 return 0;
2139 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2140 unsigned int hctx_idx, unsigned int depth)
2142 unsigned int i, j, entries_per_page, max_order = 4;
2143 size_t rq_size, left;
2144 int node;
2146 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2147 if (node == NUMA_NO_NODE)
2148 node = set->numa_node;
2150 INIT_LIST_HEAD(&tags->page_list);
2153 * rq_size is the size of the request plus driver payload, rounded
2154 * to the cacheline size
2156 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2157 cache_line_size());
2158 left = rq_size * depth;
2160 for (i = 0; i < depth; ) {
2161 int this_order = max_order;
2162 struct page *page;
2163 int to_do;
2164 void *p;
2166 while (this_order && left < order_to_size(this_order - 1))
2167 this_order--;
2169 do {
2170 page = alloc_pages_node(node,
2171 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2172 this_order);
2173 if (page)
2174 break;
2175 if (!this_order--)
2176 break;
2177 if (order_to_size(this_order) < rq_size)
2178 break;
2179 } while (1);
2181 if (!page)
2182 goto fail;
2184 page->private = this_order;
2185 list_add_tail(&page->lru, &tags->page_list);
2187 p = page_address(page);
2189 * Allow kmemleak to scan these pages as they contain pointers
2190 * to additional allocations like via ops->init_request().
2192 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2193 entries_per_page = order_to_size(this_order) / rq_size;
2194 to_do = min(entries_per_page, depth - i);
2195 left -= to_do * rq_size;
2196 for (j = 0; j < to_do; j++) {
2197 struct request *rq = p;
2199 tags->static_rqs[i] = rq;
2200 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2201 tags->static_rqs[i] = NULL;
2202 goto fail;
2205 p += rq_size;
2206 i++;
2209 return 0;
2211 fail:
2212 blk_mq_free_rqs(set, tags, hctx_idx);
2213 return -ENOMEM;
2217 * 'cpu' is going away. splice any existing rq_list entries from this
2218 * software queue to the hw queue dispatch list, and ensure that it
2219 * gets run.
2221 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2223 struct blk_mq_hw_ctx *hctx;
2224 struct blk_mq_ctx *ctx;
2225 LIST_HEAD(tmp);
2226 enum hctx_type type;
2228 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2229 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2230 type = hctx->type;
2232 spin_lock(&ctx->lock);
2233 if (!list_empty(&ctx->rq_lists[type])) {
2234 list_splice_init(&ctx->rq_lists[type], &tmp);
2235 blk_mq_hctx_clear_pending(hctx, ctx);
2237 spin_unlock(&ctx->lock);
2239 if (list_empty(&tmp))
2240 return 0;
2242 spin_lock(&hctx->lock);
2243 list_splice_tail_init(&tmp, &hctx->dispatch);
2244 spin_unlock(&hctx->lock);
2246 blk_mq_run_hw_queue(hctx, true);
2247 return 0;
2250 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2252 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2253 &hctx->cpuhp_dead);
2256 /* hctx->ctxs will be freed in queue's release handler */
2257 static void blk_mq_exit_hctx(struct request_queue *q,
2258 struct blk_mq_tag_set *set,
2259 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2261 if (blk_mq_hw_queue_mapped(hctx))
2262 blk_mq_tag_idle(hctx);
2264 if (set->ops->exit_request)
2265 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2267 if (set->ops->exit_hctx)
2268 set->ops->exit_hctx(hctx, hctx_idx);
2270 if (hctx->flags & BLK_MQ_F_BLOCKING)
2271 cleanup_srcu_struct(hctx->srcu);
2273 blk_mq_remove_cpuhp(hctx);
2274 blk_free_flush_queue(hctx->fq);
2275 sbitmap_free(&hctx->ctx_map);
2278 static void blk_mq_exit_hw_queues(struct request_queue *q,
2279 struct blk_mq_tag_set *set, int nr_queue)
2281 struct blk_mq_hw_ctx *hctx;
2282 unsigned int i;
2284 queue_for_each_hw_ctx(q, hctx, i) {
2285 if (i == nr_queue)
2286 break;
2287 blk_mq_debugfs_unregister_hctx(hctx);
2288 blk_mq_exit_hctx(q, set, hctx, i);
2292 static int blk_mq_init_hctx(struct request_queue *q,
2293 struct blk_mq_tag_set *set,
2294 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2296 int node;
2298 node = hctx->numa_node;
2299 if (node == NUMA_NO_NODE)
2300 node = hctx->numa_node = set->numa_node;
2302 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2303 spin_lock_init(&hctx->lock);
2304 INIT_LIST_HEAD(&hctx->dispatch);
2305 hctx->queue = q;
2306 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2308 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2310 hctx->tags = set->tags[hctx_idx];
2313 * Allocate space for all possible cpus to avoid allocation at
2314 * runtime
2316 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2317 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2318 if (!hctx->ctxs)
2319 goto unregister_cpu_notifier;
2321 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2322 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2323 goto free_ctxs;
2325 hctx->nr_ctx = 0;
2327 spin_lock_init(&hctx->dispatch_wait_lock);
2328 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2329 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2331 if (set->ops->init_hctx &&
2332 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2333 goto free_bitmap;
2335 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2336 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2337 if (!hctx->fq)
2338 goto exit_hctx;
2340 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2341 goto free_fq;
2343 if (hctx->flags & BLK_MQ_F_BLOCKING)
2344 init_srcu_struct(hctx->srcu);
2346 return 0;
2348 free_fq:
2349 blk_free_flush_queue(hctx->fq);
2350 exit_hctx:
2351 if (set->ops->exit_hctx)
2352 set->ops->exit_hctx(hctx, hctx_idx);
2353 free_bitmap:
2354 sbitmap_free(&hctx->ctx_map);
2355 free_ctxs:
2356 kfree(hctx->ctxs);
2357 unregister_cpu_notifier:
2358 blk_mq_remove_cpuhp(hctx);
2359 return -1;
2362 static void blk_mq_init_cpu_queues(struct request_queue *q,
2363 unsigned int nr_hw_queues)
2365 struct blk_mq_tag_set *set = q->tag_set;
2366 unsigned int i, j;
2368 for_each_possible_cpu(i) {
2369 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2370 struct blk_mq_hw_ctx *hctx;
2371 int k;
2373 __ctx->cpu = i;
2374 spin_lock_init(&__ctx->lock);
2375 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2376 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2378 __ctx->queue = q;
2381 * Set local node, IFF we have more than one hw queue. If
2382 * not, we remain on the home node of the device
2384 for (j = 0; j < set->nr_maps; j++) {
2385 hctx = blk_mq_map_queue_type(q, j, i);
2386 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2387 hctx->numa_node = local_memory_node(cpu_to_node(i));
2392 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2394 int ret = 0;
2396 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2397 set->queue_depth, set->reserved_tags);
2398 if (!set->tags[hctx_idx])
2399 return false;
2401 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2402 set->queue_depth);
2403 if (!ret)
2404 return true;
2406 blk_mq_free_rq_map(set->tags[hctx_idx]);
2407 set->tags[hctx_idx] = NULL;
2408 return false;
2411 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2412 unsigned int hctx_idx)
2414 if (set->tags && set->tags[hctx_idx]) {
2415 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2416 blk_mq_free_rq_map(set->tags[hctx_idx]);
2417 set->tags[hctx_idx] = NULL;
2421 static void blk_mq_map_swqueue(struct request_queue *q)
2423 unsigned int i, j, hctx_idx;
2424 struct blk_mq_hw_ctx *hctx;
2425 struct blk_mq_ctx *ctx;
2426 struct blk_mq_tag_set *set = q->tag_set;
2429 * Avoid others reading imcomplete hctx->cpumask through sysfs
2431 mutex_lock(&q->sysfs_lock);
2433 queue_for_each_hw_ctx(q, hctx, i) {
2434 cpumask_clear(hctx->cpumask);
2435 hctx->nr_ctx = 0;
2436 hctx->dispatch_from = NULL;
2440 * Map software to hardware queues.
2442 * If the cpu isn't present, the cpu is mapped to first hctx.
2444 for_each_possible_cpu(i) {
2445 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2446 /* unmapped hw queue can be remapped after CPU topo changed */
2447 if (!set->tags[hctx_idx] &&
2448 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2450 * If tags initialization fail for some hctx,
2451 * that hctx won't be brought online. In this
2452 * case, remap the current ctx to hctx[0] which
2453 * is guaranteed to always have tags allocated
2455 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2458 ctx = per_cpu_ptr(q->queue_ctx, i);
2459 for (j = 0; j < set->nr_maps; j++) {
2460 if (!set->map[j].nr_queues) {
2461 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2462 HCTX_TYPE_DEFAULT, i);
2463 continue;
2466 hctx = blk_mq_map_queue_type(q, j, i);
2467 ctx->hctxs[j] = hctx;
2469 * If the CPU is already set in the mask, then we've
2470 * mapped this one already. This can happen if
2471 * devices share queues across queue maps.
2473 if (cpumask_test_cpu(i, hctx->cpumask))
2474 continue;
2476 cpumask_set_cpu(i, hctx->cpumask);
2477 hctx->type = j;
2478 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2479 hctx->ctxs[hctx->nr_ctx++] = ctx;
2482 * If the nr_ctx type overflows, we have exceeded the
2483 * amount of sw queues we can support.
2485 BUG_ON(!hctx->nr_ctx);
2488 for (; j < HCTX_MAX_TYPES; j++)
2489 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2490 HCTX_TYPE_DEFAULT, i);
2493 mutex_unlock(&q->sysfs_lock);
2495 queue_for_each_hw_ctx(q, hctx, i) {
2497 * If no software queues are mapped to this hardware queue,
2498 * disable it and free the request entries.
2500 if (!hctx->nr_ctx) {
2501 /* Never unmap queue 0. We need it as a
2502 * fallback in case of a new remap fails
2503 * allocation
2505 if (i && set->tags[i])
2506 blk_mq_free_map_and_requests(set, i);
2508 hctx->tags = NULL;
2509 continue;
2512 hctx->tags = set->tags[i];
2513 WARN_ON(!hctx->tags);
2516 * Set the map size to the number of mapped software queues.
2517 * This is more accurate and more efficient than looping
2518 * over all possibly mapped software queues.
2520 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2523 * Initialize batch roundrobin counts
2525 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2526 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2531 * Caller needs to ensure that we're either frozen/quiesced, or that
2532 * the queue isn't live yet.
2534 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2536 struct blk_mq_hw_ctx *hctx;
2537 int i;
2539 queue_for_each_hw_ctx(q, hctx, i) {
2540 if (shared)
2541 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2542 else
2543 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2547 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2548 bool shared)
2550 struct request_queue *q;
2552 lockdep_assert_held(&set->tag_list_lock);
2554 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2555 blk_mq_freeze_queue(q);
2556 queue_set_hctx_shared(q, shared);
2557 blk_mq_unfreeze_queue(q);
2561 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2563 struct blk_mq_tag_set *set = q->tag_set;
2565 mutex_lock(&set->tag_list_lock);
2566 list_del_rcu(&q->tag_set_list);
2567 if (list_is_singular(&set->tag_list)) {
2568 /* just transitioned to unshared */
2569 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2570 /* update existing queue */
2571 blk_mq_update_tag_set_depth(set, false);
2573 mutex_unlock(&set->tag_list_lock);
2574 INIT_LIST_HEAD(&q->tag_set_list);
2577 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2578 struct request_queue *q)
2580 mutex_lock(&set->tag_list_lock);
2583 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2585 if (!list_empty(&set->tag_list) &&
2586 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2587 set->flags |= BLK_MQ_F_TAG_SHARED;
2588 /* update existing queue */
2589 blk_mq_update_tag_set_depth(set, true);
2591 if (set->flags & BLK_MQ_F_TAG_SHARED)
2592 queue_set_hctx_shared(q, true);
2593 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2595 mutex_unlock(&set->tag_list_lock);
2598 /* All allocations will be freed in release handler of q->mq_kobj */
2599 static int blk_mq_alloc_ctxs(struct request_queue *q)
2601 struct blk_mq_ctxs *ctxs;
2602 int cpu;
2604 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2605 if (!ctxs)
2606 return -ENOMEM;
2608 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2609 if (!ctxs->queue_ctx)
2610 goto fail;
2612 for_each_possible_cpu(cpu) {
2613 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2614 ctx->ctxs = ctxs;
2617 q->mq_kobj = &ctxs->kobj;
2618 q->queue_ctx = ctxs->queue_ctx;
2620 return 0;
2621 fail:
2622 kfree(ctxs);
2623 return -ENOMEM;
2627 * It is the actual release handler for mq, but we do it from
2628 * request queue's release handler for avoiding use-after-free
2629 * and headache because q->mq_kobj shouldn't have been introduced,
2630 * but we can't group ctx/kctx kobj without it.
2632 void blk_mq_release(struct request_queue *q)
2634 struct blk_mq_hw_ctx *hctx;
2635 unsigned int i;
2637 /* hctx kobj stays in hctx */
2638 queue_for_each_hw_ctx(q, hctx, i) {
2639 if (!hctx)
2640 continue;
2641 kobject_put(&hctx->kobj);
2644 kfree(q->queue_hw_ctx);
2647 * release .mq_kobj and sw queue's kobject now because
2648 * both share lifetime with request queue.
2650 blk_mq_sysfs_deinit(q);
2653 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2655 struct request_queue *uninit_q, *q;
2657 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2658 if (!uninit_q)
2659 return ERR_PTR(-ENOMEM);
2661 q = blk_mq_init_allocated_queue(set, uninit_q);
2662 if (IS_ERR(q))
2663 blk_cleanup_queue(uninit_q);
2665 return q;
2667 EXPORT_SYMBOL(blk_mq_init_queue);
2670 * Helper for setting up a queue with mq ops, given queue depth, and
2671 * the passed in mq ops flags.
2673 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2674 const struct blk_mq_ops *ops,
2675 unsigned int queue_depth,
2676 unsigned int set_flags)
2678 struct request_queue *q;
2679 int ret;
2681 memset(set, 0, sizeof(*set));
2682 set->ops = ops;
2683 set->nr_hw_queues = 1;
2684 set->nr_maps = 1;
2685 set->queue_depth = queue_depth;
2686 set->numa_node = NUMA_NO_NODE;
2687 set->flags = set_flags;
2689 ret = blk_mq_alloc_tag_set(set);
2690 if (ret)
2691 return ERR_PTR(ret);
2693 q = blk_mq_init_queue(set);
2694 if (IS_ERR(q)) {
2695 blk_mq_free_tag_set(set);
2696 return q;
2699 return q;
2701 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2703 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2705 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2707 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2708 __alignof__(struct blk_mq_hw_ctx)) !=
2709 sizeof(struct blk_mq_hw_ctx));
2711 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2712 hw_ctx_size += sizeof(struct srcu_struct);
2714 return hw_ctx_size;
2717 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2718 struct blk_mq_tag_set *set, struct request_queue *q,
2719 int hctx_idx, int node)
2721 struct blk_mq_hw_ctx *hctx;
2723 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2724 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2725 node);
2726 if (!hctx)
2727 return NULL;
2729 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2730 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2731 node)) {
2732 kfree(hctx);
2733 return NULL;
2736 atomic_set(&hctx->nr_active, 0);
2737 hctx->numa_node = node;
2738 hctx->queue_num = hctx_idx;
2740 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2741 free_cpumask_var(hctx->cpumask);
2742 kfree(hctx);
2743 return NULL;
2745 blk_mq_hctx_kobj_init(hctx);
2747 return hctx;
2750 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2751 struct request_queue *q)
2753 int i, j, end;
2754 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2756 /* protect against switching io scheduler */
2757 mutex_lock(&q->sysfs_lock);
2758 for (i = 0; i < set->nr_hw_queues; i++) {
2759 int node;
2760 struct blk_mq_hw_ctx *hctx;
2762 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2764 * If the hw queue has been mapped to another numa node,
2765 * we need to realloc the hctx. If allocation fails, fallback
2766 * to use the previous one.
2768 if (hctxs[i] && (hctxs[i]->numa_node == node))
2769 continue;
2771 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2772 if (hctx) {
2773 if (hctxs[i]) {
2774 blk_mq_exit_hctx(q, set, hctxs[i], i);
2775 kobject_put(&hctxs[i]->kobj);
2777 hctxs[i] = hctx;
2778 } else {
2779 if (hctxs[i])
2780 pr_warn("Allocate new hctx on node %d fails,\
2781 fallback to previous one on node %d\n",
2782 node, hctxs[i]->numa_node);
2783 else
2784 break;
2788 * Increasing nr_hw_queues fails. Free the newly allocated
2789 * hctxs and keep the previous q->nr_hw_queues.
2791 if (i != set->nr_hw_queues) {
2792 j = q->nr_hw_queues;
2793 end = i;
2794 } else {
2795 j = i;
2796 end = q->nr_hw_queues;
2797 q->nr_hw_queues = set->nr_hw_queues;
2800 for (; j < end; j++) {
2801 struct blk_mq_hw_ctx *hctx = hctxs[j];
2803 if (hctx) {
2804 if (hctx->tags)
2805 blk_mq_free_map_and_requests(set, j);
2806 blk_mq_exit_hctx(q, set, hctx, j);
2807 kobject_put(&hctx->kobj);
2808 hctxs[j] = NULL;
2812 mutex_unlock(&q->sysfs_lock);
2816 * Maximum number of hardware queues we support. For single sets, we'll never
2817 * have more than the CPUs (software queues). For multiple sets, the tag_set
2818 * user may have set ->nr_hw_queues larger.
2820 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2822 if (set->nr_maps == 1)
2823 return nr_cpu_ids;
2825 return max(set->nr_hw_queues, nr_cpu_ids);
2828 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2829 struct request_queue *q)
2831 /* mark the queue as mq asap */
2832 q->mq_ops = set->ops;
2834 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2835 blk_mq_poll_stats_bkt,
2836 BLK_MQ_POLL_STATS_BKTS, q);
2837 if (!q->poll_cb)
2838 goto err_exit;
2840 if (blk_mq_alloc_ctxs(q))
2841 goto err_exit;
2843 /* init q->mq_kobj and sw queues' kobjects */
2844 blk_mq_sysfs_init(q);
2846 q->nr_queues = nr_hw_queues(set);
2847 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2848 GFP_KERNEL, set->numa_node);
2849 if (!q->queue_hw_ctx)
2850 goto err_sys_init;
2852 blk_mq_realloc_hw_ctxs(set, q);
2853 if (!q->nr_hw_queues)
2854 goto err_hctxs;
2856 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2857 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2859 q->tag_set = set;
2861 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2862 if (set->nr_maps > HCTX_TYPE_POLL &&
2863 set->map[HCTX_TYPE_POLL].nr_queues)
2864 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2866 q->sg_reserved_size = INT_MAX;
2868 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2869 INIT_LIST_HEAD(&q->requeue_list);
2870 spin_lock_init(&q->requeue_lock);
2872 blk_queue_make_request(q, blk_mq_make_request);
2875 * Do this after blk_queue_make_request() overrides it...
2877 q->nr_requests = set->queue_depth;
2880 * Default to classic polling
2882 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2884 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2885 blk_mq_add_queue_tag_set(set, q);
2886 blk_mq_map_swqueue(q);
2888 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2889 int ret;
2891 ret = elevator_init_mq(q);
2892 if (ret)
2893 return ERR_PTR(ret);
2896 return q;
2898 err_hctxs:
2899 kfree(q->queue_hw_ctx);
2900 err_sys_init:
2901 blk_mq_sysfs_deinit(q);
2902 err_exit:
2903 q->mq_ops = NULL;
2904 return ERR_PTR(-ENOMEM);
2906 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2908 void blk_mq_free_queue(struct request_queue *q)
2910 struct blk_mq_tag_set *set = q->tag_set;
2912 blk_mq_del_queue_tag_set(q);
2913 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2916 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2918 int i;
2920 for (i = 0; i < set->nr_hw_queues; i++)
2921 if (!__blk_mq_alloc_rq_map(set, i))
2922 goto out_unwind;
2924 return 0;
2926 out_unwind:
2927 while (--i >= 0)
2928 blk_mq_free_rq_map(set->tags[i]);
2930 return -ENOMEM;
2934 * Allocate the request maps associated with this tag_set. Note that this
2935 * may reduce the depth asked for, if memory is tight. set->queue_depth
2936 * will be updated to reflect the allocated depth.
2938 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2940 unsigned int depth;
2941 int err;
2943 depth = set->queue_depth;
2944 do {
2945 err = __blk_mq_alloc_rq_maps(set);
2946 if (!err)
2947 break;
2949 set->queue_depth >>= 1;
2950 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2951 err = -ENOMEM;
2952 break;
2954 } while (set->queue_depth);
2956 if (!set->queue_depth || err) {
2957 pr_err("blk-mq: failed to allocate request map\n");
2958 return -ENOMEM;
2961 if (depth != set->queue_depth)
2962 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2963 depth, set->queue_depth);
2965 return 0;
2968 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2970 if (set->ops->map_queues && !is_kdump_kernel()) {
2971 int i;
2974 * transport .map_queues is usually done in the following
2975 * way:
2977 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2978 * mask = get_cpu_mask(queue)
2979 * for_each_cpu(cpu, mask)
2980 * set->map[x].mq_map[cpu] = queue;
2983 * When we need to remap, the table has to be cleared for
2984 * killing stale mapping since one CPU may not be mapped
2985 * to any hw queue.
2987 for (i = 0; i < set->nr_maps; i++)
2988 blk_mq_clear_mq_map(&set->map[i]);
2990 return set->ops->map_queues(set);
2991 } else {
2992 BUG_ON(set->nr_maps > 1);
2993 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2998 * Alloc a tag set to be associated with one or more request queues.
2999 * May fail with EINVAL for various error conditions. May adjust the
3000 * requested depth down, if it's too large. In that case, the set
3001 * value will be stored in set->queue_depth.
3003 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3005 int i, ret;
3007 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3009 if (!set->nr_hw_queues)
3010 return -EINVAL;
3011 if (!set->queue_depth)
3012 return -EINVAL;
3013 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3014 return -EINVAL;
3016 if (!set->ops->queue_rq)
3017 return -EINVAL;
3019 if (!set->ops->get_budget ^ !set->ops->put_budget)
3020 return -EINVAL;
3022 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3023 pr_info("blk-mq: reduced tag depth to %u\n",
3024 BLK_MQ_MAX_DEPTH);
3025 set->queue_depth = BLK_MQ_MAX_DEPTH;
3028 if (!set->nr_maps)
3029 set->nr_maps = 1;
3030 else if (set->nr_maps > HCTX_MAX_TYPES)
3031 return -EINVAL;
3034 * If a crashdump is active, then we are potentially in a very
3035 * memory constrained environment. Limit us to 1 queue and
3036 * 64 tags to prevent using too much memory.
3038 if (is_kdump_kernel()) {
3039 set->nr_hw_queues = 1;
3040 set->nr_maps = 1;
3041 set->queue_depth = min(64U, set->queue_depth);
3044 * There is no use for more h/w queues than cpus if we just have
3045 * a single map
3047 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3048 set->nr_hw_queues = nr_cpu_ids;
3050 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3051 GFP_KERNEL, set->numa_node);
3052 if (!set->tags)
3053 return -ENOMEM;
3055 ret = -ENOMEM;
3056 for (i = 0; i < set->nr_maps; i++) {
3057 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3058 sizeof(set->map[i].mq_map[0]),
3059 GFP_KERNEL, set->numa_node);
3060 if (!set->map[i].mq_map)
3061 goto out_free_mq_map;
3062 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3065 ret = blk_mq_update_queue_map(set);
3066 if (ret)
3067 goto out_free_mq_map;
3069 ret = blk_mq_alloc_rq_maps(set);
3070 if (ret)
3071 goto out_free_mq_map;
3073 mutex_init(&set->tag_list_lock);
3074 INIT_LIST_HEAD(&set->tag_list);
3076 return 0;
3078 out_free_mq_map:
3079 for (i = 0; i < set->nr_maps; i++) {
3080 kfree(set->map[i].mq_map);
3081 set->map[i].mq_map = NULL;
3083 kfree(set->tags);
3084 set->tags = NULL;
3085 return ret;
3087 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3089 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3091 int i, j;
3093 for (i = 0; i < nr_hw_queues(set); i++)
3094 blk_mq_free_map_and_requests(set, i);
3096 for (j = 0; j < set->nr_maps; j++) {
3097 kfree(set->map[j].mq_map);
3098 set->map[j].mq_map = NULL;
3101 kfree(set->tags);
3102 set->tags = NULL;
3104 EXPORT_SYMBOL(blk_mq_free_tag_set);
3106 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3108 struct blk_mq_tag_set *set = q->tag_set;
3109 struct blk_mq_hw_ctx *hctx;
3110 int i, ret;
3112 if (!set)
3113 return -EINVAL;
3115 if (q->nr_requests == nr)
3116 return 0;
3118 blk_mq_freeze_queue(q);
3119 blk_mq_quiesce_queue(q);
3121 ret = 0;
3122 queue_for_each_hw_ctx(q, hctx, i) {
3123 if (!hctx->tags)
3124 continue;
3126 * If we're using an MQ scheduler, just update the scheduler
3127 * queue depth. This is similar to what the old code would do.
3129 if (!hctx->sched_tags) {
3130 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3131 false);
3132 } else {
3133 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3134 nr, true);
3136 if (ret)
3137 break;
3138 if (q->elevator && q->elevator->type->ops.depth_updated)
3139 q->elevator->type->ops.depth_updated(hctx);
3142 if (!ret)
3143 q->nr_requests = nr;
3145 blk_mq_unquiesce_queue(q);
3146 blk_mq_unfreeze_queue(q);
3148 return ret;
3152 * request_queue and elevator_type pair.
3153 * It is just used by __blk_mq_update_nr_hw_queues to cache
3154 * the elevator_type associated with a request_queue.
3156 struct blk_mq_qe_pair {
3157 struct list_head node;
3158 struct request_queue *q;
3159 struct elevator_type *type;
3163 * Cache the elevator_type in qe pair list and switch the
3164 * io scheduler to 'none'
3166 static bool blk_mq_elv_switch_none(struct list_head *head,
3167 struct request_queue *q)
3169 struct blk_mq_qe_pair *qe;
3171 if (!q->elevator)
3172 return true;
3174 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3175 if (!qe)
3176 return false;
3178 INIT_LIST_HEAD(&qe->node);
3179 qe->q = q;
3180 qe->type = q->elevator->type;
3181 list_add(&qe->node, head);
3183 mutex_lock(&q->sysfs_lock);
3185 * After elevator_switch_mq, the previous elevator_queue will be
3186 * released by elevator_release. The reference of the io scheduler
3187 * module get by elevator_get will also be put. So we need to get
3188 * a reference of the io scheduler module here to prevent it to be
3189 * removed.
3191 __module_get(qe->type->elevator_owner);
3192 elevator_switch_mq(q, NULL);
3193 mutex_unlock(&q->sysfs_lock);
3195 return true;
3198 static void blk_mq_elv_switch_back(struct list_head *head,
3199 struct request_queue *q)
3201 struct blk_mq_qe_pair *qe;
3202 struct elevator_type *t = NULL;
3204 list_for_each_entry(qe, head, node)
3205 if (qe->q == q) {
3206 t = qe->type;
3207 break;
3210 if (!t)
3211 return;
3213 list_del(&qe->node);
3214 kfree(qe);
3216 mutex_lock(&q->sysfs_lock);
3217 elevator_switch_mq(q, t);
3218 mutex_unlock(&q->sysfs_lock);
3221 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3222 int nr_hw_queues)
3224 struct request_queue *q;
3225 LIST_HEAD(head);
3226 int prev_nr_hw_queues;
3228 lockdep_assert_held(&set->tag_list_lock);
3230 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3231 nr_hw_queues = nr_cpu_ids;
3232 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3233 return;
3235 list_for_each_entry(q, &set->tag_list, tag_set_list)
3236 blk_mq_freeze_queue(q);
3238 * Sync with blk_mq_queue_tag_busy_iter.
3240 synchronize_rcu();
3242 * Switch IO scheduler to 'none', cleaning up the data associated
3243 * with the previous scheduler. We will switch back once we are done
3244 * updating the new sw to hw queue mappings.
3246 list_for_each_entry(q, &set->tag_list, tag_set_list)
3247 if (!blk_mq_elv_switch_none(&head, q))
3248 goto switch_back;
3250 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3251 blk_mq_debugfs_unregister_hctxs(q);
3252 blk_mq_sysfs_unregister(q);
3255 prev_nr_hw_queues = set->nr_hw_queues;
3256 set->nr_hw_queues = nr_hw_queues;
3257 blk_mq_update_queue_map(set);
3258 fallback:
3259 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3260 blk_mq_realloc_hw_ctxs(set, q);
3261 if (q->nr_hw_queues != set->nr_hw_queues) {
3262 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3263 nr_hw_queues, prev_nr_hw_queues);
3264 set->nr_hw_queues = prev_nr_hw_queues;
3265 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3266 goto fallback;
3268 blk_mq_map_swqueue(q);
3271 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3272 blk_mq_sysfs_register(q);
3273 blk_mq_debugfs_register_hctxs(q);
3276 switch_back:
3277 list_for_each_entry(q, &set->tag_list, tag_set_list)
3278 blk_mq_elv_switch_back(&head, q);
3280 list_for_each_entry(q, &set->tag_list, tag_set_list)
3281 blk_mq_unfreeze_queue(q);
3284 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3286 mutex_lock(&set->tag_list_lock);
3287 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3288 mutex_unlock(&set->tag_list_lock);
3290 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3292 /* Enable polling stats and return whether they were already enabled. */
3293 static bool blk_poll_stats_enable(struct request_queue *q)
3295 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3296 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3297 return true;
3298 blk_stat_add_callback(q, q->poll_cb);
3299 return false;
3302 static void blk_mq_poll_stats_start(struct request_queue *q)
3305 * We don't arm the callback if polling stats are not enabled or the
3306 * callback is already active.
3308 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3309 blk_stat_is_active(q->poll_cb))
3310 return;
3312 blk_stat_activate_msecs(q->poll_cb, 100);
3315 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3317 struct request_queue *q = cb->data;
3318 int bucket;
3320 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3321 if (cb->stat[bucket].nr_samples)
3322 q->poll_stat[bucket] = cb->stat[bucket];
3326 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3327 struct blk_mq_hw_ctx *hctx,
3328 struct request *rq)
3330 unsigned long ret = 0;
3331 int bucket;
3334 * If stats collection isn't on, don't sleep but turn it on for
3335 * future users
3337 if (!blk_poll_stats_enable(q))
3338 return 0;
3341 * As an optimistic guess, use half of the mean service time
3342 * for this type of request. We can (and should) make this smarter.
3343 * For instance, if the completion latencies are tight, we can
3344 * get closer than just half the mean. This is especially
3345 * important on devices where the completion latencies are longer
3346 * than ~10 usec. We do use the stats for the relevant IO size
3347 * if available which does lead to better estimates.
3349 bucket = blk_mq_poll_stats_bkt(rq);
3350 if (bucket < 0)
3351 return ret;
3353 if (q->poll_stat[bucket].nr_samples)
3354 ret = (q->poll_stat[bucket].mean + 1) / 2;
3356 return ret;
3359 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3360 struct blk_mq_hw_ctx *hctx,
3361 struct request *rq)
3363 struct hrtimer_sleeper hs;
3364 enum hrtimer_mode mode;
3365 unsigned int nsecs;
3366 ktime_t kt;
3368 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3369 return false;
3372 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3374 * 0: use half of prev avg
3375 * >0: use this specific value
3377 if (q->poll_nsec > 0)
3378 nsecs = q->poll_nsec;
3379 else
3380 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3382 if (!nsecs)
3383 return false;
3385 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3388 * This will be replaced with the stats tracking code, using
3389 * 'avg_completion_time / 2' as the pre-sleep target.
3391 kt = nsecs;
3393 mode = HRTIMER_MODE_REL;
3394 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3395 hrtimer_set_expires(&hs.timer, kt);
3397 hrtimer_init_sleeper(&hs, current);
3398 do {
3399 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3400 break;
3401 set_current_state(TASK_UNINTERRUPTIBLE);
3402 hrtimer_start_expires(&hs.timer, mode);
3403 if (hs.task)
3404 io_schedule();
3405 hrtimer_cancel(&hs.timer);
3406 mode = HRTIMER_MODE_ABS;
3407 } while (hs.task && !signal_pending(current));
3409 __set_current_state(TASK_RUNNING);
3410 destroy_hrtimer_on_stack(&hs.timer);
3411 return true;
3414 static bool blk_mq_poll_hybrid(struct request_queue *q,
3415 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3417 struct request *rq;
3419 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3420 return false;
3422 if (!blk_qc_t_is_internal(cookie))
3423 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3424 else {
3425 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3427 * With scheduling, if the request has completed, we'll
3428 * get a NULL return here, as we clear the sched tag when
3429 * that happens. The request still remains valid, like always,
3430 * so we should be safe with just the NULL check.
3432 if (!rq)
3433 return false;
3436 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3440 * blk_poll - poll for IO completions
3441 * @q: the queue
3442 * @cookie: cookie passed back at IO submission time
3443 * @spin: whether to spin for completions
3445 * Description:
3446 * Poll for completions on the passed in queue. Returns number of
3447 * completed entries found. If @spin is true, then blk_poll will continue
3448 * looping until at least one completion is found, unless the task is
3449 * otherwise marked running (or we need to reschedule).
3451 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3453 struct blk_mq_hw_ctx *hctx;
3454 long state;
3456 if (!blk_qc_t_valid(cookie) ||
3457 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3458 return 0;
3460 if (current->plug)
3461 blk_flush_plug_list(current->plug, false);
3463 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3466 * If we sleep, have the caller restart the poll loop to reset
3467 * the state. Like for the other success return cases, the
3468 * caller is responsible for checking if the IO completed. If
3469 * the IO isn't complete, we'll get called again and will go
3470 * straight to the busy poll loop.
3472 if (blk_mq_poll_hybrid(q, hctx, cookie))
3473 return 1;
3475 hctx->poll_considered++;
3477 state = current->state;
3478 do {
3479 int ret;
3481 hctx->poll_invoked++;
3483 ret = q->mq_ops->poll(hctx);
3484 if (ret > 0) {
3485 hctx->poll_success++;
3486 __set_current_state(TASK_RUNNING);
3487 return ret;
3490 if (signal_pending_state(state, current))
3491 __set_current_state(TASK_RUNNING);
3493 if (current->state == TASK_RUNNING)
3494 return 1;
3495 if (ret < 0 || !spin)
3496 break;
3497 cpu_relax();
3498 } while (!need_resched());
3500 __set_current_state(TASK_RUNNING);
3501 return 0;
3503 EXPORT_SYMBOL_GPL(blk_poll);
3505 unsigned int blk_mq_rq_cpu(struct request *rq)
3507 return rq->mq_ctx->cpu;
3509 EXPORT_SYMBOL(blk_mq_rq_cpu);
3511 static int __init blk_mq_init(void)
3513 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3514 blk_mq_hctx_notify_dead);
3515 return 0;
3517 subsys_initcall(blk_mq_init);