1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sched/coredump.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/utsname.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/module.h>
27 #include <linux/namei.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/cn_proc.h>
33 #include <linux/audit.h>
34 #include <linux/tracehook.h>
35 #include <linux/kmod.h>
36 #include <linux/fsnotify.h>
37 #include <linux/fs_struct.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/oom.h>
40 #include <linux/compat.h>
42 #include <linux/path.h>
43 #include <linux/timekeeping.h>
45 #include <linux/uaccess.h>
46 #include <asm/mmu_context.h>
50 #include <trace/events/task.h>
53 #include <trace/events/sched.h>
56 unsigned int core_pipe_limit
;
57 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
58 static int core_name_size
= CORENAME_MAX_SIZE
;
65 /* The maximal length of core_pattern is also specified in sysctl.c */
67 static int expand_corename(struct core_name
*cn
, int size
)
69 char *corename
= krealloc(cn
->corename
, size
, GFP_KERNEL
);
74 if (size
> core_name_size
) /* racy but harmless */
75 core_name_size
= size
;
77 cn
->size
= ksize(corename
);
78 cn
->corename
= corename
;
82 static __printf(2, 0) int cn_vprintf(struct core_name
*cn
, const char *fmt
,
89 free
= cn
->size
- cn
->used
;
91 va_copy(arg_copy
, arg
);
92 need
= vsnprintf(cn
->corename
+ cn
->used
, free
, fmt
, arg_copy
);
100 if (!expand_corename(cn
, cn
->size
+ need
- free
+ 1))
106 static __printf(2, 3) int cn_printf(struct core_name
*cn
, const char *fmt
, ...)
112 ret
= cn_vprintf(cn
, fmt
, arg
);
118 static __printf(2, 3)
119 int cn_esc_printf(struct core_name
*cn
, const char *fmt
, ...)
126 ret
= cn_vprintf(cn
, fmt
, arg
);
131 * Ensure that this coredump name component can't cause the
132 * resulting corefile path to consist of a ".." or ".".
134 if ((cn
->used
- cur
== 1 && cn
->corename
[cur
] == '.') ||
135 (cn
->used
- cur
== 2 && cn
->corename
[cur
] == '.'
136 && cn
->corename
[cur
+1] == '.'))
137 cn
->corename
[cur
] = '!';
140 * Empty names are fishy and could be used to create a "//" in a
141 * corefile name, causing the coredump to happen one directory
142 * level too high. Enforce that all components of the core
143 * pattern are at least one character long.
146 ret
= cn_printf(cn
, "!");
149 for (; cur
< cn
->used
; ++cur
) {
150 if (cn
->corename
[cur
] == '/')
151 cn
->corename
[cur
] = '!';
156 static int cn_print_exe_file(struct core_name
*cn
)
158 struct file
*exe_file
;
159 char *pathbuf
, *path
;
162 exe_file
= get_mm_exe_file(current
->mm
);
164 return cn_esc_printf(cn
, "%s (path unknown)", current
->comm
);
166 pathbuf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
172 path
= file_path(exe_file
, pathbuf
, PATH_MAX
);
178 ret
= cn_esc_printf(cn
, "%s", path
);
187 /* format_corename will inspect the pattern parameter, and output a
188 * name into corename, which must have space for at least
189 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
191 static int format_corename(struct core_name
*cn
, struct coredump_params
*cprm
,
192 size_t **argv
, int *argc
)
194 const struct cred
*cred
= current_cred();
195 const char *pat_ptr
= core_pattern
;
196 int ispipe
= (*pat_ptr
== '|');
197 bool was_space
= false;
198 int pid_in_pattern
= 0;
203 if (expand_corename(cn
, core_name_size
))
205 cn
->corename
[0] = '\0';
208 int argvs
= sizeof(core_pattern
) / 2;
209 (*argv
) = kmalloc_array(argvs
, sizeof(**argv
), GFP_KERNEL
);
212 (*argv
)[(*argc
)++] = 0;
218 /* Repeat as long as we have more pattern to process and more output
222 * Split on spaces before doing template expansion so that
223 * %e and %E don't get split if they have spaces in them
226 if (isspace(*pat_ptr
)) {
230 } else if (was_space
) {
232 err
= cn_printf(cn
, "%c", '\0');
235 (*argv
)[(*argc
)++] = cn
->used
;
238 if (*pat_ptr
!= '%') {
239 err
= cn_printf(cn
, "%c", *pat_ptr
++);
241 switch (*++pat_ptr
) {
242 /* single % at the end, drop that */
245 /* Double percent, output one percent */
247 err
= cn_printf(cn
, "%c", '%');
252 err
= cn_printf(cn
, "%d",
253 task_tgid_vnr(current
));
257 err
= cn_printf(cn
, "%d",
258 task_tgid_nr(current
));
261 err
= cn_printf(cn
, "%d",
262 task_pid_vnr(current
));
265 err
= cn_printf(cn
, "%d",
266 task_pid_nr(current
));
270 err
= cn_printf(cn
, "%u",
271 from_kuid(&init_user_ns
,
276 err
= cn_printf(cn
, "%u",
277 from_kgid(&init_user_ns
,
281 err
= cn_printf(cn
, "%d",
282 __get_dumpable(cprm
->mm_flags
));
284 /* signal that caused the coredump */
286 err
= cn_printf(cn
, "%d",
287 cprm
->siginfo
->si_signo
);
289 /* UNIX time of coredump */
293 time
= ktime_get_real_seconds();
294 err
= cn_printf(cn
, "%lld", time
);
300 err
= cn_esc_printf(cn
, "%s",
301 utsname()->nodename
);
306 err
= cn_esc_printf(cn
, "%s", current
->comm
);
309 err
= cn_print_exe_file(cn
);
311 /* core limit size */
313 err
= cn_printf(cn
, "%lu",
314 rlimit(RLIMIT_CORE
));
327 /* Backward compatibility with core_uses_pid:
329 * If core_pattern does not include a %p (as is the default)
330 * and core_uses_pid is set, then .%pid will be appended to
331 * the filename. Do not do this for piped commands. */
332 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
333 err
= cn_printf(cn
, ".%d", task_tgid_vnr(current
));
340 static int zap_process(struct task_struct
*start
, int exit_code
, int flags
)
342 struct task_struct
*t
;
345 /* ignore all signals except SIGKILL, see prepare_signal() */
346 start
->signal
->flags
= SIGNAL_GROUP_COREDUMP
| flags
;
347 start
->signal
->group_exit_code
= exit_code
;
348 start
->signal
->group_stop_count
= 0;
350 for_each_thread(start
, t
) {
351 task_clear_jobctl_pending(t
, JOBCTL_PENDING_MASK
);
352 if (t
!= current
&& t
->mm
) {
353 sigaddset(&t
->pending
.signal
, SIGKILL
);
354 signal_wake_up(t
, 1);
362 static int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
363 struct core_state
*core_state
, int exit_code
)
365 struct task_struct
*g
, *p
;
369 spin_lock_irq(&tsk
->sighand
->siglock
);
370 if (!signal_group_exit(tsk
->signal
)) {
371 mm
->core_state
= core_state
;
372 tsk
->signal
->group_exit_task
= tsk
;
373 nr
= zap_process(tsk
, exit_code
, 0);
374 clear_tsk_thread_flag(tsk
, TIF_SIGPENDING
);
376 spin_unlock_irq(&tsk
->sighand
->siglock
);
377 if (unlikely(nr
< 0))
380 tsk
->flags
|= PF_DUMPCORE
;
381 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
384 * We should find and kill all tasks which use this mm, and we should
385 * count them correctly into ->nr_threads. We don't take tasklist
386 * lock, but this is safe wrt:
389 * None of sub-threads can fork after zap_process(leader). All
390 * processes which were created before this point should be
391 * visible to zap_threads() because copy_process() adds the new
392 * process to the tail of init_task.tasks list, and lock/unlock
393 * of ->siglock provides a memory barrier.
396 * The caller holds mm->mmap_sem. This means that the task which
397 * uses this mm can't pass exit_mm(), so it can't exit or clear
401 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
402 * we must see either old or new leader, this does not matter.
403 * However, it can change p->sighand, so lock_task_sighand(p)
404 * must be used. Since p->mm != NULL and we hold ->mmap_sem
407 * Note also that "g" can be the old leader with ->mm == NULL
408 * and already unhashed and thus removed from ->thread_group.
409 * This is OK, __unhash_process()->list_del_rcu() does not
410 * clear the ->next pointer, we will find the new leader via
414 for_each_process(g
) {
415 if (g
== tsk
->group_leader
)
417 if (g
->flags
& PF_KTHREAD
)
420 for_each_thread(g
, p
) {
421 if (unlikely(!p
->mm
))
423 if (unlikely(p
->mm
== mm
)) {
424 lock_task_sighand(p
, &flags
);
425 nr
+= zap_process(p
, exit_code
,
427 unlock_task_sighand(p
, &flags
);
434 atomic_set(&core_state
->nr_threads
, nr
);
438 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
440 struct task_struct
*tsk
= current
;
441 struct mm_struct
*mm
= tsk
->mm
;
442 int core_waiters
= -EBUSY
;
444 init_completion(&core_state
->startup
);
445 core_state
->dumper
.task
= tsk
;
446 core_state
->dumper
.next
= NULL
;
448 if (down_write_killable(&mm
->mmap_sem
))
452 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
453 up_write(&mm
->mmap_sem
);
455 if (core_waiters
> 0) {
456 struct core_thread
*ptr
;
458 freezer_do_not_count();
459 wait_for_completion(&core_state
->startup
);
462 * Wait for all the threads to become inactive, so that
463 * all the thread context (extended register state, like
464 * fpu etc) gets copied to the memory.
466 ptr
= core_state
->dumper
.next
;
467 while (ptr
!= NULL
) {
468 wait_task_inactive(ptr
->task
, 0);
476 static void coredump_finish(struct mm_struct
*mm
, bool core_dumped
)
478 struct core_thread
*curr
, *next
;
479 struct task_struct
*task
;
481 spin_lock_irq(¤t
->sighand
->siglock
);
482 if (core_dumped
&& !__fatal_signal_pending(current
))
483 current
->signal
->group_exit_code
|= 0x80;
484 current
->signal
->group_exit_task
= NULL
;
485 current
->signal
->flags
= SIGNAL_GROUP_EXIT
;
486 spin_unlock_irq(¤t
->sighand
->siglock
);
488 next
= mm
->core_state
->dumper
.next
;
489 while ((curr
= next
) != NULL
) {
493 * see exit_mm(), curr->task must not see
494 * ->task == NULL before we read ->next.
498 wake_up_process(task
);
501 mm
->core_state
= NULL
;
504 static bool dump_interrupted(void)
507 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
508 * can do try_to_freeze() and check __fatal_signal_pending(),
509 * but then we need to teach dump_write() to restart and clear
512 return signal_pending(current
);
515 static void wait_for_dump_helpers(struct file
*file
)
517 struct pipe_inode_info
*pipe
= file
->private_data
;
522 wake_up_interruptible_sync(&pipe
->wait
);
523 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
527 * We actually want wait_event_freezable() but then we need
528 * to clear TIF_SIGPENDING and improve dump_interrupted().
530 wait_event_interruptible(pipe
->wait
, pipe
->readers
== 1);
540 * helper function to customize the process used
541 * to collect the core in userspace. Specifically
542 * it sets up a pipe and installs it as fd 0 (stdin)
543 * for the process. Returns 0 on success, or
544 * PTR_ERR on failure.
545 * Note that it also sets the core limit to 1. This
546 * is a special value that we use to trap recursive
549 static int umh_pipe_setup(struct subprocess_info
*info
, struct cred
*new)
551 struct file
*files
[2];
552 struct coredump_params
*cp
= (struct coredump_params
*)info
->data
;
553 int err
= create_pipe_files(files
, 0);
559 err
= replace_fd(0, files
[0], 0);
561 /* and disallow core files too */
562 current
->signal
->rlim
[RLIMIT_CORE
] = (struct rlimit
){1, 1};
567 void do_coredump(const kernel_siginfo_t
*siginfo
)
569 struct core_state core_state
;
571 struct mm_struct
*mm
= current
->mm
;
572 struct linux_binfmt
* binfmt
;
573 const struct cred
*old_cred
;
579 struct files_struct
*displaced
;
580 /* require nonrelative corefile path and be extra careful */
581 bool need_suid_safe
= false;
582 bool core_dumped
= false;
583 static atomic_t core_dump_count
= ATOMIC_INIT(0);
584 struct coredump_params cprm
= {
586 .regs
= signal_pt_regs(),
587 .limit
= rlimit(RLIMIT_CORE
),
589 * We must use the same mm->flags while dumping core to avoid
590 * inconsistency of bit flags, since this flag is not protected
593 .mm_flags
= mm
->flags
,
596 audit_core_dumps(siginfo
->si_signo
);
599 if (!binfmt
|| !binfmt
->core_dump
)
601 if (!__get_dumpable(cprm
.mm_flags
))
604 cred
= prepare_creds();
608 * We cannot trust fsuid as being the "true" uid of the process
609 * nor do we know its entire history. We only know it was tainted
610 * so we dump it as root in mode 2, and only into a controlled
611 * environment (pipe handler or fully qualified path).
613 if (__get_dumpable(cprm
.mm_flags
) == SUID_DUMP_ROOT
) {
614 /* Setuid core dump mode */
615 cred
->fsuid
= GLOBAL_ROOT_UID
; /* Dump root private */
616 need_suid_safe
= true;
619 retval
= coredump_wait(siginfo
->si_signo
, &core_state
);
623 old_cred
= override_creds(cred
);
625 ispipe
= format_corename(&cn
, &cprm
, &argv
, &argc
);
631 struct subprocess_info
*sub_info
;
634 printk(KERN_WARNING
"format_corename failed\n");
635 printk(KERN_WARNING
"Aborting core\n");
639 if (cprm
.limit
== 1) {
640 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
642 * Normally core limits are irrelevant to pipes, since
643 * we're not writing to the file system, but we use
644 * cprm.limit of 1 here as a special value, this is a
645 * consistent way to catch recursive crashes.
646 * We can still crash if the core_pattern binary sets
647 * RLIM_CORE = !1, but it runs as root, and can do
648 * lots of stupid things.
650 * Note that we use task_tgid_vnr here to grab the pid
651 * of the process group leader. That way we get the
652 * right pid if a thread in a multi-threaded
653 * core_pattern process dies.
656 "Process %d(%s) has RLIMIT_CORE set to 1\n",
657 task_tgid_vnr(current
), current
->comm
);
658 printk(KERN_WARNING
"Aborting core\n");
661 cprm
.limit
= RLIM_INFINITY
;
663 dump_count
= atomic_inc_return(&core_dump_count
);
664 if (core_pipe_limit
&& (core_pipe_limit
< dump_count
)) {
665 printk(KERN_WARNING
"Pid %d(%s) over core_pipe_limit\n",
666 task_tgid_vnr(current
), current
->comm
);
667 printk(KERN_WARNING
"Skipping core dump\n");
671 helper_argv
= kmalloc_array(argc
+ 1, sizeof(*helper_argv
),
674 printk(KERN_WARNING
"%s failed to allocate memory\n",
678 for (argi
= 0; argi
< argc
; argi
++)
679 helper_argv
[argi
] = cn
.corename
+ argv
[argi
];
680 helper_argv
[argi
] = NULL
;
683 sub_info
= call_usermodehelper_setup(helper_argv
[0],
684 helper_argv
, NULL
, GFP_KERNEL
,
685 umh_pipe_setup
, NULL
, &cprm
);
687 retval
= call_usermodehelper_exec(sub_info
,
692 printk(KERN_INFO
"Core dump to |%s pipe failed\n",
698 int open_flags
= O_CREAT
| O_RDWR
| O_NOFOLLOW
|
699 O_LARGEFILE
| O_EXCL
;
701 if (cprm
.limit
< binfmt
->min_coredump
)
704 if (need_suid_safe
&& cn
.corename
[0] != '/') {
705 printk(KERN_WARNING
"Pid %d(%s) can only dump core "\
706 "to fully qualified path!\n",
707 task_tgid_vnr(current
), current
->comm
);
708 printk(KERN_WARNING
"Skipping core dump\n");
713 * Unlink the file if it exists unless this is a SUID
714 * binary - in that case, we're running around with root
715 * privs and don't want to unlink another user's coredump.
717 if (!need_suid_safe
) {
719 * If it doesn't exist, that's fine. If there's some
720 * other problem, we'll catch it at the filp_open().
722 do_unlinkat(AT_FDCWD
, getname_kernel(cn
.corename
));
726 * There is a race between unlinking and creating the
727 * file, but if that causes an EEXIST here, that's
728 * fine - another process raced with us while creating
729 * the corefile, and the other process won. To userspace,
730 * what matters is that at least one of the two processes
731 * writes its coredump successfully, not which one.
733 if (need_suid_safe
) {
735 * Using user namespaces, normal user tasks can change
736 * their current->fs->root to point to arbitrary
737 * directories. Since the intention of the "only dump
738 * with a fully qualified path" rule is to control where
739 * coredumps may be placed using root privileges,
740 * current->fs->root must not be used. Instead, use the
741 * root directory of init_task.
745 task_lock(&init_task
);
746 get_fs_root(init_task
.fs
, &root
);
747 task_unlock(&init_task
);
748 cprm
.file
= file_open_root(root
.dentry
, root
.mnt
,
749 cn
.corename
, open_flags
, 0600);
752 cprm
.file
= filp_open(cn
.corename
, open_flags
, 0600);
754 if (IS_ERR(cprm
.file
))
757 inode
= file_inode(cprm
.file
);
758 if (inode
->i_nlink
> 1)
760 if (d_unhashed(cprm
.file
->f_path
.dentry
))
763 * AK: actually i see no reason to not allow this for named
764 * pipes etc, but keep the previous behaviour for now.
766 if (!S_ISREG(inode
->i_mode
))
769 * Don't dump core if the filesystem changed owner or mode
770 * of the file during file creation. This is an issue when
771 * a process dumps core while its cwd is e.g. on a vfat
774 if (!uid_eq(inode
->i_uid
, current_fsuid()))
776 if ((inode
->i_mode
& 0677) != 0600)
778 if (!(cprm
.file
->f_mode
& FMODE_CAN_WRITE
))
780 if (do_truncate(cprm
.file
->f_path
.dentry
, 0, 0, cprm
.file
))
784 /* get us an unshared descriptor table; almost always a no-op */
785 retval
= unshare_files(&displaced
);
789 put_files_struct(displaced
);
790 if (!dump_interrupted()) {
792 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
793 * have this set to NULL.
796 pr_info("Core dump to |%s disabled\n", cn
.corename
);
799 file_start_write(cprm
.file
);
800 core_dumped
= binfmt
->core_dump(&cprm
);
801 file_end_write(cprm
.file
);
803 if (ispipe
&& core_pipe_limit
)
804 wait_for_dump_helpers(cprm
.file
);
807 filp_close(cprm
.file
, NULL
);
810 atomic_dec(&core_dump_count
);
814 coredump_finish(mm
, core_dumped
);
815 revert_creds(old_cred
);
823 * Core dumping helper functions. These are the only things you should
824 * do on a core-file: use only these functions to write out all the
827 int dump_emit(struct coredump_params
*cprm
, const void *addr
, int nr
)
829 struct file
*file
= cprm
->file
;
830 loff_t pos
= file
->f_pos
;
832 if (cprm
->written
+ nr
> cprm
->limit
)
835 if (dump_interrupted())
837 n
= __kernel_write(file
, addr
, nr
, &pos
);
847 EXPORT_SYMBOL(dump_emit
);
849 int dump_skip(struct coredump_params
*cprm
, size_t nr
)
851 static char zeroes
[PAGE_SIZE
];
852 struct file
*file
= cprm
->file
;
853 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
854 if (dump_interrupted() ||
855 file
->f_op
->llseek(file
, nr
, SEEK_CUR
) < 0)
860 while (nr
> PAGE_SIZE
) {
861 if (!dump_emit(cprm
, zeroes
, PAGE_SIZE
))
865 return dump_emit(cprm
, zeroes
, nr
);
868 EXPORT_SYMBOL(dump_skip
);
870 int dump_align(struct coredump_params
*cprm
, int align
)
872 unsigned mod
= cprm
->pos
& (align
- 1);
873 if (align
& (align
- 1))
875 return mod
? dump_skip(cprm
, align
- mod
) : 1;
877 EXPORT_SYMBOL(dump_align
);
880 * Ensures that file size is big enough to contain the current file
881 * postion. This prevents gdb from complaining about a truncated file
882 * if the last "write" to the file was dump_skip.
884 void dump_truncate(struct coredump_params
*cprm
)
886 struct file
*file
= cprm
->file
;
889 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
890 offset
= file
->f_op
->llseek(file
, 0, SEEK_CUR
);
891 if (i_size_read(file
->f_mapping
->host
) < offset
)
892 do_truncate(file
->f_path
.dentry
, offset
, 0, file
);
895 EXPORT_SYMBOL(dump_truncate
);