1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * #!-checking implemented by tytso.
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/pipe_fs_i.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
67 #include <linux/uaccess.h>
68 #include <asm/mmu_context.h>
71 #include <trace/events/task.h>
74 #include <trace/events/sched.h>
76 int suid_dumpable
= 0;
78 static LIST_HEAD(formats
);
79 static DEFINE_RWLOCK(binfmt_lock
);
81 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
84 if (WARN_ON(!fmt
->load_binary
))
86 write_lock(&binfmt_lock
);
87 insert
? list_add(&fmt
->lh
, &formats
) :
88 list_add_tail(&fmt
->lh
, &formats
);
89 write_unlock(&binfmt_lock
);
92 EXPORT_SYMBOL(__register_binfmt
);
94 void unregister_binfmt(struct linux_binfmt
* fmt
)
96 write_lock(&binfmt_lock
);
98 write_unlock(&binfmt_lock
);
101 EXPORT_SYMBOL(unregister_binfmt
);
103 static inline void put_binfmt(struct linux_binfmt
* fmt
)
105 module_put(fmt
->module
);
108 bool path_noexec(const struct path
*path
)
110 return (path
->mnt
->mnt_flags
& MNT_NOEXEC
) ||
111 (path
->mnt
->mnt_sb
->s_iflags
& SB_I_NOEXEC
);
116 * Note that a shared library must be both readable and executable due to
119 * Also note that we take the address to load from from the file itself.
121 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
123 struct linux_binfmt
*fmt
;
125 struct filename
*tmp
= getname(library
);
126 int error
= PTR_ERR(tmp
);
127 static const struct open_flags uselib_flags
= {
128 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
129 .acc_mode
= MAY_READ
| MAY_EXEC
,
130 .intent
= LOOKUP_OPEN
,
131 .lookup_flags
= LOOKUP_FOLLOW
,
137 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
139 error
= PTR_ERR(file
);
144 if (!S_ISREG(file_inode(file
)->i_mode
))
148 if (path_noexec(&file
->f_path
))
155 read_lock(&binfmt_lock
);
156 list_for_each_entry(fmt
, &formats
, lh
) {
157 if (!fmt
->load_shlib
)
159 if (!try_module_get(fmt
->module
))
161 read_unlock(&binfmt_lock
);
162 error
= fmt
->load_shlib(file
);
163 read_lock(&binfmt_lock
);
165 if (error
!= -ENOEXEC
)
168 read_unlock(&binfmt_lock
);
174 #endif /* #ifdef CONFIG_USELIB */
178 * The nascent bprm->mm is not visible until exec_mmap() but it can
179 * use a lot of memory, account these pages in current->mm temporary
180 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
181 * change the counter back via acct_arg_size(0).
183 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
185 struct mm_struct
*mm
= current
->mm
;
186 long diff
= (long)(pages
- bprm
->vma_pages
);
191 bprm
->vma_pages
= pages
;
192 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
195 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
200 unsigned int gup_flags
= FOLL_FORCE
;
202 #ifdef CONFIG_STACK_GROWSUP
204 ret
= expand_downwards(bprm
->vma
, pos
);
211 gup_flags
|= FOLL_WRITE
;
214 * We are doing an exec(). 'current' is the process
215 * doing the exec and bprm->mm is the new process's mm.
217 ret
= get_user_pages_remote(current
, bprm
->mm
, pos
, 1, gup_flags
,
223 acct_arg_size(bprm
, vma_pages(bprm
->vma
));
228 static void put_arg_page(struct page
*page
)
233 static void free_arg_pages(struct linux_binprm
*bprm
)
237 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
240 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
243 static int __bprm_mm_init(struct linux_binprm
*bprm
)
246 struct vm_area_struct
*vma
= NULL
;
247 struct mm_struct
*mm
= bprm
->mm
;
249 bprm
->vma
= vma
= vm_area_alloc(mm
);
252 vma_set_anonymous(vma
);
254 if (down_write_killable(&mm
->mmap_sem
)) {
260 * Place the stack at the largest stack address the architecture
261 * supports. Later, we'll move this to an appropriate place. We don't
262 * use STACK_TOP because that can depend on attributes which aren't
265 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
266 vma
->vm_end
= STACK_TOP_MAX
;
267 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
268 vma
->vm_flags
= VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
269 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
271 err
= insert_vm_struct(mm
, vma
);
275 mm
->stack_vm
= mm
->total_vm
= 1;
276 arch_bprm_mm_init(mm
, vma
);
277 up_write(&mm
->mmap_sem
);
278 bprm
->p
= vma
->vm_end
- sizeof(void *);
281 up_write(&mm
->mmap_sem
);
288 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
290 return len
<= MAX_ARG_STRLEN
;
295 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
299 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
304 page
= bprm
->page
[pos
/ PAGE_SIZE
];
305 if (!page
&& write
) {
306 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
309 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
315 static void put_arg_page(struct page
*page
)
319 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
322 __free_page(bprm
->page
[i
]);
323 bprm
->page
[i
] = NULL
;
327 static void free_arg_pages(struct linux_binprm
*bprm
)
331 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
332 free_arg_page(bprm
, i
);
335 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
340 static int __bprm_mm_init(struct linux_binprm
*bprm
)
342 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
346 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
348 return len
<= bprm
->p
;
351 #endif /* CONFIG_MMU */
354 * Create a new mm_struct and populate it with a temporary stack
355 * vm_area_struct. We don't have enough context at this point to set the stack
356 * flags, permissions, and offset, so we use temporary values. We'll update
357 * them later in setup_arg_pages().
359 static int bprm_mm_init(struct linux_binprm
*bprm
)
362 struct mm_struct
*mm
= NULL
;
364 bprm
->mm
= mm
= mm_alloc();
369 /* Save current stack limit for all calculations made during exec. */
370 task_lock(current
->group_leader
);
371 bprm
->rlim_stack
= current
->signal
->rlim
[RLIMIT_STACK
];
372 task_unlock(current
->group_leader
);
374 err
= __bprm_mm_init(bprm
);
389 struct user_arg_ptr
{
394 const char __user
*const __user
*native
;
396 const compat_uptr_t __user
*compat
;
401 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
403 const char __user
*native
;
406 if (unlikely(argv
.is_compat
)) {
407 compat_uptr_t compat
;
409 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
410 return ERR_PTR(-EFAULT
);
412 return compat_ptr(compat
);
416 if (get_user(native
, argv
.ptr
.native
+ nr
))
417 return ERR_PTR(-EFAULT
);
423 * count() counts the number of strings in array ARGV.
425 static int count(struct user_arg_ptr argv
, int max
)
429 if (argv
.ptr
.native
!= NULL
) {
431 const char __user
*p
= get_user_arg_ptr(argv
, i
);
443 if (fatal_signal_pending(current
))
444 return -ERESTARTNOHAND
;
451 static int prepare_arg_pages(struct linux_binprm
*bprm
,
452 struct user_arg_ptr argv
, struct user_arg_ptr envp
)
454 unsigned long limit
, ptr_size
;
456 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
460 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
465 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
466 * (whichever is smaller) for the argv+env strings.
468 * - the remaining binfmt code will not run out of stack space,
469 * - the program will have a reasonable amount of stack left
472 limit
= _STK_LIM
/ 4 * 3;
473 limit
= min(limit
, bprm
->rlim_stack
.rlim_cur
/ 4);
475 * We've historically supported up to 32 pages (ARG_MAX)
476 * of argument strings even with small stacks
478 limit
= max_t(unsigned long, limit
, ARG_MAX
);
480 * We must account for the size of all the argv and envp pointers to
481 * the argv and envp strings, since they will also take up space in
482 * the stack. They aren't stored until much later when we can't
483 * signal to the parent that the child has run out of stack space.
484 * Instead, calculate it here so it's possible to fail gracefully.
486 ptr_size
= (bprm
->argc
+ bprm
->envc
) * sizeof(void *);
487 if (limit
<= ptr_size
)
491 bprm
->argmin
= bprm
->p
- limit
;
496 * 'copy_strings()' copies argument/environment strings from the old
497 * processes's memory to the new process's stack. The call to get_user_pages()
498 * ensures the destination page is created and not swapped out.
500 static int copy_strings(int argc
, struct user_arg_ptr argv
,
501 struct linux_binprm
*bprm
)
503 struct page
*kmapped_page
= NULL
;
505 unsigned long kpos
= 0;
509 const char __user
*str
;
514 str
= get_user_arg_ptr(argv
, argc
);
518 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
523 if (!valid_arg_len(bprm
, len
))
526 /* We're going to work our way backwords. */
531 if (bprm
->p
< bprm
->argmin
)
536 int offset
, bytes_to_copy
;
538 if (fatal_signal_pending(current
)) {
539 ret
= -ERESTARTNOHAND
;
544 offset
= pos
% PAGE_SIZE
;
548 bytes_to_copy
= offset
;
549 if (bytes_to_copy
> len
)
552 offset
-= bytes_to_copy
;
553 pos
-= bytes_to_copy
;
554 str
-= bytes_to_copy
;
555 len
-= bytes_to_copy
;
557 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
560 page
= get_arg_page(bprm
, pos
, 1);
567 flush_kernel_dcache_page(kmapped_page
);
568 kunmap(kmapped_page
);
569 put_arg_page(kmapped_page
);
572 kaddr
= kmap(kmapped_page
);
573 kpos
= pos
& PAGE_MASK
;
574 flush_arg_page(bprm
, kpos
, kmapped_page
);
576 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
585 flush_kernel_dcache_page(kmapped_page
);
586 kunmap(kmapped_page
);
587 put_arg_page(kmapped_page
);
593 * Like copy_strings, but get argv and its values from kernel memory.
595 int copy_strings_kernel(int argc
, const char *const *__argv
,
596 struct linux_binprm
*bprm
)
599 mm_segment_t oldfs
= get_fs();
600 struct user_arg_ptr argv
= {
601 .ptr
.native
= (const char __user
*const __user
*)__argv
,
605 r
= copy_strings(argc
, argv
, bprm
);
610 EXPORT_SYMBOL(copy_strings_kernel
);
615 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
616 * the binfmt code determines where the new stack should reside, we shift it to
617 * its final location. The process proceeds as follows:
619 * 1) Use shift to calculate the new vma endpoints.
620 * 2) Extend vma to cover both the old and new ranges. This ensures the
621 * arguments passed to subsequent functions are consistent.
622 * 3) Move vma's page tables to the new range.
623 * 4) Free up any cleared pgd range.
624 * 5) Shrink the vma to cover only the new range.
626 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
628 struct mm_struct
*mm
= vma
->vm_mm
;
629 unsigned long old_start
= vma
->vm_start
;
630 unsigned long old_end
= vma
->vm_end
;
631 unsigned long length
= old_end
- old_start
;
632 unsigned long new_start
= old_start
- shift
;
633 unsigned long new_end
= old_end
- shift
;
634 struct mmu_gather tlb
;
636 BUG_ON(new_start
> new_end
);
639 * ensure there are no vmas between where we want to go
642 if (vma
!= find_vma(mm
, new_start
))
646 * cover the whole range: [new_start, old_end)
648 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
652 * move the page tables downwards, on failure we rely on
653 * process cleanup to remove whatever mess we made.
655 if (length
!= move_page_tables(vma
, old_start
,
656 vma
, new_start
, length
, false))
660 tlb_gather_mmu(&tlb
, mm
, old_start
, old_end
);
661 if (new_end
> old_start
) {
663 * when the old and new regions overlap clear from new_end.
665 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
666 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
669 * otherwise, clean from old_start; this is done to not touch
670 * the address space in [new_end, old_start) some architectures
671 * have constraints on va-space that make this illegal (IA64) -
672 * for the others its just a little faster.
674 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
675 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
677 tlb_finish_mmu(&tlb
, old_start
, old_end
);
680 * Shrink the vma to just the new range. Always succeeds.
682 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
688 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
689 * the stack is optionally relocated, and some extra space is added.
691 int setup_arg_pages(struct linux_binprm
*bprm
,
692 unsigned long stack_top
,
693 int executable_stack
)
696 unsigned long stack_shift
;
697 struct mm_struct
*mm
= current
->mm
;
698 struct vm_area_struct
*vma
= bprm
->vma
;
699 struct vm_area_struct
*prev
= NULL
;
700 unsigned long vm_flags
;
701 unsigned long stack_base
;
702 unsigned long stack_size
;
703 unsigned long stack_expand
;
704 unsigned long rlim_stack
;
706 #ifdef CONFIG_STACK_GROWSUP
707 /* Limit stack size */
708 stack_base
= bprm
->rlim_stack
.rlim_max
;
709 if (stack_base
> STACK_SIZE_MAX
)
710 stack_base
= STACK_SIZE_MAX
;
712 /* Add space for stack randomization. */
713 stack_base
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
715 /* Make sure we didn't let the argument array grow too large. */
716 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
719 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
721 stack_shift
= vma
->vm_start
- stack_base
;
722 mm
->arg_start
= bprm
->p
- stack_shift
;
723 bprm
->p
= vma
->vm_end
- stack_shift
;
725 stack_top
= arch_align_stack(stack_top
);
726 stack_top
= PAGE_ALIGN(stack_top
);
728 if (unlikely(stack_top
< mmap_min_addr
) ||
729 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
732 stack_shift
= vma
->vm_end
- stack_top
;
734 bprm
->p
-= stack_shift
;
735 mm
->arg_start
= bprm
->p
;
739 bprm
->loader
-= stack_shift
;
740 bprm
->exec
-= stack_shift
;
742 if (down_write_killable(&mm
->mmap_sem
))
745 vm_flags
= VM_STACK_FLAGS
;
748 * Adjust stack execute permissions; explicitly enable for
749 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
750 * (arch default) otherwise.
752 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
754 else if (executable_stack
== EXSTACK_DISABLE_X
)
755 vm_flags
&= ~VM_EXEC
;
756 vm_flags
|= mm
->def_flags
;
757 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
759 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
765 /* Move stack pages down in memory. */
767 ret
= shift_arg_pages(vma
, stack_shift
);
772 /* mprotect_fixup is overkill to remove the temporary stack flags */
773 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
775 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
776 stack_size
= vma
->vm_end
- vma
->vm_start
;
778 * Align this down to a page boundary as expand_stack
781 rlim_stack
= bprm
->rlim_stack
.rlim_cur
& PAGE_MASK
;
782 #ifdef CONFIG_STACK_GROWSUP
783 if (stack_size
+ stack_expand
> rlim_stack
)
784 stack_base
= vma
->vm_start
+ rlim_stack
;
786 stack_base
= vma
->vm_end
+ stack_expand
;
788 if (stack_size
+ stack_expand
> rlim_stack
)
789 stack_base
= vma
->vm_end
- rlim_stack
;
791 stack_base
= vma
->vm_start
- stack_expand
;
793 current
->mm
->start_stack
= bprm
->p
;
794 ret
= expand_stack(vma
, stack_base
);
799 up_write(&mm
->mmap_sem
);
802 EXPORT_SYMBOL(setup_arg_pages
);
807 * Transfer the program arguments and environment from the holding pages
808 * onto the stack. The provided stack pointer is adjusted accordingly.
810 int transfer_args_to_stack(struct linux_binprm
*bprm
,
811 unsigned long *sp_location
)
813 unsigned long index
, stop
, sp
;
816 stop
= bprm
->p
>> PAGE_SHIFT
;
819 for (index
= MAX_ARG_PAGES
- 1; index
>= stop
; index
--) {
820 unsigned int offset
= index
== stop
? bprm
->p
& ~PAGE_MASK
: 0;
821 char *src
= kmap(bprm
->page
[index
]) + offset
;
822 sp
-= PAGE_SIZE
- offset
;
823 if (copy_to_user((void *) sp
, src
, PAGE_SIZE
- offset
) != 0)
825 kunmap(bprm
->page
[index
]);
835 EXPORT_SYMBOL(transfer_args_to_stack
);
837 #endif /* CONFIG_MMU */
839 static struct file
*do_open_execat(int fd
, struct filename
*name
, int flags
)
843 struct open_flags open_exec_flags
= {
844 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
845 .acc_mode
= MAY_EXEC
,
846 .intent
= LOOKUP_OPEN
,
847 .lookup_flags
= LOOKUP_FOLLOW
,
850 if ((flags
& ~(AT_SYMLINK_NOFOLLOW
| AT_EMPTY_PATH
)) != 0)
851 return ERR_PTR(-EINVAL
);
852 if (flags
& AT_SYMLINK_NOFOLLOW
)
853 open_exec_flags
.lookup_flags
&= ~LOOKUP_FOLLOW
;
854 if (flags
& AT_EMPTY_PATH
)
855 open_exec_flags
.lookup_flags
|= LOOKUP_EMPTY
;
857 file
= do_filp_open(fd
, name
, &open_exec_flags
);
862 if (!S_ISREG(file_inode(file
)->i_mode
))
865 if (path_noexec(&file
->f_path
))
868 err
= deny_write_access(file
);
872 if (name
->name
[0] != '\0')
883 struct file
*open_exec(const char *name
)
885 struct filename
*filename
= getname_kernel(name
);
886 struct file
*f
= ERR_CAST(filename
);
888 if (!IS_ERR(filename
)) {
889 f
= do_open_execat(AT_FDCWD
, filename
, 0);
894 EXPORT_SYMBOL(open_exec
);
896 int kernel_read_file(struct file
*file
, void **buf
, loff_t
*size
,
897 loff_t max_size
, enum kernel_read_file_id id
)
903 if (!S_ISREG(file_inode(file
)->i_mode
) || max_size
< 0)
906 ret
= deny_write_access(file
);
910 ret
= security_kernel_read_file(file
, id
);
914 i_size
= i_size_read(file_inode(file
));
919 if (i_size
> SIZE_MAX
|| (max_size
> 0 && i_size
> max_size
)) {
924 if (id
!= READING_FIRMWARE_PREALLOC_BUFFER
)
925 *buf
= vmalloc(i_size
);
932 while (pos
< i_size
) {
933 bytes
= kernel_read(file
, *buf
+ pos
, i_size
- pos
, &pos
);
948 ret
= security_kernel_post_read_file(file
, *buf
, i_size
, id
);
954 if (id
!= READING_FIRMWARE_PREALLOC_BUFFER
) {
961 allow_write_access(file
);
964 EXPORT_SYMBOL_GPL(kernel_read_file
);
966 int kernel_read_file_from_path(const char *path
, void **buf
, loff_t
*size
,
967 loff_t max_size
, enum kernel_read_file_id id
)
975 file
= filp_open(path
, O_RDONLY
, 0);
977 return PTR_ERR(file
);
979 ret
= kernel_read_file(file
, buf
, size
, max_size
, id
);
983 EXPORT_SYMBOL_GPL(kernel_read_file_from_path
);
985 int kernel_read_file_from_fd(int fd
, void **buf
, loff_t
*size
, loff_t max_size
,
986 enum kernel_read_file_id id
)
988 struct fd f
= fdget(fd
);
994 ret
= kernel_read_file(f
.file
, buf
, size
, max_size
, id
);
999 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd
);
1001 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
1003 ssize_t res
= vfs_read(file
, (void __user
*)addr
, len
, &pos
);
1005 flush_icache_range(addr
, addr
+ len
);
1008 EXPORT_SYMBOL(read_code
);
1010 static int exec_mmap(struct mm_struct
*mm
)
1012 struct task_struct
*tsk
;
1013 struct mm_struct
*old_mm
, *active_mm
;
1015 /* Notify parent that we're no longer interested in the old VM */
1017 old_mm
= current
->mm
;
1018 exec_mm_release(tsk
, old_mm
);
1021 sync_mm_rss(old_mm
);
1023 * Make sure that if there is a core dump in progress
1024 * for the old mm, we get out and die instead of going
1025 * through with the exec. We must hold mmap_sem around
1026 * checking core_state and changing tsk->mm.
1028 down_read(&old_mm
->mmap_sem
);
1029 if (unlikely(old_mm
->core_state
)) {
1030 up_read(&old_mm
->mmap_sem
);
1035 active_mm
= tsk
->active_mm
;
1036 membarrier_exec_mmap(mm
);
1038 tsk
->active_mm
= mm
;
1039 activate_mm(active_mm
, mm
);
1040 tsk
->mm
->vmacache_seqnum
= 0;
1041 vmacache_flush(tsk
);
1044 up_read(&old_mm
->mmap_sem
);
1045 BUG_ON(active_mm
!= old_mm
);
1046 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
1047 mm_update_next_owner(old_mm
);
1056 * This function makes sure the current process has its own signal table,
1057 * so that flush_signal_handlers can later reset the handlers without
1058 * disturbing other processes. (Other processes might share the signal
1059 * table via the CLONE_SIGHAND option to clone().)
1061 static int de_thread(struct task_struct
*tsk
)
1063 struct signal_struct
*sig
= tsk
->signal
;
1064 struct sighand_struct
*oldsighand
= tsk
->sighand
;
1065 spinlock_t
*lock
= &oldsighand
->siglock
;
1067 if (thread_group_empty(tsk
))
1068 goto no_thread_group
;
1071 * Kill all other threads in the thread group.
1073 spin_lock_irq(lock
);
1074 if (signal_group_exit(sig
)) {
1076 * Another group action in progress, just
1077 * return so that the signal is processed.
1079 spin_unlock_irq(lock
);
1083 sig
->group_exit_task
= tsk
;
1084 sig
->notify_count
= zap_other_threads(tsk
);
1085 if (!thread_group_leader(tsk
))
1086 sig
->notify_count
--;
1088 while (sig
->notify_count
) {
1089 __set_current_state(TASK_KILLABLE
);
1090 spin_unlock_irq(lock
);
1092 if (__fatal_signal_pending(tsk
))
1094 spin_lock_irq(lock
);
1096 spin_unlock_irq(lock
);
1099 * At this point all other threads have exited, all we have to
1100 * do is to wait for the thread group leader to become inactive,
1101 * and to assume its PID:
1103 if (!thread_group_leader(tsk
)) {
1104 struct task_struct
*leader
= tsk
->group_leader
;
1107 cgroup_threadgroup_change_begin(tsk
);
1108 write_lock_irq(&tasklist_lock
);
1110 * Do this under tasklist_lock to ensure that
1111 * exit_notify() can't miss ->group_exit_task
1113 sig
->notify_count
= -1;
1114 if (likely(leader
->exit_state
))
1116 __set_current_state(TASK_KILLABLE
);
1117 write_unlock_irq(&tasklist_lock
);
1118 cgroup_threadgroup_change_end(tsk
);
1120 if (__fatal_signal_pending(tsk
))
1125 * The only record we have of the real-time age of a
1126 * process, regardless of execs it's done, is start_time.
1127 * All the past CPU time is accumulated in signal_struct
1128 * from sister threads now dead. But in this non-leader
1129 * exec, nothing survives from the original leader thread,
1130 * whose birth marks the true age of this process now.
1131 * When we take on its identity by switching to its PID, we
1132 * also take its birthdate (always earlier than our own).
1134 tsk
->start_time
= leader
->start_time
;
1135 tsk
->real_start_time
= leader
->real_start_time
;
1137 BUG_ON(!same_thread_group(leader
, tsk
));
1138 BUG_ON(has_group_leader_pid(tsk
));
1140 * An exec() starts a new thread group with the
1141 * TGID of the previous thread group. Rehash the
1142 * two threads with a switched PID, and release
1143 * the former thread group leader:
1146 /* Become a process group leader with the old leader's pid.
1147 * The old leader becomes a thread of the this thread group.
1148 * Note: The old leader also uses this pid until release_task
1149 * is called. Odd but simple and correct.
1151 tsk
->pid
= leader
->pid
;
1152 change_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
1153 transfer_pid(leader
, tsk
, PIDTYPE_TGID
);
1154 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
1155 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
1157 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
1158 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
1160 tsk
->group_leader
= tsk
;
1161 leader
->group_leader
= tsk
;
1163 tsk
->exit_signal
= SIGCHLD
;
1164 leader
->exit_signal
= -1;
1166 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
1167 leader
->exit_state
= EXIT_DEAD
;
1170 * We are going to release_task()->ptrace_unlink() silently,
1171 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1172 * the tracer wont't block again waiting for this thread.
1174 if (unlikely(leader
->ptrace
))
1175 __wake_up_parent(leader
, leader
->parent
);
1176 write_unlock_irq(&tasklist_lock
);
1177 cgroup_threadgroup_change_end(tsk
);
1179 release_task(leader
);
1182 sig
->group_exit_task
= NULL
;
1183 sig
->notify_count
= 0;
1186 /* we have changed execution domain */
1187 tsk
->exit_signal
= SIGCHLD
;
1189 #ifdef CONFIG_POSIX_TIMERS
1191 flush_itimer_signals();
1194 if (refcount_read(&oldsighand
->count
) != 1) {
1195 struct sighand_struct
*newsighand
;
1197 * This ->sighand is shared with the CLONE_SIGHAND
1198 * but not CLONE_THREAD task, switch to the new one.
1200 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1204 refcount_set(&newsighand
->count
, 1);
1205 memcpy(newsighand
->action
, oldsighand
->action
,
1206 sizeof(newsighand
->action
));
1208 write_lock_irq(&tasklist_lock
);
1209 spin_lock(&oldsighand
->siglock
);
1210 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1211 spin_unlock(&oldsighand
->siglock
);
1212 write_unlock_irq(&tasklist_lock
);
1214 __cleanup_sighand(oldsighand
);
1217 BUG_ON(!thread_group_leader(tsk
));
1221 /* protects against exit_notify() and __exit_signal() */
1222 read_lock(&tasklist_lock
);
1223 sig
->group_exit_task
= NULL
;
1224 sig
->notify_count
= 0;
1225 read_unlock(&tasklist_lock
);
1229 char *__get_task_comm(char *buf
, size_t buf_size
, struct task_struct
*tsk
)
1232 strncpy(buf
, tsk
->comm
, buf_size
);
1236 EXPORT_SYMBOL_GPL(__get_task_comm
);
1239 * These functions flushes out all traces of the currently running executable
1240 * so that a new one can be started
1243 void __set_task_comm(struct task_struct
*tsk
, const char *buf
, bool exec
)
1246 trace_task_rename(tsk
, buf
);
1247 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1249 perf_event_comm(tsk
, exec
);
1253 * Calling this is the point of no return. None of the failures will be
1254 * seen by userspace since either the process is already taking a fatal
1255 * signal (via de_thread() or coredump), or will have SEGV raised
1256 * (after exec_mmap()) by search_binary_handlers (see below).
1258 int flush_old_exec(struct linux_binprm
* bprm
)
1263 * Make sure we have a private signal table and that
1264 * we are unassociated from the previous thread group.
1266 retval
= de_thread(current
);
1271 * Must be called _before_ exec_mmap() as bprm->mm is
1272 * not visibile until then. This also enables the update
1275 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1277 would_dump(bprm
, bprm
->file
);
1280 * Release all of the old mmap stuff
1282 acct_arg_size(bprm
, 0);
1283 retval
= exec_mmap(bprm
->mm
);
1288 * After clearing bprm->mm (to mark that current is using the
1289 * prepared mm now), we have nothing left of the original
1290 * process. If anything from here on returns an error, the check
1291 * in search_binary_handler() will SEGV current.
1296 current
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
|
1297 PF_NOFREEZE
| PF_NO_SETAFFINITY
);
1299 current
->personality
&= ~bprm
->per_clear
;
1302 * We have to apply CLOEXEC before we change whether the process is
1303 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1304 * trying to access the should-be-closed file descriptors of a process
1305 * undergoing exec(2).
1307 do_close_on_exec(current
->files
);
1313 EXPORT_SYMBOL(flush_old_exec
);
1315 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1317 struct inode
*inode
= file_inode(file
);
1318 if (inode_permission(inode
, MAY_READ
) < 0) {
1319 struct user_namespace
*old
, *user_ns
;
1320 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1322 /* Ensure mm->user_ns contains the executable */
1323 user_ns
= old
= bprm
->mm
->user_ns
;
1324 while ((user_ns
!= &init_user_ns
) &&
1325 !privileged_wrt_inode_uidgid(user_ns
, inode
))
1326 user_ns
= user_ns
->parent
;
1328 if (old
!= user_ns
) {
1329 bprm
->mm
->user_ns
= get_user_ns(user_ns
);
1334 EXPORT_SYMBOL(would_dump
);
1336 void setup_new_exec(struct linux_binprm
* bprm
)
1339 * Once here, prepare_binrpm() will not be called any more, so
1340 * the final state of setuid/setgid/fscaps can be merged into the
1343 bprm
->secureexec
|= bprm
->cap_elevated
;
1345 if (bprm
->secureexec
) {
1346 /* Make sure parent cannot signal privileged process. */
1347 current
->pdeath_signal
= 0;
1350 * For secureexec, reset the stack limit to sane default to
1351 * avoid bad behavior from the prior rlimits. This has to
1352 * happen before arch_pick_mmap_layout(), which examines
1353 * RLIMIT_STACK, but after the point of no return to avoid
1354 * needing to clean up the change on failure.
1356 if (bprm
->rlim_stack
.rlim_cur
> _STK_LIM
)
1357 bprm
->rlim_stack
.rlim_cur
= _STK_LIM
;
1360 arch_pick_mmap_layout(current
->mm
, &bprm
->rlim_stack
);
1362 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1365 * Figure out dumpability. Note that this checking only of current
1366 * is wrong, but userspace depends on it. This should be testing
1367 * bprm->secureexec instead.
1369 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
||
1370 !(uid_eq(current_euid(), current_uid()) &&
1371 gid_eq(current_egid(), current_gid())))
1372 set_dumpable(current
->mm
, suid_dumpable
);
1374 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1376 arch_setup_new_exec();
1378 __set_task_comm(current
, kbasename(bprm
->filename
), true);
1380 /* Set the new mm task size. We have to do that late because it may
1381 * depend on TIF_32BIT which is only updated in flush_thread() on
1382 * some architectures like powerpc
1384 current
->mm
->task_size
= TASK_SIZE
;
1386 /* An exec changes our domain. We are no longer part of the thread
1388 WRITE_ONCE(current
->self_exec_id
, current
->self_exec_id
+ 1);
1389 flush_signal_handlers(current
, 0);
1391 EXPORT_SYMBOL(setup_new_exec
);
1393 /* Runs immediately before start_thread() takes over. */
1394 void finalize_exec(struct linux_binprm
*bprm
)
1396 /* Store any stack rlimit changes before starting thread. */
1397 task_lock(current
->group_leader
);
1398 current
->signal
->rlim
[RLIMIT_STACK
] = bprm
->rlim_stack
;
1399 task_unlock(current
->group_leader
);
1401 EXPORT_SYMBOL(finalize_exec
);
1404 * Prepare credentials and lock ->cred_guard_mutex.
1405 * install_exec_creds() commits the new creds and drops the lock.
1406 * Or, if exec fails before, free_bprm() should release ->cred and
1409 static int prepare_bprm_creds(struct linux_binprm
*bprm
)
1411 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1412 return -ERESTARTNOINTR
;
1414 bprm
->cred
= prepare_exec_creds();
1415 if (likely(bprm
->cred
))
1418 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1422 static void free_bprm(struct linux_binprm
*bprm
)
1424 free_arg_pages(bprm
);
1426 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1427 abort_creds(bprm
->cred
);
1430 allow_write_access(bprm
->file
);
1433 /* If a binfmt changed the interp, free it. */
1434 if (bprm
->interp
!= bprm
->filename
)
1435 kfree(bprm
->interp
);
1439 int bprm_change_interp(const char *interp
, struct linux_binprm
*bprm
)
1441 /* If a binfmt changed the interp, free it first. */
1442 if (bprm
->interp
!= bprm
->filename
)
1443 kfree(bprm
->interp
);
1444 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1449 EXPORT_SYMBOL(bprm_change_interp
);
1452 * install the new credentials for this executable
1454 void install_exec_creds(struct linux_binprm
*bprm
)
1456 security_bprm_committing_creds(bprm
);
1458 commit_creds(bprm
->cred
);
1462 * Disable monitoring for regular users
1463 * when executing setuid binaries. Must
1464 * wait until new credentials are committed
1465 * by commit_creds() above
1467 if (get_dumpable(current
->mm
) != SUID_DUMP_USER
)
1468 perf_event_exit_task(current
);
1470 * cred_guard_mutex must be held at least to this point to prevent
1471 * ptrace_attach() from altering our determination of the task's
1472 * credentials; any time after this it may be unlocked.
1474 security_bprm_committed_creds(bprm
);
1475 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1477 EXPORT_SYMBOL(install_exec_creds
);
1480 * determine how safe it is to execute the proposed program
1481 * - the caller must hold ->cred_guard_mutex to protect against
1482 * PTRACE_ATTACH or seccomp thread-sync
1484 static void check_unsafe_exec(struct linux_binprm
*bprm
)
1486 struct task_struct
*p
= current
, *t
;
1490 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1493 * This isn't strictly necessary, but it makes it harder for LSMs to
1496 if (task_no_new_privs(current
))
1497 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1501 spin_lock(&p
->fs
->lock
);
1503 while_each_thread(p
, t
) {
1509 if (p
->fs
->users
> n_fs
)
1510 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1513 spin_unlock(&p
->fs
->lock
);
1516 static void bprm_fill_uid(struct linux_binprm
*bprm
)
1518 struct inode
*inode
;
1524 * Since this can be called multiple times (via prepare_binprm),
1525 * we must clear any previous work done when setting set[ug]id
1526 * bits from any earlier bprm->file uses (for example when run
1527 * first for a setuid script then again for its interpreter).
1529 bprm
->cred
->euid
= current_euid();
1530 bprm
->cred
->egid
= current_egid();
1532 if (!mnt_may_suid(bprm
->file
->f_path
.mnt
))
1535 if (task_no_new_privs(current
))
1538 inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1539 mode
= READ_ONCE(inode
->i_mode
);
1540 if (!(mode
& (S_ISUID
|S_ISGID
)))
1543 /* Be careful if suid/sgid is set */
1546 /* reload atomically mode/uid/gid now that lock held */
1547 mode
= inode
->i_mode
;
1550 inode_unlock(inode
);
1552 /* We ignore suid/sgid if there are no mappings for them in the ns */
1553 if (!kuid_has_mapping(bprm
->cred
->user_ns
, uid
) ||
1554 !kgid_has_mapping(bprm
->cred
->user_ns
, gid
))
1557 if (mode
& S_ISUID
) {
1558 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1559 bprm
->cred
->euid
= uid
;
1562 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1563 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1564 bprm
->cred
->egid
= gid
;
1569 * Fill the binprm structure from the inode.
1570 * Check permissions, then read the first BINPRM_BUF_SIZE bytes
1572 * This may be called multiple times for binary chains (scripts for example).
1574 int prepare_binprm(struct linux_binprm
*bprm
)
1579 bprm_fill_uid(bprm
);
1581 /* fill in binprm security blob */
1582 retval
= security_bprm_set_creds(bprm
);
1585 bprm
->called_set_creds
= 1;
1587 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1588 return kernel_read(bprm
->file
, bprm
->buf
, BINPRM_BUF_SIZE
, &pos
);
1591 EXPORT_SYMBOL(prepare_binprm
);
1594 * Arguments are '\0' separated strings found at the location bprm->p
1595 * points to; chop off the first by relocating brpm->p to right after
1596 * the first '\0' encountered.
1598 int remove_arg_zero(struct linux_binprm
*bprm
)
1601 unsigned long offset
;
1609 offset
= bprm
->p
& ~PAGE_MASK
;
1610 page
= get_arg_page(bprm
, bprm
->p
, 0);
1615 kaddr
= kmap_atomic(page
);
1617 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1618 offset
++, bprm
->p
++)
1621 kunmap_atomic(kaddr
);
1623 } while (offset
== PAGE_SIZE
);
1632 EXPORT_SYMBOL(remove_arg_zero
);
1634 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1636 * cycle the list of binary formats handler, until one recognizes the image
1638 int search_binary_handler(struct linux_binprm
*bprm
)
1640 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1641 struct linux_binfmt
*fmt
;
1644 /* This allows 4 levels of binfmt rewrites before failing hard. */
1645 if (bprm
->recursion_depth
> 5)
1648 retval
= security_bprm_check(bprm
);
1654 read_lock(&binfmt_lock
);
1655 list_for_each_entry(fmt
, &formats
, lh
) {
1656 if (!try_module_get(fmt
->module
))
1658 read_unlock(&binfmt_lock
);
1660 bprm
->recursion_depth
++;
1661 retval
= fmt
->load_binary(bprm
);
1662 bprm
->recursion_depth
--;
1664 read_lock(&binfmt_lock
);
1666 if (retval
< 0 && !bprm
->mm
) {
1667 /* we got to flush_old_exec() and failed after it */
1668 read_unlock(&binfmt_lock
);
1669 force_sigsegv(SIGSEGV
);
1672 if (retval
!= -ENOEXEC
|| !bprm
->file
) {
1673 read_unlock(&binfmt_lock
);
1677 read_unlock(&binfmt_lock
);
1680 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1681 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1683 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1691 EXPORT_SYMBOL(search_binary_handler
);
1693 static int exec_binprm(struct linux_binprm
*bprm
)
1695 pid_t old_pid
, old_vpid
;
1698 /* Need to fetch pid before load_binary changes it */
1699 old_pid
= current
->pid
;
1701 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1704 ret
= search_binary_handler(bprm
);
1707 trace_sched_process_exec(current
, old_pid
, bprm
);
1708 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1709 proc_exec_connector(current
);
1716 * sys_execve() executes a new program.
1718 static int __do_execve_file(int fd
, struct filename
*filename
,
1719 struct user_arg_ptr argv
,
1720 struct user_arg_ptr envp
,
1721 int flags
, struct file
*file
)
1723 char *pathbuf
= NULL
;
1724 struct linux_binprm
*bprm
;
1725 struct files_struct
*displaced
;
1728 if (IS_ERR(filename
))
1729 return PTR_ERR(filename
);
1732 * We move the actual failure in case of RLIMIT_NPROC excess from
1733 * set*uid() to execve() because too many poorly written programs
1734 * don't check setuid() return code. Here we additionally recheck
1735 * whether NPROC limit is still exceeded.
1737 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1738 atomic_read(¤t_user()->processes
) > rlimit(RLIMIT_NPROC
)) {
1743 /* We're below the limit (still or again), so we don't want to make
1744 * further execve() calls fail. */
1745 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1747 retval
= unshare_files(&displaced
);
1752 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1756 retval
= prepare_bprm_creds(bprm
);
1760 check_unsafe_exec(bprm
);
1761 current
->in_execve
= 1;
1764 file
= do_open_execat(fd
, filename
, flags
);
1765 retval
= PTR_ERR(file
);
1773 bprm
->filename
= "none";
1774 } else if (fd
== AT_FDCWD
|| filename
->name
[0] == '/') {
1775 bprm
->filename
= filename
->name
;
1777 if (filename
->name
[0] == '\0')
1778 pathbuf
= kasprintf(GFP_KERNEL
, "/dev/fd/%d", fd
);
1780 pathbuf
= kasprintf(GFP_KERNEL
, "/dev/fd/%d/%s",
1781 fd
, filename
->name
);
1787 * Record that a name derived from an O_CLOEXEC fd will be
1788 * inaccessible after exec. Relies on having exclusive access to
1789 * current->files (due to unshare_files above).
1791 if (close_on_exec(fd
, rcu_dereference_raw(current
->files
->fdt
)))
1792 bprm
->interp_flags
|= BINPRM_FLAGS_PATH_INACCESSIBLE
;
1793 bprm
->filename
= pathbuf
;
1795 bprm
->interp
= bprm
->filename
;
1797 retval
= bprm_mm_init(bprm
);
1801 retval
= prepare_arg_pages(bprm
, argv
, envp
);
1805 retval
= prepare_binprm(bprm
);
1809 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1813 bprm
->exec
= bprm
->p
;
1814 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1818 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1822 retval
= exec_binprm(bprm
);
1826 /* execve succeeded */
1827 current
->fs
->in_exec
= 0;
1828 current
->in_execve
= 0;
1829 rseq_execve(current
);
1830 acct_update_integrals(current
);
1831 task_numa_free(current
, false);
1837 put_files_struct(displaced
);
1842 acct_arg_size(bprm
, 0);
1847 current
->fs
->in_exec
= 0;
1848 current
->in_execve
= 0;
1856 reset_files_struct(displaced
);
1863 static int do_execveat_common(int fd
, struct filename
*filename
,
1864 struct user_arg_ptr argv
,
1865 struct user_arg_ptr envp
,
1868 return __do_execve_file(fd
, filename
, argv
, envp
, flags
, NULL
);
1871 int do_execve_file(struct file
*file
, void *__argv
, void *__envp
)
1873 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1874 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1876 return __do_execve_file(AT_FDCWD
, NULL
, argv
, envp
, 0, file
);
1879 int do_execve(struct filename
*filename
,
1880 const char __user
*const __user
*__argv
,
1881 const char __user
*const __user
*__envp
)
1883 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1884 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1885 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1888 int do_execveat(int fd
, struct filename
*filename
,
1889 const char __user
*const __user
*__argv
,
1890 const char __user
*const __user
*__envp
,
1893 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1894 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1896 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1899 #ifdef CONFIG_COMPAT
1900 static int compat_do_execve(struct filename
*filename
,
1901 const compat_uptr_t __user
*__argv
,
1902 const compat_uptr_t __user
*__envp
)
1904 struct user_arg_ptr argv
= {
1906 .ptr
.compat
= __argv
,
1908 struct user_arg_ptr envp
= {
1910 .ptr
.compat
= __envp
,
1912 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1915 static int compat_do_execveat(int fd
, struct filename
*filename
,
1916 const compat_uptr_t __user
*__argv
,
1917 const compat_uptr_t __user
*__envp
,
1920 struct user_arg_ptr argv
= {
1922 .ptr
.compat
= __argv
,
1924 struct user_arg_ptr envp
= {
1926 .ptr
.compat
= __envp
,
1928 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1932 void set_binfmt(struct linux_binfmt
*new)
1934 struct mm_struct
*mm
= current
->mm
;
1937 module_put(mm
->binfmt
->module
);
1941 __module_get(new->module
);
1943 EXPORT_SYMBOL(set_binfmt
);
1946 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1948 void set_dumpable(struct mm_struct
*mm
, int value
)
1950 if (WARN_ON((unsigned)value
> SUID_DUMP_ROOT
))
1953 set_mask_bits(&mm
->flags
, MMF_DUMPABLE_MASK
, value
);
1956 SYSCALL_DEFINE3(execve
,
1957 const char __user
*, filename
,
1958 const char __user
*const __user
*, argv
,
1959 const char __user
*const __user
*, envp
)
1961 return do_execve(getname(filename
), argv
, envp
);
1964 SYSCALL_DEFINE5(execveat
,
1965 int, fd
, const char __user
*, filename
,
1966 const char __user
*const __user
*, argv
,
1967 const char __user
*const __user
*, envp
,
1970 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1972 return do_execveat(fd
,
1973 getname_flags(filename
, lookup_flags
, NULL
),
1977 #ifdef CONFIG_COMPAT
1978 COMPAT_SYSCALL_DEFINE3(execve
, const char __user
*, filename
,
1979 const compat_uptr_t __user
*, argv
,
1980 const compat_uptr_t __user
*, envp
)
1982 return compat_do_execve(getname(filename
), argv
, envp
);
1985 COMPAT_SYSCALL_DEFINE5(execveat
, int, fd
,
1986 const char __user
*, filename
,
1987 const compat_uptr_t __user
*, argv
,
1988 const compat_uptr_t __user
*, envp
,
1991 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1993 return compat_do_execveat(fd
,
1994 getname_flags(filename
, lookup_flags
, NULL
),