x86/cpu: Use pinning mask for CR4 bits needing to be 0
[linux/fpc-iii.git] / fs / exec.c
blobd62cd1d71098f88e6abaa9ad9a378056daa7e656
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
8 /*
9 * #!-checking implemented by tytso.
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/pipe_fs_i.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
67 #include <linux/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/tlb.h>
71 #include <trace/events/task.h>
72 #include "internal.h"
74 #include <trace/events/sched.h>
76 int suid_dumpable = 0;
78 static LIST_HEAD(formats);
79 static DEFINE_RWLOCK(binfmt_lock);
81 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 BUG_ON(!fmt);
84 if (WARN_ON(!fmt->load_binary))
85 return;
86 write_lock(&binfmt_lock);
87 insert ? list_add(&fmt->lh, &formats) :
88 list_add_tail(&fmt->lh, &formats);
89 write_unlock(&binfmt_lock);
92 EXPORT_SYMBOL(__register_binfmt);
94 void unregister_binfmt(struct linux_binfmt * fmt)
96 write_lock(&binfmt_lock);
97 list_del(&fmt->lh);
98 write_unlock(&binfmt_lock);
101 EXPORT_SYMBOL(unregister_binfmt);
103 static inline void put_binfmt(struct linux_binfmt * fmt)
105 module_put(fmt->module);
108 bool path_noexec(const struct path *path)
110 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
111 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 #ifdef CONFIG_USELIB
116 * Note that a shared library must be both readable and executable due to
117 * security reasons.
119 * Also note that we take the address to load from from the file itself.
121 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 struct linux_binfmt *fmt;
124 struct file *file;
125 struct filename *tmp = getname(library);
126 int error = PTR_ERR(tmp);
127 static const struct open_flags uselib_flags = {
128 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
129 .acc_mode = MAY_READ | MAY_EXEC,
130 .intent = LOOKUP_OPEN,
131 .lookup_flags = LOOKUP_FOLLOW,
134 if (IS_ERR(tmp))
135 goto out;
137 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
138 putname(tmp);
139 error = PTR_ERR(file);
140 if (IS_ERR(file))
141 goto out;
143 error = -EINVAL;
144 if (!S_ISREG(file_inode(file)->i_mode))
145 goto exit;
147 error = -EACCES;
148 if (path_noexec(&file->f_path))
149 goto exit;
151 fsnotify_open(file);
153 error = -ENOEXEC;
155 read_lock(&binfmt_lock);
156 list_for_each_entry(fmt, &formats, lh) {
157 if (!fmt->load_shlib)
158 continue;
159 if (!try_module_get(fmt->module))
160 continue;
161 read_unlock(&binfmt_lock);
162 error = fmt->load_shlib(file);
163 read_lock(&binfmt_lock);
164 put_binfmt(fmt);
165 if (error != -ENOEXEC)
166 break;
168 read_unlock(&binfmt_lock);
169 exit:
170 fput(file);
171 out:
172 return error;
174 #endif /* #ifdef CONFIG_USELIB */
176 #ifdef CONFIG_MMU
178 * The nascent bprm->mm is not visible until exec_mmap() but it can
179 * use a lot of memory, account these pages in current->mm temporary
180 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
181 * change the counter back via acct_arg_size(0).
183 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
185 struct mm_struct *mm = current->mm;
186 long diff = (long)(pages - bprm->vma_pages);
188 if (!mm || !diff)
189 return;
191 bprm->vma_pages = pages;
192 add_mm_counter(mm, MM_ANONPAGES, diff);
195 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
196 int write)
198 struct page *page;
199 int ret;
200 unsigned int gup_flags = FOLL_FORCE;
202 #ifdef CONFIG_STACK_GROWSUP
203 if (write) {
204 ret = expand_downwards(bprm->vma, pos);
205 if (ret < 0)
206 return NULL;
208 #endif
210 if (write)
211 gup_flags |= FOLL_WRITE;
214 * We are doing an exec(). 'current' is the process
215 * doing the exec and bprm->mm is the new process's mm.
217 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
218 &page, NULL, NULL);
219 if (ret <= 0)
220 return NULL;
222 if (write)
223 acct_arg_size(bprm, vma_pages(bprm->vma));
225 return page;
228 static void put_arg_page(struct page *page)
230 put_page(page);
233 static void free_arg_pages(struct linux_binprm *bprm)
237 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
238 struct page *page)
240 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
243 static int __bprm_mm_init(struct linux_binprm *bprm)
245 int err;
246 struct vm_area_struct *vma = NULL;
247 struct mm_struct *mm = bprm->mm;
249 bprm->vma = vma = vm_area_alloc(mm);
250 if (!vma)
251 return -ENOMEM;
252 vma_set_anonymous(vma);
254 if (down_write_killable(&mm->mmap_sem)) {
255 err = -EINTR;
256 goto err_free;
260 * Place the stack at the largest stack address the architecture
261 * supports. Later, we'll move this to an appropriate place. We don't
262 * use STACK_TOP because that can depend on attributes which aren't
263 * configured yet.
265 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 vma->vm_end = STACK_TOP_MAX;
267 vma->vm_start = vma->vm_end - PAGE_SIZE;
268 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
271 err = insert_vm_struct(mm, vma);
272 if (err)
273 goto err;
275 mm->stack_vm = mm->total_vm = 1;
276 arch_bprm_mm_init(mm, vma);
277 up_write(&mm->mmap_sem);
278 bprm->p = vma->vm_end - sizeof(void *);
279 return 0;
280 err:
281 up_write(&mm->mmap_sem);
282 err_free:
283 bprm->vma = NULL;
284 vm_area_free(vma);
285 return err;
288 static bool valid_arg_len(struct linux_binprm *bprm, long len)
290 return len <= MAX_ARG_STRLEN;
293 #else
295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300 int write)
302 struct page *page;
304 page = bprm->page[pos / PAGE_SIZE];
305 if (!page && write) {
306 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307 if (!page)
308 return NULL;
309 bprm->page[pos / PAGE_SIZE] = page;
312 return page;
315 static void put_arg_page(struct page *page)
319 static void free_arg_page(struct linux_binprm *bprm, int i)
321 if (bprm->page[i]) {
322 __free_page(bprm->page[i]);
323 bprm->page[i] = NULL;
327 static void free_arg_pages(struct linux_binprm *bprm)
329 int i;
331 for (i = 0; i < MAX_ARG_PAGES; i++)
332 free_arg_page(bprm, i);
335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 struct page *page)
340 static int __bprm_mm_init(struct linux_binprm *bprm)
342 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343 return 0;
346 static bool valid_arg_len(struct linux_binprm *bprm, long len)
348 return len <= bprm->p;
351 #endif /* CONFIG_MMU */
354 * Create a new mm_struct and populate it with a temporary stack
355 * vm_area_struct. We don't have enough context at this point to set the stack
356 * flags, permissions, and offset, so we use temporary values. We'll update
357 * them later in setup_arg_pages().
359 static int bprm_mm_init(struct linux_binprm *bprm)
361 int err;
362 struct mm_struct *mm = NULL;
364 bprm->mm = mm = mm_alloc();
365 err = -ENOMEM;
366 if (!mm)
367 goto err;
369 /* Save current stack limit for all calculations made during exec. */
370 task_lock(current->group_leader);
371 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
372 task_unlock(current->group_leader);
374 err = __bprm_mm_init(bprm);
375 if (err)
376 goto err;
378 return 0;
380 err:
381 if (mm) {
382 bprm->mm = NULL;
383 mmdrop(mm);
386 return err;
389 struct user_arg_ptr {
390 #ifdef CONFIG_COMPAT
391 bool is_compat;
392 #endif
393 union {
394 const char __user *const __user *native;
395 #ifdef CONFIG_COMPAT
396 const compat_uptr_t __user *compat;
397 #endif
398 } ptr;
401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
403 const char __user *native;
405 #ifdef CONFIG_COMPAT
406 if (unlikely(argv.is_compat)) {
407 compat_uptr_t compat;
409 if (get_user(compat, argv.ptr.compat + nr))
410 return ERR_PTR(-EFAULT);
412 return compat_ptr(compat);
414 #endif
416 if (get_user(native, argv.ptr.native + nr))
417 return ERR_PTR(-EFAULT);
419 return native;
423 * count() counts the number of strings in array ARGV.
425 static int count(struct user_arg_ptr argv, int max)
427 int i = 0;
429 if (argv.ptr.native != NULL) {
430 for (;;) {
431 const char __user *p = get_user_arg_ptr(argv, i);
433 if (!p)
434 break;
436 if (IS_ERR(p))
437 return -EFAULT;
439 if (i >= max)
440 return -E2BIG;
441 ++i;
443 if (fatal_signal_pending(current))
444 return -ERESTARTNOHAND;
445 cond_resched();
448 return i;
451 static int prepare_arg_pages(struct linux_binprm *bprm,
452 struct user_arg_ptr argv, struct user_arg_ptr envp)
454 unsigned long limit, ptr_size;
456 bprm->argc = count(argv, MAX_ARG_STRINGS);
457 if (bprm->argc < 0)
458 return bprm->argc;
460 bprm->envc = count(envp, MAX_ARG_STRINGS);
461 if (bprm->envc < 0)
462 return bprm->envc;
465 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
466 * (whichever is smaller) for the argv+env strings.
467 * This ensures that:
468 * - the remaining binfmt code will not run out of stack space,
469 * - the program will have a reasonable amount of stack left
470 * to work from.
472 limit = _STK_LIM / 4 * 3;
473 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
475 * We've historically supported up to 32 pages (ARG_MAX)
476 * of argument strings even with small stacks
478 limit = max_t(unsigned long, limit, ARG_MAX);
480 * We must account for the size of all the argv and envp pointers to
481 * the argv and envp strings, since they will also take up space in
482 * the stack. They aren't stored until much later when we can't
483 * signal to the parent that the child has run out of stack space.
484 * Instead, calculate it here so it's possible to fail gracefully.
486 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
487 if (limit <= ptr_size)
488 return -E2BIG;
489 limit -= ptr_size;
491 bprm->argmin = bprm->p - limit;
492 return 0;
496 * 'copy_strings()' copies argument/environment strings from the old
497 * processes's memory to the new process's stack. The call to get_user_pages()
498 * ensures the destination page is created and not swapped out.
500 static int copy_strings(int argc, struct user_arg_ptr argv,
501 struct linux_binprm *bprm)
503 struct page *kmapped_page = NULL;
504 char *kaddr = NULL;
505 unsigned long kpos = 0;
506 int ret;
508 while (argc-- > 0) {
509 const char __user *str;
510 int len;
511 unsigned long pos;
513 ret = -EFAULT;
514 str = get_user_arg_ptr(argv, argc);
515 if (IS_ERR(str))
516 goto out;
518 len = strnlen_user(str, MAX_ARG_STRLEN);
519 if (!len)
520 goto out;
522 ret = -E2BIG;
523 if (!valid_arg_len(bprm, len))
524 goto out;
526 /* We're going to work our way backwords. */
527 pos = bprm->p;
528 str += len;
529 bprm->p -= len;
530 #ifdef CONFIG_MMU
531 if (bprm->p < bprm->argmin)
532 goto out;
533 #endif
535 while (len > 0) {
536 int offset, bytes_to_copy;
538 if (fatal_signal_pending(current)) {
539 ret = -ERESTARTNOHAND;
540 goto out;
542 cond_resched();
544 offset = pos % PAGE_SIZE;
545 if (offset == 0)
546 offset = PAGE_SIZE;
548 bytes_to_copy = offset;
549 if (bytes_to_copy > len)
550 bytes_to_copy = len;
552 offset -= bytes_to_copy;
553 pos -= bytes_to_copy;
554 str -= bytes_to_copy;
555 len -= bytes_to_copy;
557 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
558 struct page *page;
560 page = get_arg_page(bprm, pos, 1);
561 if (!page) {
562 ret = -E2BIG;
563 goto out;
566 if (kmapped_page) {
567 flush_kernel_dcache_page(kmapped_page);
568 kunmap(kmapped_page);
569 put_arg_page(kmapped_page);
571 kmapped_page = page;
572 kaddr = kmap(kmapped_page);
573 kpos = pos & PAGE_MASK;
574 flush_arg_page(bprm, kpos, kmapped_page);
576 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
577 ret = -EFAULT;
578 goto out;
582 ret = 0;
583 out:
584 if (kmapped_page) {
585 flush_kernel_dcache_page(kmapped_page);
586 kunmap(kmapped_page);
587 put_arg_page(kmapped_page);
589 return ret;
593 * Like copy_strings, but get argv and its values from kernel memory.
595 int copy_strings_kernel(int argc, const char *const *__argv,
596 struct linux_binprm *bprm)
598 int r;
599 mm_segment_t oldfs = get_fs();
600 struct user_arg_ptr argv = {
601 .ptr.native = (const char __user *const __user *)__argv,
604 set_fs(KERNEL_DS);
605 r = copy_strings(argc, argv, bprm);
606 set_fs(oldfs);
608 return r;
610 EXPORT_SYMBOL(copy_strings_kernel);
612 #ifdef CONFIG_MMU
615 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
616 * the binfmt code determines where the new stack should reside, we shift it to
617 * its final location. The process proceeds as follows:
619 * 1) Use shift to calculate the new vma endpoints.
620 * 2) Extend vma to cover both the old and new ranges. This ensures the
621 * arguments passed to subsequent functions are consistent.
622 * 3) Move vma's page tables to the new range.
623 * 4) Free up any cleared pgd range.
624 * 5) Shrink the vma to cover only the new range.
626 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
628 struct mm_struct *mm = vma->vm_mm;
629 unsigned long old_start = vma->vm_start;
630 unsigned long old_end = vma->vm_end;
631 unsigned long length = old_end - old_start;
632 unsigned long new_start = old_start - shift;
633 unsigned long new_end = old_end - shift;
634 struct mmu_gather tlb;
636 BUG_ON(new_start > new_end);
639 * ensure there are no vmas between where we want to go
640 * and where we are
642 if (vma != find_vma(mm, new_start))
643 return -EFAULT;
646 * cover the whole range: [new_start, old_end)
648 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
649 return -ENOMEM;
652 * move the page tables downwards, on failure we rely on
653 * process cleanup to remove whatever mess we made.
655 if (length != move_page_tables(vma, old_start,
656 vma, new_start, length, false))
657 return -ENOMEM;
659 lru_add_drain();
660 tlb_gather_mmu(&tlb, mm, old_start, old_end);
661 if (new_end > old_start) {
663 * when the old and new regions overlap clear from new_end.
665 free_pgd_range(&tlb, new_end, old_end, new_end,
666 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
667 } else {
669 * otherwise, clean from old_start; this is done to not touch
670 * the address space in [new_end, old_start) some architectures
671 * have constraints on va-space that make this illegal (IA64) -
672 * for the others its just a little faster.
674 free_pgd_range(&tlb, old_start, old_end, new_end,
675 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
677 tlb_finish_mmu(&tlb, old_start, old_end);
680 * Shrink the vma to just the new range. Always succeeds.
682 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
684 return 0;
688 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
689 * the stack is optionally relocated, and some extra space is added.
691 int setup_arg_pages(struct linux_binprm *bprm,
692 unsigned long stack_top,
693 int executable_stack)
695 unsigned long ret;
696 unsigned long stack_shift;
697 struct mm_struct *mm = current->mm;
698 struct vm_area_struct *vma = bprm->vma;
699 struct vm_area_struct *prev = NULL;
700 unsigned long vm_flags;
701 unsigned long stack_base;
702 unsigned long stack_size;
703 unsigned long stack_expand;
704 unsigned long rlim_stack;
706 #ifdef CONFIG_STACK_GROWSUP
707 /* Limit stack size */
708 stack_base = bprm->rlim_stack.rlim_max;
709 if (stack_base > STACK_SIZE_MAX)
710 stack_base = STACK_SIZE_MAX;
712 /* Add space for stack randomization. */
713 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
715 /* Make sure we didn't let the argument array grow too large. */
716 if (vma->vm_end - vma->vm_start > stack_base)
717 return -ENOMEM;
719 stack_base = PAGE_ALIGN(stack_top - stack_base);
721 stack_shift = vma->vm_start - stack_base;
722 mm->arg_start = bprm->p - stack_shift;
723 bprm->p = vma->vm_end - stack_shift;
724 #else
725 stack_top = arch_align_stack(stack_top);
726 stack_top = PAGE_ALIGN(stack_top);
728 if (unlikely(stack_top < mmap_min_addr) ||
729 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
730 return -ENOMEM;
732 stack_shift = vma->vm_end - stack_top;
734 bprm->p -= stack_shift;
735 mm->arg_start = bprm->p;
736 #endif
738 if (bprm->loader)
739 bprm->loader -= stack_shift;
740 bprm->exec -= stack_shift;
742 if (down_write_killable(&mm->mmap_sem))
743 return -EINTR;
745 vm_flags = VM_STACK_FLAGS;
748 * Adjust stack execute permissions; explicitly enable for
749 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
750 * (arch default) otherwise.
752 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
753 vm_flags |= VM_EXEC;
754 else if (executable_stack == EXSTACK_DISABLE_X)
755 vm_flags &= ~VM_EXEC;
756 vm_flags |= mm->def_flags;
757 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
759 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
760 vm_flags);
761 if (ret)
762 goto out_unlock;
763 BUG_ON(prev != vma);
765 /* Move stack pages down in memory. */
766 if (stack_shift) {
767 ret = shift_arg_pages(vma, stack_shift);
768 if (ret)
769 goto out_unlock;
772 /* mprotect_fixup is overkill to remove the temporary stack flags */
773 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
775 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
776 stack_size = vma->vm_end - vma->vm_start;
778 * Align this down to a page boundary as expand_stack
779 * will align it up.
781 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
782 #ifdef CONFIG_STACK_GROWSUP
783 if (stack_size + stack_expand > rlim_stack)
784 stack_base = vma->vm_start + rlim_stack;
785 else
786 stack_base = vma->vm_end + stack_expand;
787 #else
788 if (stack_size + stack_expand > rlim_stack)
789 stack_base = vma->vm_end - rlim_stack;
790 else
791 stack_base = vma->vm_start - stack_expand;
792 #endif
793 current->mm->start_stack = bprm->p;
794 ret = expand_stack(vma, stack_base);
795 if (ret)
796 ret = -EFAULT;
798 out_unlock:
799 up_write(&mm->mmap_sem);
800 return ret;
802 EXPORT_SYMBOL(setup_arg_pages);
804 #else
807 * Transfer the program arguments and environment from the holding pages
808 * onto the stack. The provided stack pointer is adjusted accordingly.
810 int transfer_args_to_stack(struct linux_binprm *bprm,
811 unsigned long *sp_location)
813 unsigned long index, stop, sp;
814 int ret = 0;
816 stop = bprm->p >> PAGE_SHIFT;
817 sp = *sp_location;
819 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
820 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
821 char *src = kmap(bprm->page[index]) + offset;
822 sp -= PAGE_SIZE - offset;
823 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
824 ret = -EFAULT;
825 kunmap(bprm->page[index]);
826 if (ret)
827 goto out;
830 *sp_location = sp;
832 out:
833 return ret;
835 EXPORT_SYMBOL(transfer_args_to_stack);
837 #endif /* CONFIG_MMU */
839 static struct file *do_open_execat(int fd, struct filename *name, int flags)
841 struct file *file;
842 int err;
843 struct open_flags open_exec_flags = {
844 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
845 .acc_mode = MAY_EXEC,
846 .intent = LOOKUP_OPEN,
847 .lookup_flags = LOOKUP_FOLLOW,
850 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
851 return ERR_PTR(-EINVAL);
852 if (flags & AT_SYMLINK_NOFOLLOW)
853 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
854 if (flags & AT_EMPTY_PATH)
855 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
857 file = do_filp_open(fd, name, &open_exec_flags);
858 if (IS_ERR(file))
859 goto out;
861 err = -EACCES;
862 if (!S_ISREG(file_inode(file)->i_mode))
863 goto exit;
865 if (path_noexec(&file->f_path))
866 goto exit;
868 err = deny_write_access(file);
869 if (err)
870 goto exit;
872 if (name->name[0] != '\0')
873 fsnotify_open(file);
875 out:
876 return file;
878 exit:
879 fput(file);
880 return ERR_PTR(err);
883 struct file *open_exec(const char *name)
885 struct filename *filename = getname_kernel(name);
886 struct file *f = ERR_CAST(filename);
888 if (!IS_ERR(filename)) {
889 f = do_open_execat(AT_FDCWD, filename, 0);
890 putname(filename);
892 return f;
894 EXPORT_SYMBOL(open_exec);
896 int kernel_read_file(struct file *file, void **buf, loff_t *size,
897 loff_t max_size, enum kernel_read_file_id id)
899 loff_t i_size, pos;
900 ssize_t bytes = 0;
901 int ret;
903 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
904 return -EINVAL;
906 ret = deny_write_access(file);
907 if (ret)
908 return ret;
910 ret = security_kernel_read_file(file, id);
911 if (ret)
912 goto out;
914 i_size = i_size_read(file_inode(file));
915 if (i_size <= 0) {
916 ret = -EINVAL;
917 goto out;
919 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
920 ret = -EFBIG;
921 goto out;
924 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
925 *buf = vmalloc(i_size);
926 if (!*buf) {
927 ret = -ENOMEM;
928 goto out;
931 pos = 0;
932 while (pos < i_size) {
933 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
934 if (bytes < 0) {
935 ret = bytes;
936 goto out_free;
939 if (bytes == 0)
940 break;
943 if (pos != i_size) {
944 ret = -EIO;
945 goto out_free;
948 ret = security_kernel_post_read_file(file, *buf, i_size, id);
949 if (!ret)
950 *size = pos;
952 out_free:
953 if (ret < 0) {
954 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
955 vfree(*buf);
956 *buf = NULL;
960 out:
961 allow_write_access(file);
962 return ret;
964 EXPORT_SYMBOL_GPL(kernel_read_file);
966 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
967 loff_t max_size, enum kernel_read_file_id id)
969 struct file *file;
970 int ret;
972 if (!path || !*path)
973 return -EINVAL;
975 file = filp_open(path, O_RDONLY, 0);
976 if (IS_ERR(file))
977 return PTR_ERR(file);
979 ret = kernel_read_file(file, buf, size, max_size, id);
980 fput(file);
981 return ret;
983 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
985 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
986 enum kernel_read_file_id id)
988 struct fd f = fdget(fd);
989 int ret = -EBADF;
991 if (!f.file)
992 goto out;
994 ret = kernel_read_file(f.file, buf, size, max_size, id);
995 out:
996 fdput(f);
997 return ret;
999 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1001 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1003 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1004 if (res > 0)
1005 flush_icache_range(addr, addr + len);
1006 return res;
1008 EXPORT_SYMBOL(read_code);
1010 static int exec_mmap(struct mm_struct *mm)
1012 struct task_struct *tsk;
1013 struct mm_struct *old_mm, *active_mm;
1015 /* Notify parent that we're no longer interested in the old VM */
1016 tsk = current;
1017 old_mm = current->mm;
1018 exec_mm_release(tsk, old_mm);
1020 if (old_mm) {
1021 sync_mm_rss(old_mm);
1023 * Make sure that if there is a core dump in progress
1024 * for the old mm, we get out and die instead of going
1025 * through with the exec. We must hold mmap_sem around
1026 * checking core_state and changing tsk->mm.
1028 down_read(&old_mm->mmap_sem);
1029 if (unlikely(old_mm->core_state)) {
1030 up_read(&old_mm->mmap_sem);
1031 return -EINTR;
1034 task_lock(tsk);
1035 active_mm = tsk->active_mm;
1036 membarrier_exec_mmap(mm);
1037 tsk->mm = mm;
1038 tsk->active_mm = mm;
1039 activate_mm(active_mm, mm);
1040 tsk->mm->vmacache_seqnum = 0;
1041 vmacache_flush(tsk);
1042 task_unlock(tsk);
1043 if (old_mm) {
1044 up_read(&old_mm->mmap_sem);
1045 BUG_ON(active_mm != old_mm);
1046 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1047 mm_update_next_owner(old_mm);
1048 mmput(old_mm);
1049 return 0;
1051 mmdrop(active_mm);
1052 return 0;
1056 * This function makes sure the current process has its own signal table,
1057 * so that flush_signal_handlers can later reset the handlers without
1058 * disturbing other processes. (Other processes might share the signal
1059 * table via the CLONE_SIGHAND option to clone().)
1061 static int de_thread(struct task_struct *tsk)
1063 struct signal_struct *sig = tsk->signal;
1064 struct sighand_struct *oldsighand = tsk->sighand;
1065 spinlock_t *lock = &oldsighand->siglock;
1067 if (thread_group_empty(tsk))
1068 goto no_thread_group;
1071 * Kill all other threads in the thread group.
1073 spin_lock_irq(lock);
1074 if (signal_group_exit(sig)) {
1076 * Another group action in progress, just
1077 * return so that the signal is processed.
1079 spin_unlock_irq(lock);
1080 return -EAGAIN;
1083 sig->group_exit_task = tsk;
1084 sig->notify_count = zap_other_threads(tsk);
1085 if (!thread_group_leader(tsk))
1086 sig->notify_count--;
1088 while (sig->notify_count) {
1089 __set_current_state(TASK_KILLABLE);
1090 spin_unlock_irq(lock);
1091 schedule();
1092 if (__fatal_signal_pending(tsk))
1093 goto killed;
1094 spin_lock_irq(lock);
1096 spin_unlock_irq(lock);
1099 * At this point all other threads have exited, all we have to
1100 * do is to wait for the thread group leader to become inactive,
1101 * and to assume its PID:
1103 if (!thread_group_leader(tsk)) {
1104 struct task_struct *leader = tsk->group_leader;
1106 for (;;) {
1107 cgroup_threadgroup_change_begin(tsk);
1108 write_lock_irq(&tasklist_lock);
1110 * Do this under tasklist_lock to ensure that
1111 * exit_notify() can't miss ->group_exit_task
1113 sig->notify_count = -1;
1114 if (likely(leader->exit_state))
1115 break;
1116 __set_current_state(TASK_KILLABLE);
1117 write_unlock_irq(&tasklist_lock);
1118 cgroup_threadgroup_change_end(tsk);
1119 schedule();
1120 if (__fatal_signal_pending(tsk))
1121 goto killed;
1125 * The only record we have of the real-time age of a
1126 * process, regardless of execs it's done, is start_time.
1127 * All the past CPU time is accumulated in signal_struct
1128 * from sister threads now dead. But in this non-leader
1129 * exec, nothing survives from the original leader thread,
1130 * whose birth marks the true age of this process now.
1131 * When we take on its identity by switching to its PID, we
1132 * also take its birthdate (always earlier than our own).
1134 tsk->start_time = leader->start_time;
1135 tsk->real_start_time = leader->real_start_time;
1137 BUG_ON(!same_thread_group(leader, tsk));
1138 BUG_ON(has_group_leader_pid(tsk));
1140 * An exec() starts a new thread group with the
1141 * TGID of the previous thread group. Rehash the
1142 * two threads with a switched PID, and release
1143 * the former thread group leader:
1146 /* Become a process group leader with the old leader's pid.
1147 * The old leader becomes a thread of the this thread group.
1148 * Note: The old leader also uses this pid until release_task
1149 * is called. Odd but simple and correct.
1151 tsk->pid = leader->pid;
1152 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1153 transfer_pid(leader, tsk, PIDTYPE_TGID);
1154 transfer_pid(leader, tsk, PIDTYPE_PGID);
1155 transfer_pid(leader, tsk, PIDTYPE_SID);
1157 list_replace_rcu(&leader->tasks, &tsk->tasks);
1158 list_replace_init(&leader->sibling, &tsk->sibling);
1160 tsk->group_leader = tsk;
1161 leader->group_leader = tsk;
1163 tsk->exit_signal = SIGCHLD;
1164 leader->exit_signal = -1;
1166 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1167 leader->exit_state = EXIT_DEAD;
1170 * We are going to release_task()->ptrace_unlink() silently,
1171 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1172 * the tracer wont't block again waiting for this thread.
1174 if (unlikely(leader->ptrace))
1175 __wake_up_parent(leader, leader->parent);
1176 write_unlock_irq(&tasklist_lock);
1177 cgroup_threadgroup_change_end(tsk);
1179 release_task(leader);
1182 sig->group_exit_task = NULL;
1183 sig->notify_count = 0;
1185 no_thread_group:
1186 /* we have changed execution domain */
1187 tsk->exit_signal = SIGCHLD;
1189 #ifdef CONFIG_POSIX_TIMERS
1190 exit_itimers(sig);
1191 flush_itimer_signals();
1192 #endif
1194 if (refcount_read(&oldsighand->count) != 1) {
1195 struct sighand_struct *newsighand;
1197 * This ->sighand is shared with the CLONE_SIGHAND
1198 * but not CLONE_THREAD task, switch to the new one.
1200 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1201 if (!newsighand)
1202 return -ENOMEM;
1204 refcount_set(&newsighand->count, 1);
1205 memcpy(newsighand->action, oldsighand->action,
1206 sizeof(newsighand->action));
1208 write_lock_irq(&tasklist_lock);
1209 spin_lock(&oldsighand->siglock);
1210 rcu_assign_pointer(tsk->sighand, newsighand);
1211 spin_unlock(&oldsighand->siglock);
1212 write_unlock_irq(&tasklist_lock);
1214 __cleanup_sighand(oldsighand);
1217 BUG_ON(!thread_group_leader(tsk));
1218 return 0;
1220 killed:
1221 /* protects against exit_notify() and __exit_signal() */
1222 read_lock(&tasklist_lock);
1223 sig->group_exit_task = NULL;
1224 sig->notify_count = 0;
1225 read_unlock(&tasklist_lock);
1226 return -EAGAIN;
1229 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1231 task_lock(tsk);
1232 strncpy(buf, tsk->comm, buf_size);
1233 task_unlock(tsk);
1234 return buf;
1236 EXPORT_SYMBOL_GPL(__get_task_comm);
1239 * These functions flushes out all traces of the currently running executable
1240 * so that a new one can be started
1243 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1245 task_lock(tsk);
1246 trace_task_rename(tsk, buf);
1247 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1248 task_unlock(tsk);
1249 perf_event_comm(tsk, exec);
1253 * Calling this is the point of no return. None of the failures will be
1254 * seen by userspace since either the process is already taking a fatal
1255 * signal (via de_thread() or coredump), or will have SEGV raised
1256 * (after exec_mmap()) by search_binary_handlers (see below).
1258 int flush_old_exec(struct linux_binprm * bprm)
1260 int retval;
1263 * Make sure we have a private signal table and that
1264 * we are unassociated from the previous thread group.
1266 retval = de_thread(current);
1267 if (retval)
1268 goto out;
1271 * Must be called _before_ exec_mmap() as bprm->mm is
1272 * not visibile until then. This also enables the update
1273 * to be lockless.
1275 set_mm_exe_file(bprm->mm, bprm->file);
1277 would_dump(bprm, bprm->file);
1280 * Release all of the old mmap stuff
1282 acct_arg_size(bprm, 0);
1283 retval = exec_mmap(bprm->mm);
1284 if (retval)
1285 goto out;
1288 * After clearing bprm->mm (to mark that current is using the
1289 * prepared mm now), we have nothing left of the original
1290 * process. If anything from here on returns an error, the check
1291 * in search_binary_handler() will SEGV current.
1293 bprm->mm = NULL;
1295 set_fs(USER_DS);
1296 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1297 PF_NOFREEZE | PF_NO_SETAFFINITY);
1298 flush_thread();
1299 current->personality &= ~bprm->per_clear;
1302 * We have to apply CLOEXEC before we change whether the process is
1303 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1304 * trying to access the should-be-closed file descriptors of a process
1305 * undergoing exec(2).
1307 do_close_on_exec(current->files);
1308 return 0;
1310 out:
1311 return retval;
1313 EXPORT_SYMBOL(flush_old_exec);
1315 void would_dump(struct linux_binprm *bprm, struct file *file)
1317 struct inode *inode = file_inode(file);
1318 if (inode_permission(inode, MAY_READ) < 0) {
1319 struct user_namespace *old, *user_ns;
1320 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1322 /* Ensure mm->user_ns contains the executable */
1323 user_ns = old = bprm->mm->user_ns;
1324 while ((user_ns != &init_user_ns) &&
1325 !privileged_wrt_inode_uidgid(user_ns, inode))
1326 user_ns = user_ns->parent;
1328 if (old != user_ns) {
1329 bprm->mm->user_ns = get_user_ns(user_ns);
1330 put_user_ns(old);
1334 EXPORT_SYMBOL(would_dump);
1336 void setup_new_exec(struct linux_binprm * bprm)
1339 * Once here, prepare_binrpm() will not be called any more, so
1340 * the final state of setuid/setgid/fscaps can be merged into the
1341 * secureexec flag.
1343 bprm->secureexec |= bprm->cap_elevated;
1345 if (bprm->secureexec) {
1346 /* Make sure parent cannot signal privileged process. */
1347 current->pdeath_signal = 0;
1350 * For secureexec, reset the stack limit to sane default to
1351 * avoid bad behavior from the prior rlimits. This has to
1352 * happen before arch_pick_mmap_layout(), which examines
1353 * RLIMIT_STACK, but after the point of no return to avoid
1354 * needing to clean up the change on failure.
1356 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1357 bprm->rlim_stack.rlim_cur = _STK_LIM;
1360 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1362 current->sas_ss_sp = current->sas_ss_size = 0;
1365 * Figure out dumpability. Note that this checking only of current
1366 * is wrong, but userspace depends on it. This should be testing
1367 * bprm->secureexec instead.
1369 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1370 !(uid_eq(current_euid(), current_uid()) &&
1371 gid_eq(current_egid(), current_gid())))
1372 set_dumpable(current->mm, suid_dumpable);
1373 else
1374 set_dumpable(current->mm, SUID_DUMP_USER);
1376 arch_setup_new_exec();
1377 perf_event_exec();
1378 __set_task_comm(current, kbasename(bprm->filename), true);
1380 /* Set the new mm task size. We have to do that late because it may
1381 * depend on TIF_32BIT which is only updated in flush_thread() on
1382 * some architectures like powerpc
1384 current->mm->task_size = TASK_SIZE;
1386 /* An exec changes our domain. We are no longer part of the thread
1387 group */
1388 WRITE_ONCE(current->self_exec_id, current->self_exec_id + 1);
1389 flush_signal_handlers(current, 0);
1391 EXPORT_SYMBOL(setup_new_exec);
1393 /* Runs immediately before start_thread() takes over. */
1394 void finalize_exec(struct linux_binprm *bprm)
1396 /* Store any stack rlimit changes before starting thread. */
1397 task_lock(current->group_leader);
1398 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1399 task_unlock(current->group_leader);
1401 EXPORT_SYMBOL(finalize_exec);
1404 * Prepare credentials and lock ->cred_guard_mutex.
1405 * install_exec_creds() commits the new creds and drops the lock.
1406 * Or, if exec fails before, free_bprm() should release ->cred and
1407 * and unlock.
1409 static int prepare_bprm_creds(struct linux_binprm *bprm)
1411 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1412 return -ERESTARTNOINTR;
1414 bprm->cred = prepare_exec_creds();
1415 if (likely(bprm->cred))
1416 return 0;
1418 mutex_unlock(&current->signal->cred_guard_mutex);
1419 return -ENOMEM;
1422 static void free_bprm(struct linux_binprm *bprm)
1424 free_arg_pages(bprm);
1425 if (bprm->cred) {
1426 mutex_unlock(&current->signal->cred_guard_mutex);
1427 abort_creds(bprm->cred);
1429 if (bprm->file) {
1430 allow_write_access(bprm->file);
1431 fput(bprm->file);
1433 /* If a binfmt changed the interp, free it. */
1434 if (bprm->interp != bprm->filename)
1435 kfree(bprm->interp);
1436 kfree(bprm);
1439 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1441 /* If a binfmt changed the interp, free it first. */
1442 if (bprm->interp != bprm->filename)
1443 kfree(bprm->interp);
1444 bprm->interp = kstrdup(interp, GFP_KERNEL);
1445 if (!bprm->interp)
1446 return -ENOMEM;
1447 return 0;
1449 EXPORT_SYMBOL(bprm_change_interp);
1452 * install the new credentials for this executable
1454 void install_exec_creds(struct linux_binprm *bprm)
1456 security_bprm_committing_creds(bprm);
1458 commit_creds(bprm->cred);
1459 bprm->cred = NULL;
1462 * Disable monitoring for regular users
1463 * when executing setuid binaries. Must
1464 * wait until new credentials are committed
1465 * by commit_creds() above
1467 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1468 perf_event_exit_task(current);
1470 * cred_guard_mutex must be held at least to this point to prevent
1471 * ptrace_attach() from altering our determination of the task's
1472 * credentials; any time after this it may be unlocked.
1474 security_bprm_committed_creds(bprm);
1475 mutex_unlock(&current->signal->cred_guard_mutex);
1477 EXPORT_SYMBOL(install_exec_creds);
1480 * determine how safe it is to execute the proposed program
1481 * - the caller must hold ->cred_guard_mutex to protect against
1482 * PTRACE_ATTACH or seccomp thread-sync
1484 static void check_unsafe_exec(struct linux_binprm *bprm)
1486 struct task_struct *p = current, *t;
1487 unsigned n_fs;
1489 if (p->ptrace)
1490 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1493 * This isn't strictly necessary, but it makes it harder for LSMs to
1494 * mess up.
1496 if (task_no_new_privs(current))
1497 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1499 t = p;
1500 n_fs = 1;
1501 spin_lock(&p->fs->lock);
1502 rcu_read_lock();
1503 while_each_thread(p, t) {
1504 if (t->fs == p->fs)
1505 n_fs++;
1507 rcu_read_unlock();
1509 if (p->fs->users > n_fs)
1510 bprm->unsafe |= LSM_UNSAFE_SHARE;
1511 else
1512 p->fs->in_exec = 1;
1513 spin_unlock(&p->fs->lock);
1516 static void bprm_fill_uid(struct linux_binprm *bprm)
1518 struct inode *inode;
1519 unsigned int mode;
1520 kuid_t uid;
1521 kgid_t gid;
1524 * Since this can be called multiple times (via prepare_binprm),
1525 * we must clear any previous work done when setting set[ug]id
1526 * bits from any earlier bprm->file uses (for example when run
1527 * first for a setuid script then again for its interpreter).
1529 bprm->cred->euid = current_euid();
1530 bprm->cred->egid = current_egid();
1532 if (!mnt_may_suid(bprm->file->f_path.mnt))
1533 return;
1535 if (task_no_new_privs(current))
1536 return;
1538 inode = bprm->file->f_path.dentry->d_inode;
1539 mode = READ_ONCE(inode->i_mode);
1540 if (!(mode & (S_ISUID|S_ISGID)))
1541 return;
1543 /* Be careful if suid/sgid is set */
1544 inode_lock(inode);
1546 /* reload atomically mode/uid/gid now that lock held */
1547 mode = inode->i_mode;
1548 uid = inode->i_uid;
1549 gid = inode->i_gid;
1550 inode_unlock(inode);
1552 /* We ignore suid/sgid if there are no mappings for them in the ns */
1553 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1554 !kgid_has_mapping(bprm->cred->user_ns, gid))
1555 return;
1557 if (mode & S_ISUID) {
1558 bprm->per_clear |= PER_CLEAR_ON_SETID;
1559 bprm->cred->euid = uid;
1562 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1563 bprm->per_clear |= PER_CLEAR_ON_SETID;
1564 bprm->cred->egid = gid;
1569 * Fill the binprm structure from the inode.
1570 * Check permissions, then read the first BINPRM_BUF_SIZE bytes
1572 * This may be called multiple times for binary chains (scripts for example).
1574 int prepare_binprm(struct linux_binprm *bprm)
1576 int retval;
1577 loff_t pos = 0;
1579 bprm_fill_uid(bprm);
1581 /* fill in binprm security blob */
1582 retval = security_bprm_set_creds(bprm);
1583 if (retval)
1584 return retval;
1585 bprm->called_set_creds = 1;
1587 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1588 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1591 EXPORT_SYMBOL(prepare_binprm);
1594 * Arguments are '\0' separated strings found at the location bprm->p
1595 * points to; chop off the first by relocating brpm->p to right after
1596 * the first '\0' encountered.
1598 int remove_arg_zero(struct linux_binprm *bprm)
1600 int ret = 0;
1601 unsigned long offset;
1602 char *kaddr;
1603 struct page *page;
1605 if (!bprm->argc)
1606 return 0;
1608 do {
1609 offset = bprm->p & ~PAGE_MASK;
1610 page = get_arg_page(bprm, bprm->p, 0);
1611 if (!page) {
1612 ret = -EFAULT;
1613 goto out;
1615 kaddr = kmap_atomic(page);
1617 for (; offset < PAGE_SIZE && kaddr[offset];
1618 offset++, bprm->p++)
1621 kunmap_atomic(kaddr);
1622 put_arg_page(page);
1623 } while (offset == PAGE_SIZE);
1625 bprm->p++;
1626 bprm->argc--;
1627 ret = 0;
1629 out:
1630 return ret;
1632 EXPORT_SYMBOL(remove_arg_zero);
1634 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1636 * cycle the list of binary formats handler, until one recognizes the image
1638 int search_binary_handler(struct linux_binprm *bprm)
1640 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1641 struct linux_binfmt *fmt;
1642 int retval;
1644 /* This allows 4 levels of binfmt rewrites before failing hard. */
1645 if (bprm->recursion_depth > 5)
1646 return -ELOOP;
1648 retval = security_bprm_check(bprm);
1649 if (retval)
1650 return retval;
1652 retval = -ENOENT;
1653 retry:
1654 read_lock(&binfmt_lock);
1655 list_for_each_entry(fmt, &formats, lh) {
1656 if (!try_module_get(fmt->module))
1657 continue;
1658 read_unlock(&binfmt_lock);
1660 bprm->recursion_depth++;
1661 retval = fmt->load_binary(bprm);
1662 bprm->recursion_depth--;
1664 read_lock(&binfmt_lock);
1665 put_binfmt(fmt);
1666 if (retval < 0 && !bprm->mm) {
1667 /* we got to flush_old_exec() and failed after it */
1668 read_unlock(&binfmt_lock);
1669 force_sigsegv(SIGSEGV);
1670 return retval;
1672 if (retval != -ENOEXEC || !bprm->file) {
1673 read_unlock(&binfmt_lock);
1674 return retval;
1677 read_unlock(&binfmt_lock);
1679 if (need_retry) {
1680 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1681 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1682 return retval;
1683 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1684 return retval;
1685 need_retry = false;
1686 goto retry;
1689 return retval;
1691 EXPORT_SYMBOL(search_binary_handler);
1693 static int exec_binprm(struct linux_binprm *bprm)
1695 pid_t old_pid, old_vpid;
1696 int ret;
1698 /* Need to fetch pid before load_binary changes it */
1699 old_pid = current->pid;
1700 rcu_read_lock();
1701 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1702 rcu_read_unlock();
1704 ret = search_binary_handler(bprm);
1705 if (ret >= 0) {
1706 audit_bprm(bprm);
1707 trace_sched_process_exec(current, old_pid, bprm);
1708 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1709 proc_exec_connector(current);
1712 return ret;
1716 * sys_execve() executes a new program.
1718 static int __do_execve_file(int fd, struct filename *filename,
1719 struct user_arg_ptr argv,
1720 struct user_arg_ptr envp,
1721 int flags, struct file *file)
1723 char *pathbuf = NULL;
1724 struct linux_binprm *bprm;
1725 struct files_struct *displaced;
1726 int retval;
1728 if (IS_ERR(filename))
1729 return PTR_ERR(filename);
1732 * We move the actual failure in case of RLIMIT_NPROC excess from
1733 * set*uid() to execve() because too many poorly written programs
1734 * don't check setuid() return code. Here we additionally recheck
1735 * whether NPROC limit is still exceeded.
1737 if ((current->flags & PF_NPROC_EXCEEDED) &&
1738 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1739 retval = -EAGAIN;
1740 goto out_ret;
1743 /* We're below the limit (still or again), so we don't want to make
1744 * further execve() calls fail. */
1745 current->flags &= ~PF_NPROC_EXCEEDED;
1747 retval = unshare_files(&displaced);
1748 if (retval)
1749 goto out_ret;
1751 retval = -ENOMEM;
1752 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1753 if (!bprm)
1754 goto out_files;
1756 retval = prepare_bprm_creds(bprm);
1757 if (retval)
1758 goto out_free;
1760 check_unsafe_exec(bprm);
1761 current->in_execve = 1;
1763 if (!file)
1764 file = do_open_execat(fd, filename, flags);
1765 retval = PTR_ERR(file);
1766 if (IS_ERR(file))
1767 goto out_unmark;
1769 sched_exec();
1771 bprm->file = file;
1772 if (!filename) {
1773 bprm->filename = "none";
1774 } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1775 bprm->filename = filename->name;
1776 } else {
1777 if (filename->name[0] == '\0')
1778 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1779 else
1780 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1781 fd, filename->name);
1782 if (!pathbuf) {
1783 retval = -ENOMEM;
1784 goto out_unmark;
1787 * Record that a name derived from an O_CLOEXEC fd will be
1788 * inaccessible after exec. Relies on having exclusive access to
1789 * current->files (due to unshare_files above).
1791 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1792 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1793 bprm->filename = pathbuf;
1795 bprm->interp = bprm->filename;
1797 retval = bprm_mm_init(bprm);
1798 if (retval)
1799 goto out_unmark;
1801 retval = prepare_arg_pages(bprm, argv, envp);
1802 if (retval < 0)
1803 goto out;
1805 retval = prepare_binprm(bprm);
1806 if (retval < 0)
1807 goto out;
1809 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1810 if (retval < 0)
1811 goto out;
1813 bprm->exec = bprm->p;
1814 retval = copy_strings(bprm->envc, envp, bprm);
1815 if (retval < 0)
1816 goto out;
1818 retval = copy_strings(bprm->argc, argv, bprm);
1819 if (retval < 0)
1820 goto out;
1822 retval = exec_binprm(bprm);
1823 if (retval < 0)
1824 goto out;
1826 /* execve succeeded */
1827 current->fs->in_exec = 0;
1828 current->in_execve = 0;
1829 rseq_execve(current);
1830 acct_update_integrals(current);
1831 task_numa_free(current, false);
1832 free_bprm(bprm);
1833 kfree(pathbuf);
1834 if (filename)
1835 putname(filename);
1836 if (displaced)
1837 put_files_struct(displaced);
1838 return retval;
1840 out:
1841 if (bprm->mm) {
1842 acct_arg_size(bprm, 0);
1843 mmput(bprm->mm);
1846 out_unmark:
1847 current->fs->in_exec = 0;
1848 current->in_execve = 0;
1850 out_free:
1851 free_bprm(bprm);
1852 kfree(pathbuf);
1854 out_files:
1855 if (displaced)
1856 reset_files_struct(displaced);
1857 out_ret:
1858 if (filename)
1859 putname(filename);
1860 return retval;
1863 static int do_execveat_common(int fd, struct filename *filename,
1864 struct user_arg_ptr argv,
1865 struct user_arg_ptr envp,
1866 int flags)
1868 return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1871 int do_execve_file(struct file *file, void *__argv, void *__envp)
1873 struct user_arg_ptr argv = { .ptr.native = __argv };
1874 struct user_arg_ptr envp = { .ptr.native = __envp };
1876 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1879 int do_execve(struct filename *filename,
1880 const char __user *const __user *__argv,
1881 const char __user *const __user *__envp)
1883 struct user_arg_ptr argv = { .ptr.native = __argv };
1884 struct user_arg_ptr envp = { .ptr.native = __envp };
1885 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1888 int do_execveat(int fd, struct filename *filename,
1889 const char __user *const __user *__argv,
1890 const char __user *const __user *__envp,
1891 int flags)
1893 struct user_arg_ptr argv = { .ptr.native = __argv };
1894 struct user_arg_ptr envp = { .ptr.native = __envp };
1896 return do_execveat_common(fd, filename, argv, envp, flags);
1899 #ifdef CONFIG_COMPAT
1900 static int compat_do_execve(struct filename *filename,
1901 const compat_uptr_t __user *__argv,
1902 const compat_uptr_t __user *__envp)
1904 struct user_arg_ptr argv = {
1905 .is_compat = true,
1906 .ptr.compat = __argv,
1908 struct user_arg_ptr envp = {
1909 .is_compat = true,
1910 .ptr.compat = __envp,
1912 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1915 static int compat_do_execveat(int fd, struct filename *filename,
1916 const compat_uptr_t __user *__argv,
1917 const compat_uptr_t __user *__envp,
1918 int flags)
1920 struct user_arg_ptr argv = {
1921 .is_compat = true,
1922 .ptr.compat = __argv,
1924 struct user_arg_ptr envp = {
1925 .is_compat = true,
1926 .ptr.compat = __envp,
1928 return do_execveat_common(fd, filename, argv, envp, flags);
1930 #endif
1932 void set_binfmt(struct linux_binfmt *new)
1934 struct mm_struct *mm = current->mm;
1936 if (mm->binfmt)
1937 module_put(mm->binfmt->module);
1939 mm->binfmt = new;
1940 if (new)
1941 __module_get(new->module);
1943 EXPORT_SYMBOL(set_binfmt);
1946 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1948 void set_dumpable(struct mm_struct *mm, int value)
1950 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1951 return;
1953 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
1956 SYSCALL_DEFINE3(execve,
1957 const char __user *, filename,
1958 const char __user *const __user *, argv,
1959 const char __user *const __user *, envp)
1961 return do_execve(getname(filename), argv, envp);
1964 SYSCALL_DEFINE5(execveat,
1965 int, fd, const char __user *, filename,
1966 const char __user *const __user *, argv,
1967 const char __user *const __user *, envp,
1968 int, flags)
1970 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1972 return do_execveat(fd,
1973 getname_flags(filename, lookup_flags, NULL),
1974 argv, envp, flags);
1977 #ifdef CONFIG_COMPAT
1978 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1979 const compat_uptr_t __user *, argv,
1980 const compat_uptr_t __user *, envp)
1982 return compat_do_execve(getname(filename), argv, envp);
1985 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1986 const char __user *, filename,
1987 const compat_uptr_t __user *, argv,
1988 const compat_uptr_t __user *, envp,
1989 int, flags)
1991 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1993 return compat_do_execveat(fd,
1994 getname_flags(filename, lookup_flags, NULL),
1995 argv, envp, flags);
1997 #endif