1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
21 #include <trace/events/f2fs.h>
23 static struct kmem_cache
*ino_entry_slab
;
24 struct kmem_cache
*f2fs_inode_entry_slab
;
26 void f2fs_stop_checkpoint(struct f2fs_sb_info
*sbi
, bool end_io
)
28 f2fs_build_fault_attr(sbi
, 0, 0);
29 set_ckpt_flags(sbi
, CP_ERROR_FLAG
);
31 f2fs_flush_merged_writes(sbi
);
35 * We guarantee no failure on the returned page.
37 struct page
*f2fs_grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
39 struct address_space
*mapping
= META_MAPPING(sbi
);
40 struct page
*page
= NULL
;
42 page
= f2fs_grab_cache_page(mapping
, index
, false);
47 f2fs_wait_on_page_writeback(page
, META
, true, true);
48 if (!PageUptodate(page
))
49 SetPageUptodate(page
);
54 * We guarantee no failure on the returned page.
56 static struct page
*__get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
,
59 struct address_space
*mapping
= META_MAPPING(sbi
);
61 struct f2fs_io_info fio
= {
65 .op_flags
= REQ_META
| REQ_PRIO
,
68 .encrypted_page
= NULL
,
73 if (unlikely(!is_meta
))
74 fio
.op_flags
&= ~REQ_META
;
76 page
= f2fs_grab_cache_page(mapping
, index
, false);
81 if (PageUptodate(page
))
86 err
= f2fs_submit_page_bio(&fio
);
88 f2fs_put_page(page
, 1);
93 if (unlikely(page
->mapping
!= mapping
)) {
94 f2fs_put_page(page
, 1);
98 if (unlikely(!PageUptodate(page
))) {
99 f2fs_put_page(page
, 1);
100 return ERR_PTR(-EIO
);
106 struct page
*f2fs_get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
108 return __get_meta_page(sbi
, index
, true);
111 struct page
*f2fs_get_meta_page_nofail(struct f2fs_sb_info
*sbi
, pgoff_t index
)
117 page
= __get_meta_page(sbi
, index
, true);
119 if (PTR_ERR(page
) == -EIO
&&
120 ++count
<= DEFAULT_RETRY_IO_COUNT
)
122 f2fs_stop_checkpoint(sbi
, false);
128 struct page
*f2fs_get_tmp_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
130 return __get_meta_page(sbi
, index
, false);
133 static bool __is_bitmap_valid(struct f2fs_sb_info
*sbi
, block_t blkaddr
,
136 struct seg_entry
*se
;
137 unsigned int segno
, offset
;
140 if (type
!= DATA_GENERIC_ENHANCE
&& type
!= DATA_GENERIC_ENHANCE_READ
)
143 segno
= GET_SEGNO(sbi
, blkaddr
);
144 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
145 se
= get_seg_entry(sbi
, segno
);
147 exist
= f2fs_test_bit(offset
, se
->cur_valid_map
);
148 if (!exist
&& type
== DATA_GENERIC_ENHANCE
) {
149 f2fs_err(sbi
, "Inconsistent error blkaddr:%u, sit bitmap:%d",
151 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
157 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info
*sbi
,
158 block_t blkaddr
, int type
)
164 if (unlikely(blkaddr
>= SIT_BLK_CNT(sbi
)))
168 if (unlikely(blkaddr
>= MAIN_BLKADDR(sbi
) ||
169 blkaddr
< SM_I(sbi
)->ssa_blkaddr
))
173 if (unlikely(blkaddr
>= SIT_I(sbi
)->sit_base_addr
||
174 blkaddr
< __start_cp_addr(sbi
)))
178 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
179 blkaddr
< MAIN_BLKADDR(sbi
)))
183 case DATA_GENERIC_ENHANCE
:
184 case DATA_GENERIC_ENHANCE_READ
:
185 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
186 blkaddr
< MAIN_BLKADDR(sbi
))) {
187 f2fs_warn(sbi
, "access invalid blkaddr:%u",
189 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
193 return __is_bitmap_valid(sbi
, blkaddr
, type
);
197 if (unlikely(blkaddr
< SEG0_BLKADDR(sbi
) ||
198 blkaddr
>= MAIN_BLKADDR(sbi
)))
209 * Readahead CP/NAT/SIT/SSA pages
211 int f2fs_ra_meta_pages(struct f2fs_sb_info
*sbi
, block_t start
, int nrpages
,
215 block_t blkno
= start
;
216 struct f2fs_io_info fio
= {
220 .op_flags
= sync
? (REQ_META
| REQ_PRIO
) : REQ_RAHEAD
,
221 .encrypted_page
= NULL
,
223 .is_por
= (type
== META_POR
),
225 struct blk_plug plug
;
227 if (unlikely(type
== META_POR
))
228 fio
.op_flags
&= ~REQ_META
;
230 blk_start_plug(&plug
);
231 for (; nrpages
-- > 0; blkno
++) {
233 if (!f2fs_is_valid_blkaddr(sbi
, blkno
, type
))
238 if (unlikely(blkno
>=
239 NAT_BLOCK_OFFSET(NM_I(sbi
)->max_nid
)))
241 /* get nat block addr */
242 fio
.new_blkaddr
= current_nat_addr(sbi
,
243 blkno
* NAT_ENTRY_PER_BLOCK
);
246 /* get sit block addr */
247 fio
.new_blkaddr
= current_sit_addr(sbi
,
248 blkno
* SIT_ENTRY_PER_BLOCK
);
253 fio
.new_blkaddr
= blkno
;
259 page
= f2fs_grab_cache_page(META_MAPPING(sbi
),
260 fio
.new_blkaddr
, false);
263 if (PageUptodate(page
)) {
264 f2fs_put_page(page
, 1);
269 f2fs_submit_page_bio(&fio
);
270 f2fs_put_page(page
, 0);
273 blk_finish_plug(&plug
);
274 return blkno
- start
;
277 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info
*sbi
, pgoff_t index
)
280 bool readahead
= false;
282 page
= find_get_page(META_MAPPING(sbi
), index
);
283 if (!page
|| !PageUptodate(page
))
285 f2fs_put_page(page
, 0);
288 f2fs_ra_meta_pages(sbi
, index
, BIO_MAX_PAGES
, META_POR
, true);
291 static int __f2fs_write_meta_page(struct page
*page
,
292 struct writeback_control
*wbc
,
293 enum iostat_type io_type
)
295 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
297 trace_f2fs_writepage(page
, META
);
299 if (unlikely(f2fs_cp_error(sbi
)))
301 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
303 if (wbc
->for_reclaim
&& page
->index
< GET_SUM_BLOCK(sbi
, 0))
306 f2fs_do_write_meta_page(sbi
, page
, io_type
);
307 dec_page_count(sbi
, F2FS_DIRTY_META
);
309 if (wbc
->for_reclaim
)
310 f2fs_submit_merged_write_cond(sbi
, NULL
, page
, 0, META
);
314 if (unlikely(f2fs_cp_error(sbi
)))
315 f2fs_submit_merged_write(sbi
, META
);
320 redirty_page_for_writepage(wbc
, page
);
321 return AOP_WRITEPAGE_ACTIVATE
;
324 static int f2fs_write_meta_page(struct page
*page
,
325 struct writeback_control
*wbc
)
327 return __f2fs_write_meta_page(page
, wbc
, FS_META_IO
);
330 static int f2fs_write_meta_pages(struct address_space
*mapping
,
331 struct writeback_control
*wbc
)
333 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
336 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
339 /* collect a number of dirty meta pages and write together */
340 if (wbc
->sync_mode
!= WB_SYNC_ALL
&&
341 get_pages(sbi
, F2FS_DIRTY_META
) <
342 nr_pages_to_skip(sbi
, META
))
345 /* if locked failed, cp will flush dirty pages instead */
346 if (!mutex_trylock(&sbi
->cp_mutex
))
349 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
350 diff
= nr_pages_to_write(sbi
, META
, wbc
);
351 written
= f2fs_sync_meta_pages(sbi
, META
, wbc
->nr_to_write
, FS_META_IO
);
352 mutex_unlock(&sbi
->cp_mutex
);
353 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- written
- diff
);
357 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_META
);
358 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
362 long f2fs_sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
363 long nr_to_write
, enum iostat_type io_type
)
365 struct address_space
*mapping
= META_MAPPING(sbi
);
366 pgoff_t index
= 0, prev
= ULONG_MAX
;
370 struct writeback_control wbc
= {
373 struct blk_plug plug
;
377 blk_start_plug(&plug
);
379 while ((nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
380 PAGECACHE_TAG_DIRTY
))) {
383 for (i
= 0; i
< nr_pages
; i
++) {
384 struct page
*page
= pvec
.pages
[i
];
386 if (prev
== ULONG_MAX
)
387 prev
= page
->index
- 1;
388 if (nr_to_write
!= LONG_MAX
&& page
->index
!= prev
+ 1) {
389 pagevec_release(&pvec
);
395 if (unlikely(page
->mapping
!= mapping
)) {
400 if (!PageDirty(page
)) {
401 /* someone wrote it for us */
402 goto continue_unlock
;
405 f2fs_wait_on_page_writeback(page
, META
, true, true);
407 if (!clear_page_dirty_for_io(page
))
408 goto continue_unlock
;
410 if (__f2fs_write_meta_page(page
, &wbc
, io_type
)) {
416 if (unlikely(nwritten
>= nr_to_write
))
419 pagevec_release(&pvec
);
424 f2fs_submit_merged_write(sbi
, type
);
426 blk_finish_plug(&plug
);
431 static int f2fs_set_meta_page_dirty(struct page
*page
)
433 trace_f2fs_set_page_dirty(page
, META
);
435 if (!PageUptodate(page
))
436 SetPageUptodate(page
);
437 if (!PageDirty(page
)) {
438 __set_page_dirty_nobuffers(page
);
439 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_META
);
440 f2fs_set_page_private(page
, 0);
441 f2fs_trace_pid(page
);
447 const struct address_space_operations f2fs_meta_aops
= {
448 .writepage
= f2fs_write_meta_page
,
449 .writepages
= f2fs_write_meta_pages
,
450 .set_page_dirty
= f2fs_set_meta_page_dirty
,
451 .invalidatepage
= f2fs_invalidate_page
,
452 .releasepage
= f2fs_release_page
,
453 #ifdef CONFIG_MIGRATION
454 .migratepage
= f2fs_migrate_page
,
458 static void __add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
,
459 unsigned int devidx
, int type
)
461 struct inode_management
*im
= &sbi
->im
[type
];
462 struct ino_entry
*e
, *tmp
;
464 tmp
= f2fs_kmem_cache_alloc(ino_entry_slab
, GFP_NOFS
);
466 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
468 spin_lock(&im
->ino_lock
);
469 e
= radix_tree_lookup(&im
->ino_root
, ino
);
472 if (unlikely(radix_tree_insert(&im
->ino_root
, ino
, e
)))
475 memset(e
, 0, sizeof(struct ino_entry
));
478 list_add_tail(&e
->list
, &im
->ino_list
);
479 if (type
!= ORPHAN_INO
)
483 if (type
== FLUSH_INO
)
484 f2fs_set_bit(devidx
, (char *)&e
->dirty_device
);
486 spin_unlock(&im
->ino_lock
);
487 radix_tree_preload_end();
490 kmem_cache_free(ino_entry_slab
, tmp
);
493 static void __remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
495 struct inode_management
*im
= &sbi
->im
[type
];
498 spin_lock(&im
->ino_lock
);
499 e
= radix_tree_lookup(&im
->ino_root
, ino
);
502 radix_tree_delete(&im
->ino_root
, ino
);
504 spin_unlock(&im
->ino_lock
);
505 kmem_cache_free(ino_entry_slab
, e
);
508 spin_unlock(&im
->ino_lock
);
511 void f2fs_add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
513 /* add new dirty ino entry into list */
514 __add_ino_entry(sbi
, ino
, 0, type
);
517 void f2fs_remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
519 /* remove dirty ino entry from list */
520 __remove_ino_entry(sbi
, ino
, type
);
523 /* mode should be APPEND_INO or UPDATE_INO */
524 bool f2fs_exist_written_data(struct f2fs_sb_info
*sbi
, nid_t ino
, int mode
)
526 struct inode_management
*im
= &sbi
->im
[mode
];
529 spin_lock(&im
->ino_lock
);
530 e
= radix_tree_lookup(&im
->ino_root
, ino
);
531 spin_unlock(&im
->ino_lock
);
532 return e
? true : false;
535 void f2fs_release_ino_entry(struct f2fs_sb_info
*sbi
, bool all
)
537 struct ino_entry
*e
, *tmp
;
540 for (i
= all
? ORPHAN_INO
: APPEND_INO
; i
< MAX_INO_ENTRY
; i
++) {
541 struct inode_management
*im
= &sbi
->im
[i
];
543 spin_lock(&im
->ino_lock
);
544 list_for_each_entry_safe(e
, tmp
, &im
->ino_list
, list
) {
546 radix_tree_delete(&im
->ino_root
, e
->ino
);
547 kmem_cache_free(ino_entry_slab
, e
);
550 spin_unlock(&im
->ino_lock
);
554 void f2fs_set_dirty_device(struct f2fs_sb_info
*sbi
, nid_t ino
,
555 unsigned int devidx
, int type
)
557 __add_ino_entry(sbi
, ino
, devidx
, type
);
560 bool f2fs_is_dirty_device(struct f2fs_sb_info
*sbi
, nid_t ino
,
561 unsigned int devidx
, int type
)
563 struct inode_management
*im
= &sbi
->im
[type
];
565 bool is_dirty
= false;
567 spin_lock(&im
->ino_lock
);
568 e
= radix_tree_lookup(&im
->ino_root
, ino
);
569 if (e
&& f2fs_test_bit(devidx
, (char *)&e
->dirty_device
))
571 spin_unlock(&im
->ino_lock
);
575 int f2fs_acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
577 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
580 spin_lock(&im
->ino_lock
);
582 if (time_to_inject(sbi
, FAULT_ORPHAN
)) {
583 spin_unlock(&im
->ino_lock
);
584 f2fs_show_injection_info(FAULT_ORPHAN
);
588 if (unlikely(im
->ino_num
>= sbi
->max_orphans
))
592 spin_unlock(&im
->ino_lock
);
597 void f2fs_release_orphan_inode(struct f2fs_sb_info
*sbi
)
599 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
601 spin_lock(&im
->ino_lock
);
602 f2fs_bug_on(sbi
, im
->ino_num
== 0);
604 spin_unlock(&im
->ino_lock
);
607 void f2fs_add_orphan_inode(struct inode
*inode
)
609 /* add new orphan ino entry into list */
610 __add_ino_entry(F2FS_I_SB(inode
), inode
->i_ino
, 0, ORPHAN_INO
);
611 f2fs_update_inode_page(inode
);
614 void f2fs_remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
616 /* remove orphan entry from orphan list */
617 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
620 static int recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
626 inode
= f2fs_iget_retry(sbi
->sb
, ino
);
629 * there should be a bug that we can't find the entry
632 f2fs_bug_on(sbi
, PTR_ERR(inode
) == -ENOENT
);
633 return PTR_ERR(inode
);
636 err
= dquot_initialize(inode
);
644 /* truncate all the data during iput */
647 err
= f2fs_get_node_info(sbi
, ino
, &ni
);
651 /* ENOMEM was fully retried in f2fs_evict_inode. */
652 if (ni
.blk_addr
!= NULL_ADDR
) {
659 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
660 f2fs_warn(sbi
, "%s: orphan failed (ino=%x), run fsck to fix.",
665 int f2fs_recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
667 block_t start_blk
, orphan_blocks
, i
, j
;
668 unsigned int s_flags
= sbi
->sb
->s_flags
;
674 if (!is_set_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
))
677 if (bdev_read_only(sbi
->sb
->s_bdev
)) {
678 f2fs_info(sbi
, "write access unavailable, skipping orphan cleanup");
682 if (s_flags
& SB_RDONLY
) {
683 f2fs_info(sbi
, "orphan cleanup on readonly fs");
684 sbi
->sb
->s_flags
&= ~SB_RDONLY
;
688 /* Needed for iput() to work correctly and not trash data */
689 sbi
->sb
->s_flags
|= SB_ACTIVE
;
692 * Turn on quotas which were not enabled for read-only mounts if
693 * filesystem has quota feature, so that they are updated correctly.
695 quota_enabled
= f2fs_enable_quota_files(sbi
, s_flags
& SB_RDONLY
);
698 start_blk
= __start_cp_addr(sbi
) + 1 + __cp_payload(sbi
);
699 orphan_blocks
= __start_sum_addr(sbi
) - 1 - __cp_payload(sbi
);
701 f2fs_ra_meta_pages(sbi
, start_blk
, orphan_blocks
, META_CP
, true);
703 for (i
= 0; i
< orphan_blocks
; i
++) {
705 struct f2fs_orphan_block
*orphan_blk
;
707 page
= f2fs_get_meta_page(sbi
, start_blk
+ i
);
713 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
714 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
715 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
716 err
= recover_orphan_inode(sbi
, ino
);
718 f2fs_put_page(page
, 1);
722 f2fs_put_page(page
, 1);
724 /* clear Orphan Flag */
725 clear_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
);
727 set_sbi_flag(sbi
, SBI_IS_RECOVERED
);
730 /* Turn quotas off */
732 f2fs_quota_off_umount(sbi
->sb
);
734 sbi
->sb
->s_flags
= s_flags
; /* Restore SB_RDONLY status */
739 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
741 struct list_head
*head
;
742 struct f2fs_orphan_block
*orphan_blk
= NULL
;
743 unsigned int nentries
= 0;
744 unsigned short index
= 1;
745 unsigned short orphan_blocks
;
746 struct page
*page
= NULL
;
747 struct ino_entry
*orphan
= NULL
;
748 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
750 orphan_blocks
= GET_ORPHAN_BLOCKS(im
->ino_num
);
753 * we don't need to do spin_lock(&im->ino_lock) here, since all the
754 * orphan inode operations are covered under f2fs_lock_op().
755 * And, spin_lock should be avoided due to page operations below.
757 head
= &im
->ino_list
;
759 /* loop for each orphan inode entry and write them in Jornal block */
760 list_for_each_entry(orphan
, head
, list
) {
762 page
= f2fs_grab_meta_page(sbi
, start_blk
++);
764 (struct f2fs_orphan_block
*)page_address(page
);
765 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
768 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
770 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
772 * an orphan block is full of 1020 entries,
773 * then we need to flush current orphan blocks
774 * and bring another one in memory
776 orphan_blk
->blk_addr
= cpu_to_le16(index
);
777 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
778 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
779 set_page_dirty(page
);
780 f2fs_put_page(page
, 1);
788 orphan_blk
->blk_addr
= cpu_to_le16(index
);
789 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
790 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
791 set_page_dirty(page
);
792 f2fs_put_page(page
, 1);
796 static __u32
f2fs_checkpoint_chksum(struct f2fs_sb_info
*sbi
,
797 struct f2fs_checkpoint
*ckpt
)
799 unsigned int chksum_ofs
= le32_to_cpu(ckpt
->checksum_offset
);
802 chksum
= f2fs_crc32(sbi
, ckpt
, chksum_ofs
);
803 if (chksum_ofs
< CP_CHKSUM_OFFSET
) {
804 chksum_ofs
+= sizeof(chksum
);
805 chksum
= f2fs_chksum(sbi
, chksum
, (__u8
*)ckpt
+ chksum_ofs
,
806 F2FS_BLKSIZE
- chksum_ofs
);
811 static int get_checkpoint_version(struct f2fs_sb_info
*sbi
, block_t cp_addr
,
812 struct f2fs_checkpoint
**cp_block
, struct page
**cp_page
,
813 unsigned long long *version
)
815 size_t crc_offset
= 0;
818 *cp_page
= f2fs_get_meta_page(sbi
, cp_addr
);
819 if (IS_ERR(*cp_page
))
820 return PTR_ERR(*cp_page
);
822 *cp_block
= (struct f2fs_checkpoint
*)page_address(*cp_page
);
824 crc_offset
= le32_to_cpu((*cp_block
)->checksum_offset
);
825 if (crc_offset
< CP_MIN_CHKSUM_OFFSET
||
826 crc_offset
> CP_CHKSUM_OFFSET
) {
827 f2fs_put_page(*cp_page
, 1);
828 f2fs_warn(sbi
, "invalid crc_offset: %zu", crc_offset
);
832 crc
= f2fs_checkpoint_chksum(sbi
, *cp_block
);
833 if (crc
!= cur_cp_crc(*cp_block
)) {
834 f2fs_put_page(*cp_page
, 1);
835 f2fs_warn(sbi
, "invalid crc value");
839 *version
= cur_cp_version(*cp_block
);
843 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
844 block_t cp_addr
, unsigned long long *version
)
846 struct page
*cp_page_1
= NULL
, *cp_page_2
= NULL
;
847 struct f2fs_checkpoint
*cp_block
= NULL
;
848 unsigned long long cur_version
= 0, pre_version
= 0;
851 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
852 &cp_page_1
, version
);
856 if (le32_to_cpu(cp_block
->cp_pack_total_block_count
) >
857 sbi
->blocks_per_seg
) {
858 f2fs_warn(sbi
, "invalid cp_pack_total_block_count:%u",
859 le32_to_cpu(cp_block
->cp_pack_total_block_count
));
862 pre_version
= *version
;
864 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
865 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
866 &cp_page_2
, version
);
869 cur_version
= *version
;
871 if (cur_version
== pre_version
) {
872 *version
= cur_version
;
873 f2fs_put_page(cp_page_2
, 1);
876 f2fs_put_page(cp_page_2
, 1);
878 f2fs_put_page(cp_page_1
, 1);
882 int f2fs_get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
884 struct f2fs_checkpoint
*cp_block
;
885 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
886 struct page
*cp1
, *cp2
, *cur_page
;
887 unsigned long blk_size
= sbi
->blocksize
;
888 unsigned long long cp1_version
= 0, cp2_version
= 0;
889 unsigned long long cp_start_blk_no
;
890 unsigned int cp_blks
= 1 + __cp_payload(sbi
);
895 sbi
->ckpt
= f2fs_kvzalloc(sbi
, array_size(blk_size
, cp_blks
),
900 * Finding out valid cp block involves read both
901 * sets( cp pack1 and cp pack 2)
903 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
904 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
906 /* The second checkpoint pack should start at the next segment */
907 cp_start_blk_no
+= ((unsigned long long)1) <<
908 le32_to_cpu(fsb
->log_blocks_per_seg
);
909 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
912 if (ver_after(cp2_version
, cp1_version
))
925 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
926 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
929 sbi
->cur_cp_pack
= 1;
931 sbi
->cur_cp_pack
= 2;
933 /* Sanity checking of checkpoint */
934 if (f2fs_sanity_check_ckpt(sbi
)) {
936 goto free_fail_no_cp
;
942 cp_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
944 cp_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
946 for (i
= 1; i
< cp_blks
; i
++) {
947 void *sit_bitmap_ptr
;
948 unsigned char *ckpt
= (unsigned char *)sbi
->ckpt
;
950 cur_page
= f2fs_get_meta_page(sbi
, cp_blk_no
+ i
);
951 if (IS_ERR(cur_page
)) {
952 err
= PTR_ERR(cur_page
);
953 goto free_fail_no_cp
;
955 sit_bitmap_ptr
= page_address(cur_page
);
956 memcpy(ckpt
+ i
* blk_size
, sit_bitmap_ptr
, blk_size
);
957 f2fs_put_page(cur_page
, 1);
960 f2fs_put_page(cp1
, 1);
961 f2fs_put_page(cp2
, 1);
965 f2fs_put_page(cp1
, 1);
966 f2fs_put_page(cp2
, 1);
972 static void __add_dirty_inode(struct inode
*inode
, enum inode_type type
)
974 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
975 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
977 if (is_inode_flag_set(inode
, flag
))
980 set_inode_flag(inode
, flag
);
981 if (!f2fs_is_volatile_file(inode
))
982 list_add_tail(&F2FS_I(inode
)->dirty_list
,
983 &sbi
->inode_list
[type
]);
984 stat_inc_dirty_inode(sbi
, type
);
987 static void __remove_dirty_inode(struct inode
*inode
, enum inode_type type
)
989 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
991 if (get_dirty_pages(inode
) || !is_inode_flag_set(inode
, flag
))
994 list_del_init(&F2FS_I(inode
)->dirty_list
);
995 clear_inode_flag(inode
, flag
);
996 stat_dec_dirty_inode(F2FS_I_SB(inode
), type
);
999 void f2fs_update_dirty_page(struct inode
*inode
, struct page
*page
)
1001 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1002 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
1004 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
1005 !S_ISLNK(inode
->i_mode
))
1008 spin_lock(&sbi
->inode_lock
[type
]);
1009 if (type
!= FILE_INODE
|| test_opt(sbi
, DATA_FLUSH
))
1010 __add_dirty_inode(inode
, type
);
1011 inode_inc_dirty_pages(inode
);
1012 spin_unlock(&sbi
->inode_lock
[type
]);
1014 f2fs_set_page_private(page
, 0);
1015 f2fs_trace_pid(page
);
1018 void f2fs_remove_dirty_inode(struct inode
*inode
)
1020 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1021 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
1023 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
1024 !S_ISLNK(inode
->i_mode
))
1027 if (type
== FILE_INODE
&& !test_opt(sbi
, DATA_FLUSH
))
1030 spin_lock(&sbi
->inode_lock
[type
]);
1031 __remove_dirty_inode(inode
, type
);
1032 spin_unlock(&sbi
->inode_lock
[type
]);
1035 int f2fs_sync_dirty_inodes(struct f2fs_sb_info
*sbi
, enum inode_type type
)
1037 struct list_head
*head
;
1038 struct inode
*inode
;
1039 struct f2fs_inode_info
*fi
;
1040 bool is_dir
= (type
== DIR_INODE
);
1041 unsigned long ino
= 0;
1043 trace_f2fs_sync_dirty_inodes_enter(sbi
->sb
, is_dir
,
1044 get_pages(sbi
, is_dir
?
1045 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
1047 if (unlikely(f2fs_cp_error(sbi
)))
1050 spin_lock(&sbi
->inode_lock
[type
]);
1052 head
= &sbi
->inode_list
[type
];
1053 if (list_empty(head
)) {
1054 spin_unlock(&sbi
->inode_lock
[type
]);
1055 trace_f2fs_sync_dirty_inodes_exit(sbi
->sb
, is_dir
,
1056 get_pages(sbi
, is_dir
?
1057 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
1060 fi
= list_first_entry(head
, struct f2fs_inode_info
, dirty_list
);
1061 inode
= igrab(&fi
->vfs_inode
);
1062 spin_unlock(&sbi
->inode_lock
[type
]);
1064 unsigned long cur_ino
= inode
->i_ino
;
1066 F2FS_I(inode
)->cp_task
= current
;
1068 filemap_fdatawrite(inode
->i_mapping
);
1070 F2FS_I(inode
)->cp_task
= NULL
;
1073 /* We need to give cpu to another writers. */
1080 * We should submit bio, since it exists several
1081 * wribacking dentry pages in the freeing inode.
1083 f2fs_submit_merged_write(sbi
, DATA
);
1089 int f2fs_sync_inode_meta(struct f2fs_sb_info
*sbi
)
1091 struct list_head
*head
= &sbi
->inode_list
[DIRTY_META
];
1092 struct inode
*inode
;
1093 struct f2fs_inode_info
*fi
;
1094 s64 total
= get_pages(sbi
, F2FS_DIRTY_IMETA
);
1097 if (unlikely(f2fs_cp_error(sbi
)))
1100 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
1101 if (list_empty(head
)) {
1102 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1105 fi
= list_first_entry(head
, struct f2fs_inode_info
,
1107 inode
= igrab(&fi
->vfs_inode
);
1108 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1110 sync_inode_metadata(inode
, 0);
1112 /* it's on eviction */
1113 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
))
1114 f2fs_update_inode_page(inode
);
1121 static void __prepare_cp_block(struct f2fs_sb_info
*sbi
)
1123 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1124 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1125 nid_t last_nid
= nm_i
->next_scan_nid
;
1127 next_free_nid(sbi
, &last_nid
);
1128 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
1129 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
1130 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
1131 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
1134 static bool __need_flush_quota(struct f2fs_sb_info
*sbi
)
1138 if (!is_journalled_quota(sbi
))
1141 down_write(&sbi
->quota_sem
);
1142 if (is_sbi_flag_set(sbi
, SBI_QUOTA_SKIP_FLUSH
)) {
1144 } else if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_REPAIR
)) {
1146 } else if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_FLUSH
)) {
1147 clear_sbi_flag(sbi
, SBI_QUOTA_NEED_FLUSH
);
1149 } else if (get_pages(sbi
, F2FS_DIRTY_QDATA
)) {
1152 up_write(&sbi
->quota_sem
);
1157 * Freeze all the FS-operations for checkpoint.
1159 static int block_operations(struct f2fs_sb_info
*sbi
)
1161 struct writeback_control wbc
= {
1162 .sync_mode
= WB_SYNC_ALL
,
1163 .nr_to_write
= LONG_MAX
,
1166 struct blk_plug plug
;
1167 int err
= 0, cnt
= 0;
1169 blk_start_plug(&plug
);
1173 if (__need_flush_quota(sbi
)) {
1176 if (++cnt
> DEFAULT_RETRY_QUOTA_FLUSH_COUNT
) {
1177 set_sbi_flag(sbi
, SBI_QUOTA_SKIP_FLUSH
);
1178 set_sbi_flag(sbi
, SBI_QUOTA_NEED_FLUSH
);
1179 goto retry_flush_dents
;
1181 f2fs_unlock_all(sbi
);
1183 /* only failed during mount/umount/freeze/quotactl */
1184 locked
= down_read_trylock(&sbi
->sb
->s_umount
);
1185 f2fs_quota_sync(sbi
->sb
, -1);
1187 up_read(&sbi
->sb
->s_umount
);
1189 goto retry_flush_quotas
;
1193 /* write all the dirty dentry pages */
1194 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
1195 f2fs_unlock_all(sbi
);
1196 err
= f2fs_sync_dirty_inodes(sbi
, DIR_INODE
);
1200 goto retry_flush_quotas
;
1204 * POR: we should ensure that there are no dirty node pages
1205 * until finishing nat/sit flush. inode->i_blocks can be updated.
1207 down_write(&sbi
->node_change
);
1209 if (get_pages(sbi
, F2FS_DIRTY_IMETA
)) {
1210 up_write(&sbi
->node_change
);
1211 f2fs_unlock_all(sbi
);
1212 err
= f2fs_sync_inode_meta(sbi
);
1216 goto retry_flush_quotas
;
1220 down_write(&sbi
->node_write
);
1222 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
1223 up_write(&sbi
->node_write
);
1224 atomic_inc(&sbi
->wb_sync_req
[NODE
]);
1225 err
= f2fs_sync_node_pages(sbi
, &wbc
, false, FS_CP_NODE_IO
);
1226 atomic_dec(&sbi
->wb_sync_req
[NODE
]);
1228 up_write(&sbi
->node_change
);
1229 f2fs_unlock_all(sbi
);
1233 goto retry_flush_nodes
;
1237 * sbi->node_change is used only for AIO write_begin path which produces
1238 * dirty node blocks and some checkpoint values by block allocation.
1240 __prepare_cp_block(sbi
);
1241 up_write(&sbi
->node_change
);
1243 blk_finish_plug(&plug
);
1247 static void unblock_operations(struct f2fs_sb_info
*sbi
)
1249 up_write(&sbi
->node_write
);
1250 f2fs_unlock_all(sbi
);
1253 void f2fs_wait_on_all_pages(struct f2fs_sb_info
*sbi
, int type
)
1258 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
1260 if (!get_pages(sbi
, type
))
1263 if (unlikely(f2fs_cp_error(sbi
)))
1266 io_schedule_timeout(HZ
/50);
1268 finish_wait(&sbi
->cp_wait
, &wait
);
1271 static void update_ckpt_flags(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1273 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
1274 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1275 unsigned long flags
;
1277 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1279 if ((cpc
->reason
& CP_UMOUNT
) &&
1280 le32_to_cpu(ckpt
->cp_pack_total_block_count
) >
1281 sbi
->blocks_per_seg
- NM_I(sbi
)->nat_bits_blocks
)
1282 disable_nat_bits(sbi
, false);
1284 if (cpc
->reason
& CP_TRIMMED
)
1285 __set_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1287 __clear_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1289 if (cpc
->reason
& CP_UMOUNT
)
1290 __set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1292 __clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1294 if (cpc
->reason
& CP_FASTBOOT
)
1295 __set_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1297 __clear_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1300 __set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1302 __clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1304 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1305 __set_ckpt_flags(ckpt
, CP_FSCK_FLAG
);
1307 if (is_sbi_flag_set(sbi
, SBI_IS_RESIZEFS
))
1308 __set_ckpt_flags(ckpt
, CP_RESIZEFS_FLAG
);
1310 __clear_ckpt_flags(ckpt
, CP_RESIZEFS_FLAG
);
1312 if (is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))
1313 __set_ckpt_flags(ckpt
, CP_DISABLED_FLAG
);
1315 __clear_ckpt_flags(ckpt
, CP_DISABLED_FLAG
);
1317 if (is_sbi_flag_set(sbi
, SBI_CP_DISABLED_QUICK
))
1318 __set_ckpt_flags(ckpt
, CP_DISABLED_QUICK_FLAG
);
1320 __clear_ckpt_flags(ckpt
, CP_DISABLED_QUICK_FLAG
);
1322 if (is_sbi_flag_set(sbi
, SBI_QUOTA_SKIP_FLUSH
))
1323 __set_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1325 __clear_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1327 if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_REPAIR
))
1328 __set_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1330 /* set this flag to activate crc|cp_ver for recovery */
1331 __set_ckpt_flags(ckpt
, CP_CRC_RECOVERY_FLAG
);
1332 __clear_ckpt_flags(ckpt
, CP_NOCRC_RECOVERY_FLAG
);
1334 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1337 static void commit_checkpoint(struct f2fs_sb_info
*sbi
,
1338 void *src
, block_t blk_addr
)
1340 struct writeback_control wbc
= {
1345 * pagevec_lookup_tag and lock_page again will take
1346 * some extra time. Therefore, f2fs_update_meta_pages and
1347 * f2fs_sync_meta_pages are combined in this function.
1349 struct page
*page
= f2fs_grab_meta_page(sbi
, blk_addr
);
1352 f2fs_wait_on_page_writeback(page
, META
, true, true);
1354 memcpy(page_address(page
), src
, PAGE_SIZE
);
1356 set_page_dirty(page
);
1357 if (unlikely(!clear_page_dirty_for_io(page
)))
1358 f2fs_bug_on(sbi
, 1);
1360 /* writeout cp pack 2 page */
1361 err
= __f2fs_write_meta_page(page
, &wbc
, FS_CP_META_IO
);
1362 if (unlikely(err
&& f2fs_cp_error(sbi
))) {
1363 f2fs_put_page(page
, 1);
1367 f2fs_bug_on(sbi
, err
);
1368 f2fs_put_page(page
, 0);
1370 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1371 f2fs_submit_merged_write(sbi
, META_FLUSH
);
1374 static int do_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1376 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1377 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1378 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
, flags
;
1380 unsigned int data_sum_blocks
, orphan_blocks
;
1383 int cp_payload_blks
= __cp_payload(sbi
);
1384 struct super_block
*sb
= sbi
->sb
;
1385 struct curseg_info
*seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
1389 /* Flush all the NAT/SIT pages */
1390 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1394 * version number is already updated
1396 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
, true));
1397 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
1398 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
1399 ckpt
->cur_node_segno
[i
] =
1400 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
1401 ckpt
->cur_node_blkoff
[i
] =
1402 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
1403 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
1404 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
1406 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
1407 ckpt
->cur_data_segno
[i
] =
1408 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
1409 ckpt
->cur_data_blkoff
[i
] =
1410 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
1411 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
1412 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
1415 /* 2 cp + n data seg summary + orphan inode blocks */
1416 data_sum_blocks
= f2fs_npages_for_summary_flush(sbi
, false);
1417 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1418 if (data_sum_blocks
< NR_CURSEG_DATA_TYPE
)
1419 __set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1421 __clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1422 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1424 orphan_blocks
= GET_ORPHAN_BLOCKS(orphan_num
);
1425 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + cp_payload_blks
+
1428 if (__remain_node_summaries(cpc
->reason
))
1429 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1430 cp_payload_blks
+ data_sum_blocks
+
1431 orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
1433 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1434 cp_payload_blks
+ data_sum_blocks
+
1437 /* update ckpt flag for checkpoint */
1438 update_ckpt_flags(sbi
, cpc
);
1440 /* update SIT/NAT bitmap */
1441 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
1442 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
1444 crc32
= f2fs_checkpoint_chksum(sbi
, ckpt
);
1445 *((__le32
*)((unsigned char *)ckpt
+
1446 le32_to_cpu(ckpt
->checksum_offset
)))
1447 = cpu_to_le32(crc32
);
1449 start_blk
= __start_cp_next_addr(sbi
);
1451 /* write nat bits */
1452 if (enabled_nat_bits(sbi
, cpc
)) {
1453 __u64 cp_ver
= cur_cp_version(ckpt
);
1456 cp_ver
|= ((__u64
)crc32
<< 32);
1457 *(__le64
*)nm_i
->nat_bits
= cpu_to_le64(cp_ver
);
1459 blk
= start_blk
+ sbi
->blocks_per_seg
- nm_i
->nat_bits_blocks
;
1460 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++)
1461 f2fs_update_meta_page(sbi
, nm_i
->nat_bits
+
1462 (i
<< F2FS_BLKSIZE_BITS
), blk
+ i
);
1465 /* write out checkpoint buffer at block 0 */
1466 f2fs_update_meta_page(sbi
, ckpt
, start_blk
++);
1468 for (i
= 1; i
< 1 + cp_payload_blks
; i
++)
1469 f2fs_update_meta_page(sbi
, (char *)ckpt
+ i
* F2FS_BLKSIZE
,
1473 write_orphan_inodes(sbi
, start_blk
);
1474 start_blk
+= orphan_blocks
;
1477 f2fs_write_data_summaries(sbi
, start_blk
);
1478 start_blk
+= data_sum_blocks
;
1480 /* Record write statistics in the hot node summary */
1481 kbytes_written
= sbi
->kbytes_written
;
1482 if (sb
->s_bdev
->bd_part
)
1483 kbytes_written
+= BD_PART_WRITTEN(sbi
);
1485 seg_i
->journal
->info
.kbytes_written
= cpu_to_le64(kbytes_written
);
1487 if (__remain_node_summaries(cpc
->reason
)) {
1488 f2fs_write_node_summaries(sbi
, start_blk
);
1489 start_blk
+= NR_CURSEG_NODE_TYPE
;
1492 /* update user_block_counts */
1493 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1494 percpu_counter_set(&sbi
->alloc_valid_block_count
, 0);
1496 /* Here, we have one bio having CP pack except cp pack 2 page */
1497 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1498 /* Wait for all dirty meta pages to be submitted for IO */
1499 f2fs_wait_on_all_pages(sbi
, F2FS_DIRTY_META
);
1501 /* wait for previous submitted meta pages writeback */
1502 f2fs_wait_on_all_pages(sbi
, F2FS_WB_CP_DATA
);
1504 /* flush all device cache */
1505 err
= f2fs_flush_device_cache(sbi
);
1509 /* barrier and flush checkpoint cp pack 2 page if it can */
1510 commit_checkpoint(sbi
, ckpt
, start_blk
);
1511 f2fs_wait_on_all_pages(sbi
, F2FS_WB_CP_DATA
);
1514 * invalidate intermediate page cache borrowed from meta inode
1515 * which are used for migration of encrypted inode's blocks.
1517 if (f2fs_sb_has_encrypt(sbi
))
1518 invalidate_mapping_pages(META_MAPPING(sbi
),
1519 MAIN_BLKADDR(sbi
), MAX_BLKADDR(sbi
) - 1);
1521 f2fs_release_ino_entry(sbi
, false);
1523 f2fs_reset_fsync_node_info(sbi
);
1525 clear_sbi_flag(sbi
, SBI_IS_DIRTY
);
1526 clear_sbi_flag(sbi
, SBI_NEED_CP
);
1527 clear_sbi_flag(sbi
, SBI_QUOTA_SKIP_FLUSH
);
1529 spin_lock(&sbi
->stat_lock
);
1530 sbi
->unusable_block_count
= 0;
1531 spin_unlock(&sbi
->stat_lock
);
1533 __set_cp_next_pack(sbi
);
1536 * redirty superblock if metadata like node page or inode cache is
1537 * updated during writing checkpoint.
1539 if (get_pages(sbi
, F2FS_DIRTY_NODES
) ||
1540 get_pages(sbi
, F2FS_DIRTY_IMETA
))
1541 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1543 f2fs_bug_on(sbi
, get_pages(sbi
, F2FS_DIRTY_DENTS
));
1545 return unlikely(f2fs_cp_error(sbi
)) ? -EIO
: 0;
1549 * We guarantee that this checkpoint procedure will not fail.
1551 int f2fs_write_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1553 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1554 unsigned long long ckpt_ver
;
1557 if (f2fs_readonly(sbi
->sb
) || f2fs_hw_is_readonly(sbi
))
1560 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))) {
1561 if (cpc
->reason
!= CP_PAUSE
)
1563 f2fs_warn(sbi
, "Start checkpoint disabled!");
1565 mutex_lock(&sbi
->cp_mutex
);
1567 if (!is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) &&
1568 ((cpc
->reason
& CP_FASTBOOT
) || (cpc
->reason
& CP_SYNC
) ||
1569 ((cpc
->reason
& CP_DISCARD
) && !sbi
->discard_blks
)))
1571 if (unlikely(f2fs_cp_error(sbi
))) {
1576 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "start block_ops");
1578 err
= block_operations(sbi
);
1582 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish block_ops");
1584 f2fs_flush_merged_writes(sbi
);
1586 /* this is the case of multiple fstrims without any changes */
1587 if (cpc
->reason
& CP_DISCARD
) {
1588 if (!f2fs_exist_trim_candidates(sbi
, cpc
)) {
1589 unblock_operations(sbi
);
1593 if (NM_I(sbi
)->dirty_nat_cnt
== 0 &&
1594 SIT_I(sbi
)->dirty_sentries
== 0 &&
1595 prefree_segments(sbi
) == 0) {
1596 f2fs_flush_sit_entries(sbi
, cpc
);
1597 f2fs_clear_prefree_segments(sbi
, cpc
);
1598 unblock_operations(sbi
);
1604 * update checkpoint pack index
1605 * Increase the version number so that
1606 * SIT entries and seg summaries are written at correct place
1608 ckpt_ver
= cur_cp_version(ckpt
);
1609 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
1611 /* write cached NAT/SIT entries to NAT/SIT area */
1612 err
= f2fs_flush_nat_entries(sbi
, cpc
);
1616 f2fs_flush_sit_entries(sbi
, cpc
);
1618 /* unlock all the fs_lock[] in do_checkpoint() */
1619 err
= do_checkpoint(sbi
, cpc
);
1621 f2fs_release_discard_addrs(sbi
);
1623 f2fs_clear_prefree_segments(sbi
, cpc
);
1625 unblock_operations(sbi
);
1626 stat_inc_cp_count(sbi
->stat_info
);
1628 if (cpc
->reason
& CP_RECOVERY
)
1629 f2fs_notice(sbi
, "checkpoint: version = %llx", ckpt_ver
);
1631 /* do checkpoint periodically */
1632 f2fs_update_time(sbi
, CP_TIME
);
1633 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish checkpoint");
1635 mutex_unlock(&sbi
->cp_mutex
);
1639 void f2fs_init_ino_entry_info(struct f2fs_sb_info
*sbi
)
1643 for (i
= 0; i
< MAX_INO_ENTRY
; i
++) {
1644 struct inode_management
*im
= &sbi
->im
[i
];
1646 INIT_RADIX_TREE(&im
->ino_root
, GFP_ATOMIC
);
1647 spin_lock_init(&im
->ino_lock
);
1648 INIT_LIST_HEAD(&im
->ino_list
);
1652 sbi
->max_orphans
= (sbi
->blocks_per_seg
- F2FS_CP_PACKS
-
1653 NR_CURSEG_TYPE
- __cp_payload(sbi
)) *
1654 F2FS_ORPHANS_PER_BLOCK
;
1657 int __init
f2fs_create_checkpoint_caches(void)
1659 ino_entry_slab
= f2fs_kmem_cache_create("f2fs_ino_entry",
1660 sizeof(struct ino_entry
));
1661 if (!ino_entry_slab
)
1663 f2fs_inode_entry_slab
= f2fs_kmem_cache_create("f2fs_inode_entry",
1664 sizeof(struct inode_entry
));
1665 if (!f2fs_inode_entry_slab
) {
1666 kmem_cache_destroy(ino_entry_slab
);
1672 void f2fs_destroy_checkpoint_caches(void)
1674 kmem_cache_destroy(ino_entry_slab
);
1675 kmem_cache_destroy(f2fs_inode_entry_slab
);