x86/cpu: Use pinning mask for CR4 bits needing to be 0
[linux/fpc-iii.git] / fs / f2fs / checkpoint.c
blobbbd07fe8a4921ea7c64d817fb076e5fd539331a8
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/checkpoint.c
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
17 #include "f2fs.h"
18 #include "node.h"
19 #include "segment.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
23 static struct kmem_cache *ino_entry_slab;
24 struct kmem_cache *f2fs_inode_entry_slab;
26 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
28 f2fs_build_fault_attr(sbi, 0, 0);
29 set_ckpt_flags(sbi, CP_ERROR_FLAG);
30 if (!end_io)
31 f2fs_flush_merged_writes(sbi);
35 * We guarantee no failure on the returned page.
37 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
39 struct address_space *mapping = META_MAPPING(sbi);
40 struct page *page = NULL;
41 repeat:
42 page = f2fs_grab_cache_page(mapping, index, false);
43 if (!page) {
44 cond_resched();
45 goto repeat;
47 f2fs_wait_on_page_writeback(page, META, true, true);
48 if (!PageUptodate(page))
49 SetPageUptodate(page);
50 return page;
54 * We guarantee no failure on the returned page.
56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
57 bool is_meta)
59 struct address_space *mapping = META_MAPPING(sbi);
60 struct page *page;
61 struct f2fs_io_info fio = {
62 .sbi = sbi,
63 .type = META,
64 .op = REQ_OP_READ,
65 .op_flags = REQ_META | REQ_PRIO,
66 .old_blkaddr = index,
67 .new_blkaddr = index,
68 .encrypted_page = NULL,
69 .is_por = !is_meta,
71 int err;
73 if (unlikely(!is_meta))
74 fio.op_flags &= ~REQ_META;
75 repeat:
76 page = f2fs_grab_cache_page(mapping, index, false);
77 if (!page) {
78 cond_resched();
79 goto repeat;
81 if (PageUptodate(page))
82 goto out;
84 fio.page = page;
86 err = f2fs_submit_page_bio(&fio);
87 if (err) {
88 f2fs_put_page(page, 1);
89 return ERR_PTR(err);
92 lock_page(page);
93 if (unlikely(page->mapping != mapping)) {
94 f2fs_put_page(page, 1);
95 goto repeat;
98 if (unlikely(!PageUptodate(page))) {
99 f2fs_put_page(page, 1);
100 return ERR_PTR(-EIO);
102 out:
103 return page;
106 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
108 return __get_meta_page(sbi, index, true);
111 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
113 struct page *page;
114 int count = 0;
116 retry:
117 page = __get_meta_page(sbi, index, true);
118 if (IS_ERR(page)) {
119 if (PTR_ERR(page) == -EIO &&
120 ++count <= DEFAULT_RETRY_IO_COUNT)
121 goto retry;
122 f2fs_stop_checkpoint(sbi, false);
124 return page;
127 /* for POR only */
128 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
130 return __get_meta_page(sbi, index, false);
133 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
134 int type)
136 struct seg_entry *se;
137 unsigned int segno, offset;
138 bool exist;
140 if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
141 return true;
143 segno = GET_SEGNO(sbi, blkaddr);
144 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
145 se = get_seg_entry(sbi, segno);
147 exist = f2fs_test_bit(offset, se->cur_valid_map);
148 if (!exist && type == DATA_GENERIC_ENHANCE) {
149 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
150 blkaddr, exist);
151 set_sbi_flag(sbi, SBI_NEED_FSCK);
152 WARN_ON(1);
154 return exist;
157 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
158 block_t blkaddr, int type)
160 switch (type) {
161 case META_NAT:
162 break;
163 case META_SIT:
164 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
165 return false;
166 break;
167 case META_SSA:
168 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
169 blkaddr < SM_I(sbi)->ssa_blkaddr))
170 return false;
171 break;
172 case META_CP:
173 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
174 blkaddr < __start_cp_addr(sbi)))
175 return false;
176 break;
177 case META_POR:
178 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
179 blkaddr < MAIN_BLKADDR(sbi)))
180 return false;
181 break;
182 case DATA_GENERIC:
183 case DATA_GENERIC_ENHANCE:
184 case DATA_GENERIC_ENHANCE_READ:
185 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
186 blkaddr < MAIN_BLKADDR(sbi))) {
187 f2fs_warn(sbi, "access invalid blkaddr:%u",
188 blkaddr);
189 set_sbi_flag(sbi, SBI_NEED_FSCK);
190 WARN_ON(1);
191 return false;
192 } else {
193 return __is_bitmap_valid(sbi, blkaddr, type);
195 break;
196 case META_GENERIC:
197 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
198 blkaddr >= MAIN_BLKADDR(sbi)))
199 return false;
200 break;
201 default:
202 BUG();
205 return true;
209 * Readahead CP/NAT/SIT/SSA pages
211 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
212 int type, bool sync)
214 struct page *page;
215 block_t blkno = start;
216 struct f2fs_io_info fio = {
217 .sbi = sbi,
218 .type = META,
219 .op = REQ_OP_READ,
220 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
221 .encrypted_page = NULL,
222 .in_list = false,
223 .is_por = (type == META_POR),
225 struct blk_plug plug;
227 if (unlikely(type == META_POR))
228 fio.op_flags &= ~REQ_META;
230 blk_start_plug(&plug);
231 for (; nrpages-- > 0; blkno++) {
233 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
234 goto out;
236 switch (type) {
237 case META_NAT:
238 if (unlikely(blkno >=
239 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
240 blkno = 0;
241 /* get nat block addr */
242 fio.new_blkaddr = current_nat_addr(sbi,
243 blkno * NAT_ENTRY_PER_BLOCK);
244 break;
245 case META_SIT:
246 /* get sit block addr */
247 fio.new_blkaddr = current_sit_addr(sbi,
248 blkno * SIT_ENTRY_PER_BLOCK);
249 break;
250 case META_SSA:
251 case META_CP:
252 case META_POR:
253 fio.new_blkaddr = blkno;
254 break;
255 default:
256 BUG();
259 page = f2fs_grab_cache_page(META_MAPPING(sbi),
260 fio.new_blkaddr, false);
261 if (!page)
262 continue;
263 if (PageUptodate(page)) {
264 f2fs_put_page(page, 1);
265 continue;
268 fio.page = page;
269 f2fs_submit_page_bio(&fio);
270 f2fs_put_page(page, 0);
272 out:
273 blk_finish_plug(&plug);
274 return blkno - start;
277 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
279 struct page *page;
280 bool readahead = false;
282 page = find_get_page(META_MAPPING(sbi), index);
283 if (!page || !PageUptodate(page))
284 readahead = true;
285 f2fs_put_page(page, 0);
287 if (readahead)
288 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
291 static int __f2fs_write_meta_page(struct page *page,
292 struct writeback_control *wbc,
293 enum iostat_type io_type)
295 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
297 trace_f2fs_writepage(page, META);
299 if (unlikely(f2fs_cp_error(sbi)))
300 goto redirty_out;
301 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
302 goto redirty_out;
303 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
304 goto redirty_out;
306 f2fs_do_write_meta_page(sbi, page, io_type);
307 dec_page_count(sbi, F2FS_DIRTY_META);
309 if (wbc->for_reclaim)
310 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
312 unlock_page(page);
314 if (unlikely(f2fs_cp_error(sbi)))
315 f2fs_submit_merged_write(sbi, META);
317 return 0;
319 redirty_out:
320 redirty_page_for_writepage(wbc, page);
321 return AOP_WRITEPAGE_ACTIVATE;
324 static int f2fs_write_meta_page(struct page *page,
325 struct writeback_control *wbc)
327 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
330 static int f2fs_write_meta_pages(struct address_space *mapping,
331 struct writeback_control *wbc)
333 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
334 long diff, written;
336 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
337 goto skip_write;
339 /* collect a number of dirty meta pages and write together */
340 if (wbc->sync_mode != WB_SYNC_ALL &&
341 get_pages(sbi, F2FS_DIRTY_META) <
342 nr_pages_to_skip(sbi, META))
343 goto skip_write;
345 /* if locked failed, cp will flush dirty pages instead */
346 if (!mutex_trylock(&sbi->cp_mutex))
347 goto skip_write;
349 trace_f2fs_writepages(mapping->host, wbc, META);
350 diff = nr_pages_to_write(sbi, META, wbc);
351 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
352 mutex_unlock(&sbi->cp_mutex);
353 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
354 return 0;
356 skip_write:
357 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
358 trace_f2fs_writepages(mapping->host, wbc, META);
359 return 0;
362 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
363 long nr_to_write, enum iostat_type io_type)
365 struct address_space *mapping = META_MAPPING(sbi);
366 pgoff_t index = 0, prev = ULONG_MAX;
367 struct pagevec pvec;
368 long nwritten = 0;
369 int nr_pages;
370 struct writeback_control wbc = {
371 .for_reclaim = 0,
373 struct blk_plug plug;
375 pagevec_init(&pvec);
377 blk_start_plug(&plug);
379 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
380 PAGECACHE_TAG_DIRTY))) {
381 int i;
383 for (i = 0; i < nr_pages; i++) {
384 struct page *page = pvec.pages[i];
386 if (prev == ULONG_MAX)
387 prev = page->index - 1;
388 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
389 pagevec_release(&pvec);
390 goto stop;
393 lock_page(page);
395 if (unlikely(page->mapping != mapping)) {
396 continue_unlock:
397 unlock_page(page);
398 continue;
400 if (!PageDirty(page)) {
401 /* someone wrote it for us */
402 goto continue_unlock;
405 f2fs_wait_on_page_writeback(page, META, true, true);
407 if (!clear_page_dirty_for_io(page))
408 goto continue_unlock;
410 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
411 unlock_page(page);
412 break;
414 nwritten++;
415 prev = page->index;
416 if (unlikely(nwritten >= nr_to_write))
417 break;
419 pagevec_release(&pvec);
420 cond_resched();
422 stop:
423 if (nwritten)
424 f2fs_submit_merged_write(sbi, type);
426 blk_finish_plug(&plug);
428 return nwritten;
431 static int f2fs_set_meta_page_dirty(struct page *page)
433 trace_f2fs_set_page_dirty(page, META);
435 if (!PageUptodate(page))
436 SetPageUptodate(page);
437 if (!PageDirty(page)) {
438 __set_page_dirty_nobuffers(page);
439 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
440 f2fs_set_page_private(page, 0);
441 f2fs_trace_pid(page);
442 return 1;
444 return 0;
447 const struct address_space_operations f2fs_meta_aops = {
448 .writepage = f2fs_write_meta_page,
449 .writepages = f2fs_write_meta_pages,
450 .set_page_dirty = f2fs_set_meta_page_dirty,
451 .invalidatepage = f2fs_invalidate_page,
452 .releasepage = f2fs_release_page,
453 #ifdef CONFIG_MIGRATION
454 .migratepage = f2fs_migrate_page,
455 #endif
458 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
459 unsigned int devidx, int type)
461 struct inode_management *im = &sbi->im[type];
462 struct ino_entry *e, *tmp;
464 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
466 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
468 spin_lock(&im->ino_lock);
469 e = radix_tree_lookup(&im->ino_root, ino);
470 if (!e) {
471 e = tmp;
472 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
473 f2fs_bug_on(sbi, 1);
475 memset(e, 0, sizeof(struct ino_entry));
476 e->ino = ino;
478 list_add_tail(&e->list, &im->ino_list);
479 if (type != ORPHAN_INO)
480 im->ino_num++;
483 if (type == FLUSH_INO)
484 f2fs_set_bit(devidx, (char *)&e->dirty_device);
486 spin_unlock(&im->ino_lock);
487 radix_tree_preload_end();
489 if (e != tmp)
490 kmem_cache_free(ino_entry_slab, tmp);
493 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
495 struct inode_management *im = &sbi->im[type];
496 struct ino_entry *e;
498 spin_lock(&im->ino_lock);
499 e = radix_tree_lookup(&im->ino_root, ino);
500 if (e) {
501 list_del(&e->list);
502 radix_tree_delete(&im->ino_root, ino);
503 im->ino_num--;
504 spin_unlock(&im->ino_lock);
505 kmem_cache_free(ino_entry_slab, e);
506 return;
508 spin_unlock(&im->ino_lock);
511 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
513 /* add new dirty ino entry into list */
514 __add_ino_entry(sbi, ino, 0, type);
517 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
519 /* remove dirty ino entry from list */
520 __remove_ino_entry(sbi, ino, type);
523 /* mode should be APPEND_INO or UPDATE_INO */
524 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
526 struct inode_management *im = &sbi->im[mode];
527 struct ino_entry *e;
529 spin_lock(&im->ino_lock);
530 e = radix_tree_lookup(&im->ino_root, ino);
531 spin_unlock(&im->ino_lock);
532 return e ? true : false;
535 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
537 struct ino_entry *e, *tmp;
538 int i;
540 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
541 struct inode_management *im = &sbi->im[i];
543 spin_lock(&im->ino_lock);
544 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
545 list_del(&e->list);
546 radix_tree_delete(&im->ino_root, e->ino);
547 kmem_cache_free(ino_entry_slab, e);
548 im->ino_num--;
550 spin_unlock(&im->ino_lock);
554 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
555 unsigned int devidx, int type)
557 __add_ino_entry(sbi, ino, devidx, type);
560 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
561 unsigned int devidx, int type)
563 struct inode_management *im = &sbi->im[type];
564 struct ino_entry *e;
565 bool is_dirty = false;
567 spin_lock(&im->ino_lock);
568 e = radix_tree_lookup(&im->ino_root, ino);
569 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
570 is_dirty = true;
571 spin_unlock(&im->ino_lock);
572 return is_dirty;
575 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
577 struct inode_management *im = &sbi->im[ORPHAN_INO];
578 int err = 0;
580 spin_lock(&im->ino_lock);
582 if (time_to_inject(sbi, FAULT_ORPHAN)) {
583 spin_unlock(&im->ino_lock);
584 f2fs_show_injection_info(FAULT_ORPHAN);
585 return -ENOSPC;
588 if (unlikely(im->ino_num >= sbi->max_orphans))
589 err = -ENOSPC;
590 else
591 im->ino_num++;
592 spin_unlock(&im->ino_lock);
594 return err;
597 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
599 struct inode_management *im = &sbi->im[ORPHAN_INO];
601 spin_lock(&im->ino_lock);
602 f2fs_bug_on(sbi, im->ino_num == 0);
603 im->ino_num--;
604 spin_unlock(&im->ino_lock);
607 void f2fs_add_orphan_inode(struct inode *inode)
609 /* add new orphan ino entry into list */
610 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
611 f2fs_update_inode_page(inode);
614 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
616 /* remove orphan entry from orphan list */
617 __remove_ino_entry(sbi, ino, ORPHAN_INO);
620 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
622 struct inode *inode;
623 struct node_info ni;
624 int err;
626 inode = f2fs_iget_retry(sbi->sb, ino);
627 if (IS_ERR(inode)) {
629 * there should be a bug that we can't find the entry
630 * to orphan inode.
632 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
633 return PTR_ERR(inode);
636 err = dquot_initialize(inode);
637 if (err) {
638 iput(inode);
639 goto err_out;
642 clear_nlink(inode);
644 /* truncate all the data during iput */
645 iput(inode);
647 err = f2fs_get_node_info(sbi, ino, &ni);
648 if (err)
649 goto err_out;
651 /* ENOMEM was fully retried in f2fs_evict_inode. */
652 if (ni.blk_addr != NULL_ADDR) {
653 err = -EIO;
654 goto err_out;
656 return 0;
658 err_out:
659 set_sbi_flag(sbi, SBI_NEED_FSCK);
660 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
661 __func__, ino);
662 return err;
665 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
667 block_t start_blk, orphan_blocks, i, j;
668 unsigned int s_flags = sbi->sb->s_flags;
669 int err = 0;
670 #ifdef CONFIG_QUOTA
671 int quota_enabled;
672 #endif
674 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
675 return 0;
677 if (bdev_read_only(sbi->sb->s_bdev)) {
678 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
679 return 0;
682 if (s_flags & SB_RDONLY) {
683 f2fs_info(sbi, "orphan cleanup on readonly fs");
684 sbi->sb->s_flags &= ~SB_RDONLY;
687 #ifdef CONFIG_QUOTA
688 /* Needed for iput() to work correctly and not trash data */
689 sbi->sb->s_flags |= SB_ACTIVE;
692 * Turn on quotas which were not enabled for read-only mounts if
693 * filesystem has quota feature, so that they are updated correctly.
695 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
696 #endif
698 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
699 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
701 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
703 for (i = 0; i < orphan_blocks; i++) {
704 struct page *page;
705 struct f2fs_orphan_block *orphan_blk;
707 page = f2fs_get_meta_page(sbi, start_blk + i);
708 if (IS_ERR(page)) {
709 err = PTR_ERR(page);
710 goto out;
713 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
714 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
715 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
716 err = recover_orphan_inode(sbi, ino);
717 if (err) {
718 f2fs_put_page(page, 1);
719 goto out;
722 f2fs_put_page(page, 1);
724 /* clear Orphan Flag */
725 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
726 out:
727 set_sbi_flag(sbi, SBI_IS_RECOVERED);
729 #ifdef CONFIG_QUOTA
730 /* Turn quotas off */
731 if (quota_enabled)
732 f2fs_quota_off_umount(sbi->sb);
733 #endif
734 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
736 return err;
739 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
741 struct list_head *head;
742 struct f2fs_orphan_block *orphan_blk = NULL;
743 unsigned int nentries = 0;
744 unsigned short index = 1;
745 unsigned short orphan_blocks;
746 struct page *page = NULL;
747 struct ino_entry *orphan = NULL;
748 struct inode_management *im = &sbi->im[ORPHAN_INO];
750 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
753 * we don't need to do spin_lock(&im->ino_lock) here, since all the
754 * orphan inode operations are covered under f2fs_lock_op().
755 * And, spin_lock should be avoided due to page operations below.
757 head = &im->ino_list;
759 /* loop for each orphan inode entry and write them in Jornal block */
760 list_for_each_entry(orphan, head, list) {
761 if (!page) {
762 page = f2fs_grab_meta_page(sbi, start_blk++);
763 orphan_blk =
764 (struct f2fs_orphan_block *)page_address(page);
765 memset(orphan_blk, 0, sizeof(*orphan_blk));
768 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
770 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
772 * an orphan block is full of 1020 entries,
773 * then we need to flush current orphan blocks
774 * and bring another one in memory
776 orphan_blk->blk_addr = cpu_to_le16(index);
777 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
778 orphan_blk->entry_count = cpu_to_le32(nentries);
779 set_page_dirty(page);
780 f2fs_put_page(page, 1);
781 index++;
782 nentries = 0;
783 page = NULL;
787 if (page) {
788 orphan_blk->blk_addr = cpu_to_le16(index);
789 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
790 orphan_blk->entry_count = cpu_to_le32(nentries);
791 set_page_dirty(page);
792 f2fs_put_page(page, 1);
796 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
797 struct f2fs_checkpoint *ckpt)
799 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
800 __u32 chksum;
802 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
803 if (chksum_ofs < CP_CHKSUM_OFFSET) {
804 chksum_ofs += sizeof(chksum);
805 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
806 F2FS_BLKSIZE - chksum_ofs);
808 return chksum;
811 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
812 struct f2fs_checkpoint **cp_block, struct page **cp_page,
813 unsigned long long *version)
815 size_t crc_offset = 0;
816 __u32 crc;
818 *cp_page = f2fs_get_meta_page(sbi, cp_addr);
819 if (IS_ERR(*cp_page))
820 return PTR_ERR(*cp_page);
822 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
824 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
825 if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
826 crc_offset > CP_CHKSUM_OFFSET) {
827 f2fs_put_page(*cp_page, 1);
828 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
829 return -EINVAL;
832 crc = f2fs_checkpoint_chksum(sbi, *cp_block);
833 if (crc != cur_cp_crc(*cp_block)) {
834 f2fs_put_page(*cp_page, 1);
835 f2fs_warn(sbi, "invalid crc value");
836 return -EINVAL;
839 *version = cur_cp_version(*cp_block);
840 return 0;
843 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
844 block_t cp_addr, unsigned long long *version)
846 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
847 struct f2fs_checkpoint *cp_block = NULL;
848 unsigned long long cur_version = 0, pre_version = 0;
849 int err;
851 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
852 &cp_page_1, version);
853 if (err)
854 return NULL;
856 if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
857 sbi->blocks_per_seg) {
858 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
859 le32_to_cpu(cp_block->cp_pack_total_block_count));
860 goto invalid_cp;
862 pre_version = *version;
864 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
865 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
866 &cp_page_2, version);
867 if (err)
868 goto invalid_cp;
869 cur_version = *version;
871 if (cur_version == pre_version) {
872 *version = cur_version;
873 f2fs_put_page(cp_page_2, 1);
874 return cp_page_1;
876 f2fs_put_page(cp_page_2, 1);
877 invalid_cp:
878 f2fs_put_page(cp_page_1, 1);
879 return NULL;
882 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
884 struct f2fs_checkpoint *cp_block;
885 struct f2fs_super_block *fsb = sbi->raw_super;
886 struct page *cp1, *cp2, *cur_page;
887 unsigned long blk_size = sbi->blocksize;
888 unsigned long long cp1_version = 0, cp2_version = 0;
889 unsigned long long cp_start_blk_no;
890 unsigned int cp_blks = 1 + __cp_payload(sbi);
891 block_t cp_blk_no;
892 int i;
893 int err;
895 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
896 GFP_KERNEL);
897 if (!sbi->ckpt)
898 return -ENOMEM;
900 * Finding out valid cp block involves read both
901 * sets( cp pack1 and cp pack 2)
903 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
904 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
906 /* The second checkpoint pack should start at the next segment */
907 cp_start_blk_no += ((unsigned long long)1) <<
908 le32_to_cpu(fsb->log_blocks_per_seg);
909 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
911 if (cp1 && cp2) {
912 if (ver_after(cp2_version, cp1_version))
913 cur_page = cp2;
914 else
915 cur_page = cp1;
916 } else if (cp1) {
917 cur_page = cp1;
918 } else if (cp2) {
919 cur_page = cp2;
920 } else {
921 err = -EFSCORRUPTED;
922 goto fail_no_cp;
925 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
926 memcpy(sbi->ckpt, cp_block, blk_size);
928 if (cur_page == cp1)
929 sbi->cur_cp_pack = 1;
930 else
931 sbi->cur_cp_pack = 2;
933 /* Sanity checking of checkpoint */
934 if (f2fs_sanity_check_ckpt(sbi)) {
935 err = -EFSCORRUPTED;
936 goto free_fail_no_cp;
939 if (cp_blks <= 1)
940 goto done;
942 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
943 if (cur_page == cp2)
944 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
946 for (i = 1; i < cp_blks; i++) {
947 void *sit_bitmap_ptr;
948 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
950 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
951 if (IS_ERR(cur_page)) {
952 err = PTR_ERR(cur_page);
953 goto free_fail_no_cp;
955 sit_bitmap_ptr = page_address(cur_page);
956 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
957 f2fs_put_page(cur_page, 1);
959 done:
960 f2fs_put_page(cp1, 1);
961 f2fs_put_page(cp2, 1);
962 return 0;
964 free_fail_no_cp:
965 f2fs_put_page(cp1, 1);
966 f2fs_put_page(cp2, 1);
967 fail_no_cp:
968 kvfree(sbi->ckpt);
969 return err;
972 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
974 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
975 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
977 if (is_inode_flag_set(inode, flag))
978 return;
980 set_inode_flag(inode, flag);
981 if (!f2fs_is_volatile_file(inode))
982 list_add_tail(&F2FS_I(inode)->dirty_list,
983 &sbi->inode_list[type]);
984 stat_inc_dirty_inode(sbi, type);
987 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
989 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
991 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
992 return;
994 list_del_init(&F2FS_I(inode)->dirty_list);
995 clear_inode_flag(inode, flag);
996 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
999 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1001 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1002 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1004 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1005 !S_ISLNK(inode->i_mode))
1006 return;
1008 spin_lock(&sbi->inode_lock[type]);
1009 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1010 __add_dirty_inode(inode, type);
1011 inode_inc_dirty_pages(inode);
1012 spin_unlock(&sbi->inode_lock[type]);
1014 f2fs_set_page_private(page, 0);
1015 f2fs_trace_pid(page);
1018 void f2fs_remove_dirty_inode(struct inode *inode)
1020 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1021 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1023 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1024 !S_ISLNK(inode->i_mode))
1025 return;
1027 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1028 return;
1030 spin_lock(&sbi->inode_lock[type]);
1031 __remove_dirty_inode(inode, type);
1032 spin_unlock(&sbi->inode_lock[type]);
1035 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1037 struct list_head *head;
1038 struct inode *inode;
1039 struct f2fs_inode_info *fi;
1040 bool is_dir = (type == DIR_INODE);
1041 unsigned long ino = 0;
1043 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1044 get_pages(sbi, is_dir ?
1045 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1046 retry:
1047 if (unlikely(f2fs_cp_error(sbi)))
1048 return -EIO;
1050 spin_lock(&sbi->inode_lock[type]);
1052 head = &sbi->inode_list[type];
1053 if (list_empty(head)) {
1054 spin_unlock(&sbi->inode_lock[type]);
1055 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1056 get_pages(sbi, is_dir ?
1057 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1058 return 0;
1060 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1061 inode = igrab(&fi->vfs_inode);
1062 spin_unlock(&sbi->inode_lock[type]);
1063 if (inode) {
1064 unsigned long cur_ino = inode->i_ino;
1066 F2FS_I(inode)->cp_task = current;
1068 filemap_fdatawrite(inode->i_mapping);
1070 F2FS_I(inode)->cp_task = NULL;
1072 iput(inode);
1073 /* We need to give cpu to another writers. */
1074 if (ino == cur_ino)
1075 cond_resched();
1076 else
1077 ino = cur_ino;
1078 } else {
1080 * We should submit bio, since it exists several
1081 * wribacking dentry pages in the freeing inode.
1083 f2fs_submit_merged_write(sbi, DATA);
1084 cond_resched();
1086 goto retry;
1089 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1091 struct list_head *head = &sbi->inode_list[DIRTY_META];
1092 struct inode *inode;
1093 struct f2fs_inode_info *fi;
1094 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1096 while (total--) {
1097 if (unlikely(f2fs_cp_error(sbi)))
1098 return -EIO;
1100 spin_lock(&sbi->inode_lock[DIRTY_META]);
1101 if (list_empty(head)) {
1102 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1103 return 0;
1105 fi = list_first_entry(head, struct f2fs_inode_info,
1106 gdirty_list);
1107 inode = igrab(&fi->vfs_inode);
1108 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1109 if (inode) {
1110 sync_inode_metadata(inode, 0);
1112 /* it's on eviction */
1113 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1114 f2fs_update_inode_page(inode);
1115 iput(inode);
1118 return 0;
1121 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1123 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1124 struct f2fs_nm_info *nm_i = NM_I(sbi);
1125 nid_t last_nid = nm_i->next_scan_nid;
1127 next_free_nid(sbi, &last_nid);
1128 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1129 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1130 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1131 ckpt->next_free_nid = cpu_to_le32(last_nid);
1134 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1136 bool ret = false;
1138 if (!is_journalled_quota(sbi))
1139 return false;
1141 down_write(&sbi->quota_sem);
1142 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1143 ret = false;
1144 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1145 ret = false;
1146 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1147 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1148 ret = true;
1149 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1150 ret = true;
1152 up_write(&sbi->quota_sem);
1153 return ret;
1157 * Freeze all the FS-operations for checkpoint.
1159 static int block_operations(struct f2fs_sb_info *sbi)
1161 struct writeback_control wbc = {
1162 .sync_mode = WB_SYNC_ALL,
1163 .nr_to_write = LONG_MAX,
1164 .for_reclaim = 0,
1166 struct blk_plug plug;
1167 int err = 0, cnt = 0;
1169 blk_start_plug(&plug);
1171 retry_flush_quotas:
1172 f2fs_lock_all(sbi);
1173 if (__need_flush_quota(sbi)) {
1174 int locked;
1176 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1177 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1178 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1179 goto retry_flush_dents;
1181 f2fs_unlock_all(sbi);
1183 /* only failed during mount/umount/freeze/quotactl */
1184 locked = down_read_trylock(&sbi->sb->s_umount);
1185 f2fs_quota_sync(sbi->sb, -1);
1186 if (locked)
1187 up_read(&sbi->sb->s_umount);
1188 cond_resched();
1189 goto retry_flush_quotas;
1192 retry_flush_dents:
1193 /* write all the dirty dentry pages */
1194 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1195 f2fs_unlock_all(sbi);
1196 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1197 if (err)
1198 goto out;
1199 cond_resched();
1200 goto retry_flush_quotas;
1204 * POR: we should ensure that there are no dirty node pages
1205 * until finishing nat/sit flush. inode->i_blocks can be updated.
1207 down_write(&sbi->node_change);
1209 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1210 up_write(&sbi->node_change);
1211 f2fs_unlock_all(sbi);
1212 err = f2fs_sync_inode_meta(sbi);
1213 if (err)
1214 goto out;
1215 cond_resched();
1216 goto retry_flush_quotas;
1219 retry_flush_nodes:
1220 down_write(&sbi->node_write);
1222 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1223 up_write(&sbi->node_write);
1224 atomic_inc(&sbi->wb_sync_req[NODE]);
1225 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1226 atomic_dec(&sbi->wb_sync_req[NODE]);
1227 if (err) {
1228 up_write(&sbi->node_change);
1229 f2fs_unlock_all(sbi);
1230 goto out;
1232 cond_resched();
1233 goto retry_flush_nodes;
1237 * sbi->node_change is used only for AIO write_begin path which produces
1238 * dirty node blocks and some checkpoint values by block allocation.
1240 __prepare_cp_block(sbi);
1241 up_write(&sbi->node_change);
1242 out:
1243 blk_finish_plug(&plug);
1244 return err;
1247 static void unblock_operations(struct f2fs_sb_info *sbi)
1249 up_write(&sbi->node_write);
1250 f2fs_unlock_all(sbi);
1253 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1255 DEFINE_WAIT(wait);
1257 for (;;) {
1258 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1260 if (!get_pages(sbi, type))
1261 break;
1263 if (unlikely(f2fs_cp_error(sbi)))
1264 break;
1266 io_schedule_timeout(HZ/50);
1268 finish_wait(&sbi->cp_wait, &wait);
1271 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1273 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1274 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1275 unsigned long flags;
1277 spin_lock_irqsave(&sbi->cp_lock, flags);
1279 if ((cpc->reason & CP_UMOUNT) &&
1280 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1281 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1282 disable_nat_bits(sbi, false);
1284 if (cpc->reason & CP_TRIMMED)
1285 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1286 else
1287 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1289 if (cpc->reason & CP_UMOUNT)
1290 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1291 else
1292 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1294 if (cpc->reason & CP_FASTBOOT)
1295 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1296 else
1297 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1299 if (orphan_num)
1300 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1301 else
1302 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1304 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1305 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1307 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1308 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1309 else
1310 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1312 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1313 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1314 else
1315 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1317 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1318 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1319 else
1320 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1322 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1323 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1324 else
1325 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1327 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1328 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1330 /* set this flag to activate crc|cp_ver for recovery */
1331 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1332 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1334 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1337 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1338 void *src, block_t blk_addr)
1340 struct writeback_control wbc = {
1341 .for_reclaim = 0,
1345 * pagevec_lookup_tag and lock_page again will take
1346 * some extra time. Therefore, f2fs_update_meta_pages and
1347 * f2fs_sync_meta_pages are combined in this function.
1349 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1350 int err;
1352 f2fs_wait_on_page_writeback(page, META, true, true);
1354 memcpy(page_address(page), src, PAGE_SIZE);
1356 set_page_dirty(page);
1357 if (unlikely(!clear_page_dirty_for_io(page)))
1358 f2fs_bug_on(sbi, 1);
1360 /* writeout cp pack 2 page */
1361 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1362 if (unlikely(err && f2fs_cp_error(sbi))) {
1363 f2fs_put_page(page, 1);
1364 return;
1367 f2fs_bug_on(sbi, err);
1368 f2fs_put_page(page, 0);
1370 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1371 f2fs_submit_merged_write(sbi, META_FLUSH);
1374 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1376 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1377 struct f2fs_nm_info *nm_i = NM_I(sbi);
1378 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1379 block_t start_blk;
1380 unsigned int data_sum_blocks, orphan_blocks;
1381 __u32 crc32 = 0;
1382 int i;
1383 int cp_payload_blks = __cp_payload(sbi);
1384 struct super_block *sb = sbi->sb;
1385 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1386 u64 kbytes_written;
1387 int err;
1389 /* Flush all the NAT/SIT pages */
1390 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1393 * modify checkpoint
1394 * version number is already updated
1396 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1397 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1398 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1399 ckpt->cur_node_segno[i] =
1400 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1401 ckpt->cur_node_blkoff[i] =
1402 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1403 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1404 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1406 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1407 ckpt->cur_data_segno[i] =
1408 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1409 ckpt->cur_data_blkoff[i] =
1410 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1411 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1412 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1415 /* 2 cp + n data seg summary + orphan inode blocks */
1416 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1417 spin_lock_irqsave(&sbi->cp_lock, flags);
1418 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1419 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1420 else
1421 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1422 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1424 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1425 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1426 orphan_blocks);
1428 if (__remain_node_summaries(cpc->reason))
1429 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1430 cp_payload_blks + data_sum_blocks +
1431 orphan_blocks + NR_CURSEG_NODE_TYPE);
1432 else
1433 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1434 cp_payload_blks + data_sum_blocks +
1435 orphan_blocks);
1437 /* update ckpt flag for checkpoint */
1438 update_ckpt_flags(sbi, cpc);
1440 /* update SIT/NAT bitmap */
1441 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1442 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1444 crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1445 *((__le32 *)((unsigned char *)ckpt +
1446 le32_to_cpu(ckpt->checksum_offset)))
1447 = cpu_to_le32(crc32);
1449 start_blk = __start_cp_next_addr(sbi);
1451 /* write nat bits */
1452 if (enabled_nat_bits(sbi, cpc)) {
1453 __u64 cp_ver = cur_cp_version(ckpt);
1454 block_t blk;
1456 cp_ver |= ((__u64)crc32 << 32);
1457 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1459 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1460 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1461 f2fs_update_meta_page(sbi, nm_i->nat_bits +
1462 (i << F2FS_BLKSIZE_BITS), blk + i);
1465 /* write out checkpoint buffer at block 0 */
1466 f2fs_update_meta_page(sbi, ckpt, start_blk++);
1468 for (i = 1; i < 1 + cp_payload_blks; i++)
1469 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1470 start_blk++);
1472 if (orphan_num) {
1473 write_orphan_inodes(sbi, start_blk);
1474 start_blk += orphan_blocks;
1477 f2fs_write_data_summaries(sbi, start_blk);
1478 start_blk += data_sum_blocks;
1480 /* Record write statistics in the hot node summary */
1481 kbytes_written = sbi->kbytes_written;
1482 if (sb->s_bdev->bd_part)
1483 kbytes_written += BD_PART_WRITTEN(sbi);
1485 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1487 if (__remain_node_summaries(cpc->reason)) {
1488 f2fs_write_node_summaries(sbi, start_blk);
1489 start_blk += NR_CURSEG_NODE_TYPE;
1492 /* update user_block_counts */
1493 sbi->last_valid_block_count = sbi->total_valid_block_count;
1494 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1496 /* Here, we have one bio having CP pack except cp pack 2 page */
1497 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1498 /* Wait for all dirty meta pages to be submitted for IO */
1499 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1501 /* wait for previous submitted meta pages writeback */
1502 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1504 /* flush all device cache */
1505 err = f2fs_flush_device_cache(sbi);
1506 if (err)
1507 return err;
1509 /* barrier and flush checkpoint cp pack 2 page if it can */
1510 commit_checkpoint(sbi, ckpt, start_blk);
1511 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1514 * invalidate intermediate page cache borrowed from meta inode
1515 * which are used for migration of encrypted inode's blocks.
1517 if (f2fs_sb_has_encrypt(sbi))
1518 invalidate_mapping_pages(META_MAPPING(sbi),
1519 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1521 f2fs_release_ino_entry(sbi, false);
1523 f2fs_reset_fsync_node_info(sbi);
1525 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1526 clear_sbi_flag(sbi, SBI_NEED_CP);
1527 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1529 spin_lock(&sbi->stat_lock);
1530 sbi->unusable_block_count = 0;
1531 spin_unlock(&sbi->stat_lock);
1533 __set_cp_next_pack(sbi);
1536 * redirty superblock if metadata like node page or inode cache is
1537 * updated during writing checkpoint.
1539 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1540 get_pages(sbi, F2FS_DIRTY_IMETA))
1541 set_sbi_flag(sbi, SBI_IS_DIRTY);
1543 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1545 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1549 * We guarantee that this checkpoint procedure will not fail.
1551 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1553 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1554 unsigned long long ckpt_ver;
1555 int err = 0;
1557 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1558 return -EROFS;
1560 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1561 if (cpc->reason != CP_PAUSE)
1562 return 0;
1563 f2fs_warn(sbi, "Start checkpoint disabled!");
1565 mutex_lock(&sbi->cp_mutex);
1567 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1568 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1569 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1570 goto out;
1571 if (unlikely(f2fs_cp_error(sbi))) {
1572 err = -EIO;
1573 goto out;
1576 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1578 err = block_operations(sbi);
1579 if (err)
1580 goto out;
1582 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1584 f2fs_flush_merged_writes(sbi);
1586 /* this is the case of multiple fstrims without any changes */
1587 if (cpc->reason & CP_DISCARD) {
1588 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1589 unblock_operations(sbi);
1590 goto out;
1593 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1594 SIT_I(sbi)->dirty_sentries == 0 &&
1595 prefree_segments(sbi) == 0) {
1596 f2fs_flush_sit_entries(sbi, cpc);
1597 f2fs_clear_prefree_segments(sbi, cpc);
1598 unblock_operations(sbi);
1599 goto out;
1604 * update checkpoint pack index
1605 * Increase the version number so that
1606 * SIT entries and seg summaries are written at correct place
1608 ckpt_ver = cur_cp_version(ckpt);
1609 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1611 /* write cached NAT/SIT entries to NAT/SIT area */
1612 err = f2fs_flush_nat_entries(sbi, cpc);
1613 if (err)
1614 goto stop;
1616 f2fs_flush_sit_entries(sbi, cpc);
1618 /* unlock all the fs_lock[] in do_checkpoint() */
1619 err = do_checkpoint(sbi, cpc);
1620 if (err)
1621 f2fs_release_discard_addrs(sbi);
1622 else
1623 f2fs_clear_prefree_segments(sbi, cpc);
1624 stop:
1625 unblock_operations(sbi);
1626 stat_inc_cp_count(sbi->stat_info);
1628 if (cpc->reason & CP_RECOVERY)
1629 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1631 /* do checkpoint periodically */
1632 f2fs_update_time(sbi, CP_TIME);
1633 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1634 out:
1635 mutex_unlock(&sbi->cp_mutex);
1636 return err;
1639 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1641 int i;
1643 for (i = 0; i < MAX_INO_ENTRY; i++) {
1644 struct inode_management *im = &sbi->im[i];
1646 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1647 spin_lock_init(&im->ino_lock);
1648 INIT_LIST_HEAD(&im->ino_list);
1649 im->ino_num = 0;
1652 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1653 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1654 F2FS_ORPHANS_PER_BLOCK;
1657 int __init f2fs_create_checkpoint_caches(void)
1659 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1660 sizeof(struct ino_entry));
1661 if (!ino_entry_slab)
1662 return -ENOMEM;
1663 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1664 sizeof(struct inode_entry));
1665 if (!f2fs_inode_entry_slab) {
1666 kmem_cache_destroy(ino_entry_slab);
1667 return -ENOMEM;
1669 return 0;
1672 void f2fs_destroy_checkpoint_caches(void)
1674 kmem_cache_destroy(ino_entry_slab);
1675 kmem_cache_destroy(f2fs_inode_entry_slab);