3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4 (C) 2002 David Woodhouse <dwmw2@infradead.org>
5 (C) 2012 Michel Lespinasse <walken@google.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/rbtree_augmented.h>
27 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
29 * 1) A node is either red or black
30 * 2) The root is black
31 * 3) All leaves (NULL) are black
32 * 4) Both children of every red node are black
33 * 5) Every simple path from root to leaves contains the same number
36 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
37 * consecutive red nodes in a path and every red node is therefore followed by
38 * a black. So if B is the number of black nodes on every simple path (as per
39 * 5), then the longest possible path due to 4 is 2B.
41 * We shall indicate color with case, where black nodes are uppercase and red
42 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
43 * parentheses and have some accompanying text comment.
46 static inline void rb_set_black(struct rb_node
*rb
)
48 rb
->__rb_parent_color
|= RB_BLACK
;
51 static inline struct rb_node
*rb_red_parent(struct rb_node
*red
)
53 return (struct rb_node
*)red
->__rb_parent_color
;
57 * Helper function for rotations:
58 * - old's parent and color get assigned to new
59 * - old gets assigned new as a parent and 'color' as a color.
62 __rb_rotate_set_parents(struct rb_node
*old
, struct rb_node
*new,
63 struct rb_root
*root
, int color
)
65 struct rb_node
*parent
= rb_parent(old
);
66 new->__rb_parent_color
= old
->__rb_parent_color
;
67 rb_set_parent_color(old
, new, color
);
68 __rb_change_child(old
, new, parent
, root
);
71 static __always_inline
void
72 __rb_insert(struct rb_node
*node
, struct rb_root
*root
,
73 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
75 struct rb_node
*parent
= rb_red_parent(node
), *gparent
, *tmp
;
79 * Loop invariant: node is red
81 * If there is a black parent, we are done.
82 * Otherwise, take some corrective action as we don't
83 * want a red root or two consecutive red nodes.
86 rb_set_parent_color(node
, NULL
, RB_BLACK
);
88 } else if (rb_is_black(parent
))
91 gparent
= rb_red_parent(parent
);
93 tmp
= gparent
->rb_right
;
94 if (parent
!= tmp
) { /* parent == gparent->rb_left */
95 if (tmp
&& rb_is_red(tmp
)) {
97 * Case 1 - color flips
105 * However, since g's parent might be red, and
106 * 4) does not allow this, we need to recurse
109 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
110 rb_set_parent_color(parent
, gparent
, RB_BLACK
);
112 parent
= rb_parent(node
);
113 rb_set_parent_color(node
, parent
, RB_RED
);
117 tmp
= parent
->rb_right
;
120 * Case 2 - left rotate at parent
128 * This still leaves us in violation of 4), the
129 * continuation into Case 3 will fix that.
131 parent
->rb_right
= tmp
= node
->rb_left
;
132 node
->rb_left
= parent
;
134 rb_set_parent_color(tmp
, parent
,
136 rb_set_parent_color(parent
, node
, RB_RED
);
137 augment_rotate(parent
, node
);
139 tmp
= node
->rb_right
;
143 * Case 3 - right rotate at gparent
151 gparent
->rb_left
= tmp
; /* == parent->rb_right */
152 parent
->rb_right
= gparent
;
154 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
155 __rb_rotate_set_parents(gparent
, parent
, root
, RB_RED
);
156 augment_rotate(gparent
, parent
);
159 tmp
= gparent
->rb_left
;
160 if (tmp
&& rb_is_red(tmp
)) {
161 /* Case 1 - color flips */
162 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
163 rb_set_parent_color(parent
, gparent
, RB_BLACK
);
165 parent
= rb_parent(node
);
166 rb_set_parent_color(node
, parent
, RB_RED
);
170 tmp
= parent
->rb_left
;
172 /* Case 2 - right rotate at parent */
173 parent
->rb_left
= tmp
= node
->rb_right
;
174 node
->rb_right
= parent
;
176 rb_set_parent_color(tmp
, parent
,
178 rb_set_parent_color(parent
, node
, RB_RED
);
179 augment_rotate(parent
, node
);
184 /* Case 3 - left rotate at gparent */
185 gparent
->rb_right
= tmp
; /* == parent->rb_left */
186 parent
->rb_left
= gparent
;
188 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
189 __rb_rotate_set_parents(gparent
, parent
, root
, RB_RED
);
190 augment_rotate(gparent
, parent
);
197 * Inline version for rb_erase() use - we want to be able to inline
198 * and eliminate the dummy_rotate callback there
200 static __always_inline
void
201 ____rb_erase_color(struct rb_node
*parent
, struct rb_root
*root
,
202 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
204 struct rb_node
*node
= NULL
, *sibling
, *tmp1
, *tmp2
;
209 * - node is black (or NULL on first iteration)
210 * - node is not the root (parent is not NULL)
211 * - All leaf paths going through parent and node have a
212 * black node count that is 1 lower than other leaf paths.
214 sibling
= parent
->rb_right
;
215 if (node
!= sibling
) { /* node == parent->rb_left */
216 if (rb_is_red(sibling
)) {
218 * Case 1 - left rotate at parent
226 parent
->rb_right
= tmp1
= sibling
->rb_left
;
227 sibling
->rb_left
= parent
;
228 rb_set_parent_color(tmp1
, parent
, RB_BLACK
);
229 __rb_rotate_set_parents(parent
, sibling
, root
,
231 augment_rotate(parent
, sibling
);
234 tmp1
= sibling
->rb_right
;
235 if (!tmp1
|| rb_is_black(tmp1
)) {
236 tmp2
= sibling
->rb_left
;
237 if (!tmp2
|| rb_is_black(tmp2
)) {
239 * Case 2 - sibling color flip
240 * (p could be either color here)
248 * This leaves us violating 5) which
249 * can be fixed by flipping p to black
250 * if it was red, or by recursing at p.
251 * p is red when coming from Case 1.
253 rb_set_parent_color(sibling
, parent
,
255 if (rb_is_red(parent
))
256 rb_set_black(parent
);
259 parent
= rb_parent(node
);
266 * Case 3 - right rotate at sibling
267 * (p could be either color here)
277 sibling
->rb_left
= tmp1
= tmp2
->rb_right
;
278 tmp2
->rb_right
= sibling
;
279 parent
->rb_right
= tmp2
;
281 rb_set_parent_color(tmp1
, sibling
,
283 augment_rotate(sibling
, tmp2
);
288 * Case 4 - left rotate at parent + color flips
289 * (p and sl could be either color here.
290 * After rotation, p becomes black, s acquires
291 * p's color, and sl keeps its color)
299 parent
->rb_right
= tmp2
= sibling
->rb_left
;
300 sibling
->rb_left
= parent
;
301 rb_set_parent_color(tmp1
, sibling
, RB_BLACK
);
303 rb_set_parent(tmp2
, parent
);
304 __rb_rotate_set_parents(parent
, sibling
, root
,
306 augment_rotate(parent
, sibling
);
309 sibling
= parent
->rb_left
;
310 if (rb_is_red(sibling
)) {
311 /* Case 1 - right rotate at parent */
312 parent
->rb_left
= tmp1
= sibling
->rb_right
;
313 sibling
->rb_right
= parent
;
314 rb_set_parent_color(tmp1
, parent
, RB_BLACK
);
315 __rb_rotate_set_parents(parent
, sibling
, root
,
317 augment_rotate(parent
, sibling
);
320 tmp1
= sibling
->rb_left
;
321 if (!tmp1
|| rb_is_black(tmp1
)) {
322 tmp2
= sibling
->rb_right
;
323 if (!tmp2
|| rb_is_black(tmp2
)) {
324 /* Case 2 - sibling color flip */
325 rb_set_parent_color(sibling
, parent
,
327 if (rb_is_red(parent
))
328 rb_set_black(parent
);
331 parent
= rb_parent(node
);
337 /* Case 3 - right rotate at sibling */
338 sibling
->rb_right
= tmp1
= tmp2
->rb_left
;
339 tmp2
->rb_left
= sibling
;
340 parent
->rb_left
= tmp2
;
342 rb_set_parent_color(tmp1
, sibling
,
344 augment_rotate(sibling
, tmp2
);
348 /* Case 4 - left rotate at parent + color flips */
349 parent
->rb_left
= tmp2
= sibling
->rb_right
;
350 sibling
->rb_right
= parent
;
351 rb_set_parent_color(tmp1
, sibling
, RB_BLACK
);
353 rb_set_parent(tmp2
, parent
);
354 __rb_rotate_set_parents(parent
, sibling
, root
,
356 augment_rotate(parent
, sibling
);
362 /* Non-inline version for rb_erase_augmented() use */
363 void __rb_erase_color(struct rb_node
*parent
, struct rb_root
*root
,
364 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
366 ____rb_erase_color(parent
, root
, augment_rotate
);
370 * Non-augmented rbtree manipulation functions.
372 * We use dummy augmented callbacks here, and have the compiler optimize them
373 * out of the rb_insert_color() and rb_erase() function definitions.
376 static inline void dummy_propagate(struct rb_node
*node
, struct rb_node
*stop
) {}
377 static inline void dummy_copy(struct rb_node
*old
, struct rb_node
*new) {}
378 static inline void dummy_rotate(struct rb_node
*old
, struct rb_node
*new) {}
380 static const struct rb_augment_callbacks dummy_callbacks
= {
381 dummy_propagate
, dummy_copy
, dummy_rotate
384 void rb_insert_color(struct rb_node
*node
, struct rb_root
*root
)
386 __rb_insert(node
, root
, dummy_rotate
);
389 void rb_erase(struct rb_node
*node
, struct rb_root
*root
)
391 struct rb_node
*rebalance
;
392 rebalance
= __rb_erase_augmented(node
, root
, &dummy_callbacks
);
394 ____rb_erase_color(rebalance
, root
, dummy_rotate
);
398 * Augmented rbtree manipulation functions.
400 * This instantiates the same __always_inline functions as in the non-augmented
401 * case, but this time with user-defined callbacks.
404 void __rb_insert_augmented(struct rb_node
*node
, struct rb_root
*root
,
405 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
407 __rb_insert(node
, root
, augment_rotate
);
411 * This function returns the first node (in sort order) of the tree.
413 struct rb_node
*rb_first(const struct rb_root
*root
)
425 struct rb_node
*rb_last(const struct rb_root
*root
)
437 struct rb_node
*rb_next(const struct rb_node
*node
)
439 struct rb_node
*parent
;
441 if (RB_EMPTY_NODE(node
))
445 * If we have a right-hand child, go down and then left as far
448 if (node
->rb_right
) {
449 node
= node
->rb_right
;
450 while (node
->rb_left
)
452 return (struct rb_node
*)node
;
456 * No right-hand children. Everything down and left is smaller than us,
457 * so any 'next' node must be in the general direction of our parent.
458 * Go up the tree; any time the ancestor is a right-hand child of its
459 * parent, keep going up. First time it's a left-hand child of its
460 * parent, said parent is our 'next' node.
462 while ((parent
= rb_parent(node
)) && node
== parent
->rb_right
)
468 struct rb_node
*rb_prev(const struct rb_node
*node
)
470 struct rb_node
*parent
;
472 if (RB_EMPTY_NODE(node
))
476 * If we have a left-hand child, go down and then right as far
480 node
= node
->rb_left
;
481 while (node
->rb_right
)
483 return (struct rb_node
*)node
;
487 * No left-hand children. Go up till we find an ancestor which
488 * is a right-hand child of its parent.
490 while ((parent
= rb_parent(node
)) && node
== parent
->rb_left
)
496 void rb_replace_node(struct rb_node
*victim
, struct rb_node
*new,
497 struct rb_root
*root
)
499 struct rb_node
*parent
= rb_parent(victim
);
501 /* Set the surrounding nodes to point to the replacement */
502 __rb_change_child(victim
, new, parent
, root
);
504 rb_set_parent(victim
->rb_left
, new);
505 if (victim
->rb_right
)
506 rb_set_parent(victim
->rb_right
, new);
508 /* Copy the pointers/colour from the victim to the replacement */
512 static struct rb_node
*rb_left_deepest_node(const struct rb_node
*node
)
516 node
= node
->rb_left
;
517 else if (node
->rb_right
)
518 node
= node
->rb_right
;
520 return (struct rb_node
*)node
;
524 struct rb_node
*rb_next_postorder(const struct rb_node
*node
)
526 const struct rb_node
*parent
;
529 parent
= rb_parent(node
);
531 /* If we're sitting on node, we've already seen our children */
532 if (parent
&& node
== parent
->rb_left
&& parent
->rb_right
) {
533 /* If we are the parent's left node, go to the parent's right
534 * node then all the way down to the left */
535 return rb_left_deepest_node(parent
->rb_right
);
537 /* Otherwise we are the parent's right node, and the parent
539 return (struct rb_node
*)parent
;
542 struct rb_node
*rb_first_postorder(const struct rb_root
*root
)
547 return rb_left_deepest_node(root
->rb_node
);