2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
68 #include <net/protocol.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
81 struct kmem_cache
*skbuff_head_cache __read_mostly
;
82 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
83 int sysctl_max_skb_frags __read_mostly
= MAX_SKB_FRAGS
;
84 EXPORT_SYMBOL(sysctl_max_skb_frags
);
87 * skb_panic - private function for out-of-line support
91 * @msg: skb_over_panic or skb_under_panic
93 * Out-of-line support for skb_put() and skb_push().
94 * Called via the wrapper skb_over_panic() or skb_under_panic().
95 * Keep out of line to prevent kernel bloat.
96 * __builtin_return_address is not used because it is not always reliable.
98 static void skb_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
,
101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 msg
, addr
, skb
->len
, sz
, skb
->head
, skb
->data
,
103 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
104 skb
->dev
? skb
->dev
->name
: "<NULL>");
108 static void skb_over_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
110 skb_panic(skb
, sz
, addr
, __func__
);
113 static void skb_under_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
115 skb_panic(skb
, sz
, addr
, __func__
);
119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120 * the caller if emergency pfmemalloc reserves are being used. If it is and
121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122 * may be used. Otherwise, the packet data may be discarded until enough
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
128 static void *__kmalloc_reserve(size_t size
, gfp_t flags
, int node
,
129 unsigned long ip
, bool *pfmemalloc
)
132 bool ret_pfmemalloc
= false;
135 * Try a regular allocation, when that fails and we're not entitled
136 * to the reserves, fail.
138 obj
= kmalloc_node_track_caller(size
,
139 flags
| __GFP_NOMEMALLOC
| __GFP_NOWARN
,
141 if (obj
|| !(gfp_pfmemalloc_allowed(flags
)))
144 /* Try again but now we are using pfmemalloc reserves */
145 ret_pfmemalloc
= true;
146 obj
= kmalloc_node_track_caller(size
, flags
, node
);
150 *pfmemalloc
= ret_pfmemalloc
;
155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
156 * 'private' fields and also do memory statistics to find all the
161 struct sk_buff
*__alloc_skb_head(gfp_t gfp_mask
, int node
)
166 skb
= kmem_cache_alloc_node(skbuff_head_cache
,
167 gfp_mask
& ~__GFP_DMA
, node
);
172 * Only clear those fields we need to clear, not those that we will
173 * actually initialise below. Hence, don't put any more fields after
174 * the tail pointer in struct sk_buff!
176 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
178 skb
->truesize
= sizeof(struct sk_buff
);
179 refcount_set(&skb
->users
, 1);
181 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
187 * __alloc_skb - allocate a network buffer
188 * @size: size to allocate
189 * @gfp_mask: allocation mask
190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191 * instead of head cache and allocate a cloned (child) skb.
192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193 * allocations in case the data is required for writeback
194 * @node: numa node to allocate memory on
196 * Allocate a new &sk_buff. The returned buffer has no headroom and a
197 * tail room of at least size bytes. The object has a reference count
198 * of one. The return is the buffer. On a failure the return is %NULL.
200 * Buffers may only be allocated from interrupts using a @gfp_mask of
203 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
206 struct kmem_cache
*cache
;
207 struct skb_shared_info
*shinfo
;
212 cache
= (flags
& SKB_ALLOC_FCLONE
)
213 ? skbuff_fclone_cache
: skbuff_head_cache
;
215 if (sk_memalloc_socks() && (flags
& SKB_ALLOC_RX
))
216 gfp_mask
|= __GFP_MEMALLOC
;
219 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
224 /* We do our best to align skb_shared_info on a separate cache
225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 * Both skb->head and skb_shared_info are cache line aligned.
229 size
= SKB_DATA_ALIGN(size
);
230 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
231 data
= kmalloc_reserve(size
, gfp_mask
, node
, &pfmemalloc
);
234 /* kmalloc(size) might give us more room than requested.
235 * Put skb_shared_info exactly at the end of allocated zone,
236 * to allow max possible filling before reallocation.
238 size
= SKB_WITH_OVERHEAD(ksize(data
));
239 prefetchw(data
+ size
);
242 * Only clear those fields we need to clear, not those that we will
243 * actually initialise below. Hence, don't put any more fields after
244 * the tail pointer in struct sk_buff!
246 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
247 /* Account for allocated memory : skb + skb->head */
248 skb
->truesize
= SKB_TRUESIZE(size
);
249 skb
->pfmemalloc
= pfmemalloc
;
250 refcount_set(&skb
->users
, 1);
253 skb_reset_tail_pointer(skb
);
254 skb
->end
= skb
->tail
+ size
;
255 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
256 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
258 /* make sure we initialize shinfo sequentially */
259 shinfo
= skb_shinfo(skb
);
260 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
261 atomic_set(&shinfo
->dataref
, 1);
262 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
264 if (flags
& SKB_ALLOC_FCLONE
) {
265 struct sk_buff_fclones
*fclones
;
267 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
269 kmemcheck_annotate_bitfield(&fclones
->skb2
, flags1
);
270 skb
->fclone
= SKB_FCLONE_ORIG
;
271 refcount_set(&fclones
->fclone_ref
, 1);
273 fclones
->skb2
.fclone
= SKB_FCLONE_CLONE
;
278 kmem_cache_free(cache
, skb
);
282 EXPORT_SYMBOL(__alloc_skb
);
285 * __build_skb - build a network buffer
286 * @data: data buffer provided by caller
287 * @frag_size: size of data, or 0 if head was kmalloced
289 * Allocate a new &sk_buff. Caller provides space holding head and
290 * skb_shared_info. @data must have been allocated by kmalloc() only if
291 * @frag_size is 0, otherwise data should come from the page allocator
293 * The return is the new skb buffer.
294 * On a failure the return is %NULL, and @data is not freed.
296 * Before IO, driver allocates only data buffer where NIC put incoming frame
297 * Driver should add room at head (NET_SKB_PAD) and
298 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
300 * before giving packet to stack.
301 * RX rings only contains data buffers, not full skbs.
303 struct sk_buff
*__build_skb(void *data
, unsigned int frag_size
)
305 struct skb_shared_info
*shinfo
;
307 unsigned int size
= frag_size
? : ksize(data
);
309 skb
= kmem_cache_alloc(skbuff_head_cache
, GFP_ATOMIC
);
313 size
-= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
315 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
316 skb
->truesize
= SKB_TRUESIZE(size
);
317 refcount_set(&skb
->users
, 1);
320 skb_reset_tail_pointer(skb
);
321 skb
->end
= skb
->tail
+ size
;
322 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
323 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
325 /* make sure we initialize shinfo sequentially */
326 shinfo
= skb_shinfo(skb
);
327 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
328 atomic_set(&shinfo
->dataref
, 1);
329 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
334 /* build_skb() is wrapper over __build_skb(), that specifically
335 * takes care of skb->head and skb->pfmemalloc
336 * This means that if @frag_size is not zero, then @data must be backed
337 * by a page fragment, not kmalloc() or vmalloc()
339 struct sk_buff
*build_skb(void *data
, unsigned int frag_size
)
341 struct sk_buff
*skb
= __build_skb(data
, frag_size
);
343 if (skb
&& frag_size
) {
345 if (page_is_pfmemalloc(virt_to_head_page(data
)))
350 EXPORT_SYMBOL(build_skb
);
352 #define NAPI_SKB_CACHE_SIZE 64
354 struct napi_alloc_cache
{
355 struct page_frag_cache page
;
356 unsigned int skb_count
;
357 void *skb_cache
[NAPI_SKB_CACHE_SIZE
];
360 static DEFINE_PER_CPU(struct page_frag_cache
, netdev_alloc_cache
);
361 static DEFINE_PER_CPU(struct napi_alloc_cache
, napi_alloc_cache
);
363 static void *__netdev_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
365 struct page_frag_cache
*nc
;
369 local_irq_save(flags
);
370 nc
= this_cpu_ptr(&netdev_alloc_cache
);
371 data
= page_frag_alloc(nc
, fragsz
, gfp_mask
);
372 local_irq_restore(flags
);
377 * netdev_alloc_frag - allocate a page fragment
378 * @fragsz: fragment size
380 * Allocates a frag from a page for receive buffer.
381 * Uses GFP_ATOMIC allocations.
383 void *netdev_alloc_frag(unsigned int fragsz
)
385 return __netdev_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
387 EXPORT_SYMBOL(netdev_alloc_frag
);
389 static void *__napi_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
391 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
393 return page_frag_alloc(&nc
->page
, fragsz
, gfp_mask
);
396 void *napi_alloc_frag(unsigned int fragsz
)
398 return __napi_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
400 EXPORT_SYMBOL(napi_alloc_frag
);
403 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
404 * @dev: network device to receive on
405 * @len: length to allocate
406 * @gfp_mask: get_free_pages mask, passed to alloc_skb
408 * Allocate a new &sk_buff and assign it a usage count of one. The
409 * buffer has NET_SKB_PAD headroom built in. Users should allocate
410 * the headroom they think they need without accounting for the
411 * built in space. The built in space is used for optimisations.
413 * %NULL is returned if there is no free memory.
415 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
, unsigned int len
,
418 struct page_frag_cache
*nc
;
426 if ((len
> SKB_WITH_OVERHEAD(PAGE_SIZE
)) ||
427 (gfp_mask
& (__GFP_DIRECT_RECLAIM
| GFP_DMA
))) {
428 skb
= __alloc_skb(len
, gfp_mask
, SKB_ALLOC_RX
, NUMA_NO_NODE
);
434 len
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
435 len
= SKB_DATA_ALIGN(len
);
437 if (sk_memalloc_socks())
438 gfp_mask
|= __GFP_MEMALLOC
;
440 local_irq_save(flags
);
442 nc
= this_cpu_ptr(&netdev_alloc_cache
);
443 data
= page_frag_alloc(nc
, len
, gfp_mask
);
444 pfmemalloc
= nc
->pfmemalloc
;
446 local_irq_restore(flags
);
451 skb
= __build_skb(data
, len
);
452 if (unlikely(!skb
)) {
457 /* use OR instead of assignment to avoid clearing of bits in mask */
463 skb_reserve(skb
, NET_SKB_PAD
);
469 EXPORT_SYMBOL(__netdev_alloc_skb
);
472 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
473 * @napi: napi instance this buffer was allocated for
474 * @len: length to allocate
475 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
477 * Allocate a new sk_buff for use in NAPI receive. This buffer will
478 * attempt to allocate the head from a special reserved region used
479 * only for NAPI Rx allocation. By doing this we can save several
480 * CPU cycles by avoiding having to disable and re-enable IRQs.
482 * %NULL is returned if there is no free memory.
484 struct sk_buff
*__napi_alloc_skb(struct napi_struct
*napi
, unsigned int len
,
487 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
491 len
+= NET_SKB_PAD
+ NET_IP_ALIGN
;
493 if ((len
> SKB_WITH_OVERHEAD(PAGE_SIZE
)) ||
494 (gfp_mask
& (__GFP_DIRECT_RECLAIM
| GFP_DMA
))) {
495 skb
= __alloc_skb(len
, gfp_mask
, SKB_ALLOC_RX
, NUMA_NO_NODE
);
501 len
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
502 len
= SKB_DATA_ALIGN(len
);
504 if (sk_memalloc_socks())
505 gfp_mask
|= __GFP_MEMALLOC
;
507 data
= page_frag_alloc(&nc
->page
, len
, gfp_mask
);
511 skb
= __build_skb(data
, len
);
512 if (unlikely(!skb
)) {
517 /* use OR instead of assignment to avoid clearing of bits in mask */
518 if (nc
->page
.pfmemalloc
)
523 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
);
524 skb
->dev
= napi
->dev
;
529 EXPORT_SYMBOL(__napi_alloc_skb
);
531 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
532 int size
, unsigned int truesize
)
534 skb_fill_page_desc(skb
, i
, page
, off
, size
);
536 skb
->data_len
+= size
;
537 skb
->truesize
+= truesize
;
539 EXPORT_SYMBOL(skb_add_rx_frag
);
541 void skb_coalesce_rx_frag(struct sk_buff
*skb
, int i
, int size
,
542 unsigned int truesize
)
544 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
546 skb_frag_size_add(frag
, size
);
548 skb
->data_len
+= size
;
549 skb
->truesize
+= truesize
;
551 EXPORT_SYMBOL(skb_coalesce_rx_frag
);
553 static void skb_drop_list(struct sk_buff
**listp
)
555 kfree_skb_list(*listp
);
559 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
561 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
564 static void skb_clone_fraglist(struct sk_buff
*skb
)
566 struct sk_buff
*list
;
568 skb_walk_frags(skb
, list
)
572 static void skb_free_head(struct sk_buff
*skb
)
574 unsigned char *head
= skb
->head
;
582 static void skb_release_data(struct sk_buff
*skb
)
584 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
588 atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
592 for (i
= 0; i
< shinfo
->nr_frags
; i
++)
593 __skb_frag_unref(&shinfo
->frags
[i
]);
596 * If skb buf is from userspace, we need to notify the caller
597 * the lower device DMA has done;
599 if (shinfo
->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
600 struct ubuf_info
*uarg
;
602 uarg
= shinfo
->destructor_arg
;
604 uarg
->callback(uarg
, true);
607 if (shinfo
->frag_list
)
608 kfree_skb_list(shinfo
->frag_list
);
614 * Free an skbuff by memory without cleaning the state.
616 static void kfree_skbmem(struct sk_buff
*skb
)
618 struct sk_buff_fclones
*fclones
;
620 switch (skb
->fclone
) {
621 case SKB_FCLONE_UNAVAILABLE
:
622 kmem_cache_free(skbuff_head_cache
, skb
);
625 case SKB_FCLONE_ORIG
:
626 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
628 /* We usually free the clone (TX completion) before original skb
629 * This test would have no chance to be true for the clone,
630 * while here, branch prediction will be good.
632 if (refcount_read(&fclones
->fclone_ref
) == 1)
636 default: /* SKB_FCLONE_CLONE */
637 fclones
= container_of(skb
, struct sk_buff_fclones
, skb2
);
640 if (!refcount_dec_and_test(&fclones
->fclone_ref
))
643 kmem_cache_free(skbuff_fclone_cache
, fclones
);
646 void skb_release_head_state(struct sk_buff
*skb
)
650 if (skb
->destructor
) {
652 skb
->destructor(skb
);
654 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
655 nf_conntrack_put(skb_nfct(skb
));
657 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
658 nf_bridge_put(skb
->nf_bridge
);
662 /* Free everything but the sk_buff shell. */
663 static void skb_release_all(struct sk_buff
*skb
)
665 skb_release_head_state(skb
);
666 if (likely(skb
->head
))
667 skb_release_data(skb
);
671 * __kfree_skb - private function
674 * Free an sk_buff. Release anything attached to the buffer.
675 * Clean the state. This is an internal helper function. Users should
676 * always call kfree_skb
679 void __kfree_skb(struct sk_buff
*skb
)
681 skb_release_all(skb
);
684 EXPORT_SYMBOL(__kfree_skb
);
687 * kfree_skb - free an sk_buff
688 * @skb: buffer to free
690 * Drop a reference to the buffer and free it if the usage count has
693 void kfree_skb(struct sk_buff
*skb
)
698 trace_kfree_skb(skb
, __builtin_return_address(0));
701 EXPORT_SYMBOL(kfree_skb
);
703 void kfree_skb_list(struct sk_buff
*segs
)
706 struct sk_buff
*next
= segs
->next
;
712 EXPORT_SYMBOL(kfree_skb_list
);
715 * skb_tx_error - report an sk_buff xmit error
716 * @skb: buffer that triggered an error
718 * Report xmit error if a device callback is tracking this skb.
719 * skb must be freed afterwards.
721 void skb_tx_error(struct sk_buff
*skb
)
723 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
724 struct ubuf_info
*uarg
;
726 uarg
= skb_shinfo(skb
)->destructor_arg
;
728 uarg
->callback(uarg
, false);
729 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
732 EXPORT_SYMBOL(skb_tx_error
);
735 * consume_skb - free an skbuff
736 * @skb: buffer to free
738 * Drop a ref to the buffer and free it if the usage count has hit zero
739 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
740 * is being dropped after a failure and notes that
742 void consume_skb(struct sk_buff
*skb
)
747 trace_consume_skb(skb
);
750 EXPORT_SYMBOL(consume_skb
);
753 * consume_stateless_skb - free an skbuff, assuming it is stateless
754 * @skb: buffer to free
756 * Alike consume_skb(), but this variant assumes that this is the last
757 * skb reference and all the head states have been already dropped
759 void __consume_stateless_skb(struct sk_buff
*skb
)
761 trace_consume_skb(skb
);
762 if (likely(skb
->head
))
763 skb_release_data(skb
);
767 void __kfree_skb_flush(void)
769 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
771 /* flush skb_cache if containing objects */
773 kmem_cache_free_bulk(skbuff_head_cache
, nc
->skb_count
,
779 static inline void _kfree_skb_defer(struct sk_buff
*skb
)
781 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
783 /* drop skb->head and call any destructors for packet */
784 skb_release_all(skb
);
786 /* record skb to CPU local list */
787 nc
->skb_cache
[nc
->skb_count
++] = skb
;
790 /* SLUB writes into objects when freeing */
794 /* flush skb_cache if it is filled */
795 if (unlikely(nc
->skb_count
== NAPI_SKB_CACHE_SIZE
)) {
796 kmem_cache_free_bulk(skbuff_head_cache
, NAPI_SKB_CACHE_SIZE
,
801 void __kfree_skb_defer(struct sk_buff
*skb
)
803 _kfree_skb_defer(skb
);
806 void napi_consume_skb(struct sk_buff
*skb
, int budget
)
811 /* Zero budget indicate non-NAPI context called us, like netpoll */
812 if (unlikely(!budget
)) {
813 dev_consume_skb_any(skb
);
820 /* if reaching here SKB is ready to free */
821 trace_consume_skb(skb
);
823 /* if SKB is a clone, don't handle this case */
824 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
) {
829 _kfree_skb_defer(skb
);
831 EXPORT_SYMBOL(napi_consume_skb
);
833 /* Make sure a field is enclosed inside headers_start/headers_end section */
834 #define CHECK_SKB_FIELD(field) \
835 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
836 offsetof(struct sk_buff, headers_start)); \
837 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
838 offsetof(struct sk_buff, headers_end)); \
840 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
842 new->tstamp
= old
->tstamp
;
843 /* We do not copy old->sk */
845 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
846 skb_dst_copy(new, old
);
848 new->sp
= secpath_get(old
->sp
);
850 __nf_copy(new, old
, false);
852 /* Note : this field could be in headers_start/headers_end section
853 * It is not yet because we do not want to have a 16 bit hole
855 new->queue_mapping
= old
->queue_mapping
;
857 memcpy(&new->headers_start
, &old
->headers_start
,
858 offsetof(struct sk_buff
, headers_end
) -
859 offsetof(struct sk_buff
, headers_start
));
860 CHECK_SKB_FIELD(protocol
);
861 CHECK_SKB_FIELD(csum
);
862 CHECK_SKB_FIELD(hash
);
863 CHECK_SKB_FIELD(priority
);
864 CHECK_SKB_FIELD(skb_iif
);
865 CHECK_SKB_FIELD(vlan_proto
);
866 CHECK_SKB_FIELD(vlan_tci
);
867 CHECK_SKB_FIELD(transport_header
);
868 CHECK_SKB_FIELD(network_header
);
869 CHECK_SKB_FIELD(mac_header
);
870 CHECK_SKB_FIELD(inner_protocol
);
871 CHECK_SKB_FIELD(inner_transport_header
);
872 CHECK_SKB_FIELD(inner_network_header
);
873 CHECK_SKB_FIELD(inner_mac_header
);
874 CHECK_SKB_FIELD(mark
);
875 #ifdef CONFIG_NETWORK_SECMARK
876 CHECK_SKB_FIELD(secmark
);
878 #ifdef CONFIG_NET_RX_BUSY_POLL
879 CHECK_SKB_FIELD(napi_id
);
882 CHECK_SKB_FIELD(sender_cpu
);
884 #ifdef CONFIG_NET_SCHED
885 CHECK_SKB_FIELD(tc_index
);
891 * You should not add any new code to this function. Add it to
892 * __copy_skb_header above instead.
894 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
896 #define C(x) n->x = skb->x
898 n
->next
= n
->prev
= NULL
;
900 __copy_skb_header(n
, skb
);
905 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
908 n
->destructor
= NULL
;
915 refcount_set(&n
->users
, 1);
917 atomic_inc(&(skb_shinfo(skb
)->dataref
));
925 * skb_morph - morph one skb into another
926 * @dst: the skb to receive the contents
927 * @src: the skb to supply the contents
929 * This is identical to skb_clone except that the target skb is
930 * supplied by the user.
932 * The target skb is returned upon exit.
934 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
936 skb_release_all(dst
);
937 return __skb_clone(dst
, src
);
939 EXPORT_SYMBOL_GPL(skb_morph
);
942 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
943 * @skb: the skb to modify
944 * @gfp_mask: allocation priority
946 * This must be called on SKBTX_DEV_ZEROCOPY skb.
947 * It will copy all frags into kernel and drop the reference
948 * to userspace pages.
950 * If this function is called from an interrupt gfp_mask() must be
953 * Returns 0 on success or a negative error code on failure
954 * to allocate kernel memory to copy to.
956 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
959 int num_frags
= skb_shinfo(skb
)->nr_frags
;
960 struct page
*page
, *head
= NULL
;
961 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
963 for (i
= 0; i
< num_frags
; i
++) {
965 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
967 page
= alloc_page(gfp_mask
);
970 struct page
*next
= (struct page
*)page_private(head
);
976 vaddr
= kmap_atomic(skb_frag_page(f
));
977 memcpy(page_address(page
),
978 vaddr
+ f
->page_offset
, skb_frag_size(f
));
979 kunmap_atomic(vaddr
);
980 set_page_private(page
, (unsigned long)head
);
984 /* skb frags release userspace buffers */
985 for (i
= 0; i
< num_frags
; i
++)
986 skb_frag_unref(skb
, i
);
988 uarg
->callback(uarg
, false);
990 /* skb frags point to kernel buffers */
991 for (i
= num_frags
- 1; i
>= 0; i
--) {
992 __skb_fill_page_desc(skb
, i
, head
, 0,
993 skb_shinfo(skb
)->frags
[i
].size
);
994 head
= (struct page
*)page_private(head
);
997 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
1000 EXPORT_SYMBOL_GPL(skb_copy_ubufs
);
1003 * skb_clone - duplicate an sk_buff
1004 * @skb: buffer to clone
1005 * @gfp_mask: allocation priority
1007 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1008 * copies share the same packet data but not structure. The new
1009 * buffer has a reference count of 1. If the allocation fails the
1010 * function returns %NULL otherwise the new buffer is returned.
1012 * If this function is called from an interrupt gfp_mask() must be
1016 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
1018 struct sk_buff_fclones
*fclones
= container_of(skb
,
1019 struct sk_buff_fclones
,
1023 if (skb_orphan_frags(skb
, gfp_mask
))
1026 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
1027 refcount_read(&fclones
->fclone_ref
) == 1) {
1029 refcount_set(&fclones
->fclone_ref
, 2);
1031 if (skb_pfmemalloc(skb
))
1032 gfp_mask
|= __GFP_MEMALLOC
;
1034 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
1038 kmemcheck_annotate_bitfield(n
, flags1
);
1039 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
1042 return __skb_clone(n
, skb
);
1044 EXPORT_SYMBOL(skb_clone
);
1046 static void skb_headers_offset_update(struct sk_buff
*skb
, int off
)
1048 /* Only adjust this if it actually is csum_start rather than csum */
1049 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1050 skb
->csum_start
+= off
;
1051 /* {transport,network,mac}_header and tail are relative to skb->head */
1052 skb
->transport_header
+= off
;
1053 skb
->network_header
+= off
;
1054 if (skb_mac_header_was_set(skb
))
1055 skb
->mac_header
+= off
;
1056 skb
->inner_transport_header
+= off
;
1057 skb
->inner_network_header
+= off
;
1058 skb
->inner_mac_header
+= off
;
1061 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
1063 __copy_skb_header(new, old
);
1065 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
1066 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
1067 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
1070 static inline int skb_alloc_rx_flag(const struct sk_buff
*skb
)
1072 if (skb_pfmemalloc(skb
))
1073 return SKB_ALLOC_RX
;
1078 * skb_copy - create private copy of an sk_buff
1079 * @skb: buffer to copy
1080 * @gfp_mask: allocation priority
1082 * Make a copy of both an &sk_buff and its data. This is used when the
1083 * caller wishes to modify the data and needs a private copy of the
1084 * data to alter. Returns %NULL on failure or the pointer to the buffer
1085 * on success. The returned buffer has a reference count of 1.
1087 * As by-product this function converts non-linear &sk_buff to linear
1088 * one, so that &sk_buff becomes completely private and caller is allowed
1089 * to modify all the data of returned buffer. This means that this
1090 * function is not recommended for use in circumstances when only
1091 * header is going to be modified. Use pskb_copy() instead.
1094 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
1096 int headerlen
= skb_headroom(skb
);
1097 unsigned int size
= skb_end_offset(skb
) + skb
->data_len
;
1098 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
1099 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
1104 /* Set the data pointer */
1105 skb_reserve(n
, headerlen
);
1106 /* Set the tail pointer and length */
1107 skb_put(n
, skb
->len
);
1109 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
1112 copy_skb_header(n
, skb
);
1115 EXPORT_SYMBOL(skb_copy
);
1118 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1119 * @skb: buffer to copy
1120 * @headroom: headroom of new skb
1121 * @gfp_mask: allocation priority
1122 * @fclone: if true allocate the copy of the skb from the fclone
1123 * cache instead of the head cache; it is recommended to set this
1124 * to true for the cases where the copy will likely be cloned
1126 * Make a copy of both an &sk_buff and part of its data, located
1127 * in header. Fragmented data remain shared. This is used when
1128 * the caller wishes to modify only header of &sk_buff and needs
1129 * private copy of the header to alter. Returns %NULL on failure
1130 * or the pointer to the buffer on success.
1131 * The returned buffer has a reference count of 1.
1134 struct sk_buff
*__pskb_copy_fclone(struct sk_buff
*skb
, int headroom
,
1135 gfp_t gfp_mask
, bool fclone
)
1137 unsigned int size
= skb_headlen(skb
) + headroom
;
1138 int flags
= skb_alloc_rx_flag(skb
) | (fclone
? SKB_ALLOC_FCLONE
: 0);
1139 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
, flags
, NUMA_NO_NODE
);
1144 /* Set the data pointer */
1145 skb_reserve(n
, headroom
);
1146 /* Set the tail pointer and length */
1147 skb_put(n
, skb_headlen(skb
));
1148 /* Copy the bytes */
1149 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
1151 n
->truesize
+= skb
->data_len
;
1152 n
->data_len
= skb
->data_len
;
1155 if (skb_shinfo(skb
)->nr_frags
) {
1158 if (skb_orphan_frags(skb
, gfp_mask
)) {
1163 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1164 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1165 skb_frag_ref(skb
, i
);
1167 skb_shinfo(n
)->nr_frags
= i
;
1170 if (skb_has_frag_list(skb
)) {
1171 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
1172 skb_clone_fraglist(n
);
1175 copy_skb_header(n
, skb
);
1179 EXPORT_SYMBOL(__pskb_copy_fclone
);
1182 * pskb_expand_head - reallocate header of &sk_buff
1183 * @skb: buffer to reallocate
1184 * @nhead: room to add at head
1185 * @ntail: room to add at tail
1186 * @gfp_mask: allocation priority
1188 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1189 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1190 * reference count of 1. Returns zero in the case of success or error,
1191 * if expansion failed. In the last case, &sk_buff is not changed.
1193 * All the pointers pointing into skb header may change and must be
1194 * reloaded after call to this function.
1197 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
1200 int i
, osize
= skb_end_offset(skb
);
1201 int size
= osize
+ nhead
+ ntail
;
1207 if (skb_shared(skb
))
1210 size
= SKB_DATA_ALIGN(size
);
1212 if (skb_pfmemalloc(skb
))
1213 gfp_mask
|= __GFP_MEMALLOC
;
1214 data
= kmalloc_reserve(size
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
1215 gfp_mask
, NUMA_NO_NODE
, NULL
);
1218 size
= SKB_WITH_OVERHEAD(ksize(data
));
1220 /* Copy only real data... and, alas, header. This should be
1221 * optimized for the cases when header is void.
1223 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
1225 memcpy((struct skb_shared_info
*)(data
+ size
),
1227 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
1230 * if shinfo is shared we must drop the old head gracefully, but if it
1231 * is not we can just drop the old head and let the existing refcount
1232 * be since all we did is relocate the values
1234 if (skb_cloned(skb
)) {
1235 /* copy this zero copy skb frags */
1236 if (skb_orphan_frags(skb
, gfp_mask
))
1238 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1239 skb_frag_ref(skb
, i
);
1241 if (skb_has_frag_list(skb
))
1242 skb_clone_fraglist(skb
);
1244 skb_release_data(skb
);
1248 off
= (data
+ nhead
) - skb
->head
;
1253 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1257 skb
->end
= skb
->head
+ size
;
1260 skb_headers_offset_update(skb
, nhead
);
1264 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
1266 /* It is not generally safe to change skb->truesize.
1267 * For the moment, we really care of rx path, or
1268 * when skb is orphaned (not attached to a socket).
1270 if (!skb
->sk
|| skb
->destructor
== sock_edemux
)
1271 skb
->truesize
+= size
- osize
;
1280 EXPORT_SYMBOL(pskb_expand_head
);
1282 /* Make private copy of skb with writable head and some headroom */
1284 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
1286 struct sk_buff
*skb2
;
1287 int delta
= headroom
- skb_headroom(skb
);
1290 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
1292 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1293 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
1301 EXPORT_SYMBOL(skb_realloc_headroom
);
1304 * skb_copy_expand - copy and expand sk_buff
1305 * @skb: buffer to copy
1306 * @newheadroom: new free bytes at head
1307 * @newtailroom: new free bytes at tail
1308 * @gfp_mask: allocation priority
1310 * Make a copy of both an &sk_buff and its data and while doing so
1311 * allocate additional space.
1313 * This is used when the caller wishes to modify the data and needs a
1314 * private copy of the data to alter as well as more space for new fields.
1315 * Returns %NULL on failure or the pointer to the buffer
1316 * on success. The returned buffer has a reference count of 1.
1318 * You must pass %GFP_ATOMIC as the allocation priority if this function
1319 * is called from an interrupt.
1321 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1322 int newheadroom
, int newtailroom
,
1326 * Allocate the copy buffer
1328 struct sk_buff
*n
= __alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1329 gfp_mask
, skb_alloc_rx_flag(skb
),
1331 int oldheadroom
= skb_headroom(skb
);
1332 int head_copy_len
, head_copy_off
;
1337 skb_reserve(n
, newheadroom
);
1339 /* Set the tail pointer and length */
1340 skb_put(n
, skb
->len
);
1342 head_copy_len
= oldheadroom
;
1344 if (newheadroom
<= head_copy_len
)
1345 head_copy_len
= newheadroom
;
1347 head_copy_off
= newheadroom
- head_copy_len
;
1349 /* Copy the linear header and data. */
1350 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1351 skb
->len
+ head_copy_len
))
1354 copy_skb_header(n
, skb
);
1356 skb_headers_offset_update(n
, newheadroom
- oldheadroom
);
1360 EXPORT_SYMBOL(skb_copy_expand
);
1363 * __skb_pad - zero pad the tail of an skb
1364 * @skb: buffer to pad
1365 * @pad: space to pad
1366 * @free_on_error: free buffer on error
1368 * Ensure that a buffer is followed by a padding area that is zero
1369 * filled. Used by network drivers which may DMA or transfer data
1370 * beyond the buffer end onto the wire.
1372 * May return error in out of memory cases. The skb is freed on error
1373 * if @free_on_error is true.
1376 int __skb_pad(struct sk_buff
*skb
, int pad
, bool free_on_error
)
1381 /* If the skbuff is non linear tailroom is always zero.. */
1382 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1383 memset(skb
->data
+skb
->len
, 0, pad
);
1387 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1388 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1389 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1394 /* FIXME: The use of this function with non-linear skb's really needs
1397 err
= skb_linearize(skb
);
1401 memset(skb
->data
+ skb
->len
, 0, pad
);
1409 EXPORT_SYMBOL(__skb_pad
);
1412 * pskb_put - add data to the tail of a potentially fragmented buffer
1413 * @skb: start of the buffer to use
1414 * @tail: tail fragment of the buffer to use
1415 * @len: amount of data to add
1417 * This function extends the used data area of the potentially
1418 * fragmented buffer. @tail must be the last fragment of @skb -- or
1419 * @skb itself. If this would exceed the total buffer size the kernel
1420 * will panic. A pointer to the first byte of the extra data is
1424 void *pskb_put(struct sk_buff
*skb
, struct sk_buff
*tail
, int len
)
1427 skb
->data_len
+= len
;
1430 return skb_put(tail
, len
);
1432 EXPORT_SYMBOL_GPL(pskb_put
);
1435 * skb_put - add data to a buffer
1436 * @skb: buffer to use
1437 * @len: amount of data to add
1439 * This function extends the used data area of the buffer. If this would
1440 * exceed the total buffer size the kernel will panic. A pointer to the
1441 * first byte of the extra data is returned.
1443 void *skb_put(struct sk_buff
*skb
, unsigned int len
)
1445 void *tmp
= skb_tail_pointer(skb
);
1446 SKB_LINEAR_ASSERT(skb
);
1449 if (unlikely(skb
->tail
> skb
->end
))
1450 skb_over_panic(skb
, len
, __builtin_return_address(0));
1453 EXPORT_SYMBOL(skb_put
);
1456 * skb_push - add data to the start of a buffer
1457 * @skb: buffer to use
1458 * @len: amount of data to add
1460 * This function extends the used data area of the buffer at the buffer
1461 * start. If this would exceed the total buffer headroom the kernel will
1462 * panic. A pointer to the first byte of the extra data is returned.
1464 void *skb_push(struct sk_buff
*skb
, unsigned int len
)
1468 if (unlikely(skb
->data
<skb
->head
))
1469 skb_under_panic(skb
, len
, __builtin_return_address(0));
1472 EXPORT_SYMBOL(skb_push
);
1475 * skb_pull - remove data from the start of a buffer
1476 * @skb: buffer to use
1477 * @len: amount of data to remove
1479 * This function removes data from the start of a buffer, returning
1480 * the memory to the headroom. A pointer to the next data in the buffer
1481 * is returned. Once the data has been pulled future pushes will overwrite
1484 void *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1486 return skb_pull_inline(skb
, len
);
1488 EXPORT_SYMBOL(skb_pull
);
1491 * skb_trim - remove end from a buffer
1492 * @skb: buffer to alter
1495 * Cut the length of a buffer down by removing data from the tail. If
1496 * the buffer is already under the length specified it is not modified.
1497 * The skb must be linear.
1499 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1502 __skb_trim(skb
, len
);
1504 EXPORT_SYMBOL(skb_trim
);
1506 /* Trims skb to length len. It can change skb pointers.
1509 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1511 struct sk_buff
**fragp
;
1512 struct sk_buff
*frag
;
1513 int offset
= skb_headlen(skb
);
1514 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1518 if (skb_cloned(skb
) &&
1519 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1526 for (; i
< nfrags
; i
++) {
1527 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1534 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1537 skb_shinfo(skb
)->nr_frags
= i
;
1539 for (; i
< nfrags
; i
++)
1540 skb_frag_unref(skb
, i
);
1542 if (skb_has_frag_list(skb
))
1543 skb_drop_fraglist(skb
);
1547 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1548 fragp
= &frag
->next
) {
1549 int end
= offset
+ frag
->len
;
1551 if (skb_shared(frag
)) {
1552 struct sk_buff
*nfrag
;
1554 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1555 if (unlikely(!nfrag
))
1558 nfrag
->next
= frag
->next
;
1570 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1574 skb_drop_list(&frag
->next
);
1579 if (len
> skb_headlen(skb
)) {
1580 skb
->data_len
-= skb
->len
- len
;
1585 skb_set_tail_pointer(skb
, len
);
1588 if (!skb
->sk
|| skb
->destructor
== sock_edemux
)
1592 EXPORT_SYMBOL(___pskb_trim
);
1595 * __pskb_pull_tail - advance tail of skb header
1596 * @skb: buffer to reallocate
1597 * @delta: number of bytes to advance tail
1599 * The function makes a sense only on a fragmented &sk_buff,
1600 * it expands header moving its tail forward and copying necessary
1601 * data from fragmented part.
1603 * &sk_buff MUST have reference count of 1.
1605 * Returns %NULL (and &sk_buff does not change) if pull failed
1606 * or value of new tail of skb in the case of success.
1608 * All the pointers pointing into skb header may change and must be
1609 * reloaded after call to this function.
1612 /* Moves tail of skb head forward, copying data from fragmented part,
1613 * when it is necessary.
1614 * 1. It may fail due to malloc failure.
1615 * 2. It may change skb pointers.
1617 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1619 void *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1621 /* If skb has not enough free space at tail, get new one
1622 * plus 128 bytes for future expansions. If we have enough
1623 * room at tail, reallocate without expansion only if skb is cloned.
1625 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1627 if (eat
> 0 || skb_cloned(skb
)) {
1628 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1633 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1636 /* Optimization: no fragments, no reasons to preestimate
1637 * size of pulled pages. Superb.
1639 if (!skb_has_frag_list(skb
))
1642 /* Estimate size of pulled pages. */
1644 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1645 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1652 /* If we need update frag list, we are in troubles.
1653 * Certainly, it possible to add an offset to skb data,
1654 * but taking into account that pulling is expected to
1655 * be very rare operation, it is worth to fight against
1656 * further bloating skb head and crucify ourselves here instead.
1657 * Pure masohism, indeed. 8)8)
1660 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1661 struct sk_buff
*clone
= NULL
;
1662 struct sk_buff
*insp
= NULL
;
1667 if (list
->len
<= eat
) {
1668 /* Eaten as whole. */
1673 /* Eaten partially. */
1675 if (skb_shared(list
)) {
1676 /* Sucks! We need to fork list. :-( */
1677 clone
= skb_clone(list
, GFP_ATOMIC
);
1683 /* This may be pulled without
1687 if (!pskb_pull(list
, eat
)) {
1695 /* Free pulled out fragments. */
1696 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1697 skb_shinfo(skb
)->frag_list
= list
->next
;
1700 /* And insert new clone at head. */
1703 skb_shinfo(skb
)->frag_list
= clone
;
1706 /* Success! Now we may commit changes to skb data. */
1711 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1712 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1715 skb_frag_unref(skb
, i
);
1718 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1720 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1721 skb_frag_size_sub(&skb_shinfo(skb
)->frags
[k
], eat
);
1727 skb_shinfo(skb
)->nr_frags
= k
;
1730 skb
->data_len
-= delta
;
1732 return skb_tail_pointer(skb
);
1734 EXPORT_SYMBOL(__pskb_pull_tail
);
1737 * skb_copy_bits - copy bits from skb to kernel buffer
1739 * @offset: offset in source
1740 * @to: destination buffer
1741 * @len: number of bytes to copy
1743 * Copy the specified number of bytes from the source skb to the
1744 * destination buffer.
1747 * If its prototype is ever changed,
1748 * check arch/{*}/net/{*}.S files,
1749 * since it is called from BPF assembly code.
1751 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1753 int start
= skb_headlen(skb
);
1754 struct sk_buff
*frag_iter
;
1757 if (offset
> (int)skb
->len
- len
)
1761 if ((copy
= start
- offset
) > 0) {
1764 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1765 if ((len
-= copy
) == 0)
1771 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1773 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
1775 WARN_ON(start
> offset
+ len
);
1777 end
= start
+ skb_frag_size(f
);
1778 if ((copy
= end
- offset
) > 0) {
1784 vaddr
= kmap_atomic(skb_frag_page(f
));
1786 vaddr
+ f
->page_offset
+ offset
- start
,
1788 kunmap_atomic(vaddr
);
1790 if ((len
-= copy
) == 0)
1798 skb_walk_frags(skb
, frag_iter
) {
1801 WARN_ON(start
> offset
+ len
);
1803 end
= start
+ frag_iter
->len
;
1804 if ((copy
= end
- offset
) > 0) {
1807 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1809 if ((len
-= copy
) == 0)
1823 EXPORT_SYMBOL(skb_copy_bits
);
1826 * Callback from splice_to_pipe(), if we need to release some pages
1827 * at the end of the spd in case we error'ed out in filling the pipe.
1829 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1831 put_page(spd
->pages
[i
]);
1834 static struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1835 unsigned int *offset
,
1838 struct page_frag
*pfrag
= sk_page_frag(sk
);
1840 if (!sk_page_frag_refill(sk
, pfrag
))
1843 *len
= min_t(unsigned int, *len
, pfrag
->size
- pfrag
->offset
);
1845 memcpy(page_address(pfrag
->page
) + pfrag
->offset
,
1846 page_address(page
) + *offset
, *len
);
1847 *offset
= pfrag
->offset
;
1848 pfrag
->offset
+= *len
;
1853 static bool spd_can_coalesce(const struct splice_pipe_desc
*spd
,
1855 unsigned int offset
)
1857 return spd
->nr_pages
&&
1858 spd
->pages
[spd
->nr_pages
- 1] == page
&&
1859 (spd
->partial
[spd
->nr_pages
- 1].offset
+
1860 spd
->partial
[spd
->nr_pages
- 1].len
== offset
);
1864 * Fill page/offset/length into spd, if it can hold more pages.
1866 static bool spd_fill_page(struct splice_pipe_desc
*spd
,
1867 struct pipe_inode_info
*pipe
, struct page
*page
,
1868 unsigned int *len
, unsigned int offset
,
1872 if (unlikely(spd
->nr_pages
== MAX_SKB_FRAGS
))
1876 page
= linear_to_page(page
, len
, &offset
, sk
);
1880 if (spd_can_coalesce(spd
, page
, offset
)) {
1881 spd
->partial
[spd
->nr_pages
- 1].len
+= *len
;
1885 spd
->pages
[spd
->nr_pages
] = page
;
1886 spd
->partial
[spd
->nr_pages
].len
= *len
;
1887 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1893 static bool __splice_segment(struct page
*page
, unsigned int poff
,
1894 unsigned int plen
, unsigned int *off
,
1896 struct splice_pipe_desc
*spd
, bool linear
,
1898 struct pipe_inode_info
*pipe
)
1903 /* skip this segment if already processed */
1909 /* ignore any bits we already processed */
1915 unsigned int flen
= min(*len
, plen
);
1917 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
,
1923 } while (*len
&& plen
);
1929 * Map linear and fragment data from the skb to spd. It reports true if the
1930 * pipe is full or if we already spliced the requested length.
1932 static bool __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1933 unsigned int *offset
, unsigned int *len
,
1934 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1937 struct sk_buff
*iter
;
1939 /* map the linear part :
1940 * If skb->head_frag is set, this 'linear' part is backed by a
1941 * fragment, and if the head is not shared with any clones then
1942 * we can avoid a copy since we own the head portion of this page.
1944 if (__splice_segment(virt_to_page(skb
->data
),
1945 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1948 skb_head_is_locked(skb
),
1953 * then map the fragments
1955 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1956 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1958 if (__splice_segment(skb_frag_page(f
),
1959 f
->page_offset
, skb_frag_size(f
),
1960 offset
, len
, spd
, false, sk
, pipe
))
1964 skb_walk_frags(skb
, iter
) {
1965 if (*offset
>= iter
->len
) {
1966 *offset
-= iter
->len
;
1969 /* __skb_splice_bits() only fails if the output has no room
1970 * left, so no point in going over the frag_list for the error
1973 if (__skb_splice_bits(iter
, pipe
, offset
, len
, spd
, sk
))
1981 * Map data from the skb to a pipe. Should handle both the linear part,
1982 * the fragments, and the frag list.
1984 int skb_splice_bits(struct sk_buff
*skb
, struct sock
*sk
, unsigned int offset
,
1985 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1988 struct partial_page partial
[MAX_SKB_FRAGS
];
1989 struct page
*pages
[MAX_SKB_FRAGS
];
1990 struct splice_pipe_desc spd
= {
1993 .nr_pages_max
= MAX_SKB_FRAGS
,
1994 .ops
= &nosteal_pipe_buf_ops
,
1995 .spd_release
= sock_spd_release
,
1999 __skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
);
2002 ret
= splice_to_pipe(pipe
, &spd
);
2006 EXPORT_SYMBOL_GPL(skb_splice_bits
);
2009 * skb_store_bits - store bits from kernel buffer to skb
2010 * @skb: destination buffer
2011 * @offset: offset in destination
2012 * @from: source buffer
2013 * @len: number of bytes to copy
2015 * Copy the specified number of bytes from the source buffer to the
2016 * destination skb. This function handles all the messy bits of
2017 * traversing fragment lists and such.
2020 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
2022 int start
= skb_headlen(skb
);
2023 struct sk_buff
*frag_iter
;
2026 if (offset
> (int)skb
->len
- len
)
2029 if ((copy
= start
- offset
) > 0) {
2032 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
2033 if ((len
-= copy
) == 0)
2039 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2040 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2043 WARN_ON(start
> offset
+ len
);
2045 end
= start
+ skb_frag_size(frag
);
2046 if ((copy
= end
- offset
) > 0) {
2052 vaddr
= kmap_atomic(skb_frag_page(frag
));
2053 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
2055 kunmap_atomic(vaddr
);
2057 if ((len
-= copy
) == 0)
2065 skb_walk_frags(skb
, frag_iter
) {
2068 WARN_ON(start
> offset
+ len
);
2070 end
= start
+ frag_iter
->len
;
2071 if ((copy
= end
- offset
) > 0) {
2074 if (skb_store_bits(frag_iter
, offset
- start
,
2077 if ((len
-= copy
) == 0)
2090 EXPORT_SYMBOL(skb_store_bits
);
2092 /* Checksum skb data. */
2093 __wsum
__skb_checksum(const struct sk_buff
*skb
, int offset
, int len
,
2094 __wsum csum
, const struct skb_checksum_ops
*ops
)
2096 int start
= skb_headlen(skb
);
2097 int i
, copy
= start
- offset
;
2098 struct sk_buff
*frag_iter
;
2101 /* Checksum header. */
2105 csum
= ops
->update(skb
->data
+ offset
, copy
, csum
);
2106 if ((len
-= copy
) == 0)
2112 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2114 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2116 WARN_ON(start
> offset
+ len
);
2118 end
= start
+ skb_frag_size(frag
);
2119 if ((copy
= end
- offset
) > 0) {
2125 vaddr
= kmap_atomic(skb_frag_page(frag
));
2126 csum2
= ops
->update(vaddr
+ frag
->page_offset
+
2127 offset
- start
, copy
, 0);
2128 kunmap_atomic(vaddr
);
2129 csum
= ops
->combine(csum
, csum2
, pos
, copy
);
2138 skb_walk_frags(skb
, frag_iter
) {
2141 WARN_ON(start
> offset
+ len
);
2143 end
= start
+ frag_iter
->len
;
2144 if ((copy
= end
- offset
) > 0) {
2148 csum2
= __skb_checksum(frag_iter
, offset
- start
,
2150 csum
= ops
->combine(csum
, csum2
, pos
, copy
);
2151 if ((len
-= copy
) == 0)
2162 EXPORT_SYMBOL(__skb_checksum
);
2164 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
2165 int len
, __wsum csum
)
2167 const struct skb_checksum_ops ops
= {
2168 .update
= csum_partial_ext
,
2169 .combine
= csum_block_add_ext
,
2172 return __skb_checksum(skb
, offset
, len
, csum
, &ops
);
2174 EXPORT_SYMBOL(skb_checksum
);
2176 /* Both of above in one bottle. */
2178 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
2179 u8
*to
, int len
, __wsum csum
)
2181 int start
= skb_headlen(skb
);
2182 int i
, copy
= start
- offset
;
2183 struct sk_buff
*frag_iter
;
2190 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
2192 if ((len
-= copy
) == 0)
2199 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2202 WARN_ON(start
> offset
+ len
);
2204 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2205 if ((copy
= end
- offset
) > 0) {
2208 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2212 vaddr
= kmap_atomic(skb_frag_page(frag
));
2213 csum2
= csum_partial_copy_nocheck(vaddr
+
2217 kunmap_atomic(vaddr
);
2218 csum
= csum_block_add(csum
, csum2
, pos
);
2228 skb_walk_frags(skb
, frag_iter
) {
2232 WARN_ON(start
> offset
+ len
);
2234 end
= start
+ frag_iter
->len
;
2235 if ((copy
= end
- offset
) > 0) {
2238 csum2
= skb_copy_and_csum_bits(frag_iter
,
2241 csum
= csum_block_add(csum
, csum2
, pos
);
2242 if ((len
-= copy
) == 0)
2253 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2255 static __wsum
warn_crc32c_csum_update(const void *buff
, int len
, __wsum sum
)
2257 net_warn_ratelimited(
2258 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2263 static __wsum
warn_crc32c_csum_combine(__wsum csum
, __wsum csum2
,
2264 int offset
, int len
)
2266 net_warn_ratelimited(
2267 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2272 static const struct skb_checksum_ops default_crc32c_ops
= {
2273 .update
= warn_crc32c_csum_update
,
2274 .combine
= warn_crc32c_csum_combine
,
2277 const struct skb_checksum_ops
*crc32c_csum_stub __read_mostly
=
2278 &default_crc32c_ops
;
2279 EXPORT_SYMBOL(crc32c_csum_stub
);
2282 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2283 * @from: source buffer
2285 * Calculates the amount of linear headroom needed in the 'to' skb passed
2286 * into skb_zerocopy().
2289 skb_zerocopy_headlen(const struct sk_buff
*from
)
2291 unsigned int hlen
= 0;
2293 if (!from
->head_frag
||
2294 skb_headlen(from
) < L1_CACHE_BYTES
||
2295 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
2296 hlen
= skb_headlen(from
);
2298 if (skb_has_frag_list(from
))
2303 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen
);
2306 * skb_zerocopy - Zero copy skb to skb
2307 * @to: destination buffer
2308 * @from: source buffer
2309 * @len: number of bytes to copy from source buffer
2310 * @hlen: size of linear headroom in destination buffer
2312 * Copies up to `len` bytes from `from` to `to` by creating references
2313 * to the frags in the source buffer.
2315 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2316 * headroom in the `to` buffer.
2319 * 0: everything is OK
2320 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2321 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2324 skb_zerocopy(struct sk_buff
*to
, struct sk_buff
*from
, int len
, int hlen
)
2327 int plen
= 0; /* length of skb->head fragment */
2330 unsigned int offset
;
2332 BUG_ON(!from
->head_frag
&& !hlen
);
2334 /* dont bother with small payloads */
2335 if (len
<= skb_tailroom(to
))
2336 return skb_copy_bits(from
, 0, skb_put(to
, len
), len
);
2339 ret
= skb_copy_bits(from
, 0, skb_put(to
, hlen
), hlen
);
2344 plen
= min_t(int, skb_headlen(from
), len
);
2346 page
= virt_to_head_page(from
->head
);
2347 offset
= from
->data
- (unsigned char *)page_address(page
);
2348 __skb_fill_page_desc(to
, 0, page
, offset
, plen
);
2355 to
->truesize
+= len
+ plen
;
2356 to
->len
+= len
+ plen
;
2357 to
->data_len
+= len
+ plen
;
2359 if (unlikely(skb_orphan_frags(from
, GFP_ATOMIC
))) {
2364 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++) {
2367 skb_shinfo(to
)->frags
[j
] = skb_shinfo(from
)->frags
[i
];
2368 skb_shinfo(to
)->frags
[j
].size
= min_t(int, skb_shinfo(to
)->frags
[j
].size
, len
);
2369 len
-= skb_shinfo(to
)->frags
[j
].size
;
2370 skb_frag_ref(to
, j
);
2373 skb_shinfo(to
)->nr_frags
= j
;
2377 EXPORT_SYMBOL_GPL(skb_zerocopy
);
2379 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
2384 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2385 csstart
= skb_checksum_start_offset(skb
);
2387 csstart
= skb_headlen(skb
);
2389 BUG_ON(csstart
> skb_headlen(skb
));
2391 skb_copy_from_linear_data(skb
, to
, csstart
);
2394 if (csstart
!= skb
->len
)
2395 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
2396 skb
->len
- csstart
, 0);
2398 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2399 long csstuff
= csstart
+ skb
->csum_offset
;
2401 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
2404 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2407 * skb_dequeue - remove from the head of the queue
2408 * @list: list to dequeue from
2410 * Remove the head of the list. The list lock is taken so the function
2411 * may be used safely with other locking list functions. The head item is
2412 * returned or %NULL if the list is empty.
2415 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
2417 unsigned long flags
;
2418 struct sk_buff
*result
;
2420 spin_lock_irqsave(&list
->lock
, flags
);
2421 result
= __skb_dequeue(list
);
2422 spin_unlock_irqrestore(&list
->lock
, flags
);
2425 EXPORT_SYMBOL(skb_dequeue
);
2428 * skb_dequeue_tail - remove from the tail of the queue
2429 * @list: list to dequeue from
2431 * Remove the tail of the list. The list lock is taken so the function
2432 * may be used safely with other locking list functions. The tail item is
2433 * returned or %NULL if the list is empty.
2435 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
2437 unsigned long flags
;
2438 struct sk_buff
*result
;
2440 spin_lock_irqsave(&list
->lock
, flags
);
2441 result
= __skb_dequeue_tail(list
);
2442 spin_unlock_irqrestore(&list
->lock
, flags
);
2445 EXPORT_SYMBOL(skb_dequeue_tail
);
2448 * skb_queue_purge - empty a list
2449 * @list: list to empty
2451 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2452 * the list and one reference dropped. This function takes the list
2453 * lock and is atomic with respect to other list locking functions.
2455 void skb_queue_purge(struct sk_buff_head
*list
)
2457 struct sk_buff
*skb
;
2458 while ((skb
= skb_dequeue(list
)) != NULL
)
2461 EXPORT_SYMBOL(skb_queue_purge
);
2464 * skb_rbtree_purge - empty a skb rbtree
2465 * @root: root of the rbtree to empty
2467 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2468 * the list and one reference dropped. This function does not take
2469 * any lock. Synchronization should be handled by the caller (e.g., TCP
2470 * out-of-order queue is protected by the socket lock).
2472 void skb_rbtree_purge(struct rb_root
*root
)
2474 struct sk_buff
*skb
, *next
;
2476 rbtree_postorder_for_each_entry_safe(skb
, next
, root
, rbnode
)
2483 * skb_queue_head - queue a buffer at the list head
2484 * @list: list to use
2485 * @newsk: buffer to queue
2487 * Queue a buffer at the start of the list. This function takes the
2488 * list lock and can be used safely with other locking &sk_buff functions
2491 * A buffer cannot be placed on two lists at the same time.
2493 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2495 unsigned long flags
;
2497 spin_lock_irqsave(&list
->lock
, flags
);
2498 __skb_queue_head(list
, newsk
);
2499 spin_unlock_irqrestore(&list
->lock
, flags
);
2501 EXPORT_SYMBOL(skb_queue_head
);
2504 * skb_queue_tail - queue a buffer at the list tail
2505 * @list: list to use
2506 * @newsk: buffer to queue
2508 * Queue a buffer at the tail of the list. This function takes the
2509 * list lock and can be used safely with other locking &sk_buff functions
2512 * A buffer cannot be placed on two lists at the same time.
2514 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2516 unsigned long flags
;
2518 spin_lock_irqsave(&list
->lock
, flags
);
2519 __skb_queue_tail(list
, newsk
);
2520 spin_unlock_irqrestore(&list
->lock
, flags
);
2522 EXPORT_SYMBOL(skb_queue_tail
);
2525 * skb_unlink - remove a buffer from a list
2526 * @skb: buffer to remove
2527 * @list: list to use
2529 * Remove a packet from a list. The list locks are taken and this
2530 * function is atomic with respect to other list locked calls
2532 * You must know what list the SKB is on.
2534 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2536 unsigned long flags
;
2538 spin_lock_irqsave(&list
->lock
, flags
);
2539 __skb_unlink(skb
, list
);
2540 spin_unlock_irqrestore(&list
->lock
, flags
);
2542 EXPORT_SYMBOL(skb_unlink
);
2545 * skb_append - append a buffer
2546 * @old: buffer to insert after
2547 * @newsk: buffer to insert
2548 * @list: list to use
2550 * Place a packet after a given packet in a list. The list locks are taken
2551 * and this function is atomic with respect to other list locked calls.
2552 * A buffer cannot be placed on two lists at the same time.
2554 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2556 unsigned long flags
;
2558 spin_lock_irqsave(&list
->lock
, flags
);
2559 __skb_queue_after(list
, old
, newsk
);
2560 spin_unlock_irqrestore(&list
->lock
, flags
);
2562 EXPORT_SYMBOL(skb_append
);
2565 * skb_insert - insert a buffer
2566 * @old: buffer to insert before
2567 * @newsk: buffer to insert
2568 * @list: list to use
2570 * Place a packet before a given packet in a list. The list locks are
2571 * taken and this function is atomic with respect to other list locked
2574 * A buffer cannot be placed on two lists at the same time.
2576 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2578 unsigned long flags
;
2580 spin_lock_irqsave(&list
->lock
, flags
);
2581 __skb_insert(newsk
, old
->prev
, old
, list
);
2582 spin_unlock_irqrestore(&list
->lock
, flags
);
2584 EXPORT_SYMBOL(skb_insert
);
2586 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2587 struct sk_buff
* skb1
,
2588 const u32 len
, const int pos
)
2592 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2594 /* And move data appendix as is. */
2595 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2596 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2598 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2599 skb_shinfo(skb
)->nr_frags
= 0;
2600 skb1
->data_len
= skb
->data_len
;
2601 skb1
->len
+= skb1
->data_len
;
2604 skb_set_tail_pointer(skb
, len
);
2607 static inline void skb_split_no_header(struct sk_buff
*skb
,
2608 struct sk_buff
* skb1
,
2609 const u32 len
, int pos
)
2612 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2614 skb_shinfo(skb
)->nr_frags
= 0;
2615 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2617 skb
->data_len
= len
- pos
;
2619 for (i
= 0; i
< nfrags
; i
++) {
2620 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2622 if (pos
+ size
> len
) {
2623 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2627 * We have two variants in this case:
2628 * 1. Move all the frag to the second
2629 * part, if it is possible. F.e.
2630 * this approach is mandatory for TUX,
2631 * where splitting is expensive.
2632 * 2. Split is accurately. We make this.
2634 skb_frag_ref(skb
, i
);
2635 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2636 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
2637 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
2638 skb_shinfo(skb
)->nr_frags
++;
2642 skb_shinfo(skb
)->nr_frags
++;
2645 skb_shinfo(skb1
)->nr_frags
= k
;
2649 * skb_split - Split fragmented skb to two parts at length len.
2650 * @skb: the buffer to split
2651 * @skb1: the buffer to receive the second part
2652 * @len: new length for skb
2654 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2656 int pos
= skb_headlen(skb
);
2658 skb_shinfo(skb1
)->tx_flags
|= skb_shinfo(skb
)->tx_flags
&
2660 if (len
< pos
) /* Split line is inside header. */
2661 skb_split_inside_header(skb
, skb1
, len
, pos
);
2662 else /* Second chunk has no header, nothing to copy. */
2663 skb_split_no_header(skb
, skb1
, len
, pos
);
2665 EXPORT_SYMBOL(skb_split
);
2667 /* Shifting from/to a cloned skb is a no-go.
2669 * Caller cannot keep skb_shinfo related pointers past calling here!
2671 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2673 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2677 * skb_shift - Shifts paged data partially from skb to another
2678 * @tgt: buffer into which tail data gets added
2679 * @skb: buffer from which the paged data comes from
2680 * @shiftlen: shift up to this many bytes
2682 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2683 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2684 * It's up to caller to free skb if everything was shifted.
2686 * If @tgt runs out of frags, the whole operation is aborted.
2688 * Skb cannot include anything else but paged data while tgt is allowed
2689 * to have non-paged data as well.
2691 * TODO: full sized shift could be optimized but that would need
2692 * specialized skb free'er to handle frags without up-to-date nr_frags.
2694 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2696 int from
, to
, merge
, todo
;
2697 struct skb_frag_struct
*fragfrom
, *fragto
;
2699 BUG_ON(shiftlen
> skb
->len
);
2701 if (skb_headlen(skb
))
2706 to
= skb_shinfo(tgt
)->nr_frags
;
2707 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2709 /* Actual merge is delayed until the point when we know we can
2710 * commit all, so that we don't have to undo partial changes
2713 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
2714 fragfrom
->page_offset
)) {
2719 todo
-= skb_frag_size(fragfrom
);
2721 if (skb_prepare_for_shift(skb
) ||
2722 skb_prepare_for_shift(tgt
))
2725 /* All previous frag pointers might be stale! */
2726 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2727 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2729 skb_frag_size_add(fragto
, shiftlen
);
2730 skb_frag_size_sub(fragfrom
, shiftlen
);
2731 fragfrom
->page_offset
+= shiftlen
;
2739 /* Skip full, not-fitting skb to avoid expensive operations */
2740 if ((shiftlen
== skb
->len
) &&
2741 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2744 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2747 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2748 if (to
== MAX_SKB_FRAGS
)
2751 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2752 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2754 if (todo
>= skb_frag_size(fragfrom
)) {
2755 *fragto
= *fragfrom
;
2756 todo
-= skb_frag_size(fragfrom
);
2761 __skb_frag_ref(fragfrom
);
2762 fragto
->page
= fragfrom
->page
;
2763 fragto
->page_offset
= fragfrom
->page_offset
;
2764 skb_frag_size_set(fragto
, todo
);
2766 fragfrom
->page_offset
+= todo
;
2767 skb_frag_size_sub(fragfrom
, todo
);
2775 /* Ready to "commit" this state change to tgt */
2776 skb_shinfo(tgt
)->nr_frags
= to
;
2779 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2780 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2782 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
2783 __skb_frag_unref(fragfrom
);
2786 /* Reposition in the original skb */
2788 while (from
< skb_shinfo(skb
)->nr_frags
)
2789 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2790 skb_shinfo(skb
)->nr_frags
= to
;
2792 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2795 /* Most likely the tgt won't ever need its checksum anymore, skb on
2796 * the other hand might need it if it needs to be resent
2798 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2799 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2801 /* Yak, is it really working this way? Some helper please? */
2802 skb
->len
-= shiftlen
;
2803 skb
->data_len
-= shiftlen
;
2804 skb
->truesize
-= shiftlen
;
2805 tgt
->len
+= shiftlen
;
2806 tgt
->data_len
+= shiftlen
;
2807 tgt
->truesize
+= shiftlen
;
2813 * skb_prepare_seq_read - Prepare a sequential read of skb data
2814 * @skb: the buffer to read
2815 * @from: lower offset of data to be read
2816 * @to: upper offset of data to be read
2817 * @st: state variable
2819 * Initializes the specified state variable. Must be called before
2820 * invoking skb_seq_read() for the first time.
2822 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2823 unsigned int to
, struct skb_seq_state
*st
)
2825 st
->lower_offset
= from
;
2826 st
->upper_offset
= to
;
2827 st
->root_skb
= st
->cur_skb
= skb
;
2828 st
->frag_idx
= st
->stepped_offset
= 0;
2829 st
->frag_data
= NULL
;
2831 EXPORT_SYMBOL(skb_prepare_seq_read
);
2834 * skb_seq_read - Sequentially read skb data
2835 * @consumed: number of bytes consumed by the caller so far
2836 * @data: destination pointer for data to be returned
2837 * @st: state variable
2839 * Reads a block of skb data at @consumed relative to the
2840 * lower offset specified to skb_prepare_seq_read(). Assigns
2841 * the head of the data block to @data and returns the length
2842 * of the block or 0 if the end of the skb data or the upper
2843 * offset has been reached.
2845 * The caller is not required to consume all of the data
2846 * returned, i.e. @consumed is typically set to the number
2847 * of bytes already consumed and the next call to
2848 * skb_seq_read() will return the remaining part of the block.
2850 * Note 1: The size of each block of data returned can be arbitrary,
2851 * this limitation is the cost for zerocopy sequential
2852 * reads of potentially non linear data.
2854 * Note 2: Fragment lists within fragments are not implemented
2855 * at the moment, state->root_skb could be replaced with
2856 * a stack for this purpose.
2858 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2859 struct skb_seq_state
*st
)
2861 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2864 if (unlikely(abs_offset
>= st
->upper_offset
)) {
2865 if (st
->frag_data
) {
2866 kunmap_atomic(st
->frag_data
);
2867 st
->frag_data
= NULL
;
2873 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2875 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2876 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2877 return block_limit
- abs_offset
;
2880 if (st
->frag_idx
== 0 && !st
->frag_data
)
2881 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2883 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2884 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2885 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
2887 if (abs_offset
< block_limit
) {
2889 st
->frag_data
= kmap_atomic(skb_frag_page(frag
));
2891 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2892 (abs_offset
- st
->stepped_offset
);
2894 return block_limit
- abs_offset
;
2897 if (st
->frag_data
) {
2898 kunmap_atomic(st
->frag_data
);
2899 st
->frag_data
= NULL
;
2903 st
->stepped_offset
+= skb_frag_size(frag
);
2906 if (st
->frag_data
) {
2907 kunmap_atomic(st
->frag_data
);
2908 st
->frag_data
= NULL
;
2911 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2912 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2915 } else if (st
->cur_skb
->next
) {
2916 st
->cur_skb
= st
->cur_skb
->next
;
2923 EXPORT_SYMBOL(skb_seq_read
);
2926 * skb_abort_seq_read - Abort a sequential read of skb data
2927 * @st: state variable
2929 * Must be called if skb_seq_read() was not called until it
2932 void skb_abort_seq_read(struct skb_seq_state
*st
)
2935 kunmap_atomic(st
->frag_data
);
2937 EXPORT_SYMBOL(skb_abort_seq_read
);
2939 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2941 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2942 struct ts_config
*conf
,
2943 struct ts_state
*state
)
2945 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2948 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2950 skb_abort_seq_read(TS_SKB_CB(state
));
2954 * skb_find_text - Find a text pattern in skb data
2955 * @skb: the buffer to look in
2956 * @from: search offset
2958 * @config: textsearch configuration
2960 * Finds a pattern in the skb data according to the specified
2961 * textsearch configuration. Use textsearch_next() to retrieve
2962 * subsequent occurrences of the pattern. Returns the offset
2963 * to the first occurrence or UINT_MAX if no match was found.
2965 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2966 unsigned int to
, struct ts_config
*config
)
2968 struct ts_state state
;
2971 config
->get_next_block
= skb_ts_get_next_block
;
2972 config
->finish
= skb_ts_finish
;
2974 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(&state
));
2976 ret
= textsearch_find(config
, &state
);
2977 return (ret
<= to
- from
? ret
: UINT_MAX
);
2979 EXPORT_SYMBOL(skb_find_text
);
2982 * skb_append_datato_frags - append the user data to a skb
2983 * @sk: sock structure
2984 * @skb: skb structure to be appended with user data.
2985 * @getfrag: call back function to be used for getting the user data
2986 * @from: pointer to user message iov
2987 * @length: length of the iov message
2989 * Description: This procedure append the user data in the fragment part
2990 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2992 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2993 int (*getfrag
)(void *from
, char *to
, int offset
,
2994 int len
, int odd
, struct sk_buff
*skb
),
2995 void *from
, int length
)
2997 int frg_cnt
= skb_shinfo(skb
)->nr_frags
;
3001 struct page_frag
*pfrag
= ¤t
->task_frag
;
3004 /* Return error if we don't have space for new frag */
3005 if (frg_cnt
>= MAX_SKB_FRAGS
)
3008 if (!sk_page_frag_refill(sk
, pfrag
))
3011 /* copy the user data to page */
3012 copy
= min_t(int, length
, pfrag
->size
- pfrag
->offset
);
3014 ret
= getfrag(from
, page_address(pfrag
->page
) + pfrag
->offset
,
3015 offset
, copy
, 0, skb
);
3019 /* copy was successful so update the size parameters */
3020 skb_fill_page_desc(skb
, frg_cnt
, pfrag
->page
, pfrag
->offset
,
3023 pfrag
->offset
+= copy
;
3024 get_page(pfrag
->page
);
3026 skb
->truesize
+= copy
;
3027 refcount_add(copy
, &sk
->sk_wmem_alloc
);
3029 skb
->data_len
+= copy
;
3033 } while (length
> 0);
3037 EXPORT_SYMBOL(skb_append_datato_frags
);
3039 int skb_append_pagefrags(struct sk_buff
*skb
, struct page
*page
,
3040 int offset
, size_t size
)
3042 int i
= skb_shinfo(skb
)->nr_frags
;
3044 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
3045 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], size
);
3046 } else if (i
< MAX_SKB_FRAGS
) {
3048 skb_fill_page_desc(skb
, i
, page
, offset
, size
);
3055 EXPORT_SYMBOL_GPL(skb_append_pagefrags
);
3058 * skb_pull_rcsum - pull skb and update receive checksum
3059 * @skb: buffer to update
3060 * @len: length of data pulled
3062 * This function performs an skb_pull on the packet and updates
3063 * the CHECKSUM_COMPLETE checksum. It should be used on
3064 * receive path processing instead of skb_pull unless you know
3065 * that the checksum difference is zero (e.g., a valid IP header)
3066 * or you are setting ip_summed to CHECKSUM_NONE.
3068 void *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
3070 unsigned char *data
= skb
->data
;
3072 BUG_ON(len
> skb
->len
);
3073 __skb_pull(skb
, len
);
3074 skb_postpull_rcsum(skb
, data
, len
);
3077 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
3080 * skb_segment - Perform protocol segmentation on skb.
3081 * @head_skb: buffer to segment
3082 * @features: features for the output path (see dev->features)
3084 * This function performs segmentation on the given skb. It returns
3085 * a pointer to the first in a list of new skbs for the segments.
3086 * In case of error it returns ERR_PTR(err).
3088 struct sk_buff
*skb_segment(struct sk_buff
*head_skb
,
3089 netdev_features_t features
)
3091 struct sk_buff
*segs
= NULL
;
3092 struct sk_buff
*tail
= NULL
;
3093 struct sk_buff
*list_skb
= skb_shinfo(head_skb
)->frag_list
;
3094 skb_frag_t
*frag
= skb_shinfo(head_skb
)->frags
;
3095 unsigned int mss
= skb_shinfo(head_skb
)->gso_size
;
3096 unsigned int doffset
= head_skb
->data
- skb_mac_header(head_skb
);
3097 struct sk_buff
*frag_skb
= head_skb
;
3098 unsigned int offset
= doffset
;
3099 unsigned int tnl_hlen
= skb_tnl_header_len(head_skb
);
3100 unsigned int partial_segs
= 0;
3101 unsigned int headroom
;
3102 unsigned int len
= head_skb
->len
;
3105 int nfrags
= skb_shinfo(head_skb
)->nr_frags
;
3111 __skb_push(head_skb
, doffset
);
3112 proto
= skb_network_protocol(head_skb
, &dummy
);
3113 if (unlikely(!proto
))
3114 return ERR_PTR(-EINVAL
);
3116 sg
= !!(features
& NETIF_F_SG
);
3117 csum
= !!can_checksum_protocol(features
, proto
);
3119 if (sg
&& csum
&& (mss
!= GSO_BY_FRAGS
)) {
3120 if (!(features
& NETIF_F_GSO_PARTIAL
)) {
3121 struct sk_buff
*iter
;
3122 unsigned int frag_len
;
3125 !net_gso_ok(features
, skb_shinfo(head_skb
)->gso_type
))
3128 /* If we get here then all the required
3129 * GSO features except frag_list are supported.
3130 * Try to split the SKB to multiple GSO SKBs
3131 * with no frag_list.
3132 * Currently we can do that only when the buffers don't
3133 * have a linear part and all the buffers except
3134 * the last are of the same length.
3136 frag_len
= list_skb
->len
;
3137 skb_walk_frags(head_skb
, iter
) {
3138 if (frag_len
!= iter
->len
&& iter
->next
)
3140 if (skb_headlen(iter
) && !iter
->head_frag
)
3146 if (len
!= frag_len
)
3150 /* GSO partial only requires that we trim off any excess that
3151 * doesn't fit into an MSS sized block, so take care of that
3154 partial_segs
= len
/ mss
;
3155 if (partial_segs
> 1)
3156 mss
*= partial_segs
;
3162 headroom
= skb_headroom(head_skb
);
3163 pos
= skb_headlen(head_skb
);
3166 struct sk_buff
*nskb
;
3167 skb_frag_t
*nskb_frag
;
3171 if (unlikely(mss
== GSO_BY_FRAGS
)) {
3172 len
= list_skb
->len
;
3174 len
= head_skb
->len
- offset
;
3179 hsize
= skb_headlen(head_skb
) - offset
;
3182 if (hsize
> len
|| !sg
)
3185 if (!hsize
&& i
>= nfrags
&& skb_headlen(list_skb
) &&
3186 (skb_headlen(list_skb
) == len
|| sg
)) {
3187 BUG_ON(skb_headlen(list_skb
) > len
);
3190 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3191 frag
= skb_shinfo(list_skb
)->frags
;
3192 frag_skb
= list_skb
;
3193 pos
+= skb_headlen(list_skb
);
3195 while (pos
< offset
+ len
) {
3196 BUG_ON(i
>= nfrags
);
3198 size
= skb_frag_size(frag
);
3199 if (pos
+ size
> offset
+ len
)
3207 nskb
= skb_clone(list_skb
, GFP_ATOMIC
);
3208 list_skb
= list_skb
->next
;
3210 if (unlikely(!nskb
))
3213 if (unlikely(pskb_trim(nskb
, len
))) {
3218 hsize
= skb_end_offset(nskb
);
3219 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
3224 nskb
->truesize
+= skb_end_offset(nskb
) - hsize
;
3225 skb_release_head_state(nskb
);
3226 __skb_push(nskb
, doffset
);
3228 nskb
= __alloc_skb(hsize
+ doffset
+ headroom
,
3229 GFP_ATOMIC
, skb_alloc_rx_flag(head_skb
),
3232 if (unlikely(!nskb
))
3235 skb_reserve(nskb
, headroom
);
3236 __skb_put(nskb
, doffset
);
3245 __copy_skb_header(nskb
, head_skb
);
3247 skb_headers_offset_update(nskb
, skb_headroom(nskb
) - headroom
);
3248 skb_reset_mac_len(nskb
);
3250 skb_copy_from_linear_data_offset(head_skb
, -tnl_hlen
,
3251 nskb
->data
- tnl_hlen
,
3252 doffset
+ tnl_hlen
);
3254 if (nskb
->len
== len
+ doffset
)
3255 goto perform_csum_check
;
3258 if (!nskb
->remcsum_offload
)
3259 nskb
->ip_summed
= CHECKSUM_NONE
;
3260 SKB_GSO_CB(nskb
)->csum
=
3261 skb_copy_and_csum_bits(head_skb
, offset
,
3264 SKB_GSO_CB(nskb
)->csum_start
=
3265 skb_headroom(nskb
) + doffset
;
3269 nskb_frag
= skb_shinfo(nskb
)->frags
;
3271 skb_copy_from_linear_data_offset(head_skb
, offset
,
3272 skb_put(nskb
, hsize
), hsize
);
3274 skb_shinfo(nskb
)->tx_flags
|= skb_shinfo(head_skb
)->tx_flags
&
3277 while (pos
< offset
+ len
) {
3279 BUG_ON(skb_headlen(list_skb
));
3282 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3283 frag
= skb_shinfo(list_skb
)->frags
;
3284 frag_skb
= list_skb
;
3288 list_skb
= list_skb
->next
;
3291 if (unlikely(skb_shinfo(nskb
)->nr_frags
>=
3293 net_warn_ratelimited(
3294 "skb_segment: too many frags: %u %u\n",
3299 if (unlikely(skb_orphan_frags(frag_skb
, GFP_ATOMIC
)))
3303 __skb_frag_ref(nskb_frag
);
3304 size
= skb_frag_size(nskb_frag
);
3307 nskb_frag
->page_offset
+= offset
- pos
;
3308 skb_frag_size_sub(nskb_frag
, offset
- pos
);
3311 skb_shinfo(nskb
)->nr_frags
++;
3313 if (pos
+ size
<= offset
+ len
) {
3318 skb_frag_size_sub(nskb_frag
, pos
+ size
- (offset
+ len
));
3326 nskb
->data_len
= len
- hsize
;
3327 nskb
->len
+= nskb
->data_len
;
3328 nskb
->truesize
+= nskb
->data_len
;
3332 if (skb_has_shared_frag(nskb
)) {
3333 err
= __skb_linearize(nskb
);
3337 if (!nskb
->remcsum_offload
)
3338 nskb
->ip_summed
= CHECKSUM_NONE
;
3339 SKB_GSO_CB(nskb
)->csum
=
3340 skb_checksum(nskb
, doffset
,
3341 nskb
->len
- doffset
, 0);
3342 SKB_GSO_CB(nskb
)->csum_start
=
3343 skb_headroom(nskb
) + doffset
;
3345 } while ((offset
+= len
) < head_skb
->len
);
3347 /* Some callers want to get the end of the list.
3348 * Put it in segs->prev to avoid walking the list.
3349 * (see validate_xmit_skb_list() for example)
3354 struct sk_buff
*iter
;
3355 int type
= skb_shinfo(head_skb
)->gso_type
;
3356 unsigned short gso_size
= skb_shinfo(head_skb
)->gso_size
;
3358 /* Update type to add partial and then remove dodgy if set */
3359 type
|= (features
& NETIF_F_GSO_PARTIAL
) / NETIF_F_GSO_PARTIAL
* SKB_GSO_PARTIAL
;
3360 type
&= ~SKB_GSO_DODGY
;
3362 /* Update GSO info and prepare to start updating headers on
3363 * our way back down the stack of protocols.
3365 for (iter
= segs
; iter
; iter
= iter
->next
) {
3366 skb_shinfo(iter
)->gso_size
= gso_size
;
3367 skb_shinfo(iter
)->gso_segs
= partial_segs
;
3368 skb_shinfo(iter
)->gso_type
= type
;
3369 SKB_GSO_CB(iter
)->data_offset
= skb_headroom(iter
) + doffset
;
3372 if (tail
->len
- doffset
<= gso_size
)
3373 skb_shinfo(tail
)->gso_size
= 0;
3374 else if (tail
!= segs
)
3375 skb_shinfo(tail
)->gso_segs
= DIV_ROUND_UP(tail
->len
- doffset
, gso_size
);
3378 /* Following permits correct backpressure, for protocols
3379 * using skb_set_owner_w().
3380 * Idea is to tranfert ownership from head_skb to last segment.
3382 if (head_skb
->destructor
== sock_wfree
) {
3383 swap(tail
->truesize
, head_skb
->truesize
);
3384 swap(tail
->destructor
, head_skb
->destructor
);
3385 swap(tail
->sk
, head_skb
->sk
);
3390 kfree_skb_list(segs
);
3391 return ERR_PTR(err
);
3393 EXPORT_SYMBOL_GPL(skb_segment
);
3395 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
3397 struct skb_shared_info
*pinfo
, *skbinfo
= skb_shinfo(skb
);
3398 unsigned int offset
= skb_gro_offset(skb
);
3399 unsigned int headlen
= skb_headlen(skb
);
3400 unsigned int len
= skb_gro_len(skb
);
3401 struct sk_buff
*lp
, *p
= *head
;
3402 unsigned int delta_truesize
;
3404 if (unlikely(p
->len
+ len
>= 65536))
3407 lp
= NAPI_GRO_CB(p
)->last
;
3408 pinfo
= skb_shinfo(lp
);
3410 if (headlen
<= offset
) {
3413 int i
= skbinfo
->nr_frags
;
3414 int nr_frags
= pinfo
->nr_frags
+ i
;
3416 if (nr_frags
> MAX_SKB_FRAGS
)
3420 pinfo
->nr_frags
= nr_frags
;
3421 skbinfo
->nr_frags
= 0;
3423 frag
= pinfo
->frags
+ nr_frags
;
3424 frag2
= skbinfo
->frags
+ i
;
3429 frag
->page_offset
+= offset
;
3430 skb_frag_size_sub(frag
, offset
);
3432 /* all fragments truesize : remove (head size + sk_buff) */
3433 delta_truesize
= skb
->truesize
-
3434 SKB_TRUESIZE(skb_end_offset(skb
));
3436 skb
->truesize
-= skb
->data_len
;
3437 skb
->len
-= skb
->data_len
;
3440 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE
;
3442 } else if (skb
->head_frag
) {
3443 int nr_frags
= pinfo
->nr_frags
;
3444 skb_frag_t
*frag
= pinfo
->frags
+ nr_frags
;
3445 struct page
*page
= virt_to_head_page(skb
->head
);
3446 unsigned int first_size
= headlen
- offset
;
3447 unsigned int first_offset
;
3449 if (nr_frags
+ 1 + skbinfo
->nr_frags
> MAX_SKB_FRAGS
)
3452 first_offset
= skb
->data
-
3453 (unsigned char *)page_address(page
) +
3456 pinfo
->nr_frags
= nr_frags
+ 1 + skbinfo
->nr_frags
;
3458 frag
->page
.p
= page
;
3459 frag
->page_offset
= first_offset
;
3460 skb_frag_size_set(frag
, first_size
);
3462 memcpy(frag
+ 1, skbinfo
->frags
, sizeof(*frag
) * skbinfo
->nr_frags
);
3463 /* We dont need to clear skbinfo->nr_frags here */
3465 delta_truesize
= skb
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
3466 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE_STOLEN_HEAD
;
3471 delta_truesize
= skb
->truesize
;
3472 if (offset
> headlen
) {
3473 unsigned int eat
= offset
- headlen
;
3475 skbinfo
->frags
[0].page_offset
+= eat
;
3476 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
3477 skb
->data_len
-= eat
;
3482 __skb_pull(skb
, offset
);
3484 if (NAPI_GRO_CB(p
)->last
== p
)
3485 skb_shinfo(p
)->frag_list
= skb
;
3487 NAPI_GRO_CB(p
)->last
->next
= skb
;
3488 NAPI_GRO_CB(p
)->last
= skb
;
3489 __skb_header_release(skb
);
3493 NAPI_GRO_CB(p
)->count
++;
3495 p
->truesize
+= delta_truesize
;
3498 lp
->data_len
+= len
;
3499 lp
->truesize
+= delta_truesize
;
3502 NAPI_GRO_CB(skb
)->same_flow
= 1;
3505 EXPORT_SYMBOL_GPL(skb_gro_receive
);
3507 void __init
skb_init(void)
3509 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
3510 sizeof(struct sk_buff
),
3512 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3514 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
3515 sizeof(struct sk_buff_fclones
),
3517 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3522 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
,
3523 unsigned int recursion_level
)
3525 int start
= skb_headlen(skb
);
3526 int i
, copy
= start
- offset
;
3527 struct sk_buff
*frag_iter
;
3530 if (unlikely(recursion_level
>= 24))
3536 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
3538 if ((len
-= copy
) == 0)
3543 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3546 WARN_ON(start
> offset
+ len
);
3548 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
3549 if ((copy
= end
- offset
) > 0) {
3550 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3551 if (unlikely(elt
&& sg_is_last(&sg
[elt
- 1])))
3556 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
3557 frag
->page_offset
+offset
-start
);
3566 skb_walk_frags(skb
, frag_iter
) {
3569 WARN_ON(start
> offset
+ len
);
3571 end
= start
+ frag_iter
->len
;
3572 if ((copy
= end
- offset
) > 0) {
3573 if (unlikely(elt
&& sg_is_last(&sg
[elt
- 1])))
3578 ret
= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
3579 copy
, recursion_level
+ 1);
3580 if (unlikely(ret
< 0))
3583 if ((len
-= copy
) == 0)
3594 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3595 * @skb: Socket buffer containing the buffers to be mapped
3596 * @sg: The scatter-gather list to map into
3597 * @offset: The offset into the buffer's contents to start mapping
3598 * @len: Length of buffer space to be mapped
3600 * Fill the specified scatter-gather list with mappings/pointers into a
3601 * region of the buffer space attached to a socket buffer. Returns either
3602 * the number of scatterlist items used, or -EMSGSIZE if the contents
3605 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3607 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
, 0);
3612 sg_mark_end(&sg
[nsg
- 1]);
3616 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
3618 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3619 * sglist without mark the sg which contain last skb data as the end.
3620 * So the caller can mannipulate sg list as will when padding new data after
3621 * the first call without calling sg_unmark_end to expend sg list.
3623 * Scenario to use skb_to_sgvec_nomark:
3625 * 2. skb_to_sgvec_nomark(payload1)
3626 * 3. skb_to_sgvec_nomark(payload2)
3628 * This is equivalent to:
3630 * 2. skb_to_sgvec(payload1)
3632 * 4. skb_to_sgvec(payload2)
3634 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3635 * is more preferable.
3637 int skb_to_sgvec_nomark(struct sk_buff
*skb
, struct scatterlist
*sg
,
3638 int offset
, int len
)
3640 return __skb_to_sgvec(skb
, sg
, offset
, len
, 0);
3642 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark
);
3647 * skb_cow_data - Check that a socket buffer's data buffers are writable
3648 * @skb: The socket buffer to check.
3649 * @tailbits: Amount of trailing space to be added
3650 * @trailer: Returned pointer to the skb where the @tailbits space begins
3652 * Make sure that the data buffers attached to a socket buffer are
3653 * writable. If they are not, private copies are made of the data buffers
3654 * and the socket buffer is set to use these instead.
3656 * If @tailbits is given, make sure that there is space to write @tailbits
3657 * bytes of data beyond current end of socket buffer. @trailer will be
3658 * set to point to the skb in which this space begins.
3660 * The number of scatterlist elements required to completely map the
3661 * COW'd and extended socket buffer will be returned.
3663 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
3667 struct sk_buff
*skb1
, **skb_p
;
3669 /* If skb is cloned or its head is paged, reallocate
3670 * head pulling out all the pages (pages are considered not writable
3671 * at the moment even if they are anonymous).
3673 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
3674 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
3677 /* Easy case. Most of packets will go this way. */
3678 if (!skb_has_frag_list(skb
)) {
3679 /* A little of trouble, not enough of space for trailer.
3680 * This should not happen, when stack is tuned to generate
3681 * good frames. OK, on miss we reallocate and reserve even more
3682 * space, 128 bytes is fair. */
3684 if (skb_tailroom(skb
) < tailbits
&&
3685 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3693 /* Misery. We are in troubles, going to mincer fragments... */
3696 skb_p
= &skb_shinfo(skb
)->frag_list
;
3699 while ((skb1
= *skb_p
) != NULL
) {
3702 /* The fragment is partially pulled by someone,
3703 * this can happen on input. Copy it and everything
3706 if (skb_shared(skb1
))
3709 /* If the skb is the last, worry about trailer. */
3711 if (skb1
->next
== NULL
&& tailbits
) {
3712 if (skb_shinfo(skb1
)->nr_frags
||
3713 skb_has_frag_list(skb1
) ||
3714 skb_tailroom(skb1
) < tailbits
)
3715 ntail
= tailbits
+ 128;
3721 skb_shinfo(skb1
)->nr_frags
||
3722 skb_has_frag_list(skb1
)) {
3723 struct sk_buff
*skb2
;
3725 /* Fuck, we are miserable poor guys... */
3727 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3729 skb2
= skb_copy_expand(skb1
,
3733 if (unlikely(skb2
== NULL
))
3737 skb_set_owner_w(skb2
, skb1
->sk
);
3739 /* Looking around. Are we still alive?
3740 * OK, link new skb, drop old one */
3742 skb2
->next
= skb1
->next
;
3749 skb_p
= &skb1
->next
;
3754 EXPORT_SYMBOL_GPL(skb_cow_data
);
3756 static void sock_rmem_free(struct sk_buff
*skb
)
3758 struct sock
*sk
= skb
->sk
;
3760 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3763 static void skb_set_err_queue(struct sk_buff
*skb
)
3765 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
3766 * So, it is safe to (mis)use it to mark skbs on the error queue.
3768 skb
->pkt_type
= PACKET_OUTGOING
;
3769 BUILD_BUG_ON(PACKET_OUTGOING
== 0);
3773 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3775 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3777 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3778 (unsigned int)sk
->sk_rcvbuf
)
3783 skb
->destructor
= sock_rmem_free
;
3784 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3785 skb_set_err_queue(skb
);
3787 /* before exiting rcu section, make sure dst is refcounted */
3790 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3791 if (!sock_flag(sk
, SOCK_DEAD
))
3792 sk
->sk_data_ready(sk
);
3795 EXPORT_SYMBOL(sock_queue_err_skb
);
3797 static bool is_icmp_err_skb(const struct sk_buff
*skb
)
3799 return skb
&& (SKB_EXT_ERR(skb
)->ee
.ee_origin
== SO_EE_ORIGIN_ICMP
||
3800 SKB_EXT_ERR(skb
)->ee
.ee_origin
== SO_EE_ORIGIN_ICMP6
);
3803 struct sk_buff
*sock_dequeue_err_skb(struct sock
*sk
)
3805 struct sk_buff_head
*q
= &sk
->sk_error_queue
;
3806 struct sk_buff
*skb
, *skb_next
= NULL
;
3807 bool icmp_next
= false;
3808 unsigned long flags
;
3810 spin_lock_irqsave(&q
->lock
, flags
);
3811 skb
= __skb_dequeue(q
);
3812 if (skb
&& (skb_next
= skb_peek(q
))) {
3813 icmp_next
= is_icmp_err_skb(skb_next
);
3815 sk
->sk_err
= SKB_EXT_ERR(skb_next
)->ee
.ee_origin
;
3817 spin_unlock_irqrestore(&q
->lock
, flags
);
3819 if (is_icmp_err_skb(skb
) && !icmp_next
)
3823 sk
->sk_error_report(sk
);
3827 EXPORT_SYMBOL(sock_dequeue_err_skb
);
3830 * skb_clone_sk - create clone of skb, and take reference to socket
3831 * @skb: the skb to clone
3833 * This function creates a clone of a buffer that holds a reference on
3834 * sk_refcnt. Buffers created via this function are meant to be
3835 * returned using sock_queue_err_skb, or free via kfree_skb.
3837 * When passing buffers allocated with this function to sock_queue_err_skb
3838 * it is necessary to wrap the call with sock_hold/sock_put in order to
3839 * prevent the socket from being released prior to being enqueued on
3840 * the sk_error_queue.
3842 struct sk_buff
*skb_clone_sk(struct sk_buff
*skb
)
3844 struct sock
*sk
= skb
->sk
;
3845 struct sk_buff
*clone
;
3847 if (!sk
|| !refcount_inc_not_zero(&sk
->sk_refcnt
))
3850 clone
= skb_clone(skb
, GFP_ATOMIC
);
3857 clone
->destructor
= sock_efree
;
3861 EXPORT_SYMBOL(skb_clone_sk
);
3863 static void __skb_complete_tx_timestamp(struct sk_buff
*skb
,
3868 struct sock_exterr_skb
*serr
;
3871 BUILD_BUG_ON(sizeof(struct sock_exterr_skb
) > sizeof(skb
->cb
));
3873 serr
= SKB_EXT_ERR(skb
);
3874 memset(serr
, 0, sizeof(*serr
));
3875 serr
->ee
.ee_errno
= ENOMSG
;
3876 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3877 serr
->ee
.ee_info
= tstype
;
3878 serr
->opt_stats
= opt_stats
;
3879 serr
->header
.h4
.iif
= skb
->dev
? skb
->dev
->ifindex
: 0;
3880 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
) {
3881 serr
->ee
.ee_data
= skb_shinfo(skb
)->tskey
;
3882 if (sk
->sk_protocol
== IPPROTO_TCP
&&
3883 sk
->sk_type
== SOCK_STREAM
)
3884 serr
->ee
.ee_data
-= sk
->sk_tskey
;
3887 err
= sock_queue_err_skb(sk
, skb
);
3893 static bool skb_may_tx_timestamp(struct sock
*sk
, bool tsonly
)
3897 if (likely(sysctl_tstamp_allow_data
|| tsonly
))
3900 read_lock_bh(&sk
->sk_callback_lock
);
3901 ret
= sk
->sk_socket
&& sk
->sk_socket
->file
&&
3902 file_ns_capable(sk
->sk_socket
->file
, &init_user_ns
, CAP_NET_RAW
);
3903 read_unlock_bh(&sk
->sk_callback_lock
);
3907 void skb_complete_tx_timestamp(struct sk_buff
*skb
,
3908 struct skb_shared_hwtstamps
*hwtstamps
)
3910 struct sock
*sk
= skb
->sk
;
3912 if (!skb_may_tx_timestamp(sk
, false))
3915 /* Take a reference to prevent skb_orphan() from freeing the socket,
3916 * but only if the socket refcount is not zero.
3918 if (likely(refcount_inc_not_zero(&sk
->sk_refcnt
))) {
3919 *skb_hwtstamps(skb
) = *hwtstamps
;
3920 __skb_complete_tx_timestamp(skb
, sk
, SCM_TSTAMP_SND
, false);
3924 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp
);
3926 void __skb_tstamp_tx(struct sk_buff
*orig_skb
,
3927 struct skb_shared_hwtstamps
*hwtstamps
,
3928 struct sock
*sk
, int tstype
)
3930 struct sk_buff
*skb
;
3931 bool tsonly
, opt_stats
= false;
3936 if (!hwtstamps
&& !(sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_TX_SWHW
) &&
3937 skb_shinfo(orig_skb
)->tx_flags
& SKBTX_IN_PROGRESS
)
3940 tsonly
= sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_TSONLY
;
3941 if (!skb_may_tx_timestamp(sk
, tsonly
))
3946 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_STATS
) &&
3947 sk
->sk_protocol
== IPPROTO_TCP
&&
3948 sk
->sk_type
== SOCK_STREAM
) {
3949 skb
= tcp_get_timestamping_opt_stats(sk
);
3953 skb
= alloc_skb(0, GFP_ATOMIC
);
3955 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3961 skb_shinfo(skb
)->tx_flags
|= skb_shinfo(orig_skb
)->tx_flags
&
3963 skb_shinfo(skb
)->tskey
= skb_shinfo(orig_skb
)->tskey
;
3967 *skb_hwtstamps(skb
) = *hwtstamps
;
3969 skb
->tstamp
= ktime_get_real();
3971 __skb_complete_tx_timestamp(skb
, sk
, tstype
, opt_stats
);
3973 EXPORT_SYMBOL_GPL(__skb_tstamp_tx
);
3975 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3976 struct skb_shared_hwtstamps
*hwtstamps
)
3978 return __skb_tstamp_tx(orig_skb
, hwtstamps
, orig_skb
->sk
,
3981 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3983 void skb_complete_wifi_ack(struct sk_buff
*skb
, bool acked
)
3985 struct sock
*sk
= skb
->sk
;
3986 struct sock_exterr_skb
*serr
;
3989 skb
->wifi_acked_valid
= 1;
3990 skb
->wifi_acked
= acked
;
3992 serr
= SKB_EXT_ERR(skb
);
3993 memset(serr
, 0, sizeof(*serr
));
3994 serr
->ee
.ee_errno
= ENOMSG
;
3995 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TXSTATUS
;
3997 /* Take a reference to prevent skb_orphan() from freeing the socket,
3998 * but only if the socket refcount is not zero.
4000 if (likely(refcount_inc_not_zero(&sk
->sk_refcnt
))) {
4001 err
= sock_queue_err_skb(sk
, skb
);
4007 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack
);
4010 * skb_partial_csum_set - set up and verify partial csum values for packet
4011 * @skb: the skb to set
4012 * @start: the number of bytes after skb->data to start checksumming.
4013 * @off: the offset from start to place the checksum.
4015 * For untrusted partially-checksummed packets, we need to make sure the values
4016 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4018 * This function checks and sets those values and skb->ip_summed: if this
4019 * returns false you should drop the packet.
4021 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
4023 if (unlikely(start
> skb_headlen(skb
)) ||
4024 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
4025 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4026 start
, off
, skb_headlen(skb
));
4029 skb
->ip_summed
= CHECKSUM_PARTIAL
;
4030 skb
->csum_start
= skb_headroom(skb
) + start
;
4031 skb
->csum_offset
= off
;
4032 skb_set_transport_header(skb
, start
);
4035 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
4037 static int skb_maybe_pull_tail(struct sk_buff
*skb
, unsigned int len
,
4040 if (skb_headlen(skb
) >= len
)
4043 /* If we need to pullup then pullup to the max, so we
4044 * won't need to do it again.
4049 if (__pskb_pull_tail(skb
, max
- skb_headlen(skb
)) == NULL
)
4052 if (skb_headlen(skb
) < len
)
4058 #define MAX_TCP_HDR_LEN (15 * 4)
4060 static __sum16
*skb_checksum_setup_ip(struct sk_buff
*skb
,
4061 typeof(IPPROTO_IP
) proto
,
4068 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct tcphdr
),
4069 off
+ MAX_TCP_HDR_LEN
);
4070 if (!err
&& !skb_partial_csum_set(skb
, off
,
4071 offsetof(struct tcphdr
,
4074 return err
? ERR_PTR(err
) : &tcp_hdr(skb
)->check
;
4077 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct udphdr
),
4078 off
+ sizeof(struct udphdr
));
4079 if (!err
&& !skb_partial_csum_set(skb
, off
,
4080 offsetof(struct udphdr
,
4083 return err
? ERR_PTR(err
) : &udp_hdr(skb
)->check
;
4086 return ERR_PTR(-EPROTO
);
4089 /* This value should be large enough to cover a tagged ethernet header plus
4090 * maximally sized IP and TCP or UDP headers.
4092 #define MAX_IP_HDR_LEN 128
4094 static int skb_checksum_setup_ipv4(struct sk_buff
*skb
, bool recalculate
)
4103 err
= skb_maybe_pull_tail(skb
,
4104 sizeof(struct iphdr
),
4109 if (ip_hdr(skb
)->frag_off
& htons(IP_OFFSET
| IP_MF
))
4112 off
= ip_hdrlen(skb
);
4119 csum
= skb_checksum_setup_ip(skb
, ip_hdr(skb
)->protocol
, off
);
4121 return PTR_ERR(csum
);
4124 *csum
= ~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
4127 ip_hdr(skb
)->protocol
, 0);
4134 /* This value should be large enough to cover a tagged ethernet header plus
4135 * an IPv6 header, all options, and a maximal TCP or UDP header.
4137 #define MAX_IPV6_HDR_LEN 256
4139 #define OPT_HDR(type, skb, off) \
4140 (type *)(skb_network_header(skb) + (off))
4142 static int skb_checksum_setup_ipv6(struct sk_buff
*skb
, bool recalculate
)
4155 off
= sizeof(struct ipv6hdr
);
4157 err
= skb_maybe_pull_tail(skb
, off
, MAX_IPV6_HDR_LEN
);
4161 nexthdr
= ipv6_hdr(skb
)->nexthdr
;
4163 len
= sizeof(struct ipv6hdr
) + ntohs(ipv6_hdr(skb
)->payload_len
);
4164 while (off
<= len
&& !done
) {
4166 case IPPROTO_DSTOPTS
:
4167 case IPPROTO_HOPOPTS
:
4168 case IPPROTO_ROUTING
: {
4169 struct ipv6_opt_hdr
*hp
;
4171 err
= skb_maybe_pull_tail(skb
,
4173 sizeof(struct ipv6_opt_hdr
),
4178 hp
= OPT_HDR(struct ipv6_opt_hdr
, skb
, off
);
4179 nexthdr
= hp
->nexthdr
;
4180 off
+= ipv6_optlen(hp
);
4184 struct ip_auth_hdr
*hp
;
4186 err
= skb_maybe_pull_tail(skb
,
4188 sizeof(struct ip_auth_hdr
),
4193 hp
= OPT_HDR(struct ip_auth_hdr
, skb
, off
);
4194 nexthdr
= hp
->nexthdr
;
4195 off
+= ipv6_authlen(hp
);
4198 case IPPROTO_FRAGMENT
: {
4199 struct frag_hdr
*hp
;
4201 err
= skb_maybe_pull_tail(skb
,
4203 sizeof(struct frag_hdr
),
4208 hp
= OPT_HDR(struct frag_hdr
, skb
, off
);
4210 if (hp
->frag_off
& htons(IP6_OFFSET
| IP6_MF
))
4213 nexthdr
= hp
->nexthdr
;
4214 off
+= sizeof(struct frag_hdr
);
4225 if (!done
|| fragment
)
4228 csum
= skb_checksum_setup_ip(skb
, nexthdr
, off
);
4230 return PTR_ERR(csum
);
4233 *csum
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
4234 &ipv6_hdr(skb
)->daddr
,
4235 skb
->len
- off
, nexthdr
, 0);
4243 * skb_checksum_setup - set up partial checksum offset
4244 * @skb: the skb to set up
4245 * @recalculate: if true the pseudo-header checksum will be recalculated
4247 int skb_checksum_setup(struct sk_buff
*skb
, bool recalculate
)
4251 switch (skb
->protocol
) {
4252 case htons(ETH_P_IP
):
4253 err
= skb_checksum_setup_ipv4(skb
, recalculate
);
4256 case htons(ETH_P_IPV6
):
4257 err
= skb_checksum_setup_ipv6(skb
, recalculate
);
4267 EXPORT_SYMBOL(skb_checksum_setup
);
4270 * skb_checksum_maybe_trim - maybe trims the given skb
4271 * @skb: the skb to check
4272 * @transport_len: the data length beyond the network header
4274 * Checks whether the given skb has data beyond the given transport length.
4275 * If so, returns a cloned skb trimmed to this transport length.
4276 * Otherwise returns the provided skb. Returns NULL in error cases
4277 * (e.g. transport_len exceeds skb length or out-of-memory).
4279 * Caller needs to set the skb transport header and free any returned skb if it
4280 * differs from the provided skb.
4282 static struct sk_buff
*skb_checksum_maybe_trim(struct sk_buff
*skb
,
4283 unsigned int transport_len
)
4285 struct sk_buff
*skb_chk
;
4286 unsigned int len
= skb_transport_offset(skb
) + transport_len
;
4291 else if (skb
->len
== len
)
4294 skb_chk
= skb_clone(skb
, GFP_ATOMIC
);
4298 ret
= pskb_trim_rcsum(skb_chk
, len
);
4308 * skb_checksum_trimmed - validate checksum of an skb
4309 * @skb: the skb to check
4310 * @transport_len: the data length beyond the network header
4311 * @skb_chkf: checksum function to use
4313 * Applies the given checksum function skb_chkf to the provided skb.
4314 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4316 * If the skb has data beyond the given transport length, then a
4317 * trimmed & cloned skb is checked and returned.
4319 * Caller needs to set the skb transport header and free any returned skb if it
4320 * differs from the provided skb.
4322 struct sk_buff
*skb_checksum_trimmed(struct sk_buff
*skb
,
4323 unsigned int transport_len
,
4324 __sum16(*skb_chkf
)(struct sk_buff
*skb
))
4326 struct sk_buff
*skb_chk
;
4327 unsigned int offset
= skb_transport_offset(skb
);
4330 skb_chk
= skb_checksum_maybe_trim(skb
, transport_len
);
4334 if (!pskb_may_pull(skb_chk
, offset
))
4337 skb_pull_rcsum(skb_chk
, offset
);
4338 ret
= skb_chkf(skb_chk
);
4339 skb_push_rcsum(skb_chk
, offset
);
4347 if (skb_chk
&& skb_chk
!= skb
)
4353 EXPORT_SYMBOL(skb_checksum_trimmed
);
4355 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
4357 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4360 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);
4362 void kfree_skb_partial(struct sk_buff
*skb
, bool head_stolen
)
4365 skb_release_head_state(skb
);
4366 kmem_cache_free(skbuff_head_cache
, skb
);
4371 EXPORT_SYMBOL(kfree_skb_partial
);
4374 * skb_try_coalesce - try to merge skb to prior one
4376 * @from: buffer to add
4377 * @fragstolen: pointer to boolean
4378 * @delta_truesize: how much more was allocated than was requested
4380 bool skb_try_coalesce(struct sk_buff
*to
, struct sk_buff
*from
,
4381 bool *fragstolen
, int *delta_truesize
)
4383 int i
, delta
, len
= from
->len
;
4385 *fragstolen
= false;
4390 if (len
<= skb_tailroom(to
)) {
4392 BUG_ON(skb_copy_bits(from
, 0, skb_put(to
, len
), len
));
4393 *delta_truesize
= 0;
4397 if (skb_has_frag_list(to
) || skb_has_frag_list(from
))
4400 if (skb_headlen(from
) != 0) {
4402 unsigned int offset
;
4404 if (skb_shinfo(to
)->nr_frags
+
4405 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
4408 if (skb_head_is_locked(from
))
4411 delta
= from
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
4413 page
= virt_to_head_page(from
->head
);
4414 offset
= from
->data
- (unsigned char *)page_address(page
);
4416 skb_fill_page_desc(to
, skb_shinfo(to
)->nr_frags
,
4417 page
, offset
, skb_headlen(from
));
4420 if (skb_shinfo(to
)->nr_frags
+
4421 skb_shinfo(from
)->nr_frags
> MAX_SKB_FRAGS
)
4424 delta
= from
->truesize
- SKB_TRUESIZE(skb_end_offset(from
));
4427 WARN_ON_ONCE(delta
< len
);
4429 memcpy(skb_shinfo(to
)->frags
+ skb_shinfo(to
)->nr_frags
,
4430 skb_shinfo(from
)->frags
,
4431 skb_shinfo(from
)->nr_frags
* sizeof(skb_frag_t
));
4432 skb_shinfo(to
)->nr_frags
+= skb_shinfo(from
)->nr_frags
;
4434 if (!skb_cloned(from
))
4435 skb_shinfo(from
)->nr_frags
= 0;
4437 /* if the skb is not cloned this does nothing
4438 * since we set nr_frags to 0.
4440 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++)
4441 skb_frag_ref(from
, i
);
4443 to
->truesize
+= delta
;
4445 to
->data_len
+= len
;
4447 *delta_truesize
= delta
;
4450 EXPORT_SYMBOL(skb_try_coalesce
);
4453 * skb_scrub_packet - scrub an skb
4455 * @skb: buffer to clean
4456 * @xnet: packet is crossing netns
4458 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4459 * into/from a tunnel. Some information have to be cleared during these
4461 * skb_scrub_packet can also be used to clean a skb before injecting it in
4462 * another namespace (@xnet == true). We have to clear all information in the
4463 * skb that could impact namespace isolation.
4465 void skb_scrub_packet(struct sk_buff
*skb
, bool xnet
)
4468 skb
->pkt_type
= PACKET_HOST
;
4474 nf_reset_trace(skb
);
4483 EXPORT_SYMBOL_GPL(skb_scrub_packet
);
4486 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4490 * skb_gso_transport_seglen is used to determine the real size of the
4491 * individual segments, including Layer4 headers (TCP/UDP).
4493 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4495 unsigned int skb_gso_transport_seglen(const struct sk_buff
*skb
)
4497 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
4498 unsigned int thlen
= 0;
4500 if (skb
->encapsulation
) {
4501 thlen
= skb_inner_transport_header(skb
) -
4502 skb_transport_header(skb
);
4504 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)))
4505 thlen
+= inner_tcp_hdrlen(skb
);
4506 } else if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
4507 thlen
= tcp_hdrlen(skb
);
4508 } else if (unlikely(shinfo
->gso_type
& SKB_GSO_SCTP
)) {
4509 thlen
= sizeof(struct sctphdr
);
4511 /* UFO sets gso_size to the size of the fragmentation
4512 * payload, i.e. the size of the L4 (UDP) header is already
4515 return thlen
+ shinfo
->gso_size
;
4517 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen
);
4520 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4523 * @mtu: MTU to validate against
4525 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4528 bool skb_gso_validate_mtu(const struct sk_buff
*skb
, unsigned int mtu
)
4530 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
4531 const struct sk_buff
*iter
;
4534 hlen
= skb_gso_network_seglen(skb
);
4536 if (shinfo
->gso_size
!= GSO_BY_FRAGS
)
4539 /* Undo this so we can re-use header sizes */
4540 hlen
-= GSO_BY_FRAGS
;
4542 skb_walk_frags(skb
, iter
) {
4543 if (hlen
+ skb_headlen(iter
) > mtu
)
4549 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu
);
4551 static struct sk_buff
*skb_reorder_vlan_header(struct sk_buff
*skb
)
4553 if (skb_cow(skb
, skb_headroom(skb
)) < 0) {
4558 memmove(skb
->data
- ETH_HLEN
, skb
->data
- skb
->mac_len
- VLAN_HLEN
,
4560 skb
->mac_header
+= VLAN_HLEN
;
4564 struct sk_buff
*skb_vlan_untag(struct sk_buff
*skb
)
4566 struct vlan_hdr
*vhdr
;
4569 if (unlikely(skb_vlan_tag_present(skb
))) {
4570 /* vlan_tci is already set-up so leave this for another time */
4574 skb
= skb_share_check(skb
, GFP_ATOMIC
);
4578 if (unlikely(!pskb_may_pull(skb
, VLAN_HLEN
)))
4581 vhdr
= (struct vlan_hdr
*)skb
->data
;
4582 vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
4583 __vlan_hwaccel_put_tag(skb
, skb
->protocol
, vlan_tci
);
4585 skb_pull_rcsum(skb
, VLAN_HLEN
);
4586 vlan_set_encap_proto(skb
, vhdr
);
4588 skb
= skb_reorder_vlan_header(skb
);
4592 skb_reset_network_header(skb
);
4593 skb_reset_transport_header(skb
);
4594 skb_reset_mac_len(skb
);
4602 EXPORT_SYMBOL(skb_vlan_untag
);
4604 int skb_ensure_writable(struct sk_buff
*skb
, int write_len
)
4606 if (!pskb_may_pull(skb
, write_len
))
4609 if (!skb_cloned(skb
) || skb_clone_writable(skb
, write_len
))
4612 return pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
4614 EXPORT_SYMBOL(skb_ensure_writable
);
4616 /* remove VLAN header from packet and update csum accordingly.
4617 * expects a non skb_vlan_tag_present skb with a vlan tag payload
4619 int __skb_vlan_pop(struct sk_buff
*skb
, u16
*vlan_tci
)
4621 struct vlan_hdr
*vhdr
;
4622 int offset
= skb
->data
- skb_mac_header(skb
);
4625 if (WARN_ONCE(offset
,
4626 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4631 err
= skb_ensure_writable(skb
, VLAN_ETH_HLEN
);
4635 skb_postpull_rcsum(skb
, skb
->data
+ (2 * ETH_ALEN
), VLAN_HLEN
);
4637 vhdr
= (struct vlan_hdr
*)(skb
->data
+ ETH_HLEN
);
4638 *vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
4640 memmove(skb
->data
+ VLAN_HLEN
, skb
->data
, 2 * ETH_ALEN
);
4641 __skb_pull(skb
, VLAN_HLEN
);
4643 vlan_set_encap_proto(skb
, vhdr
);
4644 skb
->mac_header
+= VLAN_HLEN
;
4646 if (skb_network_offset(skb
) < ETH_HLEN
)
4647 skb_set_network_header(skb
, ETH_HLEN
);
4649 skb_reset_mac_len(skb
);
4653 EXPORT_SYMBOL(__skb_vlan_pop
);
4655 /* Pop a vlan tag either from hwaccel or from payload.
4656 * Expects skb->data at mac header.
4658 int skb_vlan_pop(struct sk_buff
*skb
)
4664 if (likely(skb_vlan_tag_present(skb
))) {
4667 if (unlikely(!eth_type_vlan(skb
->protocol
)))
4670 err
= __skb_vlan_pop(skb
, &vlan_tci
);
4674 /* move next vlan tag to hw accel tag */
4675 if (likely(!eth_type_vlan(skb
->protocol
)))
4678 vlan_proto
= skb
->protocol
;
4679 err
= __skb_vlan_pop(skb
, &vlan_tci
);
4683 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlan_tci
);
4686 EXPORT_SYMBOL(skb_vlan_pop
);
4688 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4689 * Expects skb->data at mac header.
4691 int skb_vlan_push(struct sk_buff
*skb
, __be16 vlan_proto
, u16 vlan_tci
)
4693 if (skb_vlan_tag_present(skb
)) {
4694 int offset
= skb
->data
- skb_mac_header(skb
);
4697 if (WARN_ONCE(offset
,
4698 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4703 err
= __vlan_insert_tag(skb
, skb
->vlan_proto
,
4704 skb_vlan_tag_get(skb
));
4708 skb
->protocol
= skb
->vlan_proto
;
4709 skb
->mac_len
+= VLAN_HLEN
;
4711 skb_postpush_rcsum(skb
, skb
->data
+ (2 * ETH_ALEN
), VLAN_HLEN
);
4713 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlan_tci
);
4716 EXPORT_SYMBOL(skb_vlan_push
);
4719 * alloc_skb_with_frags - allocate skb with page frags
4721 * @header_len: size of linear part
4722 * @data_len: needed length in frags
4723 * @max_page_order: max page order desired.
4724 * @errcode: pointer to error code if any
4725 * @gfp_mask: allocation mask
4727 * This can be used to allocate a paged skb, given a maximal order for frags.
4729 struct sk_buff
*alloc_skb_with_frags(unsigned long header_len
,
4730 unsigned long data_len
,
4735 int npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
4736 unsigned long chunk
;
4737 struct sk_buff
*skb
;
4742 *errcode
= -EMSGSIZE
;
4743 /* Note this test could be relaxed, if we succeed to allocate
4744 * high order pages...
4746 if (npages
> MAX_SKB_FRAGS
)
4749 gfp_head
= gfp_mask
;
4750 if (gfp_head
& __GFP_DIRECT_RECLAIM
)
4751 gfp_head
|= __GFP_RETRY_MAYFAIL
;
4753 *errcode
= -ENOBUFS
;
4754 skb
= alloc_skb(header_len
, gfp_head
);
4758 skb
->truesize
+= npages
<< PAGE_SHIFT
;
4760 for (i
= 0; npages
> 0; i
++) {
4761 int order
= max_page_order
;
4764 if (npages
>= 1 << order
) {
4765 page
= alloc_pages((gfp_mask
& ~__GFP_DIRECT_RECLAIM
) |
4772 /* Do not retry other high order allocations */
4778 page
= alloc_page(gfp_mask
);
4782 chunk
= min_t(unsigned long, data_len
,
4783 PAGE_SIZE
<< order
);
4784 skb_fill_page_desc(skb
, i
, page
, 0, chunk
);
4786 npages
-= 1 << order
;
4794 EXPORT_SYMBOL(alloc_skb_with_frags
);
4796 /* carve out the first off bytes from skb when off < headlen */
4797 static int pskb_carve_inside_header(struct sk_buff
*skb
, const u32 off
,
4798 const int headlen
, gfp_t gfp_mask
)
4801 int size
= skb_end_offset(skb
);
4802 int new_hlen
= headlen
- off
;
4805 size
= SKB_DATA_ALIGN(size
);
4807 if (skb_pfmemalloc(skb
))
4808 gfp_mask
|= __GFP_MEMALLOC
;
4809 data
= kmalloc_reserve(size
+
4810 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
4811 gfp_mask
, NUMA_NO_NODE
, NULL
);
4815 size
= SKB_WITH_OVERHEAD(ksize(data
));
4817 /* Copy real data, and all frags */
4818 skb_copy_from_linear_data_offset(skb
, off
, data
, new_hlen
);
4821 memcpy((struct skb_shared_info
*)(data
+ size
),
4823 offsetof(struct skb_shared_info
,
4824 frags
[skb_shinfo(skb
)->nr_frags
]));
4825 if (skb_cloned(skb
)) {
4826 /* drop the old head gracefully */
4827 if (skb_orphan_frags(skb
, gfp_mask
)) {
4831 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
4832 skb_frag_ref(skb
, i
);
4833 if (skb_has_frag_list(skb
))
4834 skb_clone_fraglist(skb
);
4835 skb_release_data(skb
);
4837 /* we can reuse existing recount- all we did was
4846 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4849 skb
->end
= skb
->head
+ size
;
4851 skb_set_tail_pointer(skb
, skb_headlen(skb
));
4852 skb_headers_offset_update(skb
, 0);
4856 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
4861 static int pskb_carve(struct sk_buff
*skb
, const u32 off
, gfp_t gfp
);
4863 /* carve out the first eat bytes from skb's frag_list. May recurse into
4866 static int pskb_carve_frag_list(struct sk_buff
*skb
,
4867 struct skb_shared_info
*shinfo
, int eat
,
4870 struct sk_buff
*list
= shinfo
->frag_list
;
4871 struct sk_buff
*clone
= NULL
;
4872 struct sk_buff
*insp
= NULL
;
4876 pr_err("Not enough bytes to eat. Want %d\n", eat
);
4879 if (list
->len
<= eat
) {
4880 /* Eaten as whole. */
4885 /* Eaten partially. */
4886 if (skb_shared(list
)) {
4887 clone
= skb_clone(list
, gfp_mask
);
4893 /* This may be pulled without problems. */
4896 if (pskb_carve(list
, eat
, gfp_mask
) < 0) {
4904 /* Free pulled out fragments. */
4905 while ((list
= shinfo
->frag_list
) != insp
) {
4906 shinfo
->frag_list
= list
->next
;
4909 /* And insert new clone at head. */
4912 shinfo
->frag_list
= clone
;
4917 /* carve off first len bytes from skb. Split line (off) is in the
4918 * non-linear part of skb
4920 static int pskb_carve_inside_nonlinear(struct sk_buff
*skb
, const u32 off
,
4921 int pos
, gfp_t gfp_mask
)
4924 int size
= skb_end_offset(skb
);
4926 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
4927 struct skb_shared_info
*shinfo
;
4929 size
= SKB_DATA_ALIGN(size
);
4931 if (skb_pfmemalloc(skb
))
4932 gfp_mask
|= __GFP_MEMALLOC
;
4933 data
= kmalloc_reserve(size
+
4934 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
4935 gfp_mask
, NUMA_NO_NODE
, NULL
);
4939 size
= SKB_WITH_OVERHEAD(ksize(data
));
4941 memcpy((struct skb_shared_info
*)(data
+ size
),
4942 skb_shinfo(skb
), offsetof(struct skb_shared_info
,
4943 frags
[skb_shinfo(skb
)->nr_frags
]));
4944 if (skb_orphan_frags(skb
, gfp_mask
)) {
4948 shinfo
= (struct skb_shared_info
*)(data
+ size
);
4949 for (i
= 0; i
< nfrags
; i
++) {
4950 int fsize
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
4952 if (pos
+ fsize
> off
) {
4953 shinfo
->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
4957 * We have two variants in this case:
4958 * 1. Move all the frag to the second
4959 * part, if it is possible. F.e.
4960 * this approach is mandatory for TUX,
4961 * where splitting is expensive.
4962 * 2. Split is accurately. We make this.
4964 shinfo
->frags
[0].page_offset
+= off
- pos
;
4965 skb_frag_size_sub(&shinfo
->frags
[0], off
- pos
);
4967 skb_frag_ref(skb
, i
);
4972 shinfo
->nr_frags
= k
;
4973 if (skb_has_frag_list(skb
))
4974 skb_clone_fraglist(skb
);
4977 /* split line is in frag list */
4978 pskb_carve_frag_list(skb
, shinfo
, off
- pos
, gfp_mask
);
4980 skb_release_data(skb
);
4985 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4988 skb
->end
= skb
->head
+ size
;
4990 skb_reset_tail_pointer(skb
);
4991 skb_headers_offset_update(skb
, 0);
4996 skb
->data_len
= skb
->len
;
4997 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
5001 /* remove len bytes from the beginning of the skb */
5002 static int pskb_carve(struct sk_buff
*skb
, const u32 len
, gfp_t gfp
)
5004 int headlen
= skb_headlen(skb
);
5007 return pskb_carve_inside_header(skb
, len
, headlen
, gfp
);
5009 return pskb_carve_inside_nonlinear(skb
, len
, headlen
, gfp
);
5012 /* Extract to_copy bytes starting at off from skb, and return this in
5015 struct sk_buff
*pskb_extract(struct sk_buff
*skb
, int off
,
5016 int to_copy
, gfp_t gfp
)
5018 struct sk_buff
*clone
= skb_clone(skb
, gfp
);
5023 if (pskb_carve(clone
, off
, gfp
) < 0 ||
5024 pskb_trim(clone
, to_copy
)) {
5030 EXPORT_SYMBOL(pskb_extract
);
5033 * skb_condense - try to get rid of fragments/frag_list if possible
5036 * Can be used to save memory before skb is added to a busy queue.
5037 * If packet has bytes in frags and enough tail room in skb->head,
5038 * pull all of them, so that we can free the frags right now and adjust
5041 * We do not reallocate skb->head thus can not fail.
5042 * Caller must re-evaluate skb->truesize if needed.
5044 void skb_condense(struct sk_buff
*skb
)
5046 if (skb
->data_len
) {
5047 if (skb
->data_len
> skb
->end
- skb
->tail
||
5051 /* Nice, we can free page frag(s) right now */
5052 __pskb_pull_tail(skb
, skb
->data_len
);
5054 /* At this point, skb->truesize might be over estimated,
5055 * because skb had a fragment, and fragments do not tell
5057 * When we pulled its content into skb->head, fragment
5058 * was freed, but __pskb_pull_tail() could not possibly
5059 * adjust skb->truesize, not knowing the frag truesize.
5061 skb
->truesize
= SKB_TRUESIZE(skb_end_offset(skb
));