2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
38 * The per-CPU workqueue (if single thread, we always use the first
41 struct cpu_workqueue_struct
{
45 struct list_head worklist
;
46 wait_queue_head_t more_work
;
47 struct work_struct
*current_work
;
49 struct workqueue_struct
*wq
;
50 struct task_struct
*thread
;
52 int run_depth
; /* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned
;
56 * The externally visible workqueue abstraction is an array of
59 struct workqueue_struct
{
60 struct cpu_workqueue_struct
*cpu_wq
;
61 struct list_head list
;
64 int freezeable
; /* Freeze threads during suspend */
66 struct lockdep_map lockdep_map
;
70 /* Serializes the accesses to the list of workqueues. */
71 static DEFINE_SPINLOCK(workqueue_lock
);
72 static LIST_HEAD(workqueues
);
74 static int singlethread_cpu __read_mostly
;
75 static cpumask_t cpu_singlethread_map __read_mostly
;
77 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
78 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
79 * which comes in between can't use for_each_online_cpu(). We could
80 * use cpu_possible_map, the cpumask below is more a documentation
83 static cpumask_t cpu_populated_map __read_mostly
;
85 /* If it's single threaded, it isn't in the list of workqueues. */
86 static inline int is_single_threaded(struct workqueue_struct
*wq
)
88 return wq
->singlethread
;
91 static const cpumask_t
*wq_cpu_map(struct workqueue_struct
*wq
)
93 return is_single_threaded(wq
)
94 ? &cpu_singlethread_map
: &cpu_populated_map
;
98 struct cpu_workqueue_struct
*wq_per_cpu(struct workqueue_struct
*wq
, int cpu
)
100 if (unlikely(is_single_threaded(wq
)))
101 cpu
= singlethread_cpu
;
102 return per_cpu_ptr(wq
->cpu_wq
, cpu
);
106 * Set the workqueue on which a work item is to be run
107 * - Must *only* be called if the pending flag is set
109 static inline void set_wq_data(struct work_struct
*work
,
110 struct cpu_workqueue_struct
*cwq
)
114 BUG_ON(!work_pending(work
));
116 new = (unsigned long) cwq
| (1UL << WORK_STRUCT_PENDING
);
117 new |= WORK_STRUCT_FLAG_MASK
& *work_data_bits(work
);
118 atomic_long_set(&work
->data
, new);
122 struct cpu_workqueue_struct
*get_wq_data(struct work_struct
*work
)
124 return (void *) (atomic_long_read(&work
->data
) & WORK_STRUCT_WQ_DATA_MASK
);
127 static void insert_work(struct cpu_workqueue_struct
*cwq
,
128 struct work_struct
*work
, struct list_head
*head
)
130 set_wq_data(work
, cwq
);
132 * Ensure that we get the right work->data if we see the
133 * result of list_add() below, see try_to_grab_pending().
136 list_add_tail(&work
->entry
, head
);
137 wake_up(&cwq
->more_work
);
140 static void __queue_work(struct cpu_workqueue_struct
*cwq
,
141 struct work_struct
*work
)
145 spin_lock_irqsave(&cwq
->lock
, flags
);
146 insert_work(cwq
, work
, &cwq
->worklist
);
147 spin_unlock_irqrestore(&cwq
->lock
, flags
);
151 * queue_work - queue work on a workqueue
152 * @wq: workqueue to use
153 * @work: work to queue
155 * Returns 0 if @work was already on a queue, non-zero otherwise.
157 * We queue the work to the CPU on which it was submitted, but if the CPU dies
158 * it can be processed by another CPU.
160 int queue_work(struct workqueue_struct
*wq
, struct work_struct
*work
)
164 ret
= queue_work_on(get_cpu(), wq
, work
);
169 EXPORT_SYMBOL_GPL(queue_work
);
172 * queue_work_on - queue work on specific cpu
173 * @cpu: CPU number to execute work on
174 * @wq: workqueue to use
175 * @work: work to queue
177 * Returns 0 if @work was already on a queue, non-zero otherwise.
179 * We queue the work to a specific CPU, the caller must ensure it
183 queue_work_on(int cpu
, struct workqueue_struct
*wq
, struct work_struct
*work
)
187 if (!test_and_set_bit(WORK_STRUCT_PENDING
, work_data_bits(work
))) {
188 BUG_ON(!list_empty(&work
->entry
));
189 __queue_work(wq_per_cpu(wq
, cpu
), work
);
194 EXPORT_SYMBOL_GPL(queue_work_on
);
196 static void delayed_work_timer_fn(unsigned long __data
)
198 struct delayed_work
*dwork
= (struct delayed_work
*)__data
;
199 struct cpu_workqueue_struct
*cwq
= get_wq_data(&dwork
->work
);
200 struct workqueue_struct
*wq
= cwq
->wq
;
202 __queue_work(wq_per_cpu(wq
, smp_processor_id()), &dwork
->work
);
206 * queue_delayed_work - queue work on a workqueue after delay
207 * @wq: workqueue to use
208 * @dwork: delayable work to queue
209 * @delay: number of jiffies to wait before queueing
211 * Returns 0 if @work was already on a queue, non-zero otherwise.
213 int queue_delayed_work(struct workqueue_struct
*wq
,
214 struct delayed_work
*dwork
, unsigned long delay
)
217 return queue_work(wq
, &dwork
->work
);
219 return queue_delayed_work_on(-1, wq
, dwork
, delay
);
221 EXPORT_SYMBOL_GPL(queue_delayed_work
);
224 * queue_delayed_work_on - queue work on specific CPU after delay
225 * @cpu: CPU number to execute work on
226 * @wq: workqueue to use
227 * @dwork: work to queue
228 * @delay: number of jiffies to wait before queueing
230 * Returns 0 if @work was already on a queue, non-zero otherwise.
232 int queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
233 struct delayed_work
*dwork
, unsigned long delay
)
236 struct timer_list
*timer
= &dwork
->timer
;
237 struct work_struct
*work
= &dwork
->work
;
239 if (!test_and_set_bit(WORK_STRUCT_PENDING
, work_data_bits(work
))) {
240 BUG_ON(timer_pending(timer
));
241 BUG_ON(!list_empty(&work
->entry
));
243 timer_stats_timer_set_start_info(&dwork
->timer
);
245 /* This stores cwq for the moment, for the timer_fn */
246 set_wq_data(work
, wq_per_cpu(wq
, raw_smp_processor_id()));
247 timer
->expires
= jiffies
+ delay
;
248 timer
->data
= (unsigned long)dwork
;
249 timer
->function
= delayed_work_timer_fn
;
251 if (unlikely(cpu
>= 0))
252 add_timer_on(timer
, cpu
);
259 EXPORT_SYMBOL_GPL(queue_delayed_work_on
);
261 static void run_workqueue(struct cpu_workqueue_struct
*cwq
)
263 spin_lock_irq(&cwq
->lock
);
265 if (cwq
->run_depth
> 3) {
266 /* morton gets to eat his hat */
267 printk("%s: recursion depth exceeded: %d\n",
268 __func__
, cwq
->run_depth
);
271 while (!list_empty(&cwq
->worklist
)) {
272 struct work_struct
*work
= list_entry(cwq
->worklist
.next
,
273 struct work_struct
, entry
);
274 work_func_t f
= work
->func
;
275 #ifdef CONFIG_LOCKDEP
277 * It is permissible to free the struct work_struct
278 * from inside the function that is called from it,
279 * this we need to take into account for lockdep too.
280 * To avoid bogus "held lock freed" warnings as well
281 * as problems when looking into work->lockdep_map,
282 * make a copy and use that here.
284 struct lockdep_map lockdep_map
= work
->lockdep_map
;
287 cwq
->current_work
= work
;
288 list_del_init(cwq
->worklist
.next
);
289 spin_unlock_irq(&cwq
->lock
);
291 BUG_ON(get_wq_data(work
) != cwq
);
292 work_clear_pending(work
);
293 lock_acquire(&cwq
->wq
->lockdep_map
, 0, 0, 0, 2, _THIS_IP_
);
294 lock_acquire(&lockdep_map
, 0, 0, 0, 2, _THIS_IP_
);
296 lock_release(&lockdep_map
, 1, _THIS_IP_
);
297 lock_release(&cwq
->wq
->lockdep_map
, 1, _THIS_IP_
);
299 if (unlikely(in_atomic() || lockdep_depth(current
) > 0)) {
300 printk(KERN_ERR
"BUG: workqueue leaked lock or atomic: "
302 current
->comm
, preempt_count(),
303 task_pid_nr(current
));
304 printk(KERN_ERR
" last function: ");
305 print_symbol("%s\n", (unsigned long)f
);
306 debug_show_held_locks(current
);
310 spin_lock_irq(&cwq
->lock
);
311 cwq
->current_work
= NULL
;
314 spin_unlock_irq(&cwq
->lock
);
317 static int worker_thread(void *__cwq
)
319 struct cpu_workqueue_struct
*cwq
= __cwq
;
322 if (cwq
->wq
->freezeable
)
325 set_user_nice(current
, -5);
328 prepare_to_wait(&cwq
->more_work
, &wait
, TASK_INTERRUPTIBLE
);
329 if (!freezing(current
) &&
330 !kthread_should_stop() &&
331 list_empty(&cwq
->worklist
))
333 finish_wait(&cwq
->more_work
, &wait
);
337 if (kthread_should_stop())
347 struct work_struct work
;
348 struct completion done
;
351 static void wq_barrier_func(struct work_struct
*work
)
353 struct wq_barrier
*barr
= container_of(work
, struct wq_barrier
, work
);
354 complete(&barr
->done
);
357 static void insert_wq_barrier(struct cpu_workqueue_struct
*cwq
,
358 struct wq_barrier
*barr
, struct list_head
*head
)
360 INIT_WORK(&barr
->work
, wq_barrier_func
);
361 __set_bit(WORK_STRUCT_PENDING
, work_data_bits(&barr
->work
));
363 init_completion(&barr
->done
);
365 insert_work(cwq
, &barr
->work
, head
);
368 static int flush_cpu_workqueue(struct cpu_workqueue_struct
*cwq
)
372 if (cwq
->thread
== current
) {
374 * Probably keventd trying to flush its own queue. So simply run
375 * it by hand rather than deadlocking.
380 struct wq_barrier barr
;
383 spin_lock_irq(&cwq
->lock
);
384 if (!list_empty(&cwq
->worklist
) || cwq
->current_work
!= NULL
) {
385 insert_wq_barrier(cwq
, &barr
, &cwq
->worklist
);
388 spin_unlock_irq(&cwq
->lock
);
391 wait_for_completion(&barr
.done
);
398 * flush_workqueue - ensure that any scheduled work has run to completion.
399 * @wq: workqueue to flush
401 * Forces execution of the workqueue and blocks until its completion.
402 * This is typically used in driver shutdown handlers.
404 * We sleep until all works which were queued on entry have been handled,
405 * but we are not livelocked by new incoming ones.
407 * This function used to run the workqueues itself. Now we just wait for the
408 * helper threads to do it.
410 void flush_workqueue(struct workqueue_struct
*wq
)
412 const cpumask_t
*cpu_map
= wq_cpu_map(wq
);
416 lock_acquire(&wq
->lockdep_map
, 0, 0, 0, 2, _THIS_IP_
);
417 lock_release(&wq
->lockdep_map
, 1, _THIS_IP_
);
418 for_each_cpu_mask_nr(cpu
, *cpu_map
)
419 flush_cpu_workqueue(per_cpu_ptr(wq
->cpu_wq
, cpu
));
421 EXPORT_SYMBOL_GPL(flush_workqueue
);
424 * flush_work - block until a work_struct's callback has terminated
425 * @work: the work which is to be flushed
427 * Returns false if @work has already terminated.
429 * It is expected that, prior to calling flush_work(), the caller has
430 * arranged for the work to not be requeued, otherwise it doesn't make
431 * sense to use this function.
433 int flush_work(struct work_struct
*work
)
435 struct cpu_workqueue_struct
*cwq
;
436 struct list_head
*prev
;
437 struct wq_barrier barr
;
440 cwq
= get_wq_data(work
);
444 lock_acquire(&cwq
->wq
->lockdep_map
, 0, 0, 0, 2, _THIS_IP_
);
445 lock_release(&cwq
->wq
->lockdep_map
, 1, _THIS_IP_
);
448 spin_lock_irq(&cwq
->lock
);
449 if (!list_empty(&work
->entry
)) {
451 * See the comment near try_to_grab_pending()->smp_rmb().
452 * If it was re-queued under us we are not going to wait.
455 if (unlikely(cwq
!= get_wq_data(work
)))
459 if (cwq
->current_work
!= work
)
461 prev
= &cwq
->worklist
;
463 insert_wq_barrier(cwq
, &barr
, prev
->next
);
465 spin_unlock_irq(&cwq
->lock
);
469 wait_for_completion(&barr
.done
);
472 EXPORT_SYMBOL_GPL(flush_work
);
475 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
476 * so this work can't be re-armed in any way.
478 static int try_to_grab_pending(struct work_struct
*work
)
480 struct cpu_workqueue_struct
*cwq
;
483 if (!test_and_set_bit(WORK_STRUCT_PENDING
, work_data_bits(work
)))
487 * The queueing is in progress, or it is already queued. Try to
488 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
491 cwq
= get_wq_data(work
);
495 spin_lock_irq(&cwq
->lock
);
496 if (!list_empty(&work
->entry
)) {
498 * This work is queued, but perhaps we locked the wrong cwq.
499 * In that case we must see the new value after rmb(), see
500 * insert_work()->wmb().
503 if (cwq
== get_wq_data(work
)) {
504 list_del_init(&work
->entry
);
508 spin_unlock_irq(&cwq
->lock
);
513 static void wait_on_cpu_work(struct cpu_workqueue_struct
*cwq
,
514 struct work_struct
*work
)
516 struct wq_barrier barr
;
519 spin_lock_irq(&cwq
->lock
);
520 if (unlikely(cwq
->current_work
== work
)) {
521 insert_wq_barrier(cwq
, &barr
, cwq
->worklist
.next
);
524 spin_unlock_irq(&cwq
->lock
);
526 if (unlikely(running
))
527 wait_for_completion(&barr
.done
);
530 static void wait_on_work(struct work_struct
*work
)
532 struct cpu_workqueue_struct
*cwq
;
533 struct workqueue_struct
*wq
;
534 const cpumask_t
*cpu_map
;
539 lock_acquire(&work
->lockdep_map
, 0, 0, 0, 2, _THIS_IP_
);
540 lock_release(&work
->lockdep_map
, 1, _THIS_IP_
);
542 cwq
= get_wq_data(work
);
547 cpu_map
= wq_cpu_map(wq
);
549 for_each_cpu_mask_nr(cpu
, *cpu_map
)
550 wait_on_cpu_work(per_cpu_ptr(wq
->cpu_wq
, cpu
), work
);
553 static int __cancel_work_timer(struct work_struct
*work
,
554 struct timer_list
* timer
)
559 ret
= (timer
&& likely(del_timer(timer
)));
561 ret
= try_to_grab_pending(work
);
563 } while (unlikely(ret
< 0));
565 work_clear_pending(work
);
570 * cancel_work_sync - block until a work_struct's callback has terminated
571 * @work: the work which is to be flushed
573 * Returns true if @work was pending.
575 * cancel_work_sync() will cancel the work if it is queued. If the work's
576 * callback appears to be running, cancel_work_sync() will block until it
579 * It is possible to use this function if the work re-queues itself. It can
580 * cancel the work even if it migrates to another workqueue, however in that
581 * case it only guarantees that work->func() has completed on the last queued
584 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
585 * pending, otherwise it goes into a busy-wait loop until the timer expires.
587 * The caller must ensure that workqueue_struct on which this work was last
588 * queued can't be destroyed before this function returns.
590 int cancel_work_sync(struct work_struct
*work
)
592 return __cancel_work_timer(work
, NULL
);
594 EXPORT_SYMBOL_GPL(cancel_work_sync
);
597 * cancel_delayed_work_sync - reliably kill off a delayed work.
598 * @dwork: the delayed work struct
600 * Returns true if @dwork was pending.
602 * It is possible to use this function if @dwork rearms itself via queue_work()
603 * or queue_delayed_work(). See also the comment for cancel_work_sync().
605 int cancel_delayed_work_sync(struct delayed_work
*dwork
)
607 return __cancel_work_timer(&dwork
->work
, &dwork
->timer
);
609 EXPORT_SYMBOL(cancel_delayed_work_sync
);
611 static struct workqueue_struct
*keventd_wq __read_mostly
;
614 * schedule_work - put work task in global workqueue
615 * @work: job to be done
617 * This puts a job in the kernel-global workqueue.
619 int schedule_work(struct work_struct
*work
)
621 return queue_work(keventd_wq
, work
);
623 EXPORT_SYMBOL(schedule_work
);
626 * schedule_work_on - put work task on a specific cpu
627 * @cpu: cpu to put the work task on
628 * @work: job to be done
630 * This puts a job on a specific cpu
632 int schedule_work_on(int cpu
, struct work_struct
*work
)
634 return queue_work_on(cpu
, keventd_wq
, work
);
636 EXPORT_SYMBOL(schedule_work_on
);
639 * schedule_delayed_work - put work task in global workqueue after delay
640 * @dwork: job to be done
641 * @delay: number of jiffies to wait or 0 for immediate execution
643 * After waiting for a given time this puts a job in the kernel-global
646 int schedule_delayed_work(struct delayed_work
*dwork
,
649 return queue_delayed_work(keventd_wq
, dwork
, delay
);
651 EXPORT_SYMBOL(schedule_delayed_work
);
654 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
656 * @dwork: job to be done
657 * @delay: number of jiffies to wait
659 * After waiting for a given time this puts a job in the kernel-global
660 * workqueue on the specified CPU.
662 int schedule_delayed_work_on(int cpu
,
663 struct delayed_work
*dwork
, unsigned long delay
)
665 return queue_delayed_work_on(cpu
, keventd_wq
, dwork
, delay
);
667 EXPORT_SYMBOL(schedule_delayed_work_on
);
670 * schedule_on_each_cpu - call a function on each online CPU from keventd
671 * @func: the function to call
673 * Returns zero on success.
674 * Returns -ve errno on failure.
676 * schedule_on_each_cpu() is very slow.
678 int schedule_on_each_cpu(work_func_t func
)
681 struct work_struct
*works
;
683 works
= alloc_percpu(struct work_struct
);
688 for_each_online_cpu(cpu
) {
689 struct work_struct
*work
= per_cpu_ptr(works
, cpu
);
691 INIT_WORK(work
, func
);
692 schedule_work_on(cpu
, work
);
694 for_each_online_cpu(cpu
)
695 flush_work(per_cpu_ptr(works
, cpu
));
701 void flush_scheduled_work(void)
703 flush_workqueue(keventd_wq
);
705 EXPORT_SYMBOL(flush_scheduled_work
);
708 * execute_in_process_context - reliably execute the routine with user context
709 * @fn: the function to execute
710 * @ew: guaranteed storage for the execute work structure (must
711 * be available when the work executes)
713 * Executes the function immediately if process context is available,
714 * otherwise schedules the function for delayed execution.
716 * Returns: 0 - function was executed
717 * 1 - function was scheduled for execution
719 int execute_in_process_context(work_func_t fn
, struct execute_work
*ew
)
721 if (!in_interrupt()) {
726 INIT_WORK(&ew
->work
, fn
);
727 schedule_work(&ew
->work
);
731 EXPORT_SYMBOL_GPL(execute_in_process_context
);
735 return keventd_wq
!= NULL
;
738 int current_is_keventd(void)
740 struct cpu_workqueue_struct
*cwq
;
741 int cpu
= raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
746 cwq
= per_cpu_ptr(keventd_wq
->cpu_wq
, cpu
);
747 if (current
== cwq
->thread
)
754 static struct cpu_workqueue_struct
*
755 init_cpu_workqueue(struct workqueue_struct
*wq
, int cpu
)
757 struct cpu_workqueue_struct
*cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
760 spin_lock_init(&cwq
->lock
);
761 INIT_LIST_HEAD(&cwq
->worklist
);
762 init_waitqueue_head(&cwq
->more_work
);
767 static int create_workqueue_thread(struct cpu_workqueue_struct
*cwq
, int cpu
)
769 struct workqueue_struct
*wq
= cwq
->wq
;
770 const char *fmt
= is_single_threaded(wq
) ? "%s" : "%s/%d";
771 struct task_struct
*p
;
773 p
= kthread_create(worker_thread
, cwq
, fmt
, wq
->name
, cpu
);
775 * Nobody can add the work_struct to this cwq,
776 * if (caller is __create_workqueue)
777 * nobody should see this wq
778 * else // caller is CPU_UP_PREPARE
779 * cpu is not on cpu_online_map
780 * so we can abort safely.
790 static void start_workqueue_thread(struct cpu_workqueue_struct
*cwq
, int cpu
)
792 struct task_struct
*p
= cwq
->thread
;
796 kthread_bind(p
, cpu
);
801 struct workqueue_struct
*__create_workqueue_key(const char *name
,
804 struct lock_class_key
*key
,
805 const char *lock_name
)
807 struct workqueue_struct
*wq
;
808 struct cpu_workqueue_struct
*cwq
;
811 wq
= kzalloc(sizeof(*wq
), GFP_KERNEL
);
815 wq
->cpu_wq
= alloc_percpu(struct cpu_workqueue_struct
);
822 lockdep_init_map(&wq
->lockdep_map
, lock_name
, key
, 0);
823 wq
->singlethread
= singlethread
;
824 wq
->freezeable
= freezeable
;
825 INIT_LIST_HEAD(&wq
->list
);
828 cwq
= init_cpu_workqueue(wq
, singlethread_cpu
);
829 err
= create_workqueue_thread(cwq
, singlethread_cpu
);
830 start_workqueue_thread(cwq
, -1);
832 cpu_maps_update_begin();
834 * We must place this wq on list even if the code below fails.
835 * cpu_down(cpu) can remove cpu from cpu_populated_map before
836 * destroy_workqueue() takes the lock, in that case we leak
839 spin_lock(&workqueue_lock
);
840 list_add(&wq
->list
, &workqueues
);
841 spin_unlock(&workqueue_lock
);
843 * We must initialize cwqs for each possible cpu even if we
844 * are going to call destroy_workqueue() finally. Otherwise
845 * cpu_up() can hit the uninitialized cwq once we drop the
848 for_each_possible_cpu(cpu
) {
849 cwq
= init_cpu_workqueue(wq
, cpu
);
850 if (err
|| !cpu_online(cpu
))
852 err
= create_workqueue_thread(cwq
, cpu
);
853 start_workqueue_thread(cwq
, cpu
);
855 cpu_maps_update_done();
859 destroy_workqueue(wq
);
864 EXPORT_SYMBOL_GPL(__create_workqueue_key
);
866 static void cleanup_workqueue_thread(struct cpu_workqueue_struct
*cwq
)
869 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
870 * cpu_add_remove_lock protects cwq->thread.
872 if (cwq
->thread
== NULL
)
875 lock_acquire(&cwq
->wq
->lockdep_map
, 0, 0, 0, 2, _THIS_IP_
);
876 lock_release(&cwq
->wq
->lockdep_map
, 1, _THIS_IP_
);
878 flush_cpu_workqueue(cwq
);
880 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
881 * a concurrent flush_workqueue() can insert a barrier after us.
882 * However, in that case run_workqueue() won't return and check
883 * kthread_should_stop() until it flushes all work_struct's.
884 * When ->worklist becomes empty it is safe to exit because no
885 * more work_structs can be queued on this cwq: flush_workqueue
886 * checks list_empty(), and a "normal" queue_work() can't use
889 kthread_stop(cwq
->thread
);
894 * destroy_workqueue - safely terminate a workqueue
895 * @wq: target workqueue
897 * Safely destroy a workqueue. All work currently pending will be done first.
899 void destroy_workqueue(struct workqueue_struct
*wq
)
901 const cpumask_t
*cpu_map
= wq_cpu_map(wq
);
904 cpu_maps_update_begin();
905 spin_lock(&workqueue_lock
);
907 spin_unlock(&workqueue_lock
);
909 for_each_cpu_mask_nr(cpu
, *cpu_map
)
910 cleanup_workqueue_thread(per_cpu_ptr(wq
->cpu_wq
, cpu
));
911 cpu_maps_update_done();
913 free_percpu(wq
->cpu_wq
);
916 EXPORT_SYMBOL_GPL(destroy_workqueue
);
918 static int __devinit
workqueue_cpu_callback(struct notifier_block
*nfb
,
919 unsigned long action
,
922 unsigned int cpu
= (unsigned long)hcpu
;
923 struct cpu_workqueue_struct
*cwq
;
924 struct workqueue_struct
*wq
;
927 action
&= ~CPU_TASKS_FROZEN
;
931 cpu_set(cpu
, cpu_populated_map
);
934 list_for_each_entry(wq
, &workqueues
, list
) {
935 cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
939 if (!create_workqueue_thread(cwq
, cpu
))
941 printk(KERN_ERR
"workqueue [%s] for %i failed\n",
943 action
= CPU_UP_CANCELED
;
948 start_workqueue_thread(cwq
, cpu
);
951 case CPU_UP_CANCELED
:
952 start_workqueue_thread(cwq
, -1);
954 cleanup_workqueue_thread(cwq
);
960 case CPU_UP_CANCELED
:
962 cpu_clear(cpu
, cpu_populated_map
);
968 void __init
init_workqueues(void)
970 cpu_populated_map
= cpu_online_map
;
971 singlethread_cpu
= first_cpu(cpu_possible_map
);
972 cpu_singlethread_map
= cpumask_of_cpu(singlethread_cpu
);
973 hotcpu_notifier(workqueue_cpu_callback
, 0);
974 keventd_wq
= create_workqueue("events");