btrfs: migrate the block group cleanup code
[linux/fpc-iii.git] / fs / xfs / xfs_mount.c
blob322da69092909078fb16222877ddcf7ad9c1a62d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
36 static DEFINE_MUTEX(xfs_uuid_table_mutex);
37 static int xfs_uuid_table_size;
38 static uuid_t *xfs_uuid_table;
40 void
41 xfs_uuid_table_free(void)
43 if (xfs_uuid_table_size == 0)
44 return;
45 kmem_free(xfs_uuid_table);
46 xfs_uuid_table = NULL;
47 xfs_uuid_table_size = 0;
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
54 STATIC int
55 xfs_uuid_mount(
56 struct xfs_mount *mp)
58 uuid_t *uuid = &mp->m_sb.sb_uuid;
59 int hole, i;
61 /* Publish UUID in struct super_block */
62 uuid_copy(&mp->m_super->s_uuid, uuid);
64 if (mp->m_flags & XFS_MOUNT_NOUUID)
65 return 0;
67 if (uuid_is_null(uuid)) {
68 xfs_warn(mp, "Filesystem has null UUID - can't mount");
69 return -EINVAL;
72 mutex_lock(&xfs_uuid_table_mutex);
73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74 if (uuid_is_null(&xfs_uuid_table[i])) {
75 hole = i;
76 continue;
78 if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 goto out_duplicate;
82 if (hole < 0) {
83 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
85 KM_SLEEP);
86 hole = xfs_uuid_table_size++;
88 xfs_uuid_table[hole] = *uuid;
89 mutex_unlock(&xfs_uuid_table_mutex);
91 return 0;
93 out_duplicate:
94 mutex_unlock(&xfs_uuid_table_mutex);
95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96 return -EINVAL;
99 STATIC void
100 xfs_uuid_unmount(
101 struct xfs_mount *mp)
103 uuid_t *uuid = &mp->m_sb.sb_uuid;
104 int i;
106 if (mp->m_flags & XFS_MOUNT_NOUUID)
107 return;
109 mutex_lock(&xfs_uuid_table_mutex);
110 for (i = 0; i < xfs_uuid_table_size; i++) {
111 if (uuid_is_null(&xfs_uuid_table[i]))
112 continue;
113 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 continue;
115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 break;
118 ASSERT(i < xfs_uuid_table_size);
119 mutex_unlock(&xfs_uuid_table_mutex);
123 STATIC void
124 __xfs_free_perag(
125 struct rcu_head *head)
127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
129 ASSERT(atomic_read(&pag->pag_ref) == 0);
130 kmem_free(pag);
134 * Free up the per-ag resources associated with the mount structure.
136 STATIC void
137 xfs_free_perag(
138 xfs_mount_t *mp)
140 xfs_agnumber_t agno;
141 struct xfs_perag *pag;
143 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
144 spin_lock(&mp->m_perag_lock);
145 pag = radix_tree_delete(&mp->m_perag_tree, agno);
146 spin_unlock(&mp->m_perag_lock);
147 ASSERT(pag);
148 ASSERT(atomic_read(&pag->pag_ref) == 0);
149 xfs_iunlink_destroy(pag);
150 xfs_buf_hash_destroy(pag);
151 mutex_destroy(&pag->pag_ici_reclaim_lock);
152 call_rcu(&pag->rcu_head, __xfs_free_perag);
157 * Check size of device based on the (data/realtime) block count.
158 * Note: this check is used by the growfs code as well as mount.
161 xfs_sb_validate_fsb_count(
162 xfs_sb_t *sbp,
163 uint64_t nblocks)
165 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
166 ASSERT(sbp->sb_blocklog >= BBSHIFT);
168 /* Limited by ULONG_MAX of page cache index */
169 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
170 return -EFBIG;
171 return 0;
175 xfs_initialize_perag(
176 xfs_mount_t *mp,
177 xfs_agnumber_t agcount,
178 xfs_agnumber_t *maxagi)
180 xfs_agnumber_t index;
181 xfs_agnumber_t first_initialised = NULLAGNUMBER;
182 xfs_perag_t *pag;
183 int error = -ENOMEM;
186 * Walk the current per-ag tree so we don't try to initialise AGs
187 * that already exist (growfs case). Allocate and insert all the
188 * AGs we don't find ready for initialisation.
190 for (index = 0; index < agcount; index++) {
191 pag = xfs_perag_get(mp, index);
192 if (pag) {
193 xfs_perag_put(pag);
194 continue;
197 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
198 if (!pag)
199 goto out_unwind_new_pags;
200 pag->pag_agno = index;
201 pag->pag_mount = mp;
202 spin_lock_init(&pag->pag_ici_lock);
203 mutex_init(&pag->pag_ici_reclaim_lock);
204 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
205 if (xfs_buf_hash_init(pag))
206 goto out_free_pag;
207 init_waitqueue_head(&pag->pagb_wait);
208 spin_lock_init(&pag->pagb_lock);
209 pag->pagb_count = 0;
210 pag->pagb_tree = RB_ROOT;
212 if (radix_tree_preload(GFP_NOFS))
213 goto out_hash_destroy;
215 spin_lock(&mp->m_perag_lock);
216 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
217 BUG();
218 spin_unlock(&mp->m_perag_lock);
219 radix_tree_preload_end();
220 error = -EEXIST;
221 goto out_hash_destroy;
223 spin_unlock(&mp->m_perag_lock);
224 radix_tree_preload_end();
225 /* first new pag is fully initialized */
226 if (first_initialised == NULLAGNUMBER)
227 first_initialised = index;
228 error = xfs_iunlink_init(pag);
229 if (error)
230 goto out_hash_destroy;
231 spin_lock_init(&pag->pag_state_lock);
234 index = xfs_set_inode_alloc(mp, agcount);
236 if (maxagi)
237 *maxagi = index;
239 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
240 return 0;
242 out_hash_destroy:
243 xfs_buf_hash_destroy(pag);
244 out_free_pag:
245 mutex_destroy(&pag->pag_ici_reclaim_lock);
246 kmem_free(pag);
247 out_unwind_new_pags:
248 /* unwind any prior newly initialized pags */
249 for (index = first_initialised; index < agcount; index++) {
250 pag = radix_tree_delete(&mp->m_perag_tree, index);
251 if (!pag)
252 break;
253 xfs_buf_hash_destroy(pag);
254 xfs_iunlink_destroy(pag);
255 mutex_destroy(&pag->pag_ici_reclaim_lock);
256 kmem_free(pag);
258 return error;
262 * xfs_readsb
264 * Does the initial read of the superblock.
267 xfs_readsb(
268 struct xfs_mount *mp,
269 int flags)
271 unsigned int sector_size;
272 struct xfs_buf *bp;
273 struct xfs_sb *sbp = &mp->m_sb;
274 int error;
275 int loud = !(flags & XFS_MFSI_QUIET);
276 const struct xfs_buf_ops *buf_ops;
278 ASSERT(mp->m_sb_bp == NULL);
279 ASSERT(mp->m_ddev_targp != NULL);
282 * For the initial read, we must guess at the sector
283 * size based on the block device. It's enough to
284 * get the sb_sectsize out of the superblock and
285 * then reread with the proper length.
286 * We don't verify it yet, because it may not be complete.
288 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
289 buf_ops = NULL;
292 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 * around at all times to optimize access to the superblock. Therefore,
294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295 * elevated.
297 reread:
298 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
299 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
300 buf_ops);
301 if (error) {
302 if (loud)
303 xfs_warn(mp, "SB validate failed with error %d.", error);
304 /* bad CRC means corrupted metadata */
305 if (error == -EFSBADCRC)
306 error = -EFSCORRUPTED;
307 return error;
311 * Initialize the mount structure from the superblock.
313 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
316 * If we haven't validated the superblock, do so now before we try
317 * to check the sector size and reread the superblock appropriately.
319 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 if (loud)
321 xfs_warn(mp, "Invalid superblock magic number");
322 error = -EINVAL;
323 goto release_buf;
327 * We must be able to do sector-sized and sector-aligned IO.
329 if (sector_size > sbp->sb_sectsize) {
330 if (loud)
331 xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 sector_size, sbp->sb_sectsize);
333 error = -ENOSYS;
334 goto release_buf;
337 if (buf_ops == NULL) {
339 * Re-read the superblock so the buffer is correctly sized,
340 * and properly verified.
342 xfs_buf_relse(bp);
343 sector_size = sbp->sb_sectsize;
344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 goto reread;
348 xfs_reinit_percpu_counters(mp);
350 /* no need to be quiet anymore, so reset the buf ops */
351 bp->b_ops = &xfs_sb_buf_ops;
353 mp->m_sb_bp = bp;
354 xfs_buf_unlock(bp);
355 return 0;
357 release_buf:
358 xfs_buf_relse(bp);
359 return error;
363 * Update alignment values based on mount options and sb values
365 STATIC int
366 xfs_update_alignment(xfs_mount_t *mp)
368 xfs_sb_t *sbp = &(mp->m_sb);
370 if (mp->m_dalign) {
372 * If stripe unit and stripe width are not multiples
373 * of the fs blocksize turn off alignment.
375 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
376 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
377 xfs_warn(mp,
378 "alignment check failed: sunit/swidth vs. blocksize(%d)",
379 sbp->sb_blocksize);
380 return -EINVAL;
381 } else {
383 * Convert the stripe unit and width to FSBs.
385 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
386 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
387 xfs_warn(mp,
388 "alignment check failed: sunit/swidth vs. agsize(%d)",
389 sbp->sb_agblocks);
390 return -EINVAL;
391 } else if (mp->m_dalign) {
392 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
393 } else {
394 xfs_warn(mp,
395 "alignment check failed: sunit(%d) less than bsize(%d)",
396 mp->m_dalign, sbp->sb_blocksize);
397 return -EINVAL;
402 * Update superblock with new values
403 * and log changes
405 if (xfs_sb_version_hasdalign(sbp)) {
406 if (sbp->sb_unit != mp->m_dalign) {
407 sbp->sb_unit = mp->m_dalign;
408 mp->m_update_sb = true;
410 if (sbp->sb_width != mp->m_swidth) {
411 sbp->sb_width = mp->m_swidth;
412 mp->m_update_sb = true;
414 } else {
415 xfs_warn(mp,
416 "cannot change alignment: superblock does not support data alignment");
417 return -EINVAL;
419 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
420 xfs_sb_version_hasdalign(&mp->m_sb)) {
421 mp->m_dalign = sbp->sb_unit;
422 mp->m_swidth = sbp->sb_width;
425 return 0;
429 * Set the default minimum read and write sizes unless
430 * already specified in a mount option.
431 * We use smaller I/O sizes when the file system
432 * is being used for NFS service (wsync mount option).
434 STATIC void
435 xfs_set_rw_sizes(xfs_mount_t *mp)
437 xfs_sb_t *sbp = &(mp->m_sb);
438 int readio_log, writeio_log;
440 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
441 if (mp->m_flags & XFS_MOUNT_WSYNC) {
442 readio_log = XFS_WSYNC_READIO_LOG;
443 writeio_log = XFS_WSYNC_WRITEIO_LOG;
444 } else {
445 readio_log = XFS_READIO_LOG_LARGE;
446 writeio_log = XFS_WRITEIO_LOG_LARGE;
448 } else {
449 readio_log = mp->m_readio_log;
450 writeio_log = mp->m_writeio_log;
453 if (sbp->sb_blocklog > readio_log) {
454 mp->m_readio_log = sbp->sb_blocklog;
455 } else {
456 mp->m_readio_log = readio_log;
458 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
459 if (sbp->sb_blocklog > writeio_log) {
460 mp->m_writeio_log = sbp->sb_blocklog;
461 } else {
462 mp->m_writeio_log = writeio_log;
464 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
468 * precalculate the low space thresholds for dynamic speculative preallocation.
470 void
471 xfs_set_low_space_thresholds(
472 struct xfs_mount *mp)
474 int i;
476 for (i = 0; i < XFS_LOWSP_MAX; i++) {
477 uint64_t space = mp->m_sb.sb_dblocks;
479 do_div(space, 100);
480 mp->m_low_space[i] = space * (i + 1);
485 * Check that the data (and log if separate) is an ok size.
487 STATIC int
488 xfs_check_sizes(
489 struct xfs_mount *mp)
491 struct xfs_buf *bp;
492 xfs_daddr_t d;
493 int error;
495 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
496 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
497 xfs_warn(mp, "filesystem size mismatch detected");
498 return -EFBIG;
500 error = xfs_buf_read_uncached(mp->m_ddev_targp,
501 d - XFS_FSS_TO_BB(mp, 1),
502 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
503 if (error) {
504 xfs_warn(mp, "last sector read failed");
505 return error;
507 xfs_buf_relse(bp);
509 if (mp->m_logdev_targp == mp->m_ddev_targp)
510 return 0;
512 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
513 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
514 xfs_warn(mp, "log size mismatch detected");
515 return -EFBIG;
517 error = xfs_buf_read_uncached(mp->m_logdev_targp,
518 d - XFS_FSB_TO_BB(mp, 1),
519 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
520 if (error) {
521 xfs_warn(mp, "log device read failed");
522 return error;
524 xfs_buf_relse(bp);
525 return 0;
529 * Clear the quotaflags in memory and in the superblock.
532 xfs_mount_reset_sbqflags(
533 struct xfs_mount *mp)
535 mp->m_qflags = 0;
537 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
538 if (mp->m_sb.sb_qflags == 0)
539 return 0;
540 spin_lock(&mp->m_sb_lock);
541 mp->m_sb.sb_qflags = 0;
542 spin_unlock(&mp->m_sb_lock);
544 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
545 return 0;
547 return xfs_sync_sb(mp, false);
550 uint64_t
551 xfs_default_resblks(xfs_mount_t *mp)
553 uint64_t resblks;
556 * We default to 5% or 8192 fsbs of space reserved, whichever is
557 * smaller. This is intended to cover concurrent allocation
558 * transactions when we initially hit enospc. These each require a 4
559 * block reservation. Hence by default we cover roughly 2000 concurrent
560 * allocation reservations.
562 resblks = mp->m_sb.sb_dblocks;
563 do_div(resblks, 20);
564 resblks = min_t(uint64_t, resblks, 8192);
565 return resblks;
568 /* Ensure the summary counts are correct. */
569 STATIC int
570 xfs_check_summary_counts(
571 struct xfs_mount *mp)
574 * The AG0 superblock verifier rejects in-progress filesystems,
575 * so we should never see the flag set this far into mounting.
577 if (mp->m_sb.sb_inprogress) {
578 xfs_err(mp, "sb_inprogress set after log recovery??");
579 WARN_ON(1);
580 return -EFSCORRUPTED;
584 * Now the log is mounted, we know if it was an unclean shutdown or
585 * not. If it was, with the first phase of recovery has completed, we
586 * have consistent AG blocks on disk. We have not recovered EFIs yet,
587 * but they are recovered transactionally in the second recovery phase
588 * later.
590 * If the log was clean when we mounted, we can check the summary
591 * counters. If any of them are obviously incorrect, we can recompute
592 * them from the AGF headers in the next step.
594 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
595 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
596 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
597 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
598 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
601 * We can safely re-initialise incore superblock counters from the
602 * per-ag data. These may not be correct if the filesystem was not
603 * cleanly unmounted, so we waited for recovery to finish before doing
604 * this.
606 * If the filesystem was cleanly unmounted or the previous check did
607 * not flag anything weird, then we can trust the values in the
608 * superblock to be correct and we don't need to do anything here.
609 * Otherwise, recalculate the summary counters.
611 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
612 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
613 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
614 return 0;
616 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
620 * This function does the following on an initial mount of a file system:
621 * - reads the superblock from disk and init the mount struct
622 * - if we're a 32-bit kernel, do a size check on the superblock
623 * so we don't mount terabyte filesystems
624 * - init mount struct realtime fields
625 * - allocate inode hash table for fs
626 * - init directory manager
627 * - perform recovery and init the log manager
630 xfs_mountfs(
631 struct xfs_mount *mp)
633 struct xfs_sb *sbp = &(mp->m_sb);
634 struct xfs_inode *rip;
635 struct xfs_ino_geometry *igeo = M_IGEO(mp);
636 uint64_t resblks;
637 uint quotamount = 0;
638 uint quotaflags = 0;
639 int error = 0;
641 xfs_sb_mount_common(mp, sbp);
644 * Check for a mismatched features2 values. Older kernels read & wrote
645 * into the wrong sb offset for sb_features2 on some platforms due to
646 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
647 * which made older superblock reading/writing routines swap it as a
648 * 64-bit value.
650 * For backwards compatibility, we make both slots equal.
652 * If we detect a mismatched field, we OR the set bits into the existing
653 * features2 field in case it has already been modified; we don't want
654 * to lose any features. We then update the bad location with the ORed
655 * value so that older kernels will see any features2 flags. The
656 * superblock writeback code ensures the new sb_features2 is copied to
657 * sb_bad_features2 before it is logged or written to disk.
659 if (xfs_sb_has_mismatched_features2(sbp)) {
660 xfs_warn(mp, "correcting sb_features alignment problem");
661 sbp->sb_features2 |= sbp->sb_bad_features2;
662 mp->m_update_sb = true;
665 * Re-check for ATTR2 in case it was found in bad_features2
666 * slot.
668 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
669 !(mp->m_flags & XFS_MOUNT_NOATTR2))
670 mp->m_flags |= XFS_MOUNT_ATTR2;
673 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
674 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
675 xfs_sb_version_removeattr2(&mp->m_sb);
676 mp->m_update_sb = true;
678 /* update sb_versionnum for the clearing of the morebits */
679 if (!sbp->sb_features2)
680 mp->m_update_sb = true;
683 /* always use v2 inodes by default now */
684 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
685 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
686 mp->m_update_sb = true;
690 * Check if sb_agblocks is aligned at stripe boundary
691 * If sb_agblocks is NOT aligned turn off m_dalign since
692 * allocator alignment is within an ag, therefore ag has
693 * to be aligned at stripe boundary.
695 error = xfs_update_alignment(mp);
696 if (error)
697 goto out;
699 xfs_alloc_compute_maxlevels(mp);
700 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
701 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
702 xfs_ialloc_setup_geometry(mp);
703 xfs_rmapbt_compute_maxlevels(mp);
704 xfs_refcountbt_compute_maxlevels(mp);
706 /* enable fail_at_unmount as default */
707 mp->m_fail_unmount = true;
709 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
710 if (error)
711 goto out;
713 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
714 &mp->m_kobj, "stats");
715 if (error)
716 goto out_remove_sysfs;
718 error = xfs_error_sysfs_init(mp);
719 if (error)
720 goto out_del_stats;
722 error = xfs_errortag_init(mp);
723 if (error)
724 goto out_remove_error_sysfs;
726 error = xfs_uuid_mount(mp);
727 if (error)
728 goto out_remove_errortag;
731 * Set the minimum read and write sizes
733 xfs_set_rw_sizes(mp);
735 /* set the low space thresholds for dynamic preallocation */
736 xfs_set_low_space_thresholds(mp);
739 * If enabled, sparse inode chunk alignment is expected to match the
740 * cluster size. Full inode chunk alignment must match the chunk size,
741 * but that is checked on sb read verification...
743 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
744 mp->m_sb.sb_spino_align !=
745 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
746 xfs_warn(mp,
747 "Sparse inode block alignment (%u) must match cluster size (%llu).",
748 mp->m_sb.sb_spino_align,
749 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
750 error = -EINVAL;
751 goto out_remove_uuid;
755 * Check that the data (and log if separate) is an ok size.
757 error = xfs_check_sizes(mp);
758 if (error)
759 goto out_remove_uuid;
762 * Initialize realtime fields in the mount structure
764 error = xfs_rtmount_init(mp);
765 if (error) {
766 xfs_warn(mp, "RT mount failed");
767 goto out_remove_uuid;
771 * Copies the low order bits of the timestamp and the randomly
772 * set "sequence" number out of a UUID.
774 mp->m_fixedfsid[0] =
775 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
776 get_unaligned_be16(&sbp->sb_uuid.b[4]);
777 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
779 error = xfs_da_mount(mp);
780 if (error) {
781 xfs_warn(mp, "Failed dir/attr init: %d", error);
782 goto out_remove_uuid;
786 * Initialize the precomputed transaction reservations values.
788 xfs_trans_init(mp);
791 * Allocate and initialize the per-ag data.
793 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
794 if (error) {
795 xfs_warn(mp, "Failed per-ag init: %d", error);
796 goto out_free_dir;
799 if (!sbp->sb_logblocks) {
800 xfs_warn(mp, "no log defined");
801 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
802 error = -EFSCORRUPTED;
803 goto out_free_perag;
807 * Log's mount-time initialization. The first part of recovery can place
808 * some items on the AIL, to be handled when recovery is finished or
809 * cancelled.
811 error = xfs_log_mount(mp, mp->m_logdev_targp,
812 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
813 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
814 if (error) {
815 xfs_warn(mp, "log mount failed");
816 goto out_fail_wait;
819 /* Make sure the summary counts are ok. */
820 error = xfs_check_summary_counts(mp);
821 if (error)
822 goto out_log_dealloc;
825 * Get and sanity-check the root inode.
826 * Save the pointer to it in the mount structure.
828 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
829 XFS_ILOCK_EXCL, &rip);
830 if (error) {
831 xfs_warn(mp,
832 "Failed to read root inode 0x%llx, error %d",
833 sbp->sb_rootino, -error);
834 goto out_log_dealloc;
837 ASSERT(rip != NULL);
839 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
840 xfs_warn(mp, "corrupted root inode %llu: not a directory",
841 (unsigned long long)rip->i_ino);
842 xfs_iunlock(rip, XFS_ILOCK_EXCL);
843 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
844 mp);
845 error = -EFSCORRUPTED;
846 goto out_rele_rip;
848 mp->m_rootip = rip; /* save it */
850 xfs_iunlock(rip, XFS_ILOCK_EXCL);
853 * Initialize realtime inode pointers in the mount structure
855 error = xfs_rtmount_inodes(mp);
856 if (error) {
858 * Free up the root inode.
860 xfs_warn(mp, "failed to read RT inodes");
861 goto out_rele_rip;
865 * If this is a read-only mount defer the superblock updates until
866 * the next remount into writeable mode. Otherwise we would never
867 * perform the update e.g. for the root filesystem.
869 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
870 error = xfs_sync_sb(mp, false);
871 if (error) {
872 xfs_warn(mp, "failed to write sb changes");
873 goto out_rtunmount;
878 * Initialise the XFS quota management subsystem for this mount
880 if (XFS_IS_QUOTA_RUNNING(mp)) {
881 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
882 if (error)
883 goto out_rtunmount;
884 } else {
885 ASSERT(!XFS_IS_QUOTA_ON(mp));
888 * If a file system had quotas running earlier, but decided to
889 * mount without -o uquota/pquota/gquota options, revoke the
890 * quotachecked license.
892 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
893 xfs_notice(mp, "resetting quota flags");
894 error = xfs_mount_reset_sbqflags(mp);
895 if (error)
896 goto out_rtunmount;
901 * Finish recovering the file system. This part needed to be delayed
902 * until after the root and real-time bitmap inodes were consistently
903 * read in.
905 error = xfs_log_mount_finish(mp);
906 if (error) {
907 xfs_warn(mp, "log mount finish failed");
908 goto out_rtunmount;
912 * Now the log is fully replayed, we can transition to full read-only
913 * mode for read-only mounts. This will sync all the metadata and clean
914 * the log so that the recovery we just performed does not have to be
915 * replayed again on the next mount.
917 * We use the same quiesce mechanism as the rw->ro remount, as they are
918 * semantically identical operations.
920 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
921 XFS_MOUNT_RDONLY) {
922 xfs_quiesce_attr(mp);
926 * Complete the quota initialisation, post-log-replay component.
928 if (quotamount) {
929 ASSERT(mp->m_qflags == 0);
930 mp->m_qflags = quotaflags;
932 xfs_qm_mount_quotas(mp);
936 * Now we are mounted, reserve a small amount of unused space for
937 * privileged transactions. This is needed so that transaction
938 * space required for critical operations can dip into this pool
939 * when at ENOSPC. This is needed for operations like create with
940 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
941 * are not allowed to use this reserved space.
943 * This may drive us straight to ENOSPC on mount, but that implies
944 * we were already there on the last unmount. Warn if this occurs.
946 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
947 resblks = xfs_default_resblks(mp);
948 error = xfs_reserve_blocks(mp, &resblks, NULL);
949 if (error)
950 xfs_warn(mp,
951 "Unable to allocate reserve blocks. Continuing without reserve pool.");
953 /* Recover any CoW blocks that never got remapped. */
954 error = xfs_reflink_recover_cow(mp);
955 if (error) {
956 xfs_err(mp,
957 "Error %d recovering leftover CoW allocations.", error);
958 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
959 goto out_quota;
962 /* Reserve AG blocks for future btree expansion. */
963 error = xfs_fs_reserve_ag_blocks(mp);
964 if (error && error != -ENOSPC)
965 goto out_agresv;
968 return 0;
970 out_agresv:
971 xfs_fs_unreserve_ag_blocks(mp);
972 out_quota:
973 xfs_qm_unmount_quotas(mp);
974 out_rtunmount:
975 xfs_rtunmount_inodes(mp);
976 out_rele_rip:
977 xfs_irele(rip);
978 /* Clean out dquots that might be in memory after quotacheck. */
979 xfs_qm_unmount(mp);
981 * Cancel all delayed reclaim work and reclaim the inodes directly.
982 * We have to do this /after/ rtunmount and qm_unmount because those
983 * two will have scheduled delayed reclaim for the rt/quota inodes.
985 * This is slightly different from the unmountfs call sequence
986 * because we could be tearing down a partially set up mount. In
987 * particular, if log_mount_finish fails we bail out without calling
988 * qm_unmount_quotas and therefore rely on qm_unmount to release the
989 * quota inodes.
991 cancel_delayed_work_sync(&mp->m_reclaim_work);
992 xfs_reclaim_inodes(mp, SYNC_WAIT);
993 xfs_health_unmount(mp);
994 out_log_dealloc:
995 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
996 xfs_log_mount_cancel(mp);
997 out_fail_wait:
998 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
999 xfs_wait_buftarg(mp->m_logdev_targp);
1000 xfs_wait_buftarg(mp->m_ddev_targp);
1001 out_free_perag:
1002 xfs_free_perag(mp);
1003 out_free_dir:
1004 xfs_da_unmount(mp);
1005 out_remove_uuid:
1006 xfs_uuid_unmount(mp);
1007 out_remove_errortag:
1008 xfs_errortag_del(mp);
1009 out_remove_error_sysfs:
1010 xfs_error_sysfs_del(mp);
1011 out_del_stats:
1012 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1013 out_remove_sysfs:
1014 xfs_sysfs_del(&mp->m_kobj);
1015 out:
1016 return error;
1020 * This flushes out the inodes,dquots and the superblock, unmounts the
1021 * log and makes sure that incore structures are freed.
1023 void
1024 xfs_unmountfs(
1025 struct xfs_mount *mp)
1027 uint64_t resblks;
1028 int error;
1030 xfs_stop_block_reaping(mp);
1031 xfs_fs_unreserve_ag_blocks(mp);
1032 xfs_qm_unmount_quotas(mp);
1033 xfs_rtunmount_inodes(mp);
1034 xfs_irele(mp->m_rootip);
1037 * We can potentially deadlock here if we have an inode cluster
1038 * that has been freed has its buffer still pinned in memory because
1039 * the transaction is still sitting in a iclog. The stale inodes
1040 * on that buffer will have their flush locks held until the
1041 * transaction hits the disk and the callbacks run. the inode
1042 * flush takes the flush lock unconditionally and with nothing to
1043 * push out the iclog we will never get that unlocked. hence we
1044 * need to force the log first.
1046 xfs_log_force(mp, XFS_LOG_SYNC);
1049 * Wait for all busy extents to be freed, including completion of
1050 * any discard operation.
1052 xfs_extent_busy_wait_all(mp);
1053 flush_workqueue(xfs_discard_wq);
1056 * We now need to tell the world we are unmounting. This will allow
1057 * us to detect that the filesystem is going away and we should error
1058 * out anything that we have been retrying in the background. This will
1059 * prevent neverending retries in AIL pushing from hanging the unmount.
1061 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1064 * Flush all pending changes from the AIL.
1066 xfs_ail_push_all_sync(mp->m_ail);
1069 * And reclaim all inodes. At this point there should be no dirty
1070 * inodes and none should be pinned or locked, but use synchronous
1071 * reclaim just to be sure. We can stop background inode reclaim
1072 * here as well if it is still running.
1074 cancel_delayed_work_sync(&mp->m_reclaim_work);
1075 xfs_reclaim_inodes(mp, SYNC_WAIT);
1076 xfs_health_unmount(mp);
1078 xfs_qm_unmount(mp);
1081 * Unreserve any blocks we have so that when we unmount we don't account
1082 * the reserved free space as used. This is really only necessary for
1083 * lazy superblock counting because it trusts the incore superblock
1084 * counters to be absolutely correct on clean unmount.
1086 * We don't bother correcting this elsewhere for lazy superblock
1087 * counting because on mount of an unclean filesystem we reconstruct the
1088 * correct counter value and this is irrelevant.
1090 * For non-lazy counter filesystems, this doesn't matter at all because
1091 * we only every apply deltas to the superblock and hence the incore
1092 * value does not matter....
1094 resblks = 0;
1095 error = xfs_reserve_blocks(mp, &resblks, NULL);
1096 if (error)
1097 xfs_warn(mp, "Unable to free reserved block pool. "
1098 "Freespace may not be correct on next mount.");
1100 error = xfs_log_sbcount(mp);
1101 if (error)
1102 xfs_warn(mp, "Unable to update superblock counters. "
1103 "Freespace may not be correct on next mount.");
1106 xfs_log_unmount(mp);
1107 xfs_da_unmount(mp);
1108 xfs_uuid_unmount(mp);
1110 #if defined(DEBUG)
1111 xfs_errortag_clearall(mp);
1112 #endif
1113 xfs_free_perag(mp);
1115 xfs_errortag_del(mp);
1116 xfs_error_sysfs_del(mp);
1117 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1118 xfs_sysfs_del(&mp->m_kobj);
1122 * Determine whether modifications can proceed. The caller specifies the minimum
1123 * freeze level for which modifications should not be allowed. This allows
1124 * certain operations to proceed while the freeze sequence is in progress, if
1125 * necessary.
1127 bool
1128 xfs_fs_writable(
1129 struct xfs_mount *mp,
1130 int level)
1132 ASSERT(level > SB_UNFROZEN);
1133 if ((mp->m_super->s_writers.frozen >= level) ||
1134 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1135 return false;
1137 return true;
1141 * xfs_log_sbcount
1143 * Sync the superblock counters to disk.
1145 * Note this code can be called during the process of freezing, so we use the
1146 * transaction allocator that does not block when the transaction subsystem is
1147 * in its frozen state.
1150 xfs_log_sbcount(xfs_mount_t *mp)
1152 /* allow this to proceed during the freeze sequence... */
1153 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1154 return 0;
1157 * we don't need to do this if we are updating the superblock
1158 * counters on every modification.
1160 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1161 return 0;
1163 return xfs_sync_sb(mp, true);
1167 * Deltas for the inode count are +/-64, hence we use a large batch size
1168 * of 128 so we don't need to take the counter lock on every update.
1170 #define XFS_ICOUNT_BATCH 128
1172 xfs_mod_icount(
1173 struct xfs_mount *mp,
1174 int64_t delta)
1176 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1177 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1178 ASSERT(0);
1179 percpu_counter_add(&mp->m_icount, -delta);
1180 return -EINVAL;
1182 return 0;
1186 xfs_mod_ifree(
1187 struct xfs_mount *mp,
1188 int64_t delta)
1190 percpu_counter_add(&mp->m_ifree, delta);
1191 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1192 ASSERT(0);
1193 percpu_counter_add(&mp->m_ifree, -delta);
1194 return -EINVAL;
1196 return 0;
1200 * Deltas for the block count can vary from 1 to very large, but lock contention
1201 * only occurs on frequent small block count updates such as in the delayed
1202 * allocation path for buffered writes (page a time updates). Hence we set
1203 * a large batch count (1024) to minimise global counter updates except when
1204 * we get near to ENOSPC and we have to be very accurate with our updates.
1206 #define XFS_FDBLOCKS_BATCH 1024
1208 xfs_mod_fdblocks(
1209 struct xfs_mount *mp,
1210 int64_t delta,
1211 bool rsvd)
1213 int64_t lcounter;
1214 long long res_used;
1215 s32 batch;
1217 if (delta > 0) {
1219 * If the reserve pool is depleted, put blocks back into it
1220 * first. Most of the time the pool is full.
1222 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1223 percpu_counter_add(&mp->m_fdblocks, delta);
1224 return 0;
1227 spin_lock(&mp->m_sb_lock);
1228 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1230 if (res_used > delta) {
1231 mp->m_resblks_avail += delta;
1232 } else {
1233 delta -= res_used;
1234 mp->m_resblks_avail = mp->m_resblks;
1235 percpu_counter_add(&mp->m_fdblocks, delta);
1237 spin_unlock(&mp->m_sb_lock);
1238 return 0;
1242 * Taking blocks away, need to be more accurate the closer we
1243 * are to zero.
1245 * If the counter has a value of less than 2 * max batch size,
1246 * then make everything serialise as we are real close to
1247 * ENOSPC.
1249 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1250 XFS_FDBLOCKS_BATCH) < 0)
1251 batch = 1;
1252 else
1253 batch = XFS_FDBLOCKS_BATCH;
1255 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1256 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1257 XFS_FDBLOCKS_BATCH) >= 0) {
1258 /* we had space! */
1259 return 0;
1263 * lock up the sb for dipping into reserves before releasing the space
1264 * that took us to ENOSPC.
1266 spin_lock(&mp->m_sb_lock);
1267 percpu_counter_add(&mp->m_fdblocks, -delta);
1268 if (!rsvd)
1269 goto fdblocks_enospc;
1271 lcounter = (long long)mp->m_resblks_avail + delta;
1272 if (lcounter >= 0) {
1273 mp->m_resblks_avail = lcounter;
1274 spin_unlock(&mp->m_sb_lock);
1275 return 0;
1277 printk_once(KERN_WARNING
1278 "Filesystem \"%s\": reserve blocks depleted! "
1279 "Consider increasing reserve pool size.",
1280 mp->m_fsname);
1281 fdblocks_enospc:
1282 spin_unlock(&mp->m_sb_lock);
1283 return -ENOSPC;
1287 xfs_mod_frextents(
1288 struct xfs_mount *mp,
1289 int64_t delta)
1291 int64_t lcounter;
1292 int ret = 0;
1294 spin_lock(&mp->m_sb_lock);
1295 lcounter = mp->m_sb.sb_frextents + delta;
1296 if (lcounter < 0)
1297 ret = -ENOSPC;
1298 else
1299 mp->m_sb.sb_frextents = lcounter;
1300 spin_unlock(&mp->m_sb_lock);
1301 return ret;
1305 * xfs_getsb() is called to obtain the buffer for the superblock.
1306 * The buffer is returned locked and read in from disk.
1307 * The buffer should be released with a call to xfs_brelse().
1309 struct xfs_buf *
1310 xfs_getsb(
1311 struct xfs_mount *mp)
1313 struct xfs_buf *bp = mp->m_sb_bp;
1315 xfs_buf_lock(bp);
1316 xfs_buf_hold(bp);
1317 ASSERT(bp->b_flags & XBF_DONE);
1318 return bp;
1322 * Used to free the superblock along various error paths.
1324 void
1325 xfs_freesb(
1326 struct xfs_mount *mp)
1328 struct xfs_buf *bp = mp->m_sb_bp;
1330 xfs_buf_lock(bp);
1331 mp->m_sb_bp = NULL;
1332 xfs_buf_relse(bp);
1336 * If the underlying (data/log/rt) device is readonly, there are some
1337 * operations that cannot proceed.
1340 xfs_dev_is_read_only(
1341 struct xfs_mount *mp,
1342 char *message)
1344 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1345 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1346 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1347 xfs_notice(mp, "%s required on read-only device.", message);
1348 xfs_notice(mp, "write access unavailable, cannot proceed.");
1349 return -EROFS;
1351 return 0;
1354 /* Force the summary counters to be recalculated at next mount. */
1355 void
1356 xfs_force_summary_recalc(
1357 struct xfs_mount *mp)
1359 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1360 return;
1362 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1366 * Update the in-core delayed block counter.
1368 * We prefer to update the counter without having to take a spinlock for every
1369 * counter update (i.e. batching). Each change to delayed allocation
1370 * reservations can change can easily exceed the default percpu counter
1371 * batching, so we use a larger batch factor here.
1373 * Note that we don't currently have any callers requiring fast summation
1374 * (e.g. percpu_counter_read) so we can use a big batch value here.
1376 #define XFS_DELALLOC_BATCH (4096)
1377 void
1378 xfs_mod_delalloc(
1379 struct xfs_mount *mp,
1380 int64_t delta)
1382 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1383 XFS_DELALLOC_BATCH);