writeback: rework wb_[dec|inc]_stat family of functions
[linux/fpc-iii.git] / arch / mips / kernel / setup.c
blob01d1dbde5fbf1eb2e19c11074fdd5ed7d5a89ec3
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30 #include <linux/of_fdt.h>
32 #include <asm/addrspace.h>
33 #include <asm/bootinfo.h>
34 #include <asm/bugs.h>
35 #include <asm/cache.h>
36 #include <asm/cdmm.h>
37 #include <asm/cpu.h>
38 #include <asm/debug.h>
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41 #include <asm/smp-ops.h>
42 #include <asm/prom.h>
44 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
45 const char __section(.appended_dtb) __appended_dtb[0x100000];
46 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
48 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
50 EXPORT_SYMBOL(cpu_data);
52 #ifdef CONFIG_VT
53 struct screen_info screen_info;
54 #endif
57 * Setup information
59 * These are initialized so they are in the .data section
61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
63 EXPORT_SYMBOL(mips_machtype);
65 struct boot_mem_map boot_mem_map;
67 static char __initdata command_line[COMMAND_LINE_SIZE];
68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
70 #ifdef CONFIG_CMDLINE_BOOL
71 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
72 #endif
75 * mips_io_port_base is the begin of the address space to which x86 style
76 * I/O ports are mapped.
78 const unsigned long mips_io_port_base = -1;
79 EXPORT_SYMBOL(mips_io_port_base);
81 static struct resource code_resource = { .name = "Kernel code", };
82 static struct resource data_resource = { .name = "Kernel data", };
84 static void *detect_magic __initdata = detect_memory_region;
86 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
88 int x = boot_mem_map.nr_map;
89 int i;
92 * If the region reaches the top of the physical address space, adjust
93 * the size slightly so that (start + size) doesn't overflow
95 if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
96 --size;
98 /* Sanity check */
99 if (start + size < start) {
100 pr_warn("Trying to add an invalid memory region, skipped\n");
101 return;
105 * Try to merge with existing entry, if any.
107 for (i = 0; i < boot_mem_map.nr_map; i++) {
108 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
109 unsigned long top;
111 if (entry->type != type)
112 continue;
114 if (start + size < entry->addr)
115 continue; /* no overlap */
117 if (entry->addr + entry->size < start)
118 continue; /* no overlap */
120 top = max(entry->addr + entry->size, start + size);
121 entry->addr = min(entry->addr, start);
122 entry->size = top - entry->addr;
124 return;
127 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
128 pr_err("Ooops! Too many entries in the memory map!\n");
129 return;
132 boot_mem_map.map[x].addr = start;
133 boot_mem_map.map[x].size = size;
134 boot_mem_map.map[x].type = type;
135 boot_mem_map.nr_map++;
138 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
140 void *dm = &detect_magic;
141 phys_addr_t size;
143 for (size = sz_min; size < sz_max; size <<= 1) {
144 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
145 break;
148 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
149 ((unsigned long long) size) / SZ_1M,
150 (unsigned long long) start,
151 ((unsigned long long) sz_min) / SZ_1M,
152 ((unsigned long long) sz_max) / SZ_1M);
154 add_memory_region(start, size, BOOT_MEM_RAM);
157 bool __init memory_region_available(phys_addr_t start, phys_addr_t size)
159 int i;
160 bool in_ram = false, free = true;
162 for (i = 0; i < boot_mem_map.nr_map; i++) {
163 phys_addr_t start_, end_;
165 start_ = boot_mem_map.map[i].addr;
166 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
168 switch (boot_mem_map.map[i].type) {
169 case BOOT_MEM_RAM:
170 if (start >= start_ && start + size <= end_)
171 in_ram = true;
172 break;
173 case BOOT_MEM_RESERVED:
174 if ((start >= start_ && start < end_) ||
175 (start < start_ && start + size >= start_))
176 free = false;
177 break;
178 default:
179 continue;
183 return in_ram && free;
186 static void __init print_memory_map(void)
188 int i;
189 const int field = 2 * sizeof(unsigned long);
191 for (i = 0; i < boot_mem_map.nr_map; i++) {
192 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
193 field, (unsigned long long) boot_mem_map.map[i].size,
194 field, (unsigned long long) boot_mem_map.map[i].addr);
196 switch (boot_mem_map.map[i].type) {
197 case BOOT_MEM_RAM:
198 printk(KERN_CONT "(usable)\n");
199 break;
200 case BOOT_MEM_INIT_RAM:
201 printk(KERN_CONT "(usable after init)\n");
202 break;
203 case BOOT_MEM_ROM_DATA:
204 printk(KERN_CONT "(ROM data)\n");
205 break;
206 case BOOT_MEM_RESERVED:
207 printk(KERN_CONT "(reserved)\n");
208 break;
209 default:
210 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
211 break;
217 * Manage initrd
219 #ifdef CONFIG_BLK_DEV_INITRD
221 static int __init rd_start_early(char *p)
223 unsigned long start = memparse(p, &p);
225 #ifdef CONFIG_64BIT
226 /* Guess if the sign extension was forgotten by bootloader */
227 if (start < XKPHYS)
228 start = (int)start;
229 #endif
230 initrd_start = start;
231 initrd_end += start;
232 return 0;
234 early_param("rd_start", rd_start_early);
236 static int __init rd_size_early(char *p)
238 initrd_end += memparse(p, &p);
239 return 0;
241 early_param("rd_size", rd_size_early);
243 /* it returns the next free pfn after initrd */
244 static unsigned long __init init_initrd(void)
246 unsigned long end;
249 * Board specific code or command line parser should have
250 * already set up initrd_start and initrd_end. In these cases
251 * perfom sanity checks and use them if all looks good.
253 if (!initrd_start || initrd_end <= initrd_start)
254 goto disable;
256 if (initrd_start & ~PAGE_MASK) {
257 pr_err("initrd start must be page aligned\n");
258 goto disable;
260 if (initrd_start < PAGE_OFFSET) {
261 pr_err("initrd start < PAGE_OFFSET\n");
262 goto disable;
266 * Sanitize initrd addresses. For example firmware
267 * can't guess if they need to pass them through
268 * 64-bits values if the kernel has been built in pure
269 * 32-bit. We need also to switch from KSEG0 to XKPHYS
270 * addresses now, so the code can now safely use __pa().
272 end = __pa(initrd_end);
273 initrd_end = (unsigned long)__va(end);
274 initrd_start = (unsigned long)__va(__pa(initrd_start));
276 ROOT_DEV = Root_RAM0;
277 return PFN_UP(end);
278 disable:
279 initrd_start = 0;
280 initrd_end = 0;
281 return 0;
284 /* In some conditions (e.g. big endian bootloader with a little endian
285 kernel), the initrd might appear byte swapped. Try to detect this and
286 byte swap it if needed. */
287 static void __init maybe_bswap_initrd(void)
289 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
290 u64 buf;
292 /* Check for CPIO signature */
293 if (!memcmp((void *)initrd_start, "070701", 6))
294 return;
296 /* Check for compressed initrd */
297 if (decompress_method((unsigned char *)initrd_start, 8, NULL))
298 return;
300 /* Try again with a byte swapped header */
301 buf = swab64p((u64 *)initrd_start);
302 if (!memcmp(&buf, "070701", 6) ||
303 decompress_method((unsigned char *)(&buf), 8, NULL)) {
304 unsigned long i;
306 pr_info("Byteswapped initrd detected\n");
307 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
308 swab64s((u64 *)i);
310 #endif
313 static void __init finalize_initrd(void)
315 unsigned long size = initrd_end - initrd_start;
317 if (size == 0) {
318 printk(KERN_INFO "Initrd not found or empty");
319 goto disable;
321 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
322 printk(KERN_ERR "Initrd extends beyond end of memory");
323 goto disable;
326 maybe_bswap_initrd();
328 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
329 initrd_below_start_ok = 1;
331 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
332 initrd_start, size);
333 return;
334 disable:
335 printk(KERN_CONT " - disabling initrd\n");
336 initrd_start = 0;
337 initrd_end = 0;
340 #else /* !CONFIG_BLK_DEV_INITRD */
342 static unsigned long __init init_initrd(void)
344 return 0;
347 #define finalize_initrd() do {} while (0)
349 #endif
352 * Initialize the bootmem allocator. It also setup initrd related data
353 * if needed.
355 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
357 static void __init bootmem_init(void)
359 init_initrd();
360 finalize_initrd();
363 #else /* !CONFIG_SGI_IP27 */
365 static unsigned long __init bootmap_bytes(unsigned long pages)
367 unsigned long bytes = DIV_ROUND_UP(pages, 8);
369 return ALIGN(bytes, sizeof(long));
372 static void __init bootmem_init(void)
374 unsigned long reserved_end;
375 unsigned long mapstart = ~0UL;
376 unsigned long bootmap_size;
377 bool bootmap_valid = false;
378 int i;
381 * Sanity check any INITRD first. We don't take it into account
382 * for bootmem setup initially, rely on the end-of-kernel-code
383 * as our memory range starting point. Once bootmem is inited we
384 * will reserve the area used for the initrd.
386 init_initrd();
387 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
390 * max_low_pfn is not a number of pages. The number of pages
391 * of the system is given by 'max_low_pfn - min_low_pfn'.
393 min_low_pfn = ~0UL;
394 max_low_pfn = 0;
397 * Find the highest page frame number we have available.
399 for (i = 0; i < boot_mem_map.nr_map; i++) {
400 unsigned long start, end;
402 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
403 continue;
405 start = PFN_UP(boot_mem_map.map[i].addr);
406 end = PFN_DOWN(boot_mem_map.map[i].addr
407 + boot_mem_map.map[i].size);
409 #ifndef CONFIG_HIGHMEM
411 * Skip highmem here so we get an accurate max_low_pfn if low
412 * memory stops short of high memory.
413 * If the region overlaps HIGHMEM_START, end is clipped so
414 * max_pfn excludes the highmem portion.
416 if (start >= PFN_DOWN(HIGHMEM_START))
417 continue;
418 if (end > PFN_DOWN(HIGHMEM_START))
419 end = PFN_DOWN(HIGHMEM_START);
420 #endif
422 if (end > max_low_pfn)
423 max_low_pfn = end;
424 if (start < min_low_pfn)
425 min_low_pfn = start;
426 if (end <= reserved_end)
427 continue;
428 #ifdef CONFIG_BLK_DEV_INITRD
429 /* Skip zones before initrd and initrd itself */
430 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
431 continue;
432 #endif
433 if (start >= mapstart)
434 continue;
435 mapstart = max(reserved_end, start);
438 if (min_low_pfn >= max_low_pfn)
439 panic("Incorrect memory mapping !!!");
440 if (min_low_pfn > ARCH_PFN_OFFSET) {
441 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
442 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
443 min_low_pfn - ARCH_PFN_OFFSET);
444 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
445 pr_info("%lu free pages won't be used\n",
446 ARCH_PFN_OFFSET - min_low_pfn);
448 min_low_pfn = ARCH_PFN_OFFSET;
451 * Determine low and high memory ranges
453 max_pfn = max_low_pfn;
454 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
455 #ifdef CONFIG_HIGHMEM
456 highstart_pfn = PFN_DOWN(HIGHMEM_START);
457 highend_pfn = max_low_pfn;
458 #endif
459 max_low_pfn = PFN_DOWN(HIGHMEM_START);
462 #ifdef CONFIG_BLK_DEV_INITRD
464 * mapstart should be after initrd_end
466 if (initrd_end)
467 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
468 #endif
471 * check that mapstart doesn't overlap with any of
472 * memory regions that have been reserved through eg. DTB
474 bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
476 bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
477 bootmap_size);
478 for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
479 unsigned long mapstart_addr;
481 switch (boot_mem_map.map[i].type) {
482 case BOOT_MEM_RESERVED:
483 mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
484 boot_mem_map.map[i].size);
485 if (PHYS_PFN(mapstart_addr) < mapstart)
486 break;
488 bootmap_valid = memory_region_available(mapstart_addr,
489 bootmap_size);
490 if (bootmap_valid)
491 mapstart = PHYS_PFN(mapstart_addr);
492 break;
493 default:
494 break;
498 if (!bootmap_valid)
499 panic("No memory area to place a bootmap bitmap");
502 * Initialize the boot-time allocator with low memory only.
504 if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
505 min_low_pfn, max_low_pfn))
506 panic("Unexpected memory size required for bootmap");
508 for (i = 0; i < boot_mem_map.nr_map; i++) {
509 unsigned long start, end;
511 start = PFN_UP(boot_mem_map.map[i].addr);
512 end = PFN_DOWN(boot_mem_map.map[i].addr
513 + boot_mem_map.map[i].size);
515 if (start <= min_low_pfn)
516 start = min_low_pfn;
517 if (start >= end)
518 continue;
520 #ifndef CONFIG_HIGHMEM
521 if (end > max_low_pfn)
522 end = max_low_pfn;
525 * ... finally, is the area going away?
527 if (end <= start)
528 continue;
529 #endif
531 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
535 * Register fully available low RAM pages with the bootmem allocator.
537 for (i = 0; i < boot_mem_map.nr_map; i++) {
538 unsigned long start, end, size;
540 start = PFN_UP(boot_mem_map.map[i].addr);
541 end = PFN_DOWN(boot_mem_map.map[i].addr
542 + boot_mem_map.map[i].size);
545 * Reserve usable memory.
547 switch (boot_mem_map.map[i].type) {
548 case BOOT_MEM_RAM:
549 break;
550 case BOOT_MEM_INIT_RAM:
551 memory_present(0, start, end);
552 continue;
553 default:
554 /* Not usable memory */
555 if (start > min_low_pfn && end < max_low_pfn)
556 reserve_bootmem(boot_mem_map.map[i].addr,
557 boot_mem_map.map[i].size,
558 BOOTMEM_DEFAULT);
559 continue;
563 * We are rounding up the start address of usable memory
564 * and at the end of the usable range downwards.
566 if (start >= max_low_pfn)
567 continue;
568 if (start < reserved_end)
569 start = reserved_end;
570 if (end > max_low_pfn)
571 end = max_low_pfn;
574 * ... finally, is the area going away?
576 if (end <= start)
577 continue;
578 size = end - start;
580 /* Register lowmem ranges */
581 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
582 memory_present(0, start, end);
586 * Reserve the bootmap memory.
588 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
590 #ifdef CONFIG_RELOCATABLE
592 * The kernel reserves all memory below its _end symbol as bootmem,
593 * but the kernel may now be at a much higher address. The memory
594 * between the original and new locations may be returned to the system.
596 if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
597 unsigned long offset;
598 extern void show_kernel_relocation(const char *level);
600 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
601 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
603 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
605 * This information is necessary when debugging the kernel
606 * But is a security vulnerability otherwise!
608 show_kernel_relocation(KERN_INFO);
609 #endif
611 #endif
614 * Reserve initrd memory if needed.
616 finalize_initrd();
619 #endif /* CONFIG_SGI_IP27 */
622 * arch_mem_init - initialize memory management subsystem
624 * o plat_mem_setup() detects the memory configuration and will record detected
625 * memory areas using add_memory_region.
627 * At this stage the memory configuration of the system is known to the
628 * kernel but generic memory management system is still entirely uninitialized.
630 * o bootmem_init()
631 * o sparse_init()
632 * o paging_init()
633 * o dma_contiguous_reserve()
635 * At this stage the bootmem allocator is ready to use.
637 * NOTE: historically plat_mem_setup did the entire platform initialization.
638 * This was rather impractical because it meant plat_mem_setup had to
639 * get away without any kind of memory allocator. To keep old code from
640 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
641 * initialization hook for anything else was introduced.
644 static int usermem __initdata;
646 static int __init early_parse_mem(char *p)
648 phys_addr_t start, size;
651 * If a user specifies memory size, we
652 * blow away any automatically generated
653 * size.
655 if (usermem == 0) {
656 boot_mem_map.nr_map = 0;
657 usermem = 1;
659 start = 0;
660 size = memparse(p, &p);
661 if (*p == '@')
662 start = memparse(p + 1, &p);
664 add_memory_region(start, size, BOOT_MEM_RAM);
666 if (start && start > PHYS_OFFSET)
667 add_memory_region(PHYS_OFFSET, start - PHYS_OFFSET,
668 BOOT_MEM_RESERVED);
669 return 0;
671 early_param("mem", early_parse_mem);
673 #ifdef CONFIG_PROC_VMCORE
674 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
675 static int __init early_parse_elfcorehdr(char *p)
677 int i;
679 setup_elfcorehdr = memparse(p, &p);
681 for (i = 0; i < boot_mem_map.nr_map; i++) {
682 unsigned long start = boot_mem_map.map[i].addr;
683 unsigned long end = (boot_mem_map.map[i].addr +
684 boot_mem_map.map[i].size);
685 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
687 * Reserve from the elf core header to the end of
688 * the memory segment, that should all be kdump
689 * reserved memory.
691 setup_elfcorehdr_size = end - setup_elfcorehdr;
692 break;
696 * If we don't find it in the memory map, then we shouldn't
697 * have to worry about it, as the new kernel won't use it.
699 return 0;
701 early_param("elfcorehdr", early_parse_elfcorehdr);
702 #endif
704 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
706 phys_addr_t size;
707 int i;
709 size = end - mem;
710 if (!size)
711 return;
713 /* Make sure it is in the boot_mem_map */
714 for (i = 0; i < boot_mem_map.nr_map; i++) {
715 if (mem >= boot_mem_map.map[i].addr &&
716 mem < (boot_mem_map.map[i].addr +
717 boot_mem_map.map[i].size))
718 return;
720 add_memory_region(mem, size, type);
723 #ifdef CONFIG_KEXEC
724 static inline unsigned long long get_total_mem(void)
726 unsigned long long total;
728 total = max_pfn - min_low_pfn;
729 return total << PAGE_SHIFT;
732 static void __init mips_parse_crashkernel(void)
734 unsigned long long total_mem;
735 unsigned long long crash_size, crash_base;
736 int ret;
738 total_mem = get_total_mem();
739 ret = parse_crashkernel(boot_command_line, total_mem,
740 &crash_size, &crash_base);
741 if (ret != 0 || crash_size <= 0)
742 return;
744 if (!memory_region_available(crash_base, crash_size)) {
745 pr_warn("Invalid memory region reserved for crash kernel\n");
746 return;
749 crashk_res.start = crash_base;
750 crashk_res.end = crash_base + crash_size - 1;
753 static void __init request_crashkernel(struct resource *res)
755 int ret;
757 if (crashk_res.start == crashk_res.end)
758 return;
760 ret = request_resource(res, &crashk_res);
761 if (!ret)
762 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
763 (unsigned long)((crashk_res.end -
764 crashk_res.start + 1) >> 20),
765 (unsigned long)(crashk_res.start >> 20));
767 #else /* !defined(CONFIG_KEXEC) */
768 static void __init mips_parse_crashkernel(void)
772 static void __init request_crashkernel(struct resource *res)
775 #endif /* !defined(CONFIG_KEXEC) */
777 #define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
778 #define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
779 #define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
780 #define BUILTIN_EXTEND_WITH_PROM \
781 IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
783 static void __init arch_mem_init(char **cmdline_p)
785 struct memblock_region *reg;
786 extern void plat_mem_setup(void);
788 /* call board setup routine */
789 plat_mem_setup();
792 * Make sure all kernel memory is in the maps. The "UP" and
793 * "DOWN" are opposite for initdata since if it crosses over
794 * into another memory section you don't want that to be
795 * freed when the initdata is freed.
797 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
798 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
799 BOOT_MEM_RAM);
800 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
801 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
802 BOOT_MEM_INIT_RAM);
804 pr_info("Determined physical RAM map:\n");
805 print_memory_map();
807 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
808 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
809 #else
810 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
811 (USE_DTB_CMDLINE && !boot_command_line[0]))
812 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
814 if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
815 if (boot_command_line[0])
816 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
817 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
820 #if defined(CONFIG_CMDLINE_BOOL)
821 if (builtin_cmdline[0]) {
822 if (boot_command_line[0])
823 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
824 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
827 if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
828 if (boot_command_line[0])
829 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
830 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
832 #endif
833 #endif
834 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
836 *cmdline_p = command_line;
838 parse_early_param();
840 if (usermem) {
841 pr_info("User-defined physical RAM map:\n");
842 print_memory_map();
845 early_init_fdt_reserve_self();
846 early_init_fdt_scan_reserved_mem();
848 bootmem_init();
849 #ifdef CONFIG_PROC_VMCORE
850 if (setup_elfcorehdr && setup_elfcorehdr_size) {
851 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
852 setup_elfcorehdr, setup_elfcorehdr_size);
853 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
854 BOOTMEM_DEFAULT);
856 #endif
858 mips_parse_crashkernel();
859 #ifdef CONFIG_KEXEC
860 if (crashk_res.start != crashk_res.end)
861 reserve_bootmem(crashk_res.start,
862 crashk_res.end - crashk_res.start + 1,
863 BOOTMEM_DEFAULT);
864 #endif
865 device_tree_init();
866 sparse_init();
867 plat_swiotlb_setup();
869 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
870 /* Tell bootmem about cma reserved memblock section */
871 for_each_memblock(reserved, reg)
872 if (reg->size != 0)
873 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
875 reserve_bootmem_region(__pa_symbol(&__nosave_begin),
876 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
879 static void __init resource_init(void)
881 int i;
883 if (UNCAC_BASE != IO_BASE)
884 return;
886 code_resource.start = __pa_symbol(&_text);
887 code_resource.end = __pa_symbol(&_etext) - 1;
888 data_resource.start = __pa_symbol(&_etext);
889 data_resource.end = __pa_symbol(&_edata) - 1;
891 for (i = 0; i < boot_mem_map.nr_map; i++) {
892 struct resource *res;
893 unsigned long start, end;
895 start = boot_mem_map.map[i].addr;
896 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
897 if (start >= HIGHMEM_START)
898 continue;
899 if (end >= HIGHMEM_START)
900 end = HIGHMEM_START - 1;
902 res = alloc_bootmem(sizeof(struct resource));
904 res->start = start;
905 res->end = end;
906 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
908 switch (boot_mem_map.map[i].type) {
909 case BOOT_MEM_RAM:
910 case BOOT_MEM_INIT_RAM:
911 case BOOT_MEM_ROM_DATA:
912 res->name = "System RAM";
913 res->flags |= IORESOURCE_SYSRAM;
914 break;
915 case BOOT_MEM_RESERVED:
916 default:
917 res->name = "reserved";
920 request_resource(&iomem_resource, res);
923 * We don't know which RAM region contains kernel data,
924 * so we try it repeatedly and let the resource manager
925 * test it.
927 request_resource(res, &code_resource);
928 request_resource(res, &data_resource);
929 request_crashkernel(res);
933 #ifdef CONFIG_SMP
934 static void __init prefill_possible_map(void)
936 int i, possible = num_possible_cpus();
938 if (possible > nr_cpu_ids)
939 possible = nr_cpu_ids;
941 for (i = 0; i < possible; i++)
942 set_cpu_possible(i, true);
943 for (; i < NR_CPUS; i++)
944 set_cpu_possible(i, false);
946 nr_cpu_ids = possible;
948 #else
949 static inline void prefill_possible_map(void) {}
950 #endif
952 void __init setup_arch(char **cmdline_p)
954 cpu_probe();
955 mips_cm_probe();
956 prom_init();
958 setup_early_fdc_console();
959 #ifdef CONFIG_EARLY_PRINTK
960 setup_early_printk();
961 #endif
962 cpu_report();
963 check_bugs_early();
965 #if defined(CONFIG_VT)
966 #if defined(CONFIG_VGA_CONSOLE)
967 conswitchp = &vga_con;
968 #elif defined(CONFIG_DUMMY_CONSOLE)
969 conswitchp = &dummy_con;
970 #endif
971 #endif
973 arch_mem_init(cmdline_p);
975 resource_init();
976 plat_smp_setup();
977 prefill_possible_map();
979 cpu_cache_init();
980 paging_init();
983 unsigned long kernelsp[NR_CPUS];
984 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
986 #ifdef CONFIG_USE_OF
987 unsigned long fw_passed_dtb;
988 #endif
990 #ifdef CONFIG_DEBUG_FS
991 struct dentry *mips_debugfs_dir;
992 static int __init debugfs_mips(void)
994 struct dentry *d;
996 d = debugfs_create_dir("mips", NULL);
997 if (!d)
998 return -ENOMEM;
999 mips_debugfs_dir = d;
1000 return 0;
1002 arch_initcall(debugfs_mips);
1003 #endif