2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/sched/clock.h>
12 #include <linux/blkdev.h>
13 #include <linux/elevator.h>
14 #include <linux/ktime.h>
15 #include <linux/rbtree.h>
16 #include <linux/ioprio.h>
17 #include <linux/blktrace_api.h>
18 #include <linux/blk-cgroup.h>
25 /* max queue in one round of service */
26 static const int cfq_quantum
= 8;
27 static const u64 cfq_fifo_expire
[2] = { NSEC_PER_SEC
/ 4, NSEC_PER_SEC
/ 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max
= 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty
= 2;
32 static const u64 cfq_slice_sync
= NSEC_PER_SEC
/ 10;
33 static u64 cfq_slice_async
= NSEC_PER_SEC
/ 25;
34 static const int cfq_slice_async_rq
= 2;
35 static u64 cfq_slice_idle
= NSEC_PER_SEC
/ 125;
36 static u64 cfq_group_idle
= NSEC_PER_SEC
/ 125;
37 static const u64 cfq_target_latency
= (u64
)NSEC_PER_SEC
* 3/10; /* 300 ms */
38 static const int cfq_hist_divisor
= 4;
41 * offset from end of queue service tree for idle class
43 #define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
44 /* offset from end of group service tree under time slice mode */
45 #define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5)
46 /* offset from end of group service under IOPS mode */
47 #define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5)
50 * below this threshold, we consider thinktime immediate
52 #define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
54 #define CFQ_SLICE_SCALE (5)
55 #define CFQ_HW_QUEUE_MIN (5)
56 #define CFQ_SERVICE_SHIFT 12
58 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
59 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
60 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
61 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
63 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
64 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
65 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
67 static struct kmem_cache
*cfq_pool
;
69 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
70 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
71 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
73 #define sample_valid(samples) ((samples) > 80)
74 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
76 /* blkio-related constants */
77 #define CFQ_WEIGHT_LEGACY_MIN 10
78 #define CFQ_WEIGHT_LEGACY_DFL 500
79 #define CFQ_WEIGHT_LEGACY_MAX 1000
86 unsigned long ttime_samples
;
90 * Most of our rbtree usage is for sorting with min extraction, so
91 * if we cache the leftmost node we don't have to walk down the tree
92 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
93 * move this into the elevator for the rq sorting as well.
100 struct cfq_ttime ttime
;
102 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
103 .ttime = {.last_end_request = ktime_get_ns(),},}
106 * Per process-grouping structure
109 /* reference count */
111 /* various state flags, see below */
113 /* parent cfq_data */
114 struct cfq_data
*cfqd
;
115 /* service_tree member */
116 struct rb_node rb_node
;
117 /* service_tree key */
119 /* prio tree member */
120 struct rb_node p_node
;
121 /* prio tree root we belong to, if any */
122 struct rb_root
*p_root
;
123 /* sorted list of pending requests */
124 struct rb_root sort_list
;
125 /* if fifo isn't expired, next request to serve */
126 struct request
*next_rq
;
127 /* requests queued in sort_list */
129 /* currently allocated requests */
131 /* fifo list of requests in sort_list */
132 struct list_head fifo
;
134 /* time when queue got scheduled in to dispatch first request. */
138 /* time when first request from queue completed and slice started. */
143 /* pending priority requests */
145 /* number of requests that are on the dispatch list or inside driver */
148 /* io prio of this group */
149 unsigned short ioprio
, org_ioprio
;
150 unsigned short ioprio_class
, org_ioprio_class
;
155 sector_t last_request_pos
;
157 struct cfq_rb_root
*service_tree
;
158 struct cfq_queue
*new_cfqq
;
159 struct cfq_group
*cfqg
;
160 /* Number of sectors dispatched from queue in single dispatch round */
161 unsigned long nr_sectors
;
165 * First index in the service_trees.
166 * IDLE is handled separately, so it has negative index
176 * Second index in the service_trees.
180 SYNC_NOIDLE_WORKLOAD
= 1,
185 #ifdef CONFIG_CFQ_GROUP_IOSCHED
186 /* number of ios merged */
187 struct blkg_rwstat merged
;
188 /* total time spent on device in ns, may not be accurate w/ queueing */
189 struct blkg_rwstat service_time
;
190 /* total time spent waiting in scheduler queue in ns */
191 struct blkg_rwstat wait_time
;
192 /* number of IOs queued up */
193 struct blkg_rwstat queued
;
194 /* total disk time and nr sectors dispatched by this group */
195 struct blkg_stat time
;
196 #ifdef CONFIG_DEBUG_BLK_CGROUP
197 /* time not charged to this cgroup */
198 struct blkg_stat unaccounted_time
;
199 /* sum of number of ios queued across all samples */
200 struct blkg_stat avg_queue_size_sum
;
201 /* count of samples taken for average */
202 struct blkg_stat avg_queue_size_samples
;
203 /* how many times this group has been removed from service tree */
204 struct blkg_stat dequeue
;
205 /* total time spent waiting for it to be assigned a timeslice. */
206 struct blkg_stat group_wait_time
;
207 /* time spent idling for this blkcg_gq */
208 struct blkg_stat idle_time
;
209 /* total time with empty current active q with other requests queued */
210 struct blkg_stat empty_time
;
211 /* fields after this shouldn't be cleared on stat reset */
212 uint64_t start_group_wait_time
;
213 uint64_t start_idle_time
;
214 uint64_t start_empty_time
;
216 #endif /* CONFIG_DEBUG_BLK_CGROUP */
217 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
220 /* Per-cgroup data */
221 struct cfq_group_data
{
222 /* must be the first member */
223 struct blkcg_policy_data cpd
;
226 unsigned int leaf_weight
;
229 /* This is per cgroup per device grouping structure */
231 /* must be the first member */
232 struct blkg_policy_data pd
;
234 /* group service_tree member */
235 struct rb_node rb_node
;
237 /* group service_tree key */
241 * The number of active cfqgs and sum of their weights under this
242 * cfqg. This covers this cfqg's leaf_weight and all children's
243 * weights, but does not cover weights of further descendants.
245 * If a cfqg is on the service tree, it's active. An active cfqg
246 * also activates its parent and contributes to the children_weight
250 unsigned int children_weight
;
253 * vfraction is the fraction of vdisktime that the tasks in this
254 * cfqg are entitled to. This is determined by compounding the
255 * ratios walking up from this cfqg to the root.
257 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
258 * vfractions on a service tree is approximately 1. The sum may
259 * deviate a bit due to rounding errors and fluctuations caused by
260 * cfqgs entering and leaving the service tree.
262 unsigned int vfraction
;
265 * There are two weights - (internal) weight is the weight of this
266 * cfqg against the sibling cfqgs. leaf_weight is the wight of
267 * this cfqg against the child cfqgs. For the root cfqg, both
268 * weights are kept in sync for backward compatibility.
271 unsigned int new_weight
;
272 unsigned int dev_weight
;
274 unsigned int leaf_weight
;
275 unsigned int new_leaf_weight
;
276 unsigned int dev_leaf_weight
;
278 /* number of cfqq currently on this group */
282 * Per group busy queues average. Useful for workload slice calc. We
283 * create the array for each prio class but at run time it is used
284 * only for RT and BE class and slot for IDLE class remains unused.
285 * This is primarily done to avoid confusion and a gcc warning.
287 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
289 * rr lists of queues with requests. We maintain service trees for
290 * RT and BE classes. These trees are subdivided in subclasses
291 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
292 * class there is no subclassification and all the cfq queues go on
293 * a single tree service_tree_idle.
294 * Counts are embedded in the cfq_rb_root
296 struct cfq_rb_root service_trees
[2][3];
297 struct cfq_rb_root service_tree_idle
;
300 enum wl_type_t saved_wl_type
;
301 enum wl_class_t saved_wl_class
;
303 /* number of requests that are on the dispatch list or inside driver */
305 struct cfq_ttime ttime
;
306 struct cfqg_stats stats
; /* stats for this cfqg */
308 /* async queue for each priority case */
309 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
310 struct cfq_queue
*async_idle_cfqq
;
315 struct io_cq icq
; /* must be the first member */
316 struct cfq_queue
*cfqq
[2];
317 struct cfq_ttime ttime
;
318 int ioprio
; /* the current ioprio */
319 #ifdef CONFIG_CFQ_GROUP_IOSCHED
320 uint64_t blkcg_serial_nr
; /* the current blkcg serial */
325 * Per block device queue structure
328 struct request_queue
*queue
;
329 /* Root service tree for cfq_groups */
330 struct cfq_rb_root grp_service_tree
;
331 struct cfq_group
*root_group
;
334 * The priority currently being served
336 enum wl_class_t serving_wl_class
;
337 enum wl_type_t serving_wl_type
;
338 u64 workload_expires
;
339 struct cfq_group
*serving_group
;
342 * Each priority tree is sorted by next_request position. These
343 * trees are used when determining if two or more queues are
344 * interleaving requests (see cfq_close_cooperator).
346 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
348 unsigned int busy_queues
;
349 unsigned int busy_sync_queues
;
355 * queue-depth detection
361 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
362 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
365 int hw_tag_est_depth
;
366 unsigned int hw_tag_samples
;
369 * idle window management
371 struct hrtimer idle_slice_timer
;
372 struct work_struct unplug_work
;
374 struct cfq_queue
*active_queue
;
375 struct cfq_io_cq
*active_cic
;
377 sector_t last_position
;
380 * tunables, see top of file
382 unsigned int cfq_quantum
;
383 unsigned int cfq_back_penalty
;
384 unsigned int cfq_back_max
;
385 unsigned int cfq_slice_async_rq
;
386 unsigned int cfq_latency
;
387 u64 cfq_fifo_expire
[2];
391 u64 cfq_target_latency
;
394 * Fallback dummy cfqq for extreme OOM conditions
396 struct cfq_queue oom_cfqq
;
398 u64 last_delayed_sync
;
401 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
402 static void cfq_put_queue(struct cfq_queue
*cfqq
);
404 static struct cfq_rb_root
*st_for(struct cfq_group
*cfqg
,
405 enum wl_class_t
class,
411 if (class == IDLE_WORKLOAD
)
412 return &cfqg
->service_tree_idle
;
414 return &cfqg
->service_trees
[class][type
];
417 enum cfqq_state_flags
{
418 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
419 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
420 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
421 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
422 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
423 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
424 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
425 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
426 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
427 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
428 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
429 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
430 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
433 #define CFQ_CFQQ_FNS(name) \
434 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
436 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
438 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
440 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
442 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
444 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
448 CFQ_CFQQ_FNS(wait_request
);
449 CFQ_CFQQ_FNS(must_dispatch
);
450 CFQ_CFQQ_FNS(must_alloc_slice
);
451 CFQ_CFQQ_FNS(fifo_expire
);
452 CFQ_CFQQ_FNS(idle_window
);
453 CFQ_CFQQ_FNS(prio_changed
);
454 CFQ_CFQQ_FNS(slice_new
);
457 CFQ_CFQQ_FNS(split_coop
);
459 CFQ_CFQQ_FNS(wait_busy
);
462 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
464 /* cfqg stats flags */
465 enum cfqg_stats_flags
{
466 CFQG_stats_waiting
= 0,
471 #define CFQG_FLAG_FNS(name) \
472 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
474 stats->flags |= (1 << CFQG_stats_##name); \
476 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
478 stats->flags &= ~(1 << CFQG_stats_##name); \
480 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
482 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
485 CFQG_FLAG_FNS(waiting)
486 CFQG_FLAG_FNS(idling
)
490 /* This should be called with the queue_lock held. */
491 static void cfqg_stats_update_group_wait_time(struct cfqg_stats
*stats
)
493 unsigned long long now
;
495 if (!cfqg_stats_waiting(stats
))
499 if (time_after64(now
, stats
->start_group_wait_time
))
500 blkg_stat_add(&stats
->group_wait_time
,
501 now
- stats
->start_group_wait_time
);
502 cfqg_stats_clear_waiting(stats
);
505 /* This should be called with the queue_lock held. */
506 static void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
,
507 struct cfq_group
*curr_cfqg
)
509 struct cfqg_stats
*stats
= &cfqg
->stats
;
511 if (cfqg_stats_waiting(stats
))
513 if (cfqg
== curr_cfqg
)
515 stats
->start_group_wait_time
= sched_clock();
516 cfqg_stats_mark_waiting(stats
);
519 /* This should be called with the queue_lock held. */
520 static void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
)
522 unsigned long long now
;
524 if (!cfqg_stats_empty(stats
))
528 if (time_after64(now
, stats
->start_empty_time
))
529 blkg_stat_add(&stats
->empty_time
,
530 now
- stats
->start_empty_time
);
531 cfqg_stats_clear_empty(stats
);
534 static void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
)
536 blkg_stat_add(&cfqg
->stats
.dequeue
, 1);
539 static void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
)
541 struct cfqg_stats
*stats
= &cfqg
->stats
;
543 if (blkg_rwstat_total(&stats
->queued
))
547 * group is already marked empty. This can happen if cfqq got new
548 * request in parent group and moved to this group while being added
549 * to service tree. Just ignore the event and move on.
551 if (cfqg_stats_empty(stats
))
554 stats
->start_empty_time
= sched_clock();
555 cfqg_stats_mark_empty(stats
);
558 static void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
)
560 struct cfqg_stats
*stats
= &cfqg
->stats
;
562 if (cfqg_stats_idling(stats
)) {
563 unsigned long long now
= sched_clock();
565 if (time_after64(now
, stats
->start_idle_time
))
566 blkg_stat_add(&stats
->idle_time
,
567 now
- stats
->start_idle_time
);
568 cfqg_stats_clear_idling(stats
);
572 static void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
)
574 struct cfqg_stats
*stats
= &cfqg
->stats
;
576 BUG_ON(cfqg_stats_idling(stats
));
578 stats
->start_idle_time
= sched_clock();
579 cfqg_stats_mark_idling(stats
);
582 static void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
)
584 struct cfqg_stats
*stats
= &cfqg
->stats
;
586 blkg_stat_add(&stats
->avg_queue_size_sum
,
587 blkg_rwstat_total(&stats
->queued
));
588 blkg_stat_add(&stats
->avg_queue_size_samples
, 1);
589 cfqg_stats_update_group_wait_time(stats
);
592 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
594 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
, struct cfq_group
*curr_cfqg
) { }
595 static inline void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
) { }
596 static inline void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
) { }
597 static inline void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
) { }
598 static inline void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
) { }
599 static inline void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
) { }
600 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
) { }
602 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
604 #ifdef CONFIG_CFQ_GROUP_IOSCHED
606 static inline struct cfq_group
*pd_to_cfqg(struct blkg_policy_data
*pd
)
608 return pd
? container_of(pd
, struct cfq_group
, pd
) : NULL
;
611 static struct cfq_group_data
612 *cpd_to_cfqgd(struct blkcg_policy_data
*cpd
)
614 return cpd
? container_of(cpd
, struct cfq_group_data
, cpd
) : NULL
;
617 static inline struct blkcg_gq
*cfqg_to_blkg(struct cfq_group
*cfqg
)
619 return pd_to_blkg(&cfqg
->pd
);
622 static struct blkcg_policy blkcg_policy_cfq
;
624 static inline struct cfq_group
*blkg_to_cfqg(struct blkcg_gq
*blkg
)
626 return pd_to_cfqg(blkg_to_pd(blkg
, &blkcg_policy_cfq
));
629 static struct cfq_group_data
*blkcg_to_cfqgd(struct blkcg
*blkcg
)
631 return cpd_to_cfqgd(blkcg_to_cpd(blkcg
, &blkcg_policy_cfq
));
634 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
)
636 struct blkcg_gq
*pblkg
= cfqg_to_blkg(cfqg
)->parent
;
638 return pblkg
? blkg_to_cfqg(pblkg
) : NULL
;
641 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
642 struct cfq_group
*ancestor
)
644 return cgroup_is_descendant(cfqg_to_blkg(cfqg
)->blkcg
->css
.cgroup
,
645 cfqg_to_blkg(ancestor
)->blkcg
->css
.cgroup
);
648 static inline void cfqg_get(struct cfq_group
*cfqg
)
650 return blkg_get(cfqg_to_blkg(cfqg
));
653 static inline void cfqg_put(struct cfq_group
*cfqg
)
655 return blkg_put(cfqg_to_blkg(cfqg
));
658 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
661 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
662 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
663 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
664 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
668 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
671 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
672 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
675 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
676 struct cfq_group
*curr_cfqg
,
679 blkg_rwstat_add(&cfqg
->stats
.queued
, op
, 1);
680 cfqg_stats_end_empty_time(&cfqg
->stats
);
681 cfqg_stats_set_start_group_wait_time(cfqg
, curr_cfqg
);
684 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
685 uint64_t time
, unsigned long unaccounted_time
)
687 blkg_stat_add(&cfqg
->stats
.time
, time
);
688 #ifdef CONFIG_DEBUG_BLK_CGROUP
689 blkg_stat_add(&cfqg
->stats
.unaccounted_time
, unaccounted_time
);
693 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
,
696 blkg_rwstat_add(&cfqg
->stats
.queued
, op
, -1);
699 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
,
702 blkg_rwstat_add(&cfqg
->stats
.merged
, op
, 1);
705 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
706 uint64_t start_time
, uint64_t io_start_time
,
709 struct cfqg_stats
*stats
= &cfqg
->stats
;
710 unsigned long long now
= sched_clock();
712 if (time_after64(now
, io_start_time
))
713 blkg_rwstat_add(&stats
->service_time
, op
, now
- io_start_time
);
714 if (time_after64(io_start_time
, start_time
))
715 blkg_rwstat_add(&stats
->wait_time
, op
,
716 io_start_time
- start_time
);
720 static void cfqg_stats_reset(struct cfqg_stats
*stats
)
722 /* queued stats shouldn't be cleared */
723 blkg_rwstat_reset(&stats
->merged
);
724 blkg_rwstat_reset(&stats
->service_time
);
725 blkg_rwstat_reset(&stats
->wait_time
);
726 blkg_stat_reset(&stats
->time
);
727 #ifdef CONFIG_DEBUG_BLK_CGROUP
728 blkg_stat_reset(&stats
->unaccounted_time
);
729 blkg_stat_reset(&stats
->avg_queue_size_sum
);
730 blkg_stat_reset(&stats
->avg_queue_size_samples
);
731 blkg_stat_reset(&stats
->dequeue
);
732 blkg_stat_reset(&stats
->group_wait_time
);
733 blkg_stat_reset(&stats
->idle_time
);
734 blkg_stat_reset(&stats
->empty_time
);
739 static void cfqg_stats_add_aux(struct cfqg_stats
*to
, struct cfqg_stats
*from
)
741 /* queued stats shouldn't be cleared */
742 blkg_rwstat_add_aux(&to
->merged
, &from
->merged
);
743 blkg_rwstat_add_aux(&to
->service_time
, &from
->service_time
);
744 blkg_rwstat_add_aux(&to
->wait_time
, &from
->wait_time
);
745 blkg_stat_add_aux(&from
->time
, &from
->time
);
746 #ifdef CONFIG_DEBUG_BLK_CGROUP
747 blkg_stat_add_aux(&to
->unaccounted_time
, &from
->unaccounted_time
);
748 blkg_stat_add_aux(&to
->avg_queue_size_sum
, &from
->avg_queue_size_sum
);
749 blkg_stat_add_aux(&to
->avg_queue_size_samples
, &from
->avg_queue_size_samples
);
750 blkg_stat_add_aux(&to
->dequeue
, &from
->dequeue
);
751 blkg_stat_add_aux(&to
->group_wait_time
, &from
->group_wait_time
);
752 blkg_stat_add_aux(&to
->idle_time
, &from
->idle_time
);
753 blkg_stat_add_aux(&to
->empty_time
, &from
->empty_time
);
758 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
759 * recursive stats can still account for the amount used by this cfqg after
762 static void cfqg_stats_xfer_dead(struct cfq_group
*cfqg
)
764 struct cfq_group
*parent
= cfqg_parent(cfqg
);
766 lockdep_assert_held(cfqg_to_blkg(cfqg
)->q
->queue_lock
);
768 if (unlikely(!parent
))
771 cfqg_stats_add_aux(&parent
->stats
, &cfqg
->stats
);
772 cfqg_stats_reset(&cfqg
->stats
);
775 #else /* CONFIG_CFQ_GROUP_IOSCHED */
777 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
) { return NULL
; }
778 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
779 struct cfq_group
*ancestor
)
783 static inline void cfqg_get(struct cfq_group
*cfqg
) { }
784 static inline void cfqg_put(struct cfq_group
*cfqg
) { }
786 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
787 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
788 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
789 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
791 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
793 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
794 struct cfq_group
*curr_cfqg
, unsigned int op
) { }
795 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
796 uint64_t time
, unsigned long unaccounted_time
) { }
797 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
,
799 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
,
801 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
802 uint64_t start_time
, uint64_t io_start_time
,
805 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
807 #define cfq_log(cfqd, fmt, args...) \
808 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
810 /* Traverses through cfq group service trees */
811 #define for_each_cfqg_st(cfqg, i, j, st) \
812 for (i = 0; i <= IDLE_WORKLOAD; i++) \
813 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
814 : &cfqg->service_tree_idle; \
815 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
816 (i == IDLE_WORKLOAD && j == 0); \
817 j++, st = i < IDLE_WORKLOAD ? \
818 &cfqg->service_trees[i][j]: NULL) \
820 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
821 struct cfq_ttime
*ttime
, bool group_idle
)
824 if (!sample_valid(ttime
->ttime_samples
))
827 slice
= cfqd
->cfq_group_idle
;
829 slice
= cfqd
->cfq_slice_idle
;
830 return ttime
->ttime_mean
> slice
;
833 static inline bool iops_mode(struct cfq_data
*cfqd
)
836 * If we are not idling on queues and it is a NCQ drive, parallel
837 * execution of requests is on and measuring time is not possible
838 * in most of the cases until and unless we drive shallower queue
839 * depths and that becomes a performance bottleneck. In such cases
840 * switch to start providing fairness in terms of number of IOs.
842 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
848 static inline enum wl_class_t
cfqq_class(struct cfq_queue
*cfqq
)
850 if (cfq_class_idle(cfqq
))
851 return IDLE_WORKLOAD
;
852 if (cfq_class_rt(cfqq
))
858 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
860 if (!cfq_cfqq_sync(cfqq
))
861 return ASYNC_WORKLOAD
;
862 if (!cfq_cfqq_idle_window(cfqq
))
863 return SYNC_NOIDLE_WORKLOAD
;
864 return SYNC_WORKLOAD
;
867 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class
,
868 struct cfq_data
*cfqd
,
869 struct cfq_group
*cfqg
)
871 if (wl_class
== IDLE_WORKLOAD
)
872 return cfqg
->service_tree_idle
.count
;
874 return cfqg
->service_trees
[wl_class
][ASYNC_WORKLOAD
].count
+
875 cfqg
->service_trees
[wl_class
][SYNC_NOIDLE_WORKLOAD
].count
+
876 cfqg
->service_trees
[wl_class
][SYNC_WORKLOAD
].count
;
879 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
880 struct cfq_group
*cfqg
)
882 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
+
883 cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
886 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
887 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
,
888 struct cfq_io_cq
*cic
, struct bio
*bio
);
890 static inline struct cfq_io_cq
*icq_to_cic(struct io_cq
*icq
)
892 /* cic->icq is the first member, %NULL will convert to %NULL */
893 return container_of(icq
, struct cfq_io_cq
, icq
);
896 static inline struct cfq_io_cq
*cfq_cic_lookup(struct cfq_data
*cfqd
,
897 struct io_context
*ioc
)
900 return icq_to_cic(ioc_lookup_icq(ioc
, cfqd
->queue
));
904 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_cq
*cic
, bool is_sync
)
906 return cic
->cfqq
[is_sync
];
909 static inline void cic_set_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
,
912 cic
->cfqq
[is_sync
] = cfqq
;
915 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_cq
*cic
)
917 return cic
->icq
.q
->elevator
->elevator_data
;
921 * scheduler run of queue, if there are requests pending and no one in the
922 * driver that will restart queueing
924 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
926 if (cfqd
->busy_queues
) {
927 cfq_log(cfqd
, "schedule dispatch");
928 kblockd_schedule_work(&cfqd
->unplug_work
);
933 * Scale schedule slice based on io priority. Use the sync time slice only
934 * if a queue is marked sync and has sync io queued. A sync queue with async
935 * io only, should not get full sync slice length.
937 static inline u64
cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
940 u64 base_slice
= cfqd
->cfq_slice
[sync
];
941 u64 slice
= div_u64(base_slice
, CFQ_SLICE_SCALE
);
943 WARN_ON(prio
>= IOPRIO_BE_NR
);
945 return base_slice
+ (slice
* (4 - prio
));
949 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
951 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
955 * cfqg_scale_charge - scale disk time charge according to cfqg weight
956 * @charge: disk time being charged
957 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
959 * Scale @charge according to @vfraction, which is in range (0, 1]. The
960 * scaling is inversely proportional.
962 * scaled = charge / vfraction
964 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
966 static inline u64
cfqg_scale_charge(u64 charge
,
967 unsigned int vfraction
)
969 u64 c
= charge
<< CFQ_SERVICE_SHIFT
; /* make it fixed point */
971 /* charge / vfraction */
972 c
<<= CFQ_SERVICE_SHIFT
;
973 return div_u64(c
, vfraction
);
976 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
978 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
980 min_vdisktime
= vdisktime
;
982 return min_vdisktime
;
985 static void update_min_vdisktime(struct cfq_rb_root
*st
)
987 struct cfq_group
*cfqg
;
990 cfqg
= rb_entry_cfqg(st
->left
);
991 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
997 * get averaged number of queues of RT/BE priority.
998 * average is updated, with a formula that gives more weight to higher numbers,
999 * to quickly follows sudden increases and decrease slowly
1002 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
1003 struct cfq_group
*cfqg
, bool rt
)
1005 unsigned min_q
, max_q
;
1006 unsigned mult
= cfq_hist_divisor
- 1;
1007 unsigned round
= cfq_hist_divisor
/ 2;
1008 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
1010 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
1011 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
1012 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
1014 return cfqg
->busy_queues_avg
[rt
];
1018 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1020 return cfqd
->cfq_target_latency
* cfqg
->vfraction
>> CFQ_SERVICE_SHIFT
;
1024 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1026 u64 slice
= cfq_prio_to_slice(cfqd
, cfqq
);
1027 if (cfqd
->cfq_latency
) {
1029 * interested queues (we consider only the ones with the same
1030 * priority class in the cfq group)
1032 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
1033 cfq_class_rt(cfqq
));
1034 u64 sync_slice
= cfqd
->cfq_slice
[1];
1035 u64 expect_latency
= sync_slice
* iq
;
1036 u64 group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
1038 if (expect_latency
> group_slice
) {
1039 u64 base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
1042 /* scale low_slice according to IO priority
1043 * and sync vs async */
1044 low_slice
= div64_u64(base_low_slice
*slice
, sync_slice
);
1045 low_slice
= min(slice
, low_slice
);
1046 /* the adapted slice value is scaled to fit all iqs
1047 * into the target latency */
1048 slice
= div64_u64(slice
*group_slice
, expect_latency
);
1049 slice
= max(slice
, low_slice
);
1056 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1058 u64 slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1059 u64 now
= ktime_get_ns();
1061 cfqq
->slice_start
= now
;
1062 cfqq
->slice_end
= now
+ slice
;
1063 cfqq
->allocated_slice
= slice
;
1064 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%llu", cfqq
->slice_end
- now
);
1068 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1069 * isn't valid until the first request from the dispatch is activated
1070 * and the slice time set.
1072 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
1074 if (cfq_cfqq_slice_new(cfqq
))
1076 if (ktime_get_ns() < cfqq
->slice_end
)
1083 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1084 * We choose the request that is closest to the head right now. Distance
1085 * behind the head is penalized and only allowed to a certain extent.
1087 static struct request
*
1088 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
1090 sector_t s1
, s2
, d1
= 0, d2
= 0;
1091 unsigned long back_max
;
1092 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1093 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1094 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
1096 if (rq1
== NULL
|| rq1
== rq2
)
1101 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
1102 return rq_is_sync(rq1
) ? rq1
: rq2
;
1104 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_PRIO
)
1105 return rq1
->cmd_flags
& REQ_PRIO
? rq1
: rq2
;
1107 s1
= blk_rq_pos(rq1
);
1108 s2
= blk_rq_pos(rq2
);
1111 * by definition, 1KiB is 2 sectors
1113 back_max
= cfqd
->cfq_back_max
* 2;
1116 * Strict one way elevator _except_ in the case where we allow
1117 * short backward seeks which are biased as twice the cost of a
1118 * similar forward seek.
1122 else if (s1
+ back_max
>= last
)
1123 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
1125 wrap
|= CFQ_RQ1_WRAP
;
1129 else if (s2
+ back_max
>= last
)
1130 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
1132 wrap
|= CFQ_RQ2_WRAP
;
1134 /* Found required data */
1137 * By doing switch() on the bit mask "wrap" we avoid having to
1138 * check two variables for all permutations: --> faster!
1141 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1157 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
1160 * Since both rqs are wrapped,
1161 * start with the one that's further behind head
1162 * (--> only *one* back seek required),
1163 * since back seek takes more time than forward.
1173 * The below is leftmost cache rbtree addon
1175 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
1177 /* Service tree is empty */
1182 root
->left
= rb_first(&root
->rb
);
1185 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
1190 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
1193 root
->left
= rb_first(&root
->rb
);
1196 return rb_entry_cfqg(root
->left
);
1201 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
1207 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
1209 if (root
->left
== n
)
1211 rb_erase_init(n
, &root
->rb
);
1216 * would be nice to take fifo expire time into account as well
1218 static struct request
*
1219 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1220 struct request
*last
)
1222 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
1223 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
1224 struct request
*next
= NULL
, *prev
= NULL
;
1226 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
1229 prev
= rb_entry_rq(rbprev
);
1232 next
= rb_entry_rq(rbnext
);
1234 rbnext
= rb_first(&cfqq
->sort_list
);
1235 if (rbnext
&& rbnext
!= &last
->rb_node
)
1236 next
= rb_entry_rq(rbnext
);
1239 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
1242 static u64
cfq_slice_offset(struct cfq_data
*cfqd
,
1243 struct cfq_queue
*cfqq
)
1246 * just an approximation, should be ok.
1248 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
1249 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
1253 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1255 return cfqg
->vdisktime
- st
->min_vdisktime
;
1259 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1261 struct rb_node
**node
= &st
->rb
.rb_node
;
1262 struct rb_node
*parent
= NULL
;
1263 struct cfq_group
*__cfqg
;
1264 s64 key
= cfqg_key(st
, cfqg
);
1267 while (*node
!= NULL
) {
1269 __cfqg
= rb_entry_cfqg(parent
);
1271 if (key
< cfqg_key(st
, __cfqg
))
1272 node
= &parent
->rb_left
;
1274 node
= &parent
->rb_right
;
1280 st
->left
= &cfqg
->rb_node
;
1282 rb_link_node(&cfqg
->rb_node
, parent
, node
);
1283 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
1287 * This has to be called only on activation of cfqg
1290 cfq_update_group_weight(struct cfq_group
*cfqg
)
1292 if (cfqg
->new_weight
) {
1293 cfqg
->weight
= cfqg
->new_weight
;
1294 cfqg
->new_weight
= 0;
1299 cfq_update_group_leaf_weight(struct cfq_group
*cfqg
)
1301 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1303 if (cfqg
->new_leaf_weight
) {
1304 cfqg
->leaf_weight
= cfqg
->new_leaf_weight
;
1305 cfqg
->new_leaf_weight
= 0;
1310 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1312 unsigned int vfr
= 1 << CFQ_SERVICE_SHIFT
; /* start with 1 */
1313 struct cfq_group
*pos
= cfqg
;
1314 struct cfq_group
*parent
;
1317 /* add to the service tree */
1318 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1321 * Update leaf_weight. We cannot update weight at this point
1322 * because cfqg might already have been activated and is
1323 * contributing its current weight to the parent's child_weight.
1325 cfq_update_group_leaf_weight(cfqg
);
1326 __cfq_group_service_tree_add(st
, cfqg
);
1329 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1330 * entitled to. vfraction is calculated by walking the tree
1331 * towards the root calculating the fraction it has at each level.
1332 * The compounded ratio is how much vfraction @cfqg owns.
1334 * Start with the proportion tasks in this cfqg has against active
1335 * children cfqgs - its leaf_weight against children_weight.
1337 propagate
= !pos
->nr_active
++;
1338 pos
->children_weight
+= pos
->leaf_weight
;
1339 vfr
= vfr
* pos
->leaf_weight
/ pos
->children_weight
;
1342 * Compound ->weight walking up the tree. Both activation and
1343 * vfraction calculation are done in the same loop. Propagation
1344 * stops once an already activated node is met. vfraction
1345 * calculation should always continue to the root.
1347 while ((parent
= cfqg_parent(pos
))) {
1349 cfq_update_group_weight(pos
);
1350 propagate
= !parent
->nr_active
++;
1351 parent
->children_weight
+= pos
->weight
;
1353 vfr
= vfr
* pos
->weight
/ parent
->children_weight
;
1357 cfqg
->vfraction
= max_t(unsigned, vfr
, 1);
1360 static inline u64
cfq_get_cfqg_vdisktime_delay(struct cfq_data
*cfqd
)
1362 if (!iops_mode(cfqd
))
1363 return CFQ_SLICE_MODE_GROUP_DELAY
;
1365 return CFQ_IOPS_MODE_GROUP_DELAY
;
1369 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1371 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1372 struct cfq_group
*__cfqg
;
1376 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1380 * Currently put the group at the end. Later implement something
1381 * so that groups get lesser vtime based on their weights, so that
1382 * if group does not loose all if it was not continuously backlogged.
1384 n
= rb_last(&st
->rb
);
1386 __cfqg
= rb_entry_cfqg(n
);
1387 cfqg
->vdisktime
= __cfqg
->vdisktime
+
1388 cfq_get_cfqg_vdisktime_delay(cfqd
);
1390 cfqg
->vdisktime
= st
->min_vdisktime
;
1391 cfq_group_service_tree_add(st
, cfqg
);
1395 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1397 struct cfq_group
*pos
= cfqg
;
1401 * Undo activation from cfq_group_service_tree_add(). Deactivate
1402 * @cfqg and propagate deactivation upwards.
1404 propagate
= !--pos
->nr_active
;
1405 pos
->children_weight
-= pos
->leaf_weight
;
1408 struct cfq_group
*parent
= cfqg_parent(pos
);
1410 /* @pos has 0 nr_active at this point */
1411 WARN_ON_ONCE(pos
->children_weight
);
1417 propagate
= !--parent
->nr_active
;
1418 parent
->children_weight
-= pos
->weight
;
1422 /* remove from the service tree */
1423 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1424 cfq_rb_erase(&cfqg
->rb_node
, st
);
1428 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1430 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1432 BUG_ON(cfqg
->nr_cfqq
< 1);
1435 /* If there are other cfq queues under this group, don't delete it */
1439 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
1440 cfq_group_service_tree_del(st
, cfqg
);
1441 cfqg
->saved_wl_slice
= 0;
1442 cfqg_stats_update_dequeue(cfqg
);
1445 static inline u64
cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
1446 u64
*unaccounted_time
)
1449 u64 now
= ktime_get_ns();
1452 * Queue got expired before even a single request completed or
1453 * got expired immediately after first request completion.
1455 if (!cfqq
->slice_start
|| cfqq
->slice_start
== now
) {
1457 * Also charge the seek time incurred to the group, otherwise
1458 * if there are mutiple queues in the group, each can dispatch
1459 * a single request on seeky media and cause lots of seek time
1460 * and group will never know it.
1462 slice_used
= max_t(u64
, (now
- cfqq
->dispatch_start
),
1463 jiffies_to_nsecs(1));
1465 slice_used
= now
- cfqq
->slice_start
;
1466 if (slice_used
> cfqq
->allocated_slice
) {
1467 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
1468 slice_used
= cfqq
->allocated_slice
;
1470 if (cfqq
->slice_start
> cfqq
->dispatch_start
)
1471 *unaccounted_time
+= cfqq
->slice_start
-
1472 cfqq
->dispatch_start
;
1478 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
1479 struct cfq_queue
*cfqq
)
1481 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1482 u64 used_sl
, charge
, unaccounted_sl
= 0;
1483 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
1484 - cfqg
->service_tree_idle
.count
;
1486 u64 now
= ktime_get_ns();
1488 BUG_ON(nr_sync
< 0);
1489 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
1491 if (iops_mode(cfqd
))
1492 charge
= cfqq
->slice_dispatch
;
1493 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
1494 charge
= cfqq
->allocated_slice
;
1497 * Can't update vdisktime while on service tree and cfqg->vfraction
1498 * is valid only while on it. Cache vfr, leave the service tree,
1499 * update vdisktime and go back on. The re-addition to the tree
1500 * will also update the weights as necessary.
1502 vfr
= cfqg
->vfraction
;
1503 cfq_group_service_tree_del(st
, cfqg
);
1504 cfqg
->vdisktime
+= cfqg_scale_charge(charge
, vfr
);
1505 cfq_group_service_tree_add(st
, cfqg
);
1507 /* This group is being expired. Save the context */
1508 if (cfqd
->workload_expires
> now
) {
1509 cfqg
->saved_wl_slice
= cfqd
->workload_expires
- now
;
1510 cfqg
->saved_wl_type
= cfqd
->serving_wl_type
;
1511 cfqg
->saved_wl_class
= cfqd
->serving_wl_class
;
1513 cfqg
->saved_wl_slice
= 0;
1515 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
1517 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
1518 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1519 used_sl
, cfqq
->slice_dispatch
, charge
,
1520 iops_mode(cfqd
), cfqq
->nr_sectors
);
1521 cfqg_stats_update_timeslice_used(cfqg
, used_sl
, unaccounted_sl
);
1522 cfqg_stats_set_start_empty_time(cfqg
);
1526 * cfq_init_cfqg_base - initialize base part of a cfq_group
1527 * @cfqg: cfq_group to initialize
1529 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1530 * is enabled or not.
1532 static void cfq_init_cfqg_base(struct cfq_group
*cfqg
)
1534 struct cfq_rb_root
*st
;
1537 for_each_cfqg_st(cfqg
, i
, j
, st
)
1539 RB_CLEAR_NODE(&cfqg
->rb_node
);
1541 cfqg
->ttime
.last_end_request
= ktime_get_ns();
1544 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1545 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1546 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
);
1548 static void cfqg_stats_exit(struct cfqg_stats
*stats
)
1550 blkg_rwstat_exit(&stats
->merged
);
1551 blkg_rwstat_exit(&stats
->service_time
);
1552 blkg_rwstat_exit(&stats
->wait_time
);
1553 blkg_rwstat_exit(&stats
->queued
);
1554 blkg_stat_exit(&stats
->time
);
1555 #ifdef CONFIG_DEBUG_BLK_CGROUP
1556 blkg_stat_exit(&stats
->unaccounted_time
);
1557 blkg_stat_exit(&stats
->avg_queue_size_sum
);
1558 blkg_stat_exit(&stats
->avg_queue_size_samples
);
1559 blkg_stat_exit(&stats
->dequeue
);
1560 blkg_stat_exit(&stats
->group_wait_time
);
1561 blkg_stat_exit(&stats
->idle_time
);
1562 blkg_stat_exit(&stats
->empty_time
);
1566 static int cfqg_stats_init(struct cfqg_stats
*stats
, gfp_t gfp
)
1568 if (blkg_rwstat_init(&stats
->merged
, gfp
) ||
1569 blkg_rwstat_init(&stats
->service_time
, gfp
) ||
1570 blkg_rwstat_init(&stats
->wait_time
, gfp
) ||
1571 blkg_rwstat_init(&stats
->queued
, gfp
) ||
1572 blkg_stat_init(&stats
->time
, gfp
))
1575 #ifdef CONFIG_DEBUG_BLK_CGROUP
1576 if (blkg_stat_init(&stats
->unaccounted_time
, gfp
) ||
1577 blkg_stat_init(&stats
->avg_queue_size_sum
, gfp
) ||
1578 blkg_stat_init(&stats
->avg_queue_size_samples
, gfp
) ||
1579 blkg_stat_init(&stats
->dequeue
, gfp
) ||
1580 blkg_stat_init(&stats
->group_wait_time
, gfp
) ||
1581 blkg_stat_init(&stats
->idle_time
, gfp
) ||
1582 blkg_stat_init(&stats
->empty_time
, gfp
))
1587 cfqg_stats_exit(stats
);
1591 static struct blkcg_policy_data
*cfq_cpd_alloc(gfp_t gfp
)
1593 struct cfq_group_data
*cgd
;
1595 cgd
= kzalloc(sizeof(*cgd
), gfp
);
1601 static void cfq_cpd_init(struct blkcg_policy_data
*cpd
)
1603 struct cfq_group_data
*cgd
= cpd_to_cfqgd(cpd
);
1604 unsigned int weight
= cgroup_subsys_on_dfl(io_cgrp_subsys
) ?
1605 CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1607 if (cpd_to_blkcg(cpd
) == &blkcg_root
)
1610 cgd
->weight
= weight
;
1611 cgd
->leaf_weight
= weight
;
1614 static void cfq_cpd_free(struct blkcg_policy_data
*cpd
)
1616 kfree(cpd_to_cfqgd(cpd
));
1619 static void cfq_cpd_bind(struct blkcg_policy_data
*cpd
)
1621 struct blkcg
*blkcg
= cpd_to_blkcg(cpd
);
1622 bool on_dfl
= cgroup_subsys_on_dfl(io_cgrp_subsys
);
1623 unsigned int weight
= on_dfl
? CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1625 if (blkcg
== &blkcg_root
)
1628 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, false));
1629 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, true));
1632 static struct blkg_policy_data
*cfq_pd_alloc(gfp_t gfp
, int node
)
1634 struct cfq_group
*cfqg
;
1636 cfqg
= kzalloc_node(sizeof(*cfqg
), gfp
, node
);
1640 cfq_init_cfqg_base(cfqg
);
1641 if (cfqg_stats_init(&cfqg
->stats
, gfp
)) {
1649 static void cfq_pd_init(struct blkg_policy_data
*pd
)
1651 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1652 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(pd
->blkg
->blkcg
);
1654 cfqg
->weight
= cgd
->weight
;
1655 cfqg
->leaf_weight
= cgd
->leaf_weight
;
1658 static void cfq_pd_offline(struct blkg_policy_data
*pd
)
1660 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1663 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
1664 if (cfqg
->async_cfqq
[0][i
])
1665 cfq_put_queue(cfqg
->async_cfqq
[0][i
]);
1666 if (cfqg
->async_cfqq
[1][i
])
1667 cfq_put_queue(cfqg
->async_cfqq
[1][i
]);
1670 if (cfqg
->async_idle_cfqq
)
1671 cfq_put_queue(cfqg
->async_idle_cfqq
);
1674 * @blkg is going offline and will be ignored by
1675 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1676 * that they don't get lost. If IOs complete after this point, the
1677 * stats for them will be lost. Oh well...
1679 cfqg_stats_xfer_dead(cfqg
);
1682 static void cfq_pd_free(struct blkg_policy_data
*pd
)
1684 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1686 cfqg_stats_exit(&cfqg
->stats
);
1690 static void cfq_pd_reset_stats(struct blkg_policy_data
*pd
)
1692 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1694 cfqg_stats_reset(&cfqg
->stats
);
1697 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
1698 struct blkcg
*blkcg
)
1700 struct blkcg_gq
*blkg
;
1702 blkg
= blkg_lookup(blkcg
, cfqd
->queue
);
1704 return blkg_to_cfqg(blkg
);
1708 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1711 /* cfqq reference on cfqg */
1715 static u64
cfqg_prfill_weight_device(struct seq_file
*sf
,
1716 struct blkg_policy_data
*pd
, int off
)
1718 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1720 if (!cfqg
->dev_weight
)
1722 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_weight
);
1725 static int cfqg_print_weight_device(struct seq_file
*sf
, void *v
)
1727 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1728 cfqg_prfill_weight_device
, &blkcg_policy_cfq
,
1733 static u64
cfqg_prfill_leaf_weight_device(struct seq_file
*sf
,
1734 struct blkg_policy_data
*pd
, int off
)
1736 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1738 if (!cfqg
->dev_leaf_weight
)
1740 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_leaf_weight
);
1743 static int cfqg_print_leaf_weight_device(struct seq_file
*sf
, void *v
)
1745 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1746 cfqg_prfill_leaf_weight_device
, &blkcg_policy_cfq
,
1751 static int cfq_print_weight(struct seq_file
*sf
, void *v
)
1753 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1754 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1755 unsigned int val
= 0;
1760 seq_printf(sf
, "%u\n", val
);
1764 static int cfq_print_leaf_weight(struct seq_file
*sf
, void *v
)
1766 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1767 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1768 unsigned int val
= 0;
1771 val
= cgd
->leaf_weight
;
1773 seq_printf(sf
, "%u\n", val
);
1777 static ssize_t
__cfqg_set_weight_device(struct kernfs_open_file
*of
,
1778 char *buf
, size_t nbytes
, loff_t off
,
1779 bool on_dfl
, bool is_leaf_weight
)
1781 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1782 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1783 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1784 struct blkg_conf_ctx ctx
;
1785 struct cfq_group
*cfqg
;
1786 struct cfq_group_data
*cfqgd
;
1790 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_cfq
, buf
, &ctx
);
1794 if (sscanf(ctx
.body
, "%llu", &v
) == 1) {
1795 /* require "default" on dfl */
1799 } else if (!strcmp(strim(ctx
.body
), "default")) {
1806 cfqg
= blkg_to_cfqg(ctx
.blkg
);
1807 cfqgd
= blkcg_to_cfqgd(blkcg
);
1810 if (!v
|| (v
>= min
&& v
<= max
)) {
1811 if (!is_leaf_weight
) {
1812 cfqg
->dev_weight
= v
;
1813 cfqg
->new_weight
= v
?: cfqgd
->weight
;
1815 cfqg
->dev_leaf_weight
= v
;
1816 cfqg
->new_leaf_weight
= v
?: cfqgd
->leaf_weight
;
1821 blkg_conf_finish(&ctx
);
1822 return ret
?: nbytes
;
1825 static ssize_t
cfqg_set_weight_device(struct kernfs_open_file
*of
,
1826 char *buf
, size_t nbytes
, loff_t off
)
1828 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, false);
1831 static ssize_t
cfqg_set_leaf_weight_device(struct kernfs_open_file
*of
,
1832 char *buf
, size_t nbytes
, loff_t off
)
1834 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, true);
1837 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1838 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
)
1840 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1841 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1842 struct blkcg
*blkcg
= css_to_blkcg(css
);
1843 struct blkcg_gq
*blkg
;
1844 struct cfq_group_data
*cfqgd
;
1847 if (val
< min
|| val
> max
)
1850 spin_lock_irq(&blkcg
->lock
);
1851 cfqgd
= blkcg_to_cfqgd(blkcg
);
1857 if (!is_leaf_weight
)
1858 cfqgd
->weight
= val
;
1860 cfqgd
->leaf_weight
= val
;
1862 hlist_for_each_entry(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
1863 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1868 if (!is_leaf_weight
) {
1870 cfqg
->dev_weight
= 0;
1871 if (!cfqg
->dev_weight
)
1872 cfqg
->new_weight
= cfqgd
->weight
;
1875 cfqg
->dev_leaf_weight
= 0;
1876 if (!cfqg
->dev_leaf_weight
)
1877 cfqg
->new_leaf_weight
= cfqgd
->leaf_weight
;
1882 spin_unlock_irq(&blkcg
->lock
);
1886 static int cfq_set_weight(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1889 return __cfq_set_weight(css
, val
, false, false, false);
1892 static int cfq_set_leaf_weight(struct cgroup_subsys_state
*css
,
1893 struct cftype
*cft
, u64 val
)
1895 return __cfq_set_weight(css
, val
, false, false, true);
1898 static int cfqg_print_stat(struct seq_file
*sf
, void *v
)
1900 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_stat
,
1901 &blkcg_policy_cfq
, seq_cft(sf
)->private, false);
1905 static int cfqg_print_rwstat(struct seq_file
*sf
, void *v
)
1907 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_rwstat
,
1908 &blkcg_policy_cfq
, seq_cft(sf
)->private, true);
1912 static u64
cfqg_prfill_stat_recursive(struct seq_file
*sf
,
1913 struct blkg_policy_data
*pd
, int off
)
1915 u64 sum
= blkg_stat_recursive_sum(pd_to_blkg(pd
),
1916 &blkcg_policy_cfq
, off
);
1917 return __blkg_prfill_u64(sf
, pd
, sum
);
1920 static u64
cfqg_prfill_rwstat_recursive(struct seq_file
*sf
,
1921 struct blkg_policy_data
*pd
, int off
)
1923 struct blkg_rwstat sum
= blkg_rwstat_recursive_sum(pd_to_blkg(pd
),
1924 &blkcg_policy_cfq
, off
);
1925 return __blkg_prfill_rwstat(sf
, pd
, &sum
);
1928 static int cfqg_print_stat_recursive(struct seq_file
*sf
, void *v
)
1930 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1931 cfqg_prfill_stat_recursive
, &blkcg_policy_cfq
,
1932 seq_cft(sf
)->private, false);
1936 static int cfqg_print_rwstat_recursive(struct seq_file
*sf
, void *v
)
1938 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1939 cfqg_prfill_rwstat_recursive
, &blkcg_policy_cfq
,
1940 seq_cft(sf
)->private, true);
1944 static u64
cfqg_prfill_sectors(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1947 u64 sum
= blkg_rwstat_total(&pd
->blkg
->stat_bytes
);
1949 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1952 static int cfqg_print_stat_sectors(struct seq_file
*sf
, void *v
)
1954 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1955 cfqg_prfill_sectors
, &blkcg_policy_cfq
, 0, false);
1959 static u64
cfqg_prfill_sectors_recursive(struct seq_file
*sf
,
1960 struct blkg_policy_data
*pd
, int off
)
1962 struct blkg_rwstat tmp
= blkg_rwstat_recursive_sum(pd
->blkg
, NULL
,
1963 offsetof(struct blkcg_gq
, stat_bytes
));
1964 u64 sum
= atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_READ
]) +
1965 atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_WRITE
]);
1967 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1970 static int cfqg_print_stat_sectors_recursive(struct seq_file
*sf
, void *v
)
1972 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1973 cfqg_prfill_sectors_recursive
, &blkcg_policy_cfq
, 0,
1978 #ifdef CONFIG_DEBUG_BLK_CGROUP
1979 static u64
cfqg_prfill_avg_queue_size(struct seq_file
*sf
,
1980 struct blkg_policy_data
*pd
, int off
)
1982 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1983 u64 samples
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_samples
);
1987 v
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_sum
);
1988 v
= div64_u64(v
, samples
);
1990 __blkg_prfill_u64(sf
, pd
, v
);
1994 /* print avg_queue_size */
1995 static int cfqg_print_avg_queue_size(struct seq_file
*sf
, void *v
)
1997 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1998 cfqg_prfill_avg_queue_size
, &blkcg_policy_cfq
,
2002 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2004 static struct cftype cfq_blkcg_legacy_files
[] = {
2005 /* on root, weight is mapped to leaf_weight */
2007 .name
= "weight_device",
2008 .flags
= CFTYPE_ONLY_ON_ROOT
,
2009 .seq_show
= cfqg_print_leaf_weight_device
,
2010 .write
= cfqg_set_leaf_weight_device
,
2014 .flags
= CFTYPE_ONLY_ON_ROOT
,
2015 .seq_show
= cfq_print_leaf_weight
,
2016 .write_u64
= cfq_set_leaf_weight
,
2019 /* no such mapping necessary for !roots */
2021 .name
= "weight_device",
2022 .flags
= CFTYPE_NOT_ON_ROOT
,
2023 .seq_show
= cfqg_print_weight_device
,
2024 .write
= cfqg_set_weight_device
,
2028 .flags
= CFTYPE_NOT_ON_ROOT
,
2029 .seq_show
= cfq_print_weight
,
2030 .write_u64
= cfq_set_weight
,
2034 .name
= "leaf_weight_device",
2035 .seq_show
= cfqg_print_leaf_weight_device
,
2036 .write
= cfqg_set_leaf_weight_device
,
2039 .name
= "leaf_weight",
2040 .seq_show
= cfq_print_leaf_weight
,
2041 .write_u64
= cfq_set_leaf_weight
,
2044 /* statistics, covers only the tasks in the cfqg */
2047 .private = offsetof(struct cfq_group
, stats
.time
),
2048 .seq_show
= cfqg_print_stat
,
2052 .seq_show
= cfqg_print_stat_sectors
,
2055 .name
= "io_service_bytes",
2056 .private = (unsigned long)&blkcg_policy_cfq
,
2057 .seq_show
= blkg_print_stat_bytes
,
2060 .name
= "io_serviced",
2061 .private = (unsigned long)&blkcg_policy_cfq
,
2062 .seq_show
= blkg_print_stat_ios
,
2065 .name
= "io_service_time",
2066 .private = offsetof(struct cfq_group
, stats
.service_time
),
2067 .seq_show
= cfqg_print_rwstat
,
2070 .name
= "io_wait_time",
2071 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2072 .seq_show
= cfqg_print_rwstat
,
2075 .name
= "io_merged",
2076 .private = offsetof(struct cfq_group
, stats
.merged
),
2077 .seq_show
= cfqg_print_rwstat
,
2080 .name
= "io_queued",
2081 .private = offsetof(struct cfq_group
, stats
.queued
),
2082 .seq_show
= cfqg_print_rwstat
,
2085 /* the same statictics which cover the cfqg and its descendants */
2087 .name
= "time_recursive",
2088 .private = offsetof(struct cfq_group
, stats
.time
),
2089 .seq_show
= cfqg_print_stat_recursive
,
2092 .name
= "sectors_recursive",
2093 .seq_show
= cfqg_print_stat_sectors_recursive
,
2096 .name
= "io_service_bytes_recursive",
2097 .private = (unsigned long)&blkcg_policy_cfq
,
2098 .seq_show
= blkg_print_stat_bytes_recursive
,
2101 .name
= "io_serviced_recursive",
2102 .private = (unsigned long)&blkcg_policy_cfq
,
2103 .seq_show
= blkg_print_stat_ios_recursive
,
2106 .name
= "io_service_time_recursive",
2107 .private = offsetof(struct cfq_group
, stats
.service_time
),
2108 .seq_show
= cfqg_print_rwstat_recursive
,
2111 .name
= "io_wait_time_recursive",
2112 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2113 .seq_show
= cfqg_print_rwstat_recursive
,
2116 .name
= "io_merged_recursive",
2117 .private = offsetof(struct cfq_group
, stats
.merged
),
2118 .seq_show
= cfqg_print_rwstat_recursive
,
2121 .name
= "io_queued_recursive",
2122 .private = offsetof(struct cfq_group
, stats
.queued
),
2123 .seq_show
= cfqg_print_rwstat_recursive
,
2125 #ifdef CONFIG_DEBUG_BLK_CGROUP
2127 .name
= "avg_queue_size",
2128 .seq_show
= cfqg_print_avg_queue_size
,
2131 .name
= "group_wait_time",
2132 .private = offsetof(struct cfq_group
, stats
.group_wait_time
),
2133 .seq_show
= cfqg_print_stat
,
2136 .name
= "idle_time",
2137 .private = offsetof(struct cfq_group
, stats
.idle_time
),
2138 .seq_show
= cfqg_print_stat
,
2141 .name
= "empty_time",
2142 .private = offsetof(struct cfq_group
, stats
.empty_time
),
2143 .seq_show
= cfqg_print_stat
,
2147 .private = offsetof(struct cfq_group
, stats
.dequeue
),
2148 .seq_show
= cfqg_print_stat
,
2151 .name
= "unaccounted_time",
2152 .private = offsetof(struct cfq_group
, stats
.unaccounted_time
),
2153 .seq_show
= cfqg_print_stat
,
2155 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2159 static int cfq_print_weight_on_dfl(struct seq_file
*sf
, void *v
)
2161 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
2162 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
2164 seq_printf(sf
, "default %u\n", cgd
->weight
);
2165 blkcg_print_blkgs(sf
, blkcg
, cfqg_prfill_weight_device
,
2166 &blkcg_policy_cfq
, 0, false);
2170 static ssize_t
cfq_set_weight_on_dfl(struct kernfs_open_file
*of
,
2171 char *buf
, size_t nbytes
, loff_t off
)
2179 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2180 v
= simple_strtoull(buf
, &endp
, 0);
2181 if (*endp
== '\0' || sscanf(buf
, "default %llu", &v
) == 1) {
2182 ret
= __cfq_set_weight(of_css(of
), v
, true, false, false);
2183 return ret
?: nbytes
;
2186 /* "MAJ:MIN WEIGHT" */
2187 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, true, false);
2190 static struct cftype cfq_blkcg_files
[] = {
2193 .flags
= CFTYPE_NOT_ON_ROOT
,
2194 .seq_show
= cfq_print_weight_on_dfl
,
2195 .write
= cfq_set_weight_on_dfl
,
2200 #else /* GROUP_IOSCHED */
2201 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
2202 struct blkcg
*blkcg
)
2204 return cfqd
->root_group
;
2208 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
2212 #endif /* GROUP_IOSCHED */
2215 * The cfqd->service_trees holds all pending cfq_queue's that have
2216 * requests waiting to be processed. It is sorted in the order that
2217 * we will service the queues.
2219 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2222 struct rb_node
**p
, *parent
;
2223 struct cfq_queue
*__cfqq
;
2225 struct cfq_rb_root
*st
;
2228 u64 now
= ktime_get_ns();
2230 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
), cfqq_type(cfqq
));
2231 if (cfq_class_idle(cfqq
)) {
2232 rb_key
= CFQ_IDLE_DELAY
;
2233 parent
= rb_last(&st
->rb
);
2234 if (parent
&& parent
!= &cfqq
->rb_node
) {
2235 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2236 rb_key
+= __cfqq
->rb_key
;
2239 } else if (!add_front
) {
2241 * Get our rb key offset. Subtract any residual slice
2242 * value carried from last service. A negative resid
2243 * count indicates slice overrun, and this should position
2244 * the next service time further away in the tree.
2246 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + now
;
2247 rb_key
-= cfqq
->slice_resid
;
2248 cfqq
->slice_resid
= 0;
2250 rb_key
= -NSEC_PER_SEC
;
2251 __cfqq
= cfq_rb_first(st
);
2252 rb_key
+= __cfqq
? __cfqq
->rb_key
: now
;
2255 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2258 * same position, nothing more to do
2260 if (rb_key
== cfqq
->rb_key
&& cfqq
->service_tree
== st
)
2263 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2264 cfqq
->service_tree
= NULL
;
2269 cfqq
->service_tree
= st
;
2270 p
= &st
->rb
.rb_node
;
2273 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2276 * sort by key, that represents service time.
2278 if (rb_key
< __cfqq
->rb_key
)
2279 p
= &parent
->rb_left
;
2281 p
= &parent
->rb_right
;
2287 st
->left
= &cfqq
->rb_node
;
2289 cfqq
->rb_key
= rb_key
;
2290 rb_link_node(&cfqq
->rb_node
, parent
, p
);
2291 rb_insert_color(&cfqq
->rb_node
, &st
->rb
);
2293 if (add_front
|| !new_cfqq
)
2295 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
2298 static struct cfq_queue
*
2299 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
2300 sector_t sector
, struct rb_node
**ret_parent
,
2301 struct rb_node
***rb_link
)
2303 struct rb_node
**p
, *parent
;
2304 struct cfq_queue
*cfqq
= NULL
;
2312 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2315 * Sort strictly based on sector. Smallest to the left,
2316 * largest to the right.
2318 if (sector
> blk_rq_pos(cfqq
->next_rq
))
2319 n
= &(*p
)->rb_right
;
2320 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
2328 *ret_parent
= parent
;
2334 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2336 struct rb_node
**p
, *parent
;
2337 struct cfq_queue
*__cfqq
;
2340 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2341 cfqq
->p_root
= NULL
;
2344 if (cfq_class_idle(cfqq
))
2349 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
2350 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
2351 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
2353 rb_link_node(&cfqq
->p_node
, parent
, p
);
2354 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
2356 cfqq
->p_root
= NULL
;
2360 * Update cfqq's position in the service tree.
2362 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2365 * Resorting requires the cfqq to be on the RR list already.
2367 if (cfq_cfqq_on_rr(cfqq
)) {
2368 cfq_service_tree_add(cfqd
, cfqq
, 0);
2369 cfq_prio_tree_add(cfqd
, cfqq
);
2374 * add to busy list of queues for service, trying to be fair in ordering
2375 * the pending list according to last request service
2377 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2379 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
2380 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2381 cfq_mark_cfqq_on_rr(cfqq
);
2382 cfqd
->busy_queues
++;
2383 if (cfq_cfqq_sync(cfqq
))
2384 cfqd
->busy_sync_queues
++;
2386 cfq_resort_rr_list(cfqd
, cfqq
);
2390 * Called when the cfqq no longer has requests pending, remove it from
2393 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2395 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
2396 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2397 cfq_clear_cfqq_on_rr(cfqq
);
2399 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2400 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2401 cfqq
->service_tree
= NULL
;
2404 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2405 cfqq
->p_root
= NULL
;
2408 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
2409 BUG_ON(!cfqd
->busy_queues
);
2410 cfqd
->busy_queues
--;
2411 if (cfq_cfqq_sync(cfqq
))
2412 cfqd
->busy_sync_queues
--;
2416 * rb tree support functions
2418 static void cfq_del_rq_rb(struct request
*rq
)
2420 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2421 const int sync
= rq_is_sync(rq
);
2423 BUG_ON(!cfqq
->queued
[sync
]);
2424 cfqq
->queued
[sync
]--;
2426 elv_rb_del(&cfqq
->sort_list
, rq
);
2428 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2430 * Queue will be deleted from service tree when we actually
2431 * expire it later. Right now just remove it from prio tree
2435 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2436 cfqq
->p_root
= NULL
;
2441 static void cfq_add_rq_rb(struct request
*rq
)
2443 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2444 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2445 struct request
*prev
;
2447 cfqq
->queued
[rq_is_sync(rq
)]++;
2449 elv_rb_add(&cfqq
->sort_list
, rq
);
2451 if (!cfq_cfqq_on_rr(cfqq
))
2452 cfq_add_cfqq_rr(cfqd
, cfqq
);
2455 * check if this request is a better next-serve candidate
2457 prev
= cfqq
->next_rq
;
2458 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
2461 * adjust priority tree position, if ->next_rq changes
2463 if (prev
!= cfqq
->next_rq
)
2464 cfq_prio_tree_add(cfqd
, cfqq
);
2466 BUG_ON(!cfqq
->next_rq
);
2469 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
2471 elv_rb_del(&cfqq
->sort_list
, rq
);
2472 cfqq
->queued
[rq_is_sync(rq
)]--;
2473 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2475 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqq
->cfqd
->serving_group
,
2479 static struct request
*
2480 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
2482 struct task_struct
*tsk
= current
;
2483 struct cfq_io_cq
*cic
;
2484 struct cfq_queue
*cfqq
;
2486 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2490 cfqq
= cic_to_cfqq(cic
, op_is_sync(bio
->bi_opf
));
2492 return elv_rb_find(&cfqq
->sort_list
, bio_end_sector(bio
));
2497 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
2499 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2501 cfqd
->rq_in_driver
++;
2502 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
2503 cfqd
->rq_in_driver
);
2505 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2508 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
2510 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2512 WARN_ON(!cfqd
->rq_in_driver
);
2513 cfqd
->rq_in_driver
--;
2514 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
2515 cfqd
->rq_in_driver
);
2518 static void cfq_remove_request(struct request
*rq
)
2520 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2522 if (cfqq
->next_rq
== rq
)
2523 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
2525 list_del_init(&rq
->queuelist
);
2528 cfqq
->cfqd
->rq_queued
--;
2529 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2530 if (rq
->cmd_flags
& REQ_PRIO
) {
2531 WARN_ON(!cfqq
->prio_pending
);
2532 cfqq
->prio_pending
--;
2536 static enum elv_merge
cfq_merge(struct request_queue
*q
, struct request
**req
,
2539 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2540 struct request
*__rq
;
2542 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
2543 if (__rq
&& elv_bio_merge_ok(__rq
, bio
)) {
2545 return ELEVATOR_FRONT_MERGE
;
2548 return ELEVATOR_NO_MERGE
;
2551 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
2552 enum elv_merge type
)
2554 if (type
== ELEVATOR_FRONT_MERGE
) {
2555 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
2557 cfq_reposition_rq_rb(cfqq
, req
);
2561 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
2564 cfqg_stats_update_io_merged(RQ_CFQG(req
), bio
->bi_opf
);
2568 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
2569 struct request
*next
)
2571 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2572 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2575 * reposition in fifo if next is older than rq
2577 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
2578 next
->fifo_time
< rq
->fifo_time
&&
2579 cfqq
== RQ_CFQQ(next
)) {
2580 list_move(&rq
->queuelist
, &next
->queuelist
);
2581 rq
->fifo_time
= next
->fifo_time
;
2584 if (cfqq
->next_rq
== next
)
2586 cfq_remove_request(next
);
2587 cfqg_stats_update_io_merged(RQ_CFQG(rq
), next
->cmd_flags
);
2589 cfqq
= RQ_CFQQ(next
);
2591 * all requests of this queue are merged to other queues, delete it
2592 * from the service tree. If it's the active_queue,
2593 * cfq_dispatch_requests() will choose to expire it or do idle
2595 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
) &&
2596 cfqq
!= cfqd
->active_queue
)
2597 cfq_del_cfqq_rr(cfqd
, cfqq
);
2600 static int cfq_allow_bio_merge(struct request_queue
*q
, struct request
*rq
,
2603 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2604 bool is_sync
= op_is_sync(bio
->bi_opf
);
2605 struct cfq_io_cq
*cic
;
2606 struct cfq_queue
*cfqq
;
2609 * Disallow merge of a sync bio into an async request.
2611 if (is_sync
&& !rq_is_sync(rq
))
2615 * Lookup the cfqq that this bio will be queued with and allow
2616 * merge only if rq is queued there.
2618 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
2622 cfqq
= cic_to_cfqq(cic
, is_sync
);
2623 return cfqq
== RQ_CFQQ(rq
);
2626 static int cfq_allow_rq_merge(struct request_queue
*q
, struct request
*rq
,
2627 struct request
*next
)
2629 return RQ_CFQQ(rq
) == RQ_CFQQ(next
);
2632 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2634 hrtimer_try_to_cancel(&cfqd
->idle_slice_timer
);
2635 cfqg_stats_update_idle_time(cfqq
->cfqg
);
2638 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
2639 struct cfq_queue
*cfqq
)
2642 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_class:%d wl_type:%d",
2643 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2644 cfqg_stats_update_avg_queue_size(cfqq
->cfqg
);
2645 cfqq
->slice_start
= 0;
2646 cfqq
->dispatch_start
= ktime_get_ns();
2647 cfqq
->allocated_slice
= 0;
2648 cfqq
->slice_end
= 0;
2649 cfqq
->slice_dispatch
= 0;
2650 cfqq
->nr_sectors
= 0;
2652 cfq_clear_cfqq_wait_request(cfqq
);
2653 cfq_clear_cfqq_must_dispatch(cfqq
);
2654 cfq_clear_cfqq_must_alloc_slice(cfqq
);
2655 cfq_clear_cfqq_fifo_expire(cfqq
);
2656 cfq_mark_cfqq_slice_new(cfqq
);
2658 cfq_del_timer(cfqd
, cfqq
);
2661 cfqd
->active_queue
= cfqq
;
2665 * current cfqq expired its slice (or was too idle), select new one
2668 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2671 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
2673 if (cfq_cfqq_wait_request(cfqq
))
2674 cfq_del_timer(cfqd
, cfqq
);
2676 cfq_clear_cfqq_wait_request(cfqq
);
2677 cfq_clear_cfqq_wait_busy(cfqq
);
2680 * If this cfqq is shared between multiple processes, check to
2681 * make sure that those processes are still issuing I/Os within
2682 * the mean seek distance. If not, it may be time to break the
2683 * queues apart again.
2685 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
2686 cfq_mark_cfqq_split_coop(cfqq
);
2689 * store what was left of this slice, if the queue idled/timed out
2692 if (cfq_cfqq_slice_new(cfqq
))
2693 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
2695 cfqq
->slice_resid
= cfqq
->slice_end
- ktime_get_ns();
2696 cfq_log_cfqq(cfqd
, cfqq
, "resid=%lld", cfqq
->slice_resid
);
2699 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
2701 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
2702 cfq_del_cfqq_rr(cfqd
, cfqq
);
2704 cfq_resort_rr_list(cfqd
, cfqq
);
2706 if (cfqq
== cfqd
->active_queue
)
2707 cfqd
->active_queue
= NULL
;
2709 if (cfqd
->active_cic
) {
2710 put_io_context(cfqd
->active_cic
->icq
.ioc
);
2711 cfqd
->active_cic
= NULL
;
2715 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
2717 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2720 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
2724 * Get next queue for service. Unless we have a queue preemption,
2725 * we'll simply select the first cfqq in the service tree.
2727 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
2729 struct cfq_rb_root
*st
= st_for(cfqd
->serving_group
,
2730 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2732 if (!cfqd
->rq_queued
)
2735 /* There is nothing to dispatch */
2738 if (RB_EMPTY_ROOT(&st
->rb
))
2740 return cfq_rb_first(st
);
2743 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
2745 struct cfq_group
*cfqg
;
2746 struct cfq_queue
*cfqq
;
2748 struct cfq_rb_root
*st
;
2750 if (!cfqd
->rq_queued
)
2753 cfqg
= cfq_get_next_cfqg(cfqd
);
2757 for_each_cfqg_st(cfqg
, i
, j
, st
) {
2758 cfqq
= cfq_rb_first(st
);
2766 * Get and set a new active queue for service.
2768 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
2769 struct cfq_queue
*cfqq
)
2772 cfqq
= cfq_get_next_queue(cfqd
);
2774 __cfq_set_active_queue(cfqd
, cfqq
);
2778 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
2781 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
2782 return blk_rq_pos(rq
) - cfqd
->last_position
;
2784 return cfqd
->last_position
- blk_rq_pos(rq
);
2787 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2790 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
2793 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
2794 struct cfq_queue
*cur_cfqq
)
2796 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
2797 struct rb_node
*parent
, *node
;
2798 struct cfq_queue
*__cfqq
;
2799 sector_t sector
= cfqd
->last_position
;
2801 if (RB_EMPTY_ROOT(root
))
2805 * First, if we find a request starting at the end of the last
2806 * request, choose it.
2808 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
2813 * If the exact sector wasn't found, the parent of the NULL leaf
2814 * will contain the closest sector.
2816 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2817 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2820 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
2821 node
= rb_next(&__cfqq
->p_node
);
2823 node
= rb_prev(&__cfqq
->p_node
);
2827 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
2828 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2836 * cur_cfqq - passed in so that we don't decide that the current queue is
2837 * closely cooperating with itself.
2839 * So, basically we're assuming that that cur_cfqq has dispatched at least
2840 * one request, and that cfqd->last_position reflects a position on the disk
2841 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2844 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
2845 struct cfq_queue
*cur_cfqq
)
2847 struct cfq_queue
*cfqq
;
2849 if (cfq_class_idle(cur_cfqq
))
2851 if (!cfq_cfqq_sync(cur_cfqq
))
2853 if (CFQQ_SEEKY(cur_cfqq
))
2857 * Don't search priority tree if it's the only queue in the group.
2859 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
2863 * We should notice if some of the queues are cooperating, eg
2864 * working closely on the same area of the disk. In that case,
2865 * we can group them together and don't waste time idling.
2867 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
2871 /* If new queue belongs to different cfq_group, don't choose it */
2872 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
2876 * It only makes sense to merge sync queues.
2878 if (!cfq_cfqq_sync(cfqq
))
2880 if (CFQQ_SEEKY(cfqq
))
2884 * Do not merge queues of different priority classes
2886 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
2893 * Determine whether we should enforce idle window for this queue.
2896 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2898 enum wl_class_t wl_class
= cfqq_class(cfqq
);
2899 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2904 if (!cfqd
->cfq_slice_idle
)
2907 /* We never do for idle class queues. */
2908 if (wl_class
== IDLE_WORKLOAD
)
2911 /* We do for queues that were marked with idle window flag. */
2912 if (cfq_cfqq_idle_window(cfqq
) &&
2913 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
2917 * Otherwise, we do only if they are the last ones
2918 * in their service tree.
2920 if (st
->count
== 1 && cfq_cfqq_sync(cfqq
) &&
2921 !cfq_io_thinktime_big(cfqd
, &st
->ttime
, false))
2923 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d", st
->count
);
2927 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
2929 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2930 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2931 struct cfq_io_cq
*cic
;
2932 u64 sl
, group_idle
= 0;
2933 u64 now
= ktime_get_ns();
2936 * SSD device without seek penalty, disable idling. But only do so
2937 * for devices that support queuing, otherwise we still have a problem
2938 * with sync vs async workloads.
2940 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
2943 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
2944 WARN_ON(cfq_cfqq_slice_new(cfqq
));
2947 * idle is disabled, either manually or by past process history
2949 if (!cfq_should_idle(cfqd
, cfqq
)) {
2950 /* no queue idling. Check for group idling */
2951 if (cfqd
->cfq_group_idle
)
2952 group_idle
= cfqd
->cfq_group_idle
;
2958 * still active requests from this queue, don't idle
2960 if (cfqq
->dispatched
)
2964 * task has exited, don't wait
2966 cic
= cfqd
->active_cic
;
2967 if (!cic
|| !atomic_read(&cic
->icq
.ioc
->active_ref
))
2971 * If our average think time is larger than the remaining time
2972 * slice, then don't idle. This avoids overrunning the allotted
2975 if (sample_valid(cic
->ttime
.ttime_samples
) &&
2976 (cfqq
->slice_end
- now
< cic
->ttime
.ttime_mean
)) {
2977 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%llu",
2978 cic
->ttime
.ttime_mean
);
2983 * There are other queues in the group or this is the only group and
2984 * it has too big thinktime, don't do group idle.
2987 (cfqq
->cfqg
->nr_cfqq
> 1 ||
2988 cfq_io_thinktime_big(cfqd
, &st
->ttime
, true)))
2991 cfq_mark_cfqq_wait_request(cfqq
);
2994 sl
= cfqd
->cfq_group_idle
;
2996 sl
= cfqd
->cfq_slice_idle
;
2998 hrtimer_start(&cfqd
->idle_slice_timer
, ns_to_ktime(sl
),
3000 cfqg_stats_set_start_idle_time(cfqq
->cfqg
);
3001 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %llu group_idle: %d", sl
,
3002 group_idle
? 1 : 0);
3006 * Move request from internal lists to the request queue dispatch list.
3008 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
3010 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3011 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3013 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
3015 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
3016 cfq_remove_request(rq
);
3018 (RQ_CFQG(rq
))->dispatched
++;
3019 elv_dispatch_sort(q
, rq
);
3021 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
3022 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
3026 * return expired entry, or NULL to just start from scratch in rbtree
3028 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
3030 struct request
*rq
= NULL
;
3032 if (cfq_cfqq_fifo_expire(cfqq
))
3035 cfq_mark_cfqq_fifo_expire(cfqq
);
3037 if (list_empty(&cfqq
->fifo
))
3040 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
3041 if (ktime_get_ns() < rq
->fifo_time
)
3048 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3050 const int base_rq
= cfqd
->cfq_slice_async_rq
;
3052 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
3054 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
3058 * Must be called with the queue_lock held.
3060 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
3062 int process_refs
, io_refs
;
3064 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
3065 process_refs
= cfqq
->ref
- io_refs
;
3066 BUG_ON(process_refs
< 0);
3067 return process_refs
;
3070 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
3072 int process_refs
, new_process_refs
;
3073 struct cfq_queue
*__cfqq
;
3076 * If there are no process references on the new_cfqq, then it is
3077 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3078 * chain may have dropped their last reference (not just their
3079 * last process reference).
3081 if (!cfqq_process_refs(new_cfqq
))
3084 /* Avoid a circular list and skip interim queue merges */
3085 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
3091 process_refs
= cfqq_process_refs(cfqq
);
3092 new_process_refs
= cfqq_process_refs(new_cfqq
);
3094 * If the process for the cfqq has gone away, there is no
3095 * sense in merging the queues.
3097 if (process_refs
== 0 || new_process_refs
== 0)
3101 * Merge in the direction of the lesser amount of work.
3103 if (new_process_refs
>= process_refs
) {
3104 cfqq
->new_cfqq
= new_cfqq
;
3105 new_cfqq
->ref
+= process_refs
;
3107 new_cfqq
->new_cfqq
= cfqq
;
3108 cfqq
->ref
+= new_process_refs
;
3112 static enum wl_type_t
cfq_choose_wl_type(struct cfq_data
*cfqd
,
3113 struct cfq_group
*cfqg
, enum wl_class_t wl_class
)
3115 struct cfq_queue
*queue
;
3117 bool key_valid
= false;
3119 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
3121 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
3122 /* select the one with lowest rb_key */
3123 queue
= cfq_rb_first(st_for(cfqg
, wl_class
, i
));
3125 (!key_valid
|| queue
->rb_key
< lowest_key
)) {
3126 lowest_key
= queue
->rb_key
;
3136 choose_wl_class_and_type(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
3140 struct cfq_rb_root
*st
;
3142 enum wl_class_t original_class
= cfqd
->serving_wl_class
;
3143 u64 now
= ktime_get_ns();
3145 /* Choose next priority. RT > BE > IDLE */
3146 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
3147 cfqd
->serving_wl_class
= RT_WORKLOAD
;
3148 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
3149 cfqd
->serving_wl_class
= BE_WORKLOAD
;
3151 cfqd
->serving_wl_class
= IDLE_WORKLOAD
;
3152 cfqd
->workload_expires
= now
+ jiffies_to_nsecs(1);
3156 if (original_class
!= cfqd
->serving_wl_class
)
3160 * For RT and BE, we have to choose also the type
3161 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3164 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3168 * check workload expiration, and that we still have other queues ready
3170 if (count
&& !(now
> cfqd
->workload_expires
))
3174 /* otherwise select new workload type */
3175 cfqd
->serving_wl_type
= cfq_choose_wl_type(cfqd
, cfqg
,
3176 cfqd
->serving_wl_class
);
3177 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3181 * the workload slice is computed as a fraction of target latency
3182 * proportional to the number of queues in that workload, over
3183 * all the queues in the same priority class
3185 group_slice
= cfq_group_slice(cfqd
, cfqg
);
3187 slice
= div_u64(group_slice
* count
,
3188 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_wl_class
],
3189 cfq_group_busy_queues_wl(cfqd
->serving_wl_class
, cfqd
,
3192 if (cfqd
->serving_wl_type
== ASYNC_WORKLOAD
) {
3196 * Async queues are currently system wide. Just taking
3197 * proportion of queues with-in same group will lead to higher
3198 * async ratio system wide as generally root group is going
3199 * to have higher weight. A more accurate thing would be to
3200 * calculate system wide asnc/sync ratio.
3202 tmp
= cfqd
->cfq_target_latency
*
3203 cfqg_busy_async_queues(cfqd
, cfqg
);
3204 tmp
= div_u64(tmp
, cfqd
->busy_queues
);
3205 slice
= min_t(u64
, slice
, tmp
);
3207 /* async workload slice is scaled down according to
3208 * the sync/async slice ratio. */
3209 slice
= div64_u64(slice
*cfqd
->cfq_slice
[0], cfqd
->cfq_slice
[1]);
3211 /* sync workload slice is at least 2 * cfq_slice_idle */
3212 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
3214 slice
= max_t(u64
, slice
, CFQ_MIN_TT
);
3215 cfq_log(cfqd
, "workload slice:%llu", slice
);
3216 cfqd
->workload_expires
= now
+ slice
;
3219 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
3221 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
3222 struct cfq_group
*cfqg
;
3224 if (RB_EMPTY_ROOT(&st
->rb
))
3226 cfqg
= cfq_rb_first_group(st
);
3227 update_min_vdisktime(st
);
3231 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
3233 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
3234 u64 now
= ktime_get_ns();
3236 cfqd
->serving_group
= cfqg
;
3238 /* Restore the workload type data */
3239 if (cfqg
->saved_wl_slice
) {
3240 cfqd
->workload_expires
= now
+ cfqg
->saved_wl_slice
;
3241 cfqd
->serving_wl_type
= cfqg
->saved_wl_type
;
3242 cfqd
->serving_wl_class
= cfqg
->saved_wl_class
;
3244 cfqd
->workload_expires
= now
- 1;
3246 choose_wl_class_and_type(cfqd
, cfqg
);
3250 * Select a queue for service. If we have a current active queue,
3251 * check whether to continue servicing it, or retrieve and set a new one.
3253 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
3255 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
3256 u64 now
= ktime_get_ns();
3258 cfqq
= cfqd
->active_queue
;
3262 if (!cfqd
->rq_queued
)
3266 * We were waiting for group to get backlogged. Expire the queue
3268 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
3272 * The active queue has run out of time, expire it and select new.
3274 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
3276 * If slice had not expired at the completion of last request
3277 * we might not have turned on wait_busy flag. Don't expire
3278 * the queue yet. Allow the group to get backlogged.
3280 * The very fact that we have used the slice, that means we
3281 * have been idling all along on this queue and it should be
3282 * ok to wait for this request to complete.
3284 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
3285 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3289 goto check_group_idle
;
3293 * The active queue has requests and isn't expired, allow it to
3296 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3300 * If another queue has a request waiting within our mean seek
3301 * distance, let it run. The expire code will check for close
3302 * cooperators and put the close queue at the front of the service
3303 * tree. If possible, merge the expiring queue with the new cfqq.
3305 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
3307 if (!cfqq
->new_cfqq
)
3308 cfq_setup_merge(cfqq
, new_cfqq
);
3313 * No requests pending. If the active queue still has requests in
3314 * flight or is idling for a new request, allow either of these
3315 * conditions to happen (or time out) before selecting a new queue.
3317 if (hrtimer_active(&cfqd
->idle_slice_timer
)) {
3323 * This is a deep seek queue, but the device is much faster than
3324 * the queue can deliver, don't idle
3326 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
3327 (cfq_cfqq_slice_new(cfqq
) ||
3328 (cfqq
->slice_end
- now
> now
- cfqq
->slice_start
))) {
3329 cfq_clear_cfqq_deep(cfqq
);
3330 cfq_clear_cfqq_idle_window(cfqq
);
3333 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3339 * If group idle is enabled and there are requests dispatched from
3340 * this group, wait for requests to complete.
3343 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1 &&
3344 cfqq
->cfqg
->dispatched
&&
3345 !cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true)) {
3351 cfq_slice_expired(cfqd
, 0);
3354 * Current queue expired. Check if we have to switch to a new
3358 cfq_choose_cfqg(cfqd
);
3360 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
3365 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
3369 while (cfqq
->next_rq
) {
3370 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
3374 BUG_ON(!list_empty(&cfqq
->fifo
));
3376 /* By default cfqq is not expired if it is empty. Do it explicitly */
3377 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
3382 * Drain our current requests. Used for barriers and when switching
3383 * io schedulers on-the-fly.
3385 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
3387 struct cfq_queue
*cfqq
;
3390 /* Expire the timeslice of the current active queue first */
3391 cfq_slice_expired(cfqd
, 0);
3392 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
3393 __cfq_set_active_queue(cfqd
, cfqq
);
3394 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
3397 BUG_ON(cfqd
->busy_queues
);
3399 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
3403 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
3404 struct cfq_queue
*cfqq
)
3406 u64 now
= ktime_get_ns();
3408 /* the queue hasn't finished any request, can't estimate */
3409 if (cfq_cfqq_slice_new(cfqq
))
3411 if (now
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
> cfqq
->slice_end
)
3417 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3419 unsigned int max_dispatch
;
3421 if (cfq_cfqq_must_dispatch(cfqq
))
3425 * Drain async requests before we start sync IO
3427 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
3431 * If this is an async queue and we have sync IO in flight, let it wait
3433 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
3436 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
3437 if (cfq_class_idle(cfqq
))
3441 * Does this cfqq already have too much IO in flight?
3443 if (cfqq
->dispatched
>= max_dispatch
) {
3444 bool promote_sync
= false;
3446 * idle queue must always only have a single IO in flight
3448 if (cfq_class_idle(cfqq
))
3452 * If there is only one sync queue
3453 * we can ignore async queue here and give the sync
3454 * queue no dispatch limit. The reason is a sync queue can
3455 * preempt async queue, limiting the sync queue doesn't make
3456 * sense. This is useful for aiostress test.
3458 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
3459 promote_sync
= true;
3462 * We have other queues, don't allow more IO from this one
3464 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
3469 * Sole queue user, no limit
3471 if (cfqd
->busy_queues
== 1 || promote_sync
)
3475 * Normally we start throttling cfqq when cfq_quantum/2
3476 * requests have been dispatched. But we can drive
3477 * deeper queue depths at the beginning of slice
3478 * subjected to upper limit of cfq_quantum.
3480 max_dispatch
= cfqd
->cfq_quantum
;
3484 * Async queues must wait a bit before being allowed dispatch.
3485 * We also ramp up the dispatch depth gradually for async IO,
3486 * based on the last sync IO we serviced
3488 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
3489 u64 last_sync
= ktime_get_ns() - cfqd
->last_delayed_sync
;
3492 depth
= div64_u64(last_sync
, cfqd
->cfq_slice
[1]);
3493 if (!depth
&& !cfqq
->dispatched
)
3495 if (depth
< max_dispatch
)
3496 max_dispatch
= depth
;
3500 * If we're below the current max, allow a dispatch
3502 return cfqq
->dispatched
< max_dispatch
;
3506 * Dispatch a request from cfqq, moving them to the request queue
3509 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3513 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
3515 rq
= cfq_check_fifo(cfqq
);
3517 cfq_mark_cfqq_must_dispatch(cfqq
);
3519 if (!cfq_may_dispatch(cfqd
, cfqq
))
3523 * follow expired path, else get first next available
3528 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
3531 * insert request into driver dispatch list
3533 cfq_dispatch_insert(cfqd
->queue
, rq
);
3535 if (!cfqd
->active_cic
) {
3536 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
3538 atomic_long_inc(&cic
->icq
.ioc
->refcount
);
3539 cfqd
->active_cic
= cic
;
3546 * Find the cfqq that we need to service and move a request from that to the
3549 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
3551 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3552 struct cfq_queue
*cfqq
;
3554 if (!cfqd
->busy_queues
)
3557 if (unlikely(force
))
3558 return cfq_forced_dispatch(cfqd
);
3560 cfqq
= cfq_select_queue(cfqd
);
3565 * Dispatch a request from this cfqq, if it is allowed
3567 if (!cfq_dispatch_request(cfqd
, cfqq
))
3570 cfqq
->slice_dispatch
++;
3571 cfq_clear_cfqq_must_dispatch(cfqq
);
3574 * expire an async queue immediately if it has used up its slice. idle
3575 * queue always expire after 1 dispatch round.
3577 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
3578 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
3579 cfq_class_idle(cfqq
))) {
3580 cfqq
->slice_end
= ktime_get_ns() + 1;
3581 cfq_slice_expired(cfqd
, 0);
3584 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
3589 * task holds one reference to the queue, dropped when task exits. each rq
3590 * in-flight on this queue also holds a reference, dropped when rq is freed.
3592 * Each cfq queue took a reference on the parent group. Drop it now.
3593 * queue lock must be held here.
3595 static void cfq_put_queue(struct cfq_queue
*cfqq
)
3597 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3598 struct cfq_group
*cfqg
;
3600 BUG_ON(cfqq
->ref
<= 0);
3606 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
3607 BUG_ON(rb_first(&cfqq
->sort_list
));
3608 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
3611 if (unlikely(cfqd
->active_queue
== cfqq
)) {
3612 __cfq_slice_expired(cfqd
, cfqq
, 0);
3613 cfq_schedule_dispatch(cfqd
);
3616 BUG_ON(cfq_cfqq_on_rr(cfqq
));
3617 kmem_cache_free(cfq_pool
, cfqq
);
3621 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
3623 struct cfq_queue
*__cfqq
, *next
;
3626 * If this queue was scheduled to merge with another queue, be
3627 * sure to drop the reference taken on that queue (and others in
3628 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3630 __cfqq
= cfqq
->new_cfqq
;
3632 if (__cfqq
== cfqq
) {
3633 WARN(1, "cfqq->new_cfqq loop detected\n");
3636 next
= __cfqq
->new_cfqq
;
3637 cfq_put_queue(__cfqq
);
3642 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3644 if (unlikely(cfqq
== cfqd
->active_queue
)) {
3645 __cfq_slice_expired(cfqd
, cfqq
, 0);
3646 cfq_schedule_dispatch(cfqd
);
3649 cfq_put_cooperator(cfqq
);
3651 cfq_put_queue(cfqq
);
3654 static void cfq_init_icq(struct io_cq
*icq
)
3656 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3658 cic
->ttime
.last_end_request
= ktime_get_ns();
3661 static void cfq_exit_icq(struct io_cq
*icq
)
3663 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3664 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3666 if (cic_to_cfqq(cic
, false)) {
3667 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, false));
3668 cic_set_cfqq(cic
, NULL
, false);
3671 if (cic_to_cfqq(cic
, true)) {
3672 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, true));
3673 cic_set_cfqq(cic
, NULL
, true);
3677 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct cfq_io_cq
*cic
)
3679 struct task_struct
*tsk
= current
;
3682 if (!cfq_cfqq_prio_changed(cfqq
))
3685 ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3686 switch (ioprio_class
) {
3688 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
3689 case IOPRIO_CLASS_NONE
:
3691 * no prio set, inherit CPU scheduling settings
3693 cfqq
->ioprio
= task_nice_ioprio(tsk
);
3694 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
3696 case IOPRIO_CLASS_RT
:
3697 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3698 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
3700 case IOPRIO_CLASS_BE
:
3701 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3702 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3704 case IOPRIO_CLASS_IDLE
:
3705 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
3707 cfq_clear_cfqq_idle_window(cfqq
);
3712 * keep track of original prio settings in case we have to temporarily
3713 * elevate the priority of this queue
3715 cfqq
->org_ioprio
= cfqq
->ioprio
;
3716 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
3717 cfq_clear_cfqq_prio_changed(cfqq
);
3720 static void check_ioprio_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3722 int ioprio
= cic
->icq
.ioc
->ioprio
;
3723 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3724 struct cfq_queue
*cfqq
;
3727 * Check whether ioprio has changed. The condition may trigger
3728 * spuriously on a newly created cic but there's no harm.
3730 if (unlikely(!cfqd
) || likely(cic
->ioprio
== ioprio
))
3733 cfqq
= cic_to_cfqq(cic
, false);
3735 cfq_put_queue(cfqq
);
3736 cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
, bio
);
3737 cic_set_cfqq(cic
, cfqq
, false);
3740 cfqq
= cic_to_cfqq(cic
, true);
3742 cfq_mark_cfqq_prio_changed(cfqq
);
3744 cic
->ioprio
= ioprio
;
3747 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3748 pid_t pid
, bool is_sync
)
3750 RB_CLEAR_NODE(&cfqq
->rb_node
);
3751 RB_CLEAR_NODE(&cfqq
->p_node
);
3752 INIT_LIST_HEAD(&cfqq
->fifo
);
3757 cfq_mark_cfqq_prio_changed(cfqq
);
3760 if (!cfq_class_idle(cfqq
))
3761 cfq_mark_cfqq_idle_window(cfqq
);
3762 cfq_mark_cfqq_sync(cfqq
);
3767 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3768 static void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3770 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3771 struct cfq_queue
*cfqq
;
3775 serial_nr
= bio_blkcg(bio
)->css
.serial_nr
;
3779 * Check whether blkcg has changed. The condition may trigger
3780 * spuriously on a newly created cic but there's no harm.
3782 if (unlikely(!cfqd
) || likely(cic
->blkcg_serial_nr
== serial_nr
))
3786 * Drop reference to queues. New queues will be assigned in new
3787 * group upon arrival of fresh requests.
3789 cfqq
= cic_to_cfqq(cic
, false);
3791 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3792 cic_set_cfqq(cic
, NULL
, false);
3793 cfq_put_queue(cfqq
);
3796 cfqq
= cic_to_cfqq(cic
, true);
3798 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3799 cic_set_cfqq(cic
, NULL
, true);
3800 cfq_put_queue(cfqq
);
3803 cic
->blkcg_serial_nr
= serial_nr
;
3806 static inline void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3809 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3811 static struct cfq_queue
**
3812 cfq_async_queue_prio(struct cfq_group
*cfqg
, int ioprio_class
, int ioprio
)
3814 switch (ioprio_class
) {
3815 case IOPRIO_CLASS_RT
:
3816 return &cfqg
->async_cfqq
[0][ioprio
];
3817 case IOPRIO_CLASS_NONE
:
3818 ioprio
= IOPRIO_NORM
;
3820 case IOPRIO_CLASS_BE
:
3821 return &cfqg
->async_cfqq
[1][ioprio
];
3822 case IOPRIO_CLASS_IDLE
:
3823 return &cfqg
->async_idle_cfqq
;
3829 static struct cfq_queue
*
3830 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3833 int ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3834 int ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3835 struct cfq_queue
**async_cfqq
= NULL
;
3836 struct cfq_queue
*cfqq
;
3837 struct cfq_group
*cfqg
;
3840 cfqg
= cfq_lookup_cfqg(cfqd
, bio_blkcg(bio
));
3842 cfqq
= &cfqd
->oom_cfqq
;
3847 if (!ioprio_valid(cic
->ioprio
)) {
3848 struct task_struct
*tsk
= current
;
3849 ioprio
= task_nice_ioprio(tsk
);
3850 ioprio_class
= task_nice_ioclass(tsk
);
3852 async_cfqq
= cfq_async_queue_prio(cfqg
, ioprio_class
, ioprio
);
3858 cfqq
= kmem_cache_alloc_node(cfq_pool
,
3859 GFP_NOWAIT
| __GFP_ZERO
| __GFP_NOWARN
,
3862 cfqq
= &cfqd
->oom_cfqq
;
3866 /* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */
3867 cfqq
->ioprio_class
= IOPRIO_CLASS_NONE
;
3868 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3869 cfq_init_prio_data(cfqq
, cic
);
3870 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3871 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3874 /* a new async queue is created, pin and remember */
3885 __cfq_update_io_thinktime(struct cfq_ttime
*ttime
, u64 slice_idle
)
3887 u64 elapsed
= ktime_get_ns() - ttime
->last_end_request
;
3888 elapsed
= min(elapsed
, 2UL * slice_idle
);
3890 ttime
->ttime_samples
= (7*ttime
->ttime_samples
+ 256) / 8;
3891 ttime
->ttime_total
= div_u64(7*ttime
->ttime_total
+ 256*elapsed
, 8);
3892 ttime
->ttime_mean
= div64_ul(ttime
->ttime_total
+ 128,
3893 ttime
->ttime_samples
);
3897 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3898 struct cfq_io_cq
*cic
)
3900 if (cfq_cfqq_sync(cfqq
)) {
3901 __cfq_update_io_thinktime(&cic
->ttime
, cfqd
->cfq_slice_idle
);
3902 __cfq_update_io_thinktime(&cfqq
->service_tree
->ttime
,
3903 cfqd
->cfq_slice_idle
);
3905 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3906 __cfq_update_io_thinktime(&cfqq
->cfqg
->ttime
, cfqd
->cfq_group_idle
);
3911 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3915 sector_t n_sec
= blk_rq_sectors(rq
);
3916 if (cfqq
->last_request_pos
) {
3917 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3918 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3920 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3923 cfqq
->seek_history
<<= 1;
3924 if (blk_queue_nonrot(cfqd
->queue
))
3925 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3927 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3930 static inline bool req_noidle(struct request
*req
)
3932 return req_op(req
) == REQ_OP_WRITE
&&
3933 (req
->cmd_flags
& (REQ_SYNC
| REQ_IDLE
)) == REQ_SYNC
;
3937 * Disable idle window if the process thinks too long or seeks so much that
3941 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3942 struct cfq_io_cq
*cic
)
3944 int old_idle
, enable_idle
;
3947 * Don't idle for async or idle io prio class
3949 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3952 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3954 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3955 cfq_mark_cfqq_deep(cfqq
);
3957 if (cfqq
->next_rq
&& req_noidle(cfqq
->next_rq
))
3959 else if (!atomic_read(&cic
->icq
.ioc
->active_ref
) ||
3960 !cfqd
->cfq_slice_idle
||
3961 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3963 else if (sample_valid(cic
->ttime
.ttime_samples
)) {
3964 if (cic
->ttime
.ttime_mean
> cfqd
->cfq_slice_idle
)
3970 if (old_idle
!= enable_idle
) {
3971 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3973 cfq_mark_cfqq_idle_window(cfqq
);
3975 cfq_clear_cfqq_idle_window(cfqq
);
3980 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3981 * no or if we aren't sure, a 1 will cause a preempt.
3984 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3987 struct cfq_queue
*cfqq
;
3989 cfqq
= cfqd
->active_queue
;
3993 if (cfq_class_idle(new_cfqq
))
3996 if (cfq_class_idle(cfqq
))
4000 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
4002 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
4006 * if the new request is sync, but the currently running queue is
4007 * not, let the sync request have priority.
4009 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
4013 * Treat ancestors of current cgroup the same way as current cgroup.
4014 * For anybody else we disallow preemption to guarantee service
4015 * fairness among cgroups.
4017 if (!cfqg_is_descendant(cfqq
->cfqg
, new_cfqq
->cfqg
))
4020 if (cfq_slice_used(cfqq
))
4024 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4026 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
4029 WARN_ON_ONCE(cfqq
->ioprio_class
!= new_cfqq
->ioprio_class
);
4030 /* Allow preemption only if we are idling on sync-noidle tree */
4031 if (cfqd
->serving_wl_type
== SYNC_NOIDLE_WORKLOAD
&&
4032 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
4033 RB_EMPTY_ROOT(&cfqq
->sort_list
))
4037 * So both queues are sync. Let the new request get disk time if
4038 * it's a metadata request and the current queue is doing regular IO.
4040 if ((rq
->cmd_flags
& REQ_PRIO
) && !cfqq
->prio_pending
)
4043 /* An idle queue should not be idle now for some reason */
4044 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
4047 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
4051 * if this request is as-good as one we would expect from the
4052 * current cfqq, let it preempt
4054 if (cfq_rq_close(cfqd
, cfqq
, rq
))
4061 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4062 * let it have half of its nominal slice.
4064 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4066 enum wl_type_t old_type
= cfqq_type(cfqd
->active_queue
);
4068 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
4069 cfq_slice_expired(cfqd
, 1);
4072 * workload type is changed, don't save slice, otherwise preempt
4075 if (old_type
!= cfqq_type(cfqq
))
4076 cfqq
->cfqg
->saved_wl_slice
= 0;
4079 * Put the new queue at the front of the of the current list,
4080 * so we know that it will be selected next.
4082 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
4084 cfq_service_tree_add(cfqd
, cfqq
, 1);
4086 cfqq
->slice_end
= 0;
4087 cfq_mark_cfqq_slice_new(cfqq
);
4091 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4092 * something we should do about it
4095 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
4098 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
4101 if (rq
->cmd_flags
& REQ_PRIO
)
4102 cfqq
->prio_pending
++;
4104 cfq_update_io_thinktime(cfqd
, cfqq
, cic
);
4105 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
4106 cfq_update_idle_window(cfqd
, cfqq
, cic
);
4108 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
4110 if (cfqq
== cfqd
->active_queue
) {
4112 * Remember that we saw a request from this process, but
4113 * don't start queuing just yet. Otherwise we risk seeing lots
4114 * of tiny requests, because we disrupt the normal plugging
4115 * and merging. If the request is already larger than a single
4116 * page, let it rip immediately. For that case we assume that
4117 * merging is already done. Ditto for a busy system that
4118 * has other work pending, don't risk delaying until the
4119 * idle timer unplug to continue working.
4121 if (cfq_cfqq_wait_request(cfqq
)) {
4122 if (blk_rq_bytes(rq
) > PAGE_SIZE
||
4123 cfqd
->busy_queues
> 1) {
4124 cfq_del_timer(cfqd
, cfqq
);
4125 cfq_clear_cfqq_wait_request(cfqq
);
4126 __blk_run_queue(cfqd
->queue
);
4128 cfqg_stats_update_idle_time(cfqq
->cfqg
);
4129 cfq_mark_cfqq_must_dispatch(cfqq
);
4132 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
4134 * not the active queue - expire current slice if it is
4135 * idle and has expired it's mean thinktime or this new queue
4136 * has some old slice time left and is of higher priority or
4137 * this new queue is RT and the current one is BE
4139 cfq_preempt_queue(cfqd
, cfqq
);
4140 __blk_run_queue(cfqd
->queue
);
4144 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
4146 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4147 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4149 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
4150 cfq_init_prio_data(cfqq
, RQ_CIC(rq
));
4152 rq
->fifo_time
= ktime_get_ns() + cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)];
4153 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
4155 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqd
->serving_group
,
4157 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
4161 * Update hw_tag based on peak queue depth over 50 samples under
4164 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
4166 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
4168 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
4169 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
4171 if (cfqd
->hw_tag
== 1)
4174 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
4175 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
4179 * If active queue hasn't enough requests and can idle, cfq might not
4180 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4183 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
4184 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
4185 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
4188 if (cfqd
->hw_tag_samples
++ < 50)
4191 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
4197 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4199 struct cfq_io_cq
*cic
= cfqd
->active_cic
;
4200 u64 now
= ktime_get_ns();
4202 /* If the queue already has requests, don't wait */
4203 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4206 /* If there are other queues in the group, don't wait */
4207 if (cfqq
->cfqg
->nr_cfqq
> 1)
4210 /* the only queue in the group, but think time is big */
4211 if (cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true))
4214 if (cfq_slice_used(cfqq
))
4217 /* if slice left is less than think time, wait busy */
4218 if (cic
&& sample_valid(cic
->ttime
.ttime_samples
)
4219 && (cfqq
->slice_end
- now
< cic
->ttime
.ttime_mean
))
4223 * If think times is less than a jiffy than ttime_mean=0 and above
4224 * will not be true. It might happen that slice has not expired yet
4225 * but will expire soon (4-5 ns) during select_queue(). To cover the
4226 * case where think time is less than a jiffy, mark the queue wait
4227 * busy if only 1 jiffy is left in the slice.
4229 if (cfqq
->slice_end
- now
<= jiffies_to_nsecs(1))
4235 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
4237 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4238 struct cfq_data
*cfqd
= cfqq
->cfqd
;
4239 const int sync
= rq_is_sync(rq
);
4240 u64 now
= ktime_get_ns();
4242 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d", req_noidle(rq
));
4244 cfq_update_hw_tag(cfqd
);
4246 WARN_ON(!cfqd
->rq_in_driver
);
4247 WARN_ON(!cfqq
->dispatched
);
4248 cfqd
->rq_in_driver
--;
4250 (RQ_CFQG(rq
))->dispatched
--;
4251 cfqg_stats_update_completion(cfqq
->cfqg
, rq_start_time_ns(rq
),
4252 rq_io_start_time_ns(rq
), rq
->cmd_flags
);
4254 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
4257 struct cfq_rb_root
*st
;
4259 RQ_CIC(rq
)->ttime
.last_end_request
= now
;
4261 if (cfq_cfqq_on_rr(cfqq
))
4262 st
= cfqq
->service_tree
;
4264 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
),
4267 st
->ttime
.last_end_request
= now
;
4269 * We have to do this check in jiffies since start_time is in
4270 * jiffies and it is not trivial to convert to ns. If
4271 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4272 * will become problematic but so far we are fine (the default
4275 if (!time_after(rq
->start_time
+
4276 nsecs_to_jiffies(cfqd
->cfq_fifo_expire
[1]),
4278 cfqd
->last_delayed_sync
= now
;
4281 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4282 cfqq
->cfqg
->ttime
.last_end_request
= now
;
4286 * If this is the active queue, check if it needs to be expired,
4287 * or if we want to idle in case it has no pending requests.
4289 if (cfqd
->active_queue
== cfqq
) {
4290 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
4292 if (cfq_cfqq_slice_new(cfqq
)) {
4293 cfq_set_prio_slice(cfqd
, cfqq
);
4294 cfq_clear_cfqq_slice_new(cfqq
);
4298 * Should we wait for next request to come in before we expire
4301 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
4302 u64 extend_sl
= cfqd
->cfq_slice_idle
;
4303 if (!cfqd
->cfq_slice_idle
)
4304 extend_sl
= cfqd
->cfq_group_idle
;
4305 cfqq
->slice_end
= now
+ extend_sl
;
4306 cfq_mark_cfqq_wait_busy(cfqq
);
4307 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
4311 * Idling is not enabled on:
4313 * - idle-priority queues
4315 * - queues with still some requests queued
4316 * - when there is a close cooperator
4318 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
4319 cfq_slice_expired(cfqd
, 1);
4320 else if (sync
&& cfqq_empty
&&
4321 !cfq_close_cooperator(cfqd
, cfqq
)) {
4322 cfq_arm_slice_timer(cfqd
);
4326 if (!cfqd
->rq_in_driver
)
4327 cfq_schedule_dispatch(cfqd
);
4330 static void cfqq_boost_on_prio(struct cfq_queue
*cfqq
, unsigned int op
)
4333 * If REQ_PRIO is set, boost class and prio level, if it's below
4334 * BE/NORM. If prio is not set, restore the potentially boosted
4337 if (!(op
& REQ_PRIO
)) {
4338 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
4339 cfqq
->ioprio
= cfqq
->org_ioprio
;
4341 if (cfq_class_idle(cfqq
))
4342 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
4343 if (cfqq
->ioprio
> IOPRIO_NORM
)
4344 cfqq
->ioprio
= IOPRIO_NORM
;
4348 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
4350 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
4351 cfq_mark_cfqq_must_alloc_slice(cfqq
);
4352 return ELV_MQUEUE_MUST
;
4355 return ELV_MQUEUE_MAY
;
4358 static int cfq_may_queue(struct request_queue
*q
, unsigned int op
)
4360 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4361 struct task_struct
*tsk
= current
;
4362 struct cfq_io_cq
*cic
;
4363 struct cfq_queue
*cfqq
;
4366 * don't force setup of a queue from here, as a call to may_queue
4367 * does not necessarily imply that a request actually will be queued.
4368 * so just lookup a possibly existing queue, or return 'may queue'
4371 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
4373 return ELV_MQUEUE_MAY
;
4375 cfqq
= cic_to_cfqq(cic
, op_is_sync(op
));
4377 cfq_init_prio_data(cfqq
, cic
);
4378 cfqq_boost_on_prio(cfqq
, op
);
4380 return __cfq_may_queue(cfqq
);
4383 return ELV_MQUEUE_MAY
;
4387 * queue lock held here
4389 static void cfq_put_request(struct request
*rq
)
4391 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4394 const int rw
= rq_data_dir(rq
);
4396 BUG_ON(!cfqq
->allocated
[rw
]);
4397 cfqq
->allocated
[rw
]--;
4399 /* Put down rq reference on cfqg */
4400 cfqg_put(RQ_CFQG(rq
));
4401 rq
->elv
.priv
[0] = NULL
;
4402 rq
->elv
.priv
[1] = NULL
;
4404 cfq_put_queue(cfqq
);
4408 static struct cfq_queue
*
4409 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_cq
*cic
,
4410 struct cfq_queue
*cfqq
)
4412 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
4413 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
4414 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
4415 cfq_put_queue(cfqq
);
4416 return cic_to_cfqq(cic
, 1);
4420 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4421 * was the last process referring to said cfqq.
4423 static struct cfq_queue
*
4424 split_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
)
4426 if (cfqq_process_refs(cfqq
) == 1) {
4427 cfqq
->pid
= current
->pid
;
4428 cfq_clear_cfqq_coop(cfqq
);
4429 cfq_clear_cfqq_split_coop(cfqq
);
4433 cic_set_cfqq(cic
, NULL
, 1);
4435 cfq_put_cooperator(cfqq
);
4437 cfq_put_queue(cfqq
);
4441 * Allocate cfq data structures associated with this request.
4444 cfq_set_request(struct request_queue
*q
, struct request
*rq
, struct bio
*bio
,
4447 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4448 struct cfq_io_cq
*cic
= icq_to_cic(rq
->elv
.icq
);
4449 const int rw
= rq_data_dir(rq
);
4450 const bool is_sync
= rq_is_sync(rq
);
4451 struct cfq_queue
*cfqq
;
4453 spin_lock_irq(q
->queue_lock
);
4455 check_ioprio_changed(cic
, bio
);
4456 check_blkcg_changed(cic
, bio
);
4458 cfqq
= cic_to_cfqq(cic
, is_sync
);
4459 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
4461 cfq_put_queue(cfqq
);
4462 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
, bio
);
4463 cic_set_cfqq(cic
, cfqq
, is_sync
);
4466 * If the queue was seeky for too long, break it apart.
4468 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
4469 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
4470 cfqq
= split_cfqq(cic
, cfqq
);
4476 * Check to see if this queue is scheduled to merge with
4477 * another, closely cooperating queue. The merging of
4478 * queues happens here as it must be done in process context.
4479 * The reference on new_cfqq was taken in merge_cfqqs.
4482 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
4485 cfqq
->allocated
[rw
]++;
4488 cfqg_get(cfqq
->cfqg
);
4489 rq
->elv
.priv
[0] = cfqq
;
4490 rq
->elv
.priv
[1] = cfqq
->cfqg
;
4491 spin_unlock_irq(q
->queue_lock
);
4496 static void cfq_kick_queue(struct work_struct
*work
)
4498 struct cfq_data
*cfqd
=
4499 container_of(work
, struct cfq_data
, unplug_work
);
4500 struct request_queue
*q
= cfqd
->queue
;
4502 spin_lock_irq(q
->queue_lock
);
4503 __blk_run_queue(cfqd
->queue
);
4504 spin_unlock_irq(q
->queue_lock
);
4508 * Timer running if the active_queue is currently idling inside its time slice
4510 static enum hrtimer_restart
cfq_idle_slice_timer(struct hrtimer
*timer
)
4512 struct cfq_data
*cfqd
= container_of(timer
, struct cfq_data
,
4514 struct cfq_queue
*cfqq
;
4515 unsigned long flags
;
4518 cfq_log(cfqd
, "idle timer fired");
4520 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
4522 cfqq
= cfqd
->active_queue
;
4527 * We saw a request before the queue expired, let it through
4529 if (cfq_cfqq_must_dispatch(cfqq
))
4535 if (cfq_slice_used(cfqq
))
4539 * only expire and reinvoke request handler, if there are
4540 * other queues with pending requests
4542 if (!cfqd
->busy_queues
)
4546 * not expired and it has a request pending, let it dispatch
4548 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4552 * Queue depth flag is reset only when the idle didn't succeed
4554 cfq_clear_cfqq_deep(cfqq
);
4557 cfq_slice_expired(cfqd
, timed_out
);
4559 cfq_schedule_dispatch(cfqd
);
4561 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
4562 return HRTIMER_NORESTART
;
4565 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
4567 hrtimer_cancel(&cfqd
->idle_slice_timer
);
4568 cancel_work_sync(&cfqd
->unplug_work
);
4571 static void cfq_exit_queue(struct elevator_queue
*e
)
4573 struct cfq_data
*cfqd
= e
->elevator_data
;
4574 struct request_queue
*q
= cfqd
->queue
;
4576 cfq_shutdown_timer_wq(cfqd
);
4578 spin_lock_irq(q
->queue_lock
);
4580 if (cfqd
->active_queue
)
4581 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
4583 spin_unlock_irq(q
->queue_lock
);
4585 cfq_shutdown_timer_wq(cfqd
);
4587 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4588 blkcg_deactivate_policy(q
, &blkcg_policy_cfq
);
4590 kfree(cfqd
->root_group
);
4595 static int cfq_init_queue(struct request_queue
*q
, struct elevator_type
*e
)
4597 struct cfq_data
*cfqd
;
4598 struct blkcg_gq
*blkg __maybe_unused
;
4600 struct elevator_queue
*eq
;
4602 eq
= elevator_alloc(q
, e
);
4606 cfqd
= kzalloc_node(sizeof(*cfqd
), GFP_KERNEL
, q
->node
);
4608 kobject_put(&eq
->kobj
);
4611 eq
->elevator_data
= cfqd
;
4614 spin_lock_irq(q
->queue_lock
);
4616 spin_unlock_irq(q
->queue_lock
);
4618 /* Init root service tree */
4619 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
4621 /* Init root group and prefer root group over other groups by default */
4622 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4623 ret
= blkcg_activate_policy(q
, &blkcg_policy_cfq
);
4627 cfqd
->root_group
= blkg_to_cfqg(q
->root_blkg
);
4630 cfqd
->root_group
= kzalloc_node(sizeof(*cfqd
->root_group
),
4631 GFP_KERNEL
, cfqd
->queue
->node
);
4632 if (!cfqd
->root_group
)
4635 cfq_init_cfqg_base(cfqd
->root_group
);
4636 cfqd
->root_group
->weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4637 cfqd
->root_group
->leaf_weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4641 * Not strictly needed (since RB_ROOT just clears the node and we
4642 * zeroed cfqd on alloc), but better be safe in case someone decides
4643 * to add magic to the rb code
4645 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4646 cfqd
->prio_trees
[i
] = RB_ROOT
;
4649 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4650 * Grab a permanent reference to it, so that the normal code flow
4651 * will not attempt to free it. oom_cfqq is linked to root_group
4652 * but shouldn't hold a reference as it'll never be unlinked. Lose
4653 * the reference from linking right away.
4655 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4656 cfqd
->oom_cfqq
.ref
++;
4658 spin_lock_irq(q
->queue_lock
);
4659 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, cfqd
->root_group
);
4660 cfqg_put(cfqd
->root_group
);
4661 spin_unlock_irq(q
->queue_lock
);
4663 hrtimer_init(&cfqd
->idle_slice_timer
, CLOCK_MONOTONIC
,
4665 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4667 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4669 cfqd
->cfq_quantum
= cfq_quantum
;
4670 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4671 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4672 cfqd
->cfq_back_max
= cfq_back_max
;
4673 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4674 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4675 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4676 cfqd
->cfq_target_latency
= cfq_target_latency
;
4677 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4678 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4679 cfqd
->cfq_group_idle
= cfq_group_idle
;
4680 cfqd
->cfq_latency
= 1;
4683 * we optimistically start assuming sync ops weren't delayed in last
4684 * second, in order to have larger depth for async operations.
4686 cfqd
->last_delayed_sync
= ktime_get_ns() - NSEC_PER_SEC
;
4691 kobject_put(&eq
->kobj
);
4695 static void cfq_registered_queue(struct request_queue
*q
)
4697 struct elevator_queue
*e
= q
->elevator
;
4698 struct cfq_data
*cfqd
= e
->elevator_data
;
4701 * Default to IOPS mode with no idling for SSDs
4703 if (blk_queue_nonrot(q
))
4704 cfqd
->cfq_slice_idle
= 0;
4705 wbt_disable_default(q
);
4709 * sysfs parts below -->
4712 cfq_var_show(unsigned int var
, char *page
)
4714 return sprintf(page
, "%u\n", var
);
4718 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4720 char *p
= (char *) page
;
4722 *var
= simple_strtoul(p
, &p
, 10);
4726 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4727 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4729 struct cfq_data *cfqd = e->elevator_data; \
4730 u64 __data = __VAR; \
4732 __data = div_u64(__data, NSEC_PER_MSEC); \
4733 return cfq_var_show(__data, (page)); \
4735 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4736 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4737 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4738 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4739 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4740 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4741 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4742 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4743 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4744 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4745 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4746 SHOW_FUNCTION(cfq_target_latency_show
, cfqd
->cfq_target_latency
, 1);
4747 #undef SHOW_FUNCTION
4749 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4750 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4752 struct cfq_data *cfqd = e->elevator_data; \
4753 u64 __data = __VAR; \
4754 __data = div_u64(__data, NSEC_PER_USEC); \
4755 return cfq_var_show(__data, (page)); \
4757 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show
, cfqd
->cfq_slice_idle
);
4758 USEC_SHOW_FUNCTION(cfq_group_idle_us_show
, cfqd
->cfq_group_idle
);
4759 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show
, cfqd
->cfq_slice
[1]);
4760 USEC_SHOW_FUNCTION(cfq_slice_async_us_show
, cfqd
->cfq_slice
[0]);
4761 USEC_SHOW_FUNCTION(cfq_target_latency_us_show
, cfqd
->cfq_target_latency
);
4762 #undef USEC_SHOW_FUNCTION
4764 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4765 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4767 struct cfq_data *cfqd = e->elevator_data; \
4768 unsigned int __data; \
4769 int ret = cfq_var_store(&__data, (page), count); \
4770 if (__data < (MIN)) \
4772 else if (__data > (MAX)) \
4775 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4777 *(__PTR) = __data; \
4780 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4781 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4783 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4785 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4786 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4788 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4789 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4790 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4791 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4792 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4794 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4795 STORE_FUNCTION(cfq_target_latency_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
, 1);
4796 #undef STORE_FUNCTION
4798 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4799 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4801 struct cfq_data *cfqd = e->elevator_data; \
4802 unsigned int __data; \
4803 int ret = cfq_var_store(&__data, (page), count); \
4804 if (__data < (MIN)) \
4806 else if (__data > (MAX)) \
4808 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4811 USEC_STORE_FUNCTION(cfq_slice_idle_us_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
);
4812 USEC_STORE_FUNCTION(cfq_group_idle_us_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
);
4813 USEC_STORE_FUNCTION(cfq_slice_sync_us_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
);
4814 USEC_STORE_FUNCTION(cfq_slice_async_us_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
);
4815 USEC_STORE_FUNCTION(cfq_target_latency_us_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
);
4816 #undef USEC_STORE_FUNCTION
4818 #define CFQ_ATTR(name) \
4819 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4821 static struct elv_fs_entry cfq_attrs
[] = {
4823 CFQ_ATTR(fifo_expire_sync
),
4824 CFQ_ATTR(fifo_expire_async
),
4825 CFQ_ATTR(back_seek_max
),
4826 CFQ_ATTR(back_seek_penalty
),
4827 CFQ_ATTR(slice_sync
),
4828 CFQ_ATTR(slice_sync_us
),
4829 CFQ_ATTR(slice_async
),
4830 CFQ_ATTR(slice_async_us
),
4831 CFQ_ATTR(slice_async_rq
),
4832 CFQ_ATTR(slice_idle
),
4833 CFQ_ATTR(slice_idle_us
),
4834 CFQ_ATTR(group_idle
),
4835 CFQ_ATTR(group_idle_us
),
4836 CFQ_ATTR(low_latency
),
4837 CFQ_ATTR(target_latency
),
4838 CFQ_ATTR(target_latency_us
),
4842 static struct elevator_type iosched_cfq
= {
4844 .elevator_merge_fn
= cfq_merge
,
4845 .elevator_merged_fn
= cfq_merged_request
,
4846 .elevator_merge_req_fn
= cfq_merged_requests
,
4847 .elevator_allow_bio_merge_fn
= cfq_allow_bio_merge
,
4848 .elevator_allow_rq_merge_fn
= cfq_allow_rq_merge
,
4849 .elevator_bio_merged_fn
= cfq_bio_merged
,
4850 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4851 .elevator_add_req_fn
= cfq_insert_request
,
4852 .elevator_activate_req_fn
= cfq_activate_request
,
4853 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4854 .elevator_completed_req_fn
= cfq_completed_request
,
4855 .elevator_former_req_fn
= elv_rb_former_request
,
4856 .elevator_latter_req_fn
= elv_rb_latter_request
,
4857 .elevator_init_icq_fn
= cfq_init_icq
,
4858 .elevator_exit_icq_fn
= cfq_exit_icq
,
4859 .elevator_set_req_fn
= cfq_set_request
,
4860 .elevator_put_req_fn
= cfq_put_request
,
4861 .elevator_may_queue_fn
= cfq_may_queue
,
4862 .elevator_init_fn
= cfq_init_queue
,
4863 .elevator_exit_fn
= cfq_exit_queue
,
4864 .elevator_registered_fn
= cfq_registered_queue
,
4866 .icq_size
= sizeof(struct cfq_io_cq
),
4867 .icq_align
= __alignof__(struct cfq_io_cq
),
4868 .elevator_attrs
= cfq_attrs
,
4869 .elevator_name
= "cfq",
4870 .elevator_owner
= THIS_MODULE
,
4873 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4874 static struct blkcg_policy blkcg_policy_cfq
= {
4875 .dfl_cftypes
= cfq_blkcg_files
,
4876 .legacy_cftypes
= cfq_blkcg_legacy_files
,
4878 .cpd_alloc_fn
= cfq_cpd_alloc
,
4879 .cpd_init_fn
= cfq_cpd_init
,
4880 .cpd_free_fn
= cfq_cpd_free
,
4881 .cpd_bind_fn
= cfq_cpd_bind
,
4883 .pd_alloc_fn
= cfq_pd_alloc
,
4884 .pd_init_fn
= cfq_pd_init
,
4885 .pd_offline_fn
= cfq_pd_offline
,
4886 .pd_free_fn
= cfq_pd_free
,
4887 .pd_reset_stats_fn
= cfq_pd_reset_stats
,
4891 static int __init
cfq_init(void)
4895 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4896 ret
= blkcg_policy_register(&blkcg_policy_cfq
);
4904 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4908 ret
= elv_register(&iosched_cfq
);
4915 kmem_cache_destroy(cfq_pool
);
4917 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4918 blkcg_policy_unregister(&blkcg_policy_cfq
);
4923 static void __exit
cfq_exit(void)
4925 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4926 blkcg_policy_unregister(&blkcg_policy_cfq
);
4928 elv_unregister(&iosched_cfq
);
4929 kmem_cache_destroy(cfq_pool
);
4932 module_init(cfq_init
);
4933 module_exit(cfq_exit
);
4935 MODULE_AUTHOR("Jens Axboe");
4936 MODULE_LICENSE("GPL");
4937 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");