staging: kpc2000: Use memset to initialize resources
[linux/fpc-iii.git] / drivers / cpufreq / brcmstb-avs-cpufreq.c
blobe6f9cbe5835f96883599d86006c54fd805f4e7e7
1 /*
2 * CPU frequency scaling for Broadcom SoCs with AVS firmware that
3 * supports DVS or DVFS
5 * Copyright (c) 2016 Broadcom
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation version 2.
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
18 * "AVS" is the name of a firmware developed at Broadcom. It derives
19 * its name from the technique called "Adaptive Voltage Scaling".
20 * Adaptive voltage scaling was the original purpose of this firmware.
21 * The AVS firmware still supports "AVS mode", where all it does is
22 * adaptive voltage scaling. However, on some newer Broadcom SoCs, the
23 * AVS Firmware, despite its unchanged name, also supports DFS mode and
24 * DVFS mode.
26 * In the context of this document and the related driver, "AVS" by
27 * itself always means the Broadcom firmware and never refers to the
28 * technique called "Adaptive Voltage Scaling".
30 * The Broadcom STB AVS CPUfreq driver provides voltage and frequency
31 * scaling on Broadcom SoCs using AVS firmware with support for DFS and
32 * DVFS. The AVS firmware is running on its own co-processor. The
33 * driver supports both uniprocessor (UP) and symmetric multiprocessor
34 * (SMP) systems which share clock and voltage across all CPUs.
36 * Actual voltage and frequency scaling is done solely by the AVS
37 * firmware. This driver does not change frequency or voltage itself.
38 * It provides a standard CPUfreq interface to the rest of the kernel
39 * and to userland. It interfaces with the AVS firmware to effect the
40 * requested changes and to report back the current system status in a
41 * way that is expected by existing tools.
44 #include <linux/cpufreq.h>
45 #include <linux/interrupt.h>
46 #include <linux/io.h>
47 #include <linux/module.h>
48 #include <linux/of_address.h>
49 #include <linux/platform_device.h>
50 #include <linux/semaphore.h>
52 /* Max number of arguments AVS calls take */
53 #define AVS_MAX_CMD_ARGS 4
55 * This macro is used to generate AVS parameter register offsets. For
56 * x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory
57 * access outside of the parameter range. (Offset 0 is the first parameter.)
59 #define AVS_PARAM_MULT(x) ((x) < AVS_MAX_CMD_ARGS ? (x) : 0)
61 /* AVS Mailbox Register offsets */
62 #define AVS_MBOX_COMMAND 0x00
63 #define AVS_MBOX_STATUS 0x04
64 #define AVS_MBOX_VOLTAGE0 0x08
65 #define AVS_MBOX_TEMP0 0x0c
66 #define AVS_MBOX_PV0 0x10
67 #define AVS_MBOX_MV0 0x14
68 #define AVS_MBOX_PARAM(x) (0x18 + AVS_PARAM_MULT(x) * sizeof(u32))
69 #define AVS_MBOX_REVISION 0x28
70 #define AVS_MBOX_PSTATE 0x2c
71 #define AVS_MBOX_HEARTBEAT 0x30
72 #define AVS_MBOX_MAGIC 0x34
73 #define AVS_MBOX_SIGMA_HVT 0x38
74 #define AVS_MBOX_SIGMA_SVT 0x3c
75 #define AVS_MBOX_VOLTAGE1 0x40
76 #define AVS_MBOX_TEMP1 0x44
77 #define AVS_MBOX_PV1 0x48
78 #define AVS_MBOX_MV1 0x4c
79 #define AVS_MBOX_FREQUENCY 0x50
81 /* AVS Commands */
82 #define AVS_CMD_AVAILABLE 0x00
83 #define AVS_CMD_DISABLE 0x10
84 #define AVS_CMD_ENABLE 0x11
85 #define AVS_CMD_S2_ENTER 0x12
86 #define AVS_CMD_S2_EXIT 0x13
87 #define AVS_CMD_BBM_ENTER 0x14
88 #define AVS_CMD_BBM_EXIT 0x15
89 #define AVS_CMD_S3_ENTER 0x16
90 #define AVS_CMD_S3_EXIT 0x17
91 #define AVS_CMD_BALANCE 0x18
92 /* PMAP and P-STATE commands */
93 #define AVS_CMD_GET_PMAP 0x30
94 #define AVS_CMD_SET_PMAP 0x31
95 #define AVS_CMD_GET_PSTATE 0x40
96 #define AVS_CMD_SET_PSTATE 0x41
98 /* Different modes AVS supports (for GET_PMAP/SET_PMAP) */
99 #define AVS_MODE_AVS 0x0
100 #define AVS_MODE_DFS 0x1
101 #define AVS_MODE_DVS 0x2
102 #define AVS_MODE_DVFS 0x3
105 * PMAP parameter p1
106 * unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0
108 #define NDIV_INT_SHIFT 0
109 #define NDIV_INT_MASK 0x3ff
110 #define PDIV_SHIFT 10
111 #define PDIV_MASK 0xf
112 #define MDIV_P0_SHIFT 16
113 #define MDIV_P0_MASK 0xff
115 * PMAP parameter p2
116 * mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0
118 #define MDIV_P1_SHIFT 0
119 #define MDIV_P1_MASK 0xff
120 #define MDIV_P2_SHIFT 8
121 #define MDIV_P2_MASK 0xff
122 #define MDIV_P3_SHIFT 16
123 #define MDIV_P3_MASK 0xff
124 #define MDIV_P4_SHIFT 24
125 #define MDIV_P4_MASK 0xff
127 /* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */
128 #define AVS_PSTATE_P0 0x0
129 #define AVS_PSTATE_P1 0x1
130 #define AVS_PSTATE_P2 0x2
131 #define AVS_PSTATE_P3 0x3
132 #define AVS_PSTATE_P4 0x4
133 #define AVS_PSTATE_MAX AVS_PSTATE_P4
135 /* CPU L2 Interrupt Controller Registers */
136 #define AVS_CPU_L2_SET0 0x04
137 #define AVS_CPU_L2_INT_MASK BIT(31)
139 /* AVS Command Status Values */
140 #define AVS_STATUS_CLEAR 0x00
141 /* Command/notification accepted */
142 #define AVS_STATUS_SUCCESS 0xf0
143 /* Command/notification rejected */
144 #define AVS_STATUS_FAILURE 0xff
145 /* Invalid command/notification (unknown) */
146 #define AVS_STATUS_INVALID 0xf1
147 /* Non-AVS modes are not supported */
148 #define AVS_STATUS_NO_SUPP 0xf2
149 /* Cannot set P-State until P-Map supplied */
150 #define AVS_STATUS_NO_MAP 0xf3
151 /* Cannot change P-Map after initial P-Map set */
152 #define AVS_STATUS_MAP_SET 0xf4
153 /* Max AVS status; higher numbers are used for debugging */
154 #define AVS_STATUS_MAX 0xff
156 /* Other AVS related constants */
157 #define AVS_LOOP_LIMIT 10000
158 #define AVS_TIMEOUT 300 /* in ms; expected completion is < 10ms */
159 #define AVS_FIRMWARE_MAGIC 0xa11600d1
161 #define BRCM_AVS_CPUFREQ_PREFIX "brcmstb-avs"
162 #define BRCM_AVS_CPUFREQ_NAME BRCM_AVS_CPUFREQ_PREFIX "-cpufreq"
163 #define BRCM_AVS_CPU_DATA "brcm,avs-cpu-data-mem"
164 #define BRCM_AVS_CPU_INTR "brcm,avs-cpu-l2-intr"
165 #define BRCM_AVS_HOST_INTR "sw_intr"
167 struct pmap {
168 unsigned int mode;
169 unsigned int p1;
170 unsigned int p2;
171 unsigned int state;
174 struct private_data {
175 void __iomem *base;
176 void __iomem *avs_intr_base;
177 struct device *dev;
178 struct completion done;
179 struct semaphore sem;
180 struct pmap pmap;
183 static void __iomem *__map_region(const char *name)
185 struct device_node *np;
186 void __iomem *ptr;
188 np = of_find_compatible_node(NULL, NULL, name);
189 if (!np)
190 return NULL;
192 ptr = of_iomap(np, 0);
193 of_node_put(np);
195 return ptr;
198 static int __issue_avs_command(struct private_data *priv, int cmd, bool is_send,
199 u32 args[])
201 unsigned long time_left = msecs_to_jiffies(AVS_TIMEOUT);
202 void __iomem *base = priv->base;
203 unsigned int i;
204 int ret;
205 u32 val;
207 ret = down_interruptible(&priv->sem);
208 if (ret)
209 return ret;
212 * Make sure no other command is currently running: cmd is 0 if AVS
213 * co-processor is idle. Due to the guard above, we should almost never
214 * have to wait here.
216 for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++)
217 val = readl(base + AVS_MBOX_COMMAND);
219 /* Give the caller a chance to retry if AVS is busy. */
220 if (i == AVS_LOOP_LIMIT) {
221 ret = -EAGAIN;
222 goto out;
225 /* Clear status before we begin. */
226 writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
228 /* We need to send arguments for this command. */
229 if (args && is_send) {
230 for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
231 writel(args[i], base + AVS_MBOX_PARAM(i));
234 /* Protect from spurious interrupts. */
235 reinit_completion(&priv->done);
237 /* Now issue the command & tell firmware to wake up to process it. */
238 writel(cmd, base + AVS_MBOX_COMMAND);
239 writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0);
241 /* Wait for AVS co-processor to finish processing the command. */
242 time_left = wait_for_completion_timeout(&priv->done, time_left);
245 * If the AVS status is not in the expected range, it means AVS didn't
246 * complete our command in time, and we return an error. Also, if there
247 * is no "time left", we timed out waiting for the interrupt.
249 val = readl(base + AVS_MBOX_STATUS);
250 if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) {
251 dev_err(priv->dev, "AVS command %#x didn't complete in time\n",
252 cmd);
253 dev_err(priv->dev, " Time left: %u ms, AVS status: %#x\n",
254 jiffies_to_msecs(time_left), val);
255 ret = -ETIMEDOUT;
256 goto out;
259 /* This command returned arguments, so we read them back. */
260 if (args && !is_send) {
261 for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
262 args[i] = readl(base + AVS_MBOX_PARAM(i));
265 /* Clear status to tell AVS co-processor we are done. */
266 writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
268 /* Convert firmware errors to errno's as much as possible. */
269 switch (val) {
270 case AVS_STATUS_INVALID:
271 ret = -EINVAL;
272 break;
273 case AVS_STATUS_NO_SUPP:
274 ret = -ENOTSUPP;
275 break;
276 case AVS_STATUS_NO_MAP:
277 ret = -ENOENT;
278 break;
279 case AVS_STATUS_MAP_SET:
280 ret = -EEXIST;
281 break;
282 case AVS_STATUS_FAILURE:
283 ret = -EIO;
284 break;
287 out:
288 up(&priv->sem);
290 return ret;
293 static irqreturn_t irq_handler(int irq, void *data)
295 struct private_data *priv = data;
297 /* AVS command completed execution. Wake up __issue_avs_command(). */
298 complete(&priv->done);
300 return IRQ_HANDLED;
303 static char *brcm_avs_mode_to_string(unsigned int mode)
305 switch (mode) {
306 case AVS_MODE_AVS:
307 return "AVS";
308 case AVS_MODE_DFS:
309 return "DFS";
310 case AVS_MODE_DVS:
311 return "DVS";
312 case AVS_MODE_DVFS:
313 return "DVFS";
315 return NULL;
318 static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv,
319 unsigned int *ndiv)
321 *mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK;
322 *pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK;
323 *ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK;
326 static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1,
327 unsigned int *mdiv_p2, unsigned int *mdiv_p3,
328 unsigned int *mdiv_p4)
330 *mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK;
331 *mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK;
332 *mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK;
333 *mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK;
336 static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap)
338 u32 args[AVS_MAX_CMD_ARGS];
339 int ret;
341 ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, false, args);
342 if (ret || !pmap)
343 return ret;
345 pmap->mode = args[0];
346 pmap->p1 = args[1];
347 pmap->p2 = args[2];
348 pmap->state = args[3];
350 return 0;
353 static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap)
355 u32 args[AVS_MAX_CMD_ARGS];
357 args[0] = pmap->mode;
358 args[1] = pmap->p1;
359 args[2] = pmap->p2;
360 args[3] = pmap->state;
362 return __issue_avs_command(priv, AVS_CMD_SET_PMAP, true, args);
365 static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate)
367 u32 args[AVS_MAX_CMD_ARGS];
368 int ret;
370 ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, false, args);
371 if (ret)
372 return ret;
373 *pstate = args[0];
375 return 0;
378 static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate)
380 u32 args[AVS_MAX_CMD_ARGS];
382 args[0] = pstate;
384 return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, true, args);
387 static unsigned long brcm_avs_get_voltage(void __iomem *base)
389 return readl(base + AVS_MBOX_VOLTAGE1);
392 static unsigned long brcm_avs_get_frequency(void __iomem *base)
394 return readl(base + AVS_MBOX_FREQUENCY) * 1000; /* in kHz */
398 * We determine which frequencies are supported by cycling through all P-states
399 * and reading back what frequency we are running at for each P-state.
401 static struct cpufreq_frequency_table *
402 brcm_avs_get_freq_table(struct device *dev, struct private_data *priv)
404 struct cpufreq_frequency_table *table;
405 unsigned int pstate;
406 int i, ret;
408 /* Remember P-state for later */
409 ret = brcm_avs_get_pstate(priv, &pstate);
410 if (ret)
411 return ERR_PTR(ret);
413 table = devm_kcalloc(dev, AVS_PSTATE_MAX + 1, sizeof(*table),
414 GFP_KERNEL);
415 if (!table)
416 return ERR_PTR(-ENOMEM);
418 for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) {
419 ret = brcm_avs_set_pstate(priv, i);
420 if (ret)
421 return ERR_PTR(ret);
422 table[i].frequency = brcm_avs_get_frequency(priv->base);
423 table[i].driver_data = i;
425 table[i].frequency = CPUFREQ_TABLE_END;
427 /* Restore P-state */
428 ret = brcm_avs_set_pstate(priv, pstate);
429 if (ret)
430 return ERR_PTR(ret);
432 return table;
436 * To ensure the right firmware is running we need to
437 * - check the MAGIC matches what we expect
438 * - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL
439 * We need to set up our interrupt handling before calling brcm_avs_get_pmap()!
441 static bool brcm_avs_is_firmware_loaded(struct private_data *priv)
443 u32 magic;
444 int rc;
446 rc = brcm_avs_get_pmap(priv, NULL);
447 magic = readl(priv->base + AVS_MBOX_MAGIC);
449 return (magic == AVS_FIRMWARE_MAGIC) && (rc != -ENOTSUPP) &&
450 (rc != -EINVAL);
453 static unsigned int brcm_avs_cpufreq_get(unsigned int cpu)
455 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
456 struct private_data *priv = policy->driver_data;
458 return brcm_avs_get_frequency(priv->base);
461 static int brcm_avs_target_index(struct cpufreq_policy *policy,
462 unsigned int index)
464 return brcm_avs_set_pstate(policy->driver_data,
465 policy->freq_table[index].driver_data);
468 static int brcm_avs_suspend(struct cpufreq_policy *policy)
470 struct private_data *priv = policy->driver_data;
471 int ret;
473 ret = brcm_avs_get_pmap(priv, &priv->pmap);
474 if (ret)
475 return ret;
478 * We can't use the P-state returned by brcm_avs_get_pmap(), since
479 * that's the initial P-state from when the P-map was downloaded to the
480 * AVS co-processor, not necessarily the P-state we are running at now.
481 * So, we get the current P-state explicitly.
483 return brcm_avs_get_pstate(priv, &priv->pmap.state);
486 static int brcm_avs_resume(struct cpufreq_policy *policy)
488 struct private_data *priv = policy->driver_data;
489 int ret;
491 ret = brcm_avs_set_pmap(priv, &priv->pmap);
492 if (ret == -EEXIST) {
493 struct platform_device *pdev = cpufreq_get_driver_data();
494 struct device *dev = &pdev->dev;
496 dev_warn(dev, "PMAP was already set\n");
497 ret = 0;
500 return ret;
504 * All initialization code that we only want to execute once goes here. Setup
505 * code that can be re-tried on every core (if it failed before) can go into
506 * brcm_avs_cpufreq_init().
508 static int brcm_avs_prepare_init(struct platform_device *pdev)
510 struct private_data *priv;
511 struct device *dev;
512 int host_irq, ret;
514 dev = &pdev->dev;
515 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
516 if (!priv)
517 return -ENOMEM;
519 priv->dev = dev;
520 sema_init(&priv->sem, 1);
521 init_completion(&priv->done);
522 platform_set_drvdata(pdev, priv);
524 priv->base = __map_region(BRCM_AVS_CPU_DATA);
525 if (!priv->base) {
526 dev_err(dev, "Couldn't find property %s in device tree.\n",
527 BRCM_AVS_CPU_DATA);
528 return -ENOENT;
531 priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR);
532 if (!priv->avs_intr_base) {
533 dev_err(dev, "Couldn't find property %s in device tree.\n",
534 BRCM_AVS_CPU_INTR);
535 ret = -ENOENT;
536 goto unmap_base;
539 host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR);
540 if (host_irq < 0) {
541 dev_err(dev, "Couldn't find interrupt %s -- %d\n",
542 BRCM_AVS_HOST_INTR, host_irq);
543 ret = host_irq;
544 goto unmap_intr_base;
547 ret = devm_request_irq(dev, host_irq, irq_handler, IRQF_TRIGGER_RISING,
548 BRCM_AVS_HOST_INTR, priv);
549 if (ret) {
550 dev_err(dev, "IRQ request failed: %s (%d) -- %d\n",
551 BRCM_AVS_HOST_INTR, host_irq, ret);
552 goto unmap_intr_base;
555 if (brcm_avs_is_firmware_loaded(priv))
556 return 0;
558 dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n");
559 ret = -ENODEV;
561 unmap_intr_base:
562 iounmap(priv->avs_intr_base);
563 unmap_base:
564 iounmap(priv->base);
566 return ret;
569 static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy)
571 struct cpufreq_frequency_table *freq_table;
572 struct platform_device *pdev;
573 struct private_data *priv;
574 struct device *dev;
575 int ret;
577 pdev = cpufreq_get_driver_data();
578 priv = platform_get_drvdata(pdev);
579 policy->driver_data = priv;
580 dev = &pdev->dev;
582 freq_table = brcm_avs_get_freq_table(dev, priv);
583 if (IS_ERR(freq_table)) {
584 ret = PTR_ERR(freq_table);
585 dev_err(dev, "Couldn't determine frequency table (%d).\n", ret);
586 return ret;
589 policy->freq_table = freq_table;
591 /* All cores share the same clock and thus the same policy. */
592 cpumask_setall(policy->cpus);
594 ret = __issue_avs_command(priv, AVS_CMD_ENABLE, false, NULL);
595 if (!ret) {
596 unsigned int pstate;
598 ret = brcm_avs_get_pstate(priv, &pstate);
599 if (!ret) {
600 policy->cur = freq_table[pstate].frequency;
601 dev_info(dev, "registered\n");
602 return 0;
606 dev_err(dev, "couldn't initialize driver (%d)\n", ret);
608 return ret;
611 static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf)
613 struct private_data *priv = policy->driver_data;
614 unsigned int pstate;
616 if (brcm_avs_get_pstate(priv, &pstate))
617 return sprintf(buf, "<unknown>\n");
619 return sprintf(buf, "%u\n", pstate);
622 static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf)
624 struct private_data *priv = policy->driver_data;
625 struct pmap pmap;
627 if (brcm_avs_get_pmap(priv, &pmap))
628 return sprintf(buf, "<unknown>\n");
630 return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode),
631 pmap.mode);
634 static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf)
636 unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4;
637 struct private_data *priv = policy->driver_data;
638 unsigned int ndiv, pdiv;
639 struct pmap pmap;
641 if (brcm_avs_get_pmap(priv, &pmap))
642 return sprintf(buf, "<unknown>\n");
644 brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv);
645 brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4);
647 return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n",
648 pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2,
649 mdiv_p3, mdiv_p4, pmap.mode, pmap.state);
652 static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf)
654 struct private_data *priv = policy->driver_data;
656 return sprintf(buf, "0x%08lx\n", brcm_avs_get_voltage(priv->base));
659 static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf)
661 struct private_data *priv = policy->driver_data;
663 return sprintf(buf, "0x%08lx\n", brcm_avs_get_frequency(priv->base));
666 cpufreq_freq_attr_ro(brcm_avs_pstate);
667 cpufreq_freq_attr_ro(brcm_avs_mode);
668 cpufreq_freq_attr_ro(brcm_avs_pmap);
669 cpufreq_freq_attr_ro(brcm_avs_voltage);
670 cpufreq_freq_attr_ro(brcm_avs_frequency);
672 static struct freq_attr *brcm_avs_cpufreq_attr[] = {
673 &cpufreq_freq_attr_scaling_available_freqs,
674 &brcm_avs_pstate,
675 &brcm_avs_mode,
676 &brcm_avs_pmap,
677 &brcm_avs_voltage,
678 &brcm_avs_frequency,
679 NULL
682 static struct cpufreq_driver brcm_avs_driver = {
683 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
684 .verify = cpufreq_generic_frequency_table_verify,
685 .target_index = brcm_avs_target_index,
686 .get = brcm_avs_cpufreq_get,
687 .suspend = brcm_avs_suspend,
688 .resume = brcm_avs_resume,
689 .init = brcm_avs_cpufreq_init,
690 .attr = brcm_avs_cpufreq_attr,
691 .name = BRCM_AVS_CPUFREQ_PREFIX,
694 static int brcm_avs_cpufreq_probe(struct platform_device *pdev)
696 int ret;
698 ret = brcm_avs_prepare_init(pdev);
699 if (ret)
700 return ret;
702 brcm_avs_driver.driver_data = pdev;
704 return cpufreq_register_driver(&brcm_avs_driver);
707 static int brcm_avs_cpufreq_remove(struct platform_device *pdev)
709 struct private_data *priv;
710 int ret;
712 ret = cpufreq_unregister_driver(&brcm_avs_driver);
713 if (ret)
714 return ret;
716 priv = platform_get_drvdata(pdev);
717 iounmap(priv->base);
718 iounmap(priv->avs_intr_base);
720 return 0;
723 static const struct of_device_id brcm_avs_cpufreq_match[] = {
724 { .compatible = BRCM_AVS_CPU_DATA },
727 MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match);
729 static struct platform_driver brcm_avs_cpufreq_platdrv = {
730 .driver = {
731 .name = BRCM_AVS_CPUFREQ_NAME,
732 .of_match_table = brcm_avs_cpufreq_match,
734 .probe = brcm_avs_cpufreq_probe,
735 .remove = brcm_avs_cpufreq_remove,
737 module_platform_driver(brcm_avs_cpufreq_platdrv);
739 MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>");
740 MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS");
741 MODULE_LICENSE("GPL");