2 * intel_pstate.c: Native P state management for Intel processors
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
33 #include <asm/div64.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
39 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60 static inline int32_t mul_fp(int32_t x
, int32_t y
)
62 return ((int64_t)x
* (int64_t)y
) >> FRAC_BITS
;
65 static inline int32_t div_fp(s64 x
, s64 y
)
67 return div64_s64((int64_t)x
<< FRAC_BITS
, y
);
70 static inline int ceiling_fp(int32_t x
)
75 mask
= (1 << FRAC_BITS
) - 1;
81 static inline int32_t percent_fp(int percent
)
83 return div_fp(percent
, 100);
86 static inline u64
mul_ext_fp(u64 x
, u64 y
)
88 return (x
* y
) >> EXT_FRAC_BITS
;
91 static inline u64
div_ext_fp(u64 x
, u64 y
)
93 return div64_u64(x
<< EXT_FRAC_BITS
, y
);
96 static inline int32_t percent_ext_fp(int percent
)
98 return div_ext_fp(percent
, 100);
102 * struct sample - Store performance sample
103 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
104 * performance during last sample period
105 * @busy_scaled: Scaled busy value which is used to calculate next
106 * P state. This can be different than core_avg_perf
107 * to account for cpu idle period
108 * @aperf: Difference of actual performance frequency clock count
109 * read from APERF MSR between last and current sample
110 * @mperf: Difference of maximum performance frequency clock count
111 * read from MPERF MSR between last and current sample
112 * @tsc: Difference of time stamp counter between last and
114 * @time: Current time from scheduler
116 * This structure is used in the cpudata structure to store performance sample
117 * data for choosing next P State.
120 int32_t core_avg_perf
;
129 * struct pstate_data - Store P state data
130 * @current_pstate: Current requested P state
131 * @min_pstate: Min P state possible for this platform
132 * @max_pstate: Max P state possible for this platform
133 * @max_pstate_physical:This is physical Max P state for a processor
134 * This can be higher than the max_pstate which can
135 * be limited by platform thermal design power limits
136 * @scaling: Scaling factor to convert frequency to cpufreq
138 * @turbo_pstate: Max Turbo P state possible for this platform
139 * @max_freq: @max_pstate frequency in cpufreq units
140 * @turbo_freq: @turbo_pstate frequency in cpufreq units
142 * Stores the per cpu model P state limits and current P state.
148 int max_pstate_physical
;
151 unsigned int max_freq
;
152 unsigned int turbo_freq
;
156 * struct vid_data - Stores voltage information data
157 * @min: VID data for this platform corresponding to
159 * @max: VID data corresponding to the highest P State.
160 * @turbo: VID data for turbo P state
161 * @ratio: Ratio of (vid max - vid min) /
162 * (max P state - Min P State)
164 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165 * This data is used in Atom platforms, where in addition to target P state,
166 * the voltage data needs to be specified to select next P State.
176 * struct global_params - Global parameters, mostly tunable via sysfs.
177 * @no_turbo: Whether or not to use turbo P-states.
178 * @turbo_disabled: Whethet or not turbo P-states are available at all,
179 * based on the MSR_IA32_MISC_ENABLE value and whether or
180 * not the maximum reported turbo P-state is different from
181 * the maximum reported non-turbo one.
182 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
184 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
187 struct global_params
{
195 * struct cpudata - Per CPU instance data storage
196 * @cpu: CPU number for this instance data
197 * @policy: CPUFreq policy value
198 * @update_util: CPUFreq utility callback information
199 * @update_util_set: CPUFreq utility callback is set
200 * @iowait_boost: iowait-related boost fraction
201 * @last_update: Time of the last update.
202 * @pstate: Stores P state limits for this CPU
203 * @vid: Stores VID limits for this CPU
204 * @last_sample_time: Last Sample time
205 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
206 * This shift is a multiplier to mperf delta to
207 * calculate CPU busy.
208 * @prev_aperf: Last APERF value read from APERF MSR
209 * @prev_mperf: Last MPERF value read from MPERF MSR
210 * @prev_tsc: Last timestamp counter (TSC) value
211 * @prev_cummulative_iowait: IO Wait time difference from last and
213 * @sample: Storage for storing last Sample data
214 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
215 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
216 * @acpi_perf_data: Stores ACPI perf information read from _PSS
217 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
218 * @epp_powersave: Last saved HWP energy performance preference
219 * (EPP) or energy performance bias (EPB),
220 * when policy switched to performance
221 * @epp_policy: Last saved policy used to set EPP/EPB
222 * @epp_default: Power on default HWP energy performance
224 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
226 * @hwp_req_cached: Cached value of the last HWP Request MSR
227 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
228 * @last_io_update: Last time when IO wake flag was set
229 * @sched_flags: Store scheduler flags for possible cross CPU update
230 * @hwp_boost_min: Last HWP boosted min performance
232 * This structure stores per CPU instance data for all CPUs.
238 struct update_util_data update_util
;
239 bool update_util_set
;
241 struct pstate_data pstate
;
245 u64 last_sample_time
;
246 u64 aperf_mperf_shift
;
250 u64 prev_cummulative_iowait
;
251 struct sample sample
;
252 int32_t min_perf_ratio
;
253 int32_t max_perf_ratio
;
255 struct acpi_processor_performance acpi_perf_data
;
256 bool valid_pss_table
;
258 unsigned int iowait_boost
;
266 unsigned int sched_flags
;
270 static struct cpudata
**all_cpu_data
;
273 * struct pstate_funcs - Per CPU model specific callbacks
274 * @get_max: Callback to get maximum non turbo effective P state
275 * @get_max_physical: Callback to get maximum non turbo physical P state
276 * @get_min: Callback to get minimum P state
277 * @get_turbo: Callback to get turbo P state
278 * @get_scaling: Callback to get frequency scaling factor
279 * @get_val: Callback to convert P state to actual MSR write value
280 * @get_vid: Callback to get VID data for Atom platforms
282 * Core and Atom CPU models have different way to get P State limits. This
283 * structure is used to store those callbacks.
285 struct pstate_funcs
{
286 int (*get_max
)(void);
287 int (*get_max_physical
)(void);
288 int (*get_min
)(void);
289 int (*get_turbo
)(void);
290 int (*get_scaling
)(void);
291 int (*get_aperf_mperf_shift
)(void);
292 u64 (*get_val
)(struct cpudata
*, int pstate
);
293 void (*get_vid
)(struct cpudata
*);
296 static struct pstate_funcs pstate_funcs __read_mostly
;
298 static int hwp_active __read_mostly
;
299 static int hwp_mode_bdw __read_mostly
;
300 static bool per_cpu_limits __read_mostly
;
301 static bool hwp_boost __read_mostly
;
303 static struct cpufreq_driver
*intel_pstate_driver __read_mostly
;
306 static bool acpi_ppc
;
309 static struct global_params global
;
311 static DEFINE_MUTEX(intel_pstate_driver_lock
);
312 static DEFINE_MUTEX(intel_pstate_limits_lock
);
316 static bool intel_pstate_acpi_pm_profile_server(void)
318 if (acpi_gbl_FADT
.preferred_profile
== PM_ENTERPRISE_SERVER
||
319 acpi_gbl_FADT
.preferred_profile
== PM_PERFORMANCE_SERVER
)
325 static bool intel_pstate_get_ppc_enable_status(void)
327 if (intel_pstate_acpi_pm_profile_server())
333 #ifdef CONFIG_ACPI_CPPC_LIB
335 /* The work item is needed to avoid CPU hotplug locking issues */
336 static void intel_pstste_sched_itmt_work_fn(struct work_struct
*work
)
338 sched_set_itmt_support();
341 static DECLARE_WORK(sched_itmt_work
, intel_pstste_sched_itmt_work_fn
);
343 static void intel_pstate_set_itmt_prio(int cpu
)
345 struct cppc_perf_caps cppc_perf
;
346 static u32 max_highest_perf
= 0, min_highest_perf
= U32_MAX
;
349 ret
= cppc_get_perf_caps(cpu
, &cppc_perf
);
354 * The priorities can be set regardless of whether or not
355 * sched_set_itmt_support(true) has been called and it is valid to
356 * update them at any time after it has been called.
358 sched_set_itmt_core_prio(cppc_perf
.highest_perf
, cpu
);
360 if (max_highest_perf
<= min_highest_perf
) {
361 if (cppc_perf
.highest_perf
> max_highest_perf
)
362 max_highest_perf
= cppc_perf
.highest_perf
;
364 if (cppc_perf
.highest_perf
< min_highest_perf
)
365 min_highest_perf
= cppc_perf
.highest_perf
;
367 if (max_highest_perf
> min_highest_perf
) {
369 * This code can be run during CPU online under the
370 * CPU hotplug locks, so sched_set_itmt_support()
371 * cannot be called from here. Queue up a work item
374 schedule_work(&sched_itmt_work
);
379 static int intel_pstate_get_cppc_guranteed(int cpu
)
381 struct cppc_perf_caps cppc_perf
;
384 ret
= cppc_get_perf_caps(cpu
, &cppc_perf
);
388 if (cppc_perf
.guaranteed_perf
)
389 return cppc_perf
.guaranteed_perf
;
391 return cppc_perf
.nominal_perf
;
394 #else /* CONFIG_ACPI_CPPC_LIB */
395 static void intel_pstate_set_itmt_prio(int cpu
)
398 #endif /* CONFIG_ACPI_CPPC_LIB */
400 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
407 intel_pstate_set_itmt_prio(policy
->cpu
);
411 if (!intel_pstate_get_ppc_enable_status())
414 cpu
= all_cpu_data
[policy
->cpu
];
416 ret
= acpi_processor_register_performance(&cpu
->acpi_perf_data
,
422 * Check if the control value in _PSS is for PERF_CTL MSR, which should
423 * guarantee that the states returned by it map to the states in our
426 if (cpu
->acpi_perf_data
.control_register
.space_id
!=
427 ACPI_ADR_SPACE_FIXED_HARDWARE
)
431 * If there is only one entry _PSS, simply ignore _PSS and continue as
432 * usual without taking _PSS into account
434 if (cpu
->acpi_perf_data
.state_count
< 2)
437 pr_debug("CPU%u - ACPI _PSS perf data\n", policy
->cpu
);
438 for (i
= 0; i
< cpu
->acpi_perf_data
.state_count
; i
++) {
439 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
440 (i
== cpu
->acpi_perf_data
.state
? '*' : ' '), i
,
441 (u32
) cpu
->acpi_perf_data
.states
[i
].core_frequency
,
442 (u32
) cpu
->acpi_perf_data
.states
[i
].power
,
443 (u32
) cpu
->acpi_perf_data
.states
[i
].control
);
447 * The _PSS table doesn't contain whole turbo frequency range.
448 * This just contains +1 MHZ above the max non turbo frequency,
449 * with control value corresponding to max turbo ratio. But
450 * when cpufreq set policy is called, it will call with this
451 * max frequency, which will cause a reduced performance as
452 * this driver uses real max turbo frequency as the max
453 * frequency. So correct this frequency in _PSS table to
454 * correct max turbo frequency based on the turbo state.
455 * Also need to convert to MHz as _PSS freq is in MHz.
457 if (!global
.turbo_disabled
)
458 cpu
->acpi_perf_data
.states
[0].core_frequency
=
459 policy
->cpuinfo
.max_freq
/ 1000;
460 cpu
->valid_pss_table
= true;
461 pr_debug("_PPC limits will be enforced\n");
466 cpu
->valid_pss_table
= false;
467 acpi_processor_unregister_performance(policy
->cpu
);
470 static void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
474 cpu
= all_cpu_data
[policy
->cpu
];
475 if (!cpu
->valid_pss_table
)
478 acpi_processor_unregister_performance(policy
->cpu
);
480 #else /* CONFIG_ACPI */
481 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
485 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
489 static inline bool intel_pstate_acpi_pm_profile_server(void)
493 #endif /* CONFIG_ACPI */
495 #ifndef CONFIG_ACPI_CPPC_LIB
496 static int intel_pstate_get_cppc_guranteed(int cpu
)
500 #endif /* CONFIG_ACPI_CPPC_LIB */
502 static inline void update_turbo_state(void)
507 cpu
= all_cpu_data
[0];
508 rdmsrl(MSR_IA32_MISC_ENABLE
, misc_en
);
509 global
.turbo_disabled
=
510 (misc_en
& MSR_IA32_MISC_ENABLE_TURBO_DISABLE
||
511 cpu
->pstate
.max_pstate
== cpu
->pstate
.turbo_pstate
);
514 static int min_perf_pct_min(void)
516 struct cpudata
*cpu
= all_cpu_data
[0];
517 int turbo_pstate
= cpu
->pstate
.turbo_pstate
;
519 return turbo_pstate
?
520 (cpu
->pstate
.min_pstate
* 100 / turbo_pstate
) : 0;
523 static s16
intel_pstate_get_epb(struct cpudata
*cpu_data
)
528 if (!static_cpu_has(X86_FEATURE_EPB
))
531 ret
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_IA32_ENERGY_PERF_BIAS
, &epb
);
535 return (s16
)(epb
& 0x0f);
538 static s16
intel_pstate_get_epp(struct cpudata
*cpu_data
, u64 hwp_req_data
)
542 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
544 * When hwp_req_data is 0, means that caller didn't read
545 * MSR_HWP_REQUEST, so need to read and get EPP.
548 epp
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
,
553 epp
= (hwp_req_data
>> 24) & 0xff;
555 /* When there is no EPP present, HWP uses EPB settings */
556 epp
= intel_pstate_get_epb(cpu_data
);
562 static int intel_pstate_set_epb(int cpu
, s16 pref
)
567 if (!static_cpu_has(X86_FEATURE_EPB
))
570 ret
= rdmsrl_on_cpu(cpu
, MSR_IA32_ENERGY_PERF_BIAS
, &epb
);
574 epb
= (epb
& ~0x0f) | pref
;
575 wrmsrl_on_cpu(cpu
, MSR_IA32_ENERGY_PERF_BIAS
, epb
);
581 * EPP/EPB display strings corresponding to EPP index in the
582 * energy_perf_strings[]
584 *-------------------------------------
587 * 2 balance_performance
591 static const char * const energy_perf_strings
[] = {
594 "balance_performance",
599 static const unsigned int epp_values
[] = {
601 HWP_EPP_BALANCE_PERFORMANCE
,
602 HWP_EPP_BALANCE_POWERSAVE
,
606 static int intel_pstate_get_energy_pref_index(struct cpudata
*cpu_data
)
611 epp
= intel_pstate_get_epp(cpu_data
, 0);
615 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
616 if (epp
== HWP_EPP_PERFORMANCE
)
618 if (epp
<= HWP_EPP_BALANCE_PERFORMANCE
)
620 if (epp
<= HWP_EPP_BALANCE_POWERSAVE
)
624 } else if (static_cpu_has(X86_FEATURE_EPB
)) {
627 * 0x00-0x03 : Performance
628 * 0x04-0x07 : Balance performance
629 * 0x08-0x0B : Balance power
631 * The EPB is a 4 bit value, but our ranges restrict the
632 * value which can be set. Here only using top two bits
635 index
= (epp
>> 2) + 1;
641 static int intel_pstate_set_energy_pref_index(struct cpudata
*cpu_data
,
648 epp
= cpu_data
->epp_default
;
650 mutex_lock(&intel_pstate_limits_lock
);
652 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
655 ret
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
, &value
);
659 value
&= ~GENMASK_ULL(31, 24);
662 epp
= epp_values
[pref_index
- 1];
664 value
|= (u64
)epp
<< 24;
665 ret
= wrmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
, value
);
668 epp
= (pref_index
- 1) << 2;
669 ret
= intel_pstate_set_epb(cpu_data
->cpu
, epp
);
672 mutex_unlock(&intel_pstate_limits_lock
);
677 static ssize_t
show_energy_performance_available_preferences(
678 struct cpufreq_policy
*policy
, char *buf
)
683 while (energy_perf_strings
[i
] != NULL
)
684 ret
+= sprintf(&buf
[ret
], "%s ", energy_perf_strings
[i
++]);
686 ret
+= sprintf(&buf
[ret
], "\n");
691 cpufreq_freq_attr_ro(energy_performance_available_preferences
);
693 static ssize_t
store_energy_performance_preference(
694 struct cpufreq_policy
*policy
, const char *buf
, size_t count
)
696 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
697 char str_preference
[21];
700 ret
= sscanf(buf
, "%20s", str_preference
);
704 ret
= match_string(energy_perf_strings
, -1, str_preference
);
708 intel_pstate_set_energy_pref_index(cpu_data
, ret
);
712 static ssize_t
show_energy_performance_preference(
713 struct cpufreq_policy
*policy
, char *buf
)
715 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
718 preference
= intel_pstate_get_energy_pref_index(cpu_data
);
722 return sprintf(buf
, "%s\n", energy_perf_strings
[preference
]);
725 cpufreq_freq_attr_rw(energy_performance_preference
);
727 static ssize_t
show_base_frequency(struct cpufreq_policy
*policy
, char *buf
)
733 ratio
= intel_pstate_get_cppc_guranteed(policy
->cpu
);
735 rdmsrl_on_cpu(policy
->cpu
, MSR_HWP_CAPABILITIES
, &cap
);
736 ratio
= HWP_GUARANTEED_PERF(cap
);
739 cpu
= all_cpu_data
[policy
->cpu
];
741 return sprintf(buf
, "%d\n", ratio
* cpu
->pstate
.scaling
);
744 cpufreq_freq_attr_ro(base_frequency
);
746 static struct freq_attr
*hwp_cpufreq_attrs
[] = {
747 &energy_performance_preference
,
748 &energy_performance_available_preferences
,
753 static void intel_pstate_get_hwp_max(unsigned int cpu
, int *phy_max
,
758 rdmsrl_on_cpu(cpu
, MSR_HWP_CAPABILITIES
, &cap
);
759 WRITE_ONCE(all_cpu_data
[cpu
]->hwp_cap_cached
, cap
);
761 *current_max
= HWP_GUARANTEED_PERF(cap
);
763 *current_max
= HWP_HIGHEST_PERF(cap
);
765 *phy_max
= HWP_HIGHEST_PERF(cap
);
768 static void intel_pstate_hwp_set(unsigned int cpu
)
770 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
775 max
= cpu_data
->max_perf_ratio
;
776 min
= cpu_data
->min_perf_ratio
;
778 if (cpu_data
->policy
== CPUFREQ_POLICY_PERFORMANCE
)
781 rdmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, &value
);
783 value
&= ~HWP_MIN_PERF(~0L);
784 value
|= HWP_MIN_PERF(min
);
786 value
&= ~HWP_MAX_PERF(~0L);
787 value
|= HWP_MAX_PERF(max
);
789 if (cpu_data
->epp_policy
== cpu_data
->policy
)
792 cpu_data
->epp_policy
= cpu_data
->policy
;
794 if (cpu_data
->epp_saved
>= 0) {
795 epp
= cpu_data
->epp_saved
;
796 cpu_data
->epp_saved
= -EINVAL
;
800 if (cpu_data
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
801 epp
= intel_pstate_get_epp(cpu_data
, value
);
802 cpu_data
->epp_powersave
= epp
;
803 /* If EPP read was failed, then don't try to write */
809 /* skip setting EPP, when saved value is invalid */
810 if (cpu_data
->epp_powersave
< 0)
814 * No need to restore EPP when it is not zero. This
816 * - Policy is not changed
817 * - user has manually changed
818 * - Error reading EPB
820 epp
= intel_pstate_get_epp(cpu_data
, value
);
824 epp
= cpu_data
->epp_powersave
;
827 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
828 value
&= ~GENMASK_ULL(31, 24);
829 value
|= (u64
)epp
<< 24;
831 intel_pstate_set_epb(cpu
, epp
);
834 WRITE_ONCE(cpu_data
->hwp_req_cached
, value
);
835 wrmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, value
);
838 static void intel_pstate_hwp_force_min_perf(int cpu
)
843 value
= all_cpu_data
[cpu
]->hwp_req_cached
;
844 value
&= ~GENMASK_ULL(31, 0);
845 min_perf
= HWP_LOWEST_PERF(all_cpu_data
[cpu
]->hwp_cap_cached
);
847 /* Set hwp_max = hwp_min */
848 value
|= HWP_MAX_PERF(min_perf
);
849 value
|= HWP_MIN_PERF(min_perf
);
851 /* Set EPP/EPB to min */
852 if (static_cpu_has(X86_FEATURE_HWP_EPP
))
853 value
|= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE
);
855 intel_pstate_set_epb(cpu
, HWP_EPP_BALANCE_POWERSAVE
);
857 wrmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, value
);
860 static int intel_pstate_hwp_save_state(struct cpufreq_policy
*policy
)
862 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
867 cpu_data
->epp_saved
= intel_pstate_get_epp(cpu_data
, 0);
872 static void intel_pstate_hwp_enable(struct cpudata
*cpudata
);
874 static int intel_pstate_resume(struct cpufreq_policy
*policy
)
879 mutex_lock(&intel_pstate_limits_lock
);
881 if (policy
->cpu
== 0)
882 intel_pstate_hwp_enable(all_cpu_data
[policy
->cpu
]);
884 all_cpu_data
[policy
->cpu
]->epp_policy
= 0;
885 intel_pstate_hwp_set(policy
->cpu
);
887 mutex_unlock(&intel_pstate_limits_lock
);
892 static void intel_pstate_update_policies(void)
896 for_each_possible_cpu(cpu
)
897 cpufreq_update_policy(cpu
);
900 /************************** sysfs begin ************************/
901 #define show_one(file_name, object) \
902 static ssize_t show_##file_name \
903 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
905 return sprintf(buf, "%u\n", global.object); \
908 static ssize_t
intel_pstate_show_status(char *buf
);
909 static int intel_pstate_update_status(const char *buf
, size_t size
);
911 static ssize_t
show_status(struct kobject
*kobj
,
912 struct kobj_attribute
*attr
, char *buf
)
916 mutex_lock(&intel_pstate_driver_lock
);
917 ret
= intel_pstate_show_status(buf
);
918 mutex_unlock(&intel_pstate_driver_lock
);
923 static ssize_t
store_status(struct kobject
*a
, struct kobj_attribute
*b
,
924 const char *buf
, size_t count
)
926 char *p
= memchr(buf
, '\n', count
);
929 mutex_lock(&intel_pstate_driver_lock
);
930 ret
= intel_pstate_update_status(buf
, p
? p
- buf
: count
);
931 mutex_unlock(&intel_pstate_driver_lock
);
933 return ret
< 0 ? ret
: count
;
936 static ssize_t
show_turbo_pct(struct kobject
*kobj
,
937 struct kobj_attribute
*attr
, char *buf
)
940 int total
, no_turbo
, turbo_pct
;
943 mutex_lock(&intel_pstate_driver_lock
);
945 if (!intel_pstate_driver
) {
946 mutex_unlock(&intel_pstate_driver_lock
);
950 cpu
= all_cpu_data
[0];
952 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
953 no_turbo
= cpu
->pstate
.max_pstate
- cpu
->pstate
.min_pstate
+ 1;
954 turbo_fp
= div_fp(no_turbo
, total
);
955 turbo_pct
= 100 - fp_toint(mul_fp(turbo_fp
, int_tofp(100)));
957 mutex_unlock(&intel_pstate_driver_lock
);
959 return sprintf(buf
, "%u\n", turbo_pct
);
962 static ssize_t
show_num_pstates(struct kobject
*kobj
,
963 struct kobj_attribute
*attr
, char *buf
)
968 mutex_lock(&intel_pstate_driver_lock
);
970 if (!intel_pstate_driver
) {
971 mutex_unlock(&intel_pstate_driver_lock
);
975 cpu
= all_cpu_data
[0];
976 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
978 mutex_unlock(&intel_pstate_driver_lock
);
980 return sprintf(buf
, "%u\n", total
);
983 static ssize_t
show_no_turbo(struct kobject
*kobj
,
984 struct kobj_attribute
*attr
, char *buf
)
988 mutex_lock(&intel_pstate_driver_lock
);
990 if (!intel_pstate_driver
) {
991 mutex_unlock(&intel_pstate_driver_lock
);
995 update_turbo_state();
996 if (global
.turbo_disabled
)
997 ret
= sprintf(buf
, "%u\n", global
.turbo_disabled
);
999 ret
= sprintf(buf
, "%u\n", global
.no_turbo
);
1001 mutex_unlock(&intel_pstate_driver_lock
);
1006 static ssize_t
store_no_turbo(struct kobject
*a
, struct kobj_attribute
*b
,
1007 const char *buf
, size_t count
)
1012 ret
= sscanf(buf
, "%u", &input
);
1016 mutex_lock(&intel_pstate_driver_lock
);
1018 if (!intel_pstate_driver
) {
1019 mutex_unlock(&intel_pstate_driver_lock
);
1023 mutex_lock(&intel_pstate_limits_lock
);
1025 update_turbo_state();
1026 if (global
.turbo_disabled
) {
1027 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1028 mutex_unlock(&intel_pstate_limits_lock
);
1029 mutex_unlock(&intel_pstate_driver_lock
);
1033 global
.no_turbo
= clamp_t(int, input
, 0, 1);
1035 if (global
.no_turbo
) {
1036 struct cpudata
*cpu
= all_cpu_data
[0];
1037 int pct
= cpu
->pstate
.max_pstate
* 100 / cpu
->pstate
.turbo_pstate
;
1039 /* Squash the global minimum into the permitted range. */
1040 if (global
.min_perf_pct
> pct
)
1041 global
.min_perf_pct
= pct
;
1044 mutex_unlock(&intel_pstate_limits_lock
);
1046 intel_pstate_update_policies();
1048 mutex_unlock(&intel_pstate_driver_lock
);
1053 static ssize_t
store_max_perf_pct(struct kobject
*a
, struct kobj_attribute
*b
,
1054 const char *buf
, size_t count
)
1059 ret
= sscanf(buf
, "%u", &input
);
1063 mutex_lock(&intel_pstate_driver_lock
);
1065 if (!intel_pstate_driver
) {
1066 mutex_unlock(&intel_pstate_driver_lock
);
1070 mutex_lock(&intel_pstate_limits_lock
);
1072 global
.max_perf_pct
= clamp_t(int, input
, global
.min_perf_pct
, 100);
1074 mutex_unlock(&intel_pstate_limits_lock
);
1076 intel_pstate_update_policies();
1078 mutex_unlock(&intel_pstate_driver_lock
);
1083 static ssize_t
store_min_perf_pct(struct kobject
*a
, struct kobj_attribute
*b
,
1084 const char *buf
, size_t count
)
1089 ret
= sscanf(buf
, "%u", &input
);
1093 mutex_lock(&intel_pstate_driver_lock
);
1095 if (!intel_pstate_driver
) {
1096 mutex_unlock(&intel_pstate_driver_lock
);
1100 mutex_lock(&intel_pstate_limits_lock
);
1102 global
.min_perf_pct
= clamp_t(int, input
,
1103 min_perf_pct_min(), global
.max_perf_pct
);
1105 mutex_unlock(&intel_pstate_limits_lock
);
1107 intel_pstate_update_policies();
1109 mutex_unlock(&intel_pstate_driver_lock
);
1114 static ssize_t
show_hwp_dynamic_boost(struct kobject
*kobj
,
1115 struct kobj_attribute
*attr
, char *buf
)
1117 return sprintf(buf
, "%u\n", hwp_boost
);
1120 static ssize_t
store_hwp_dynamic_boost(struct kobject
*a
,
1121 struct kobj_attribute
*b
,
1122 const char *buf
, size_t count
)
1127 ret
= kstrtouint(buf
, 10, &input
);
1131 mutex_lock(&intel_pstate_driver_lock
);
1132 hwp_boost
= !!input
;
1133 intel_pstate_update_policies();
1134 mutex_unlock(&intel_pstate_driver_lock
);
1139 show_one(max_perf_pct
, max_perf_pct
);
1140 show_one(min_perf_pct
, min_perf_pct
);
1142 define_one_global_rw(status
);
1143 define_one_global_rw(no_turbo
);
1144 define_one_global_rw(max_perf_pct
);
1145 define_one_global_rw(min_perf_pct
);
1146 define_one_global_ro(turbo_pct
);
1147 define_one_global_ro(num_pstates
);
1148 define_one_global_rw(hwp_dynamic_boost
);
1150 static struct attribute
*intel_pstate_attributes
[] = {
1158 static const struct attribute_group intel_pstate_attr_group
= {
1159 .attrs
= intel_pstate_attributes
,
1162 static void __init
intel_pstate_sysfs_expose_params(void)
1164 struct kobject
*intel_pstate_kobject
;
1167 intel_pstate_kobject
= kobject_create_and_add("intel_pstate",
1168 &cpu_subsys
.dev_root
->kobj
);
1169 if (WARN_ON(!intel_pstate_kobject
))
1172 rc
= sysfs_create_group(intel_pstate_kobject
, &intel_pstate_attr_group
);
1177 * If per cpu limits are enforced there are no global limits, so
1178 * return without creating max/min_perf_pct attributes
1183 rc
= sysfs_create_file(intel_pstate_kobject
, &max_perf_pct
.attr
);
1186 rc
= sysfs_create_file(intel_pstate_kobject
, &min_perf_pct
.attr
);
1190 rc
= sysfs_create_file(intel_pstate_kobject
,
1191 &hwp_dynamic_boost
.attr
);
1195 /************************** sysfs end ************************/
1197 static void intel_pstate_hwp_enable(struct cpudata
*cpudata
)
1199 /* First disable HWP notification interrupt as we don't process them */
1200 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY
))
1201 wrmsrl_on_cpu(cpudata
->cpu
, MSR_HWP_INTERRUPT
, 0x00);
1203 wrmsrl_on_cpu(cpudata
->cpu
, MSR_PM_ENABLE
, 0x1);
1204 cpudata
->epp_policy
= 0;
1205 if (cpudata
->epp_default
== -EINVAL
)
1206 cpudata
->epp_default
= intel_pstate_get_epp(cpudata
, 0);
1209 #define MSR_IA32_POWER_CTL_BIT_EE 19
1211 /* Disable energy efficiency optimization */
1212 static void intel_pstate_disable_ee(int cpu
)
1217 ret
= rdmsrl_on_cpu(cpu
, MSR_IA32_POWER_CTL
, &power_ctl
);
1221 if (!(power_ctl
& BIT(MSR_IA32_POWER_CTL_BIT_EE
))) {
1222 pr_info("Disabling energy efficiency optimization\n");
1223 power_ctl
|= BIT(MSR_IA32_POWER_CTL_BIT_EE
);
1224 wrmsrl_on_cpu(cpu
, MSR_IA32_POWER_CTL
, power_ctl
);
1228 static int atom_get_min_pstate(void)
1232 rdmsrl(MSR_ATOM_CORE_RATIOS
, value
);
1233 return (value
>> 8) & 0x7F;
1236 static int atom_get_max_pstate(void)
1240 rdmsrl(MSR_ATOM_CORE_RATIOS
, value
);
1241 return (value
>> 16) & 0x7F;
1244 static int atom_get_turbo_pstate(void)
1248 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS
, value
);
1249 return value
& 0x7F;
1252 static u64
atom_get_val(struct cpudata
*cpudata
, int pstate
)
1258 val
= (u64
)pstate
<< 8;
1259 if (global
.no_turbo
&& !global
.turbo_disabled
)
1260 val
|= (u64
)1 << 32;
1262 vid_fp
= cpudata
->vid
.min
+ mul_fp(
1263 int_tofp(pstate
- cpudata
->pstate
.min_pstate
),
1264 cpudata
->vid
.ratio
);
1266 vid_fp
= clamp_t(int32_t, vid_fp
, cpudata
->vid
.min
, cpudata
->vid
.max
);
1267 vid
= ceiling_fp(vid_fp
);
1269 if (pstate
> cpudata
->pstate
.max_pstate
)
1270 vid
= cpudata
->vid
.turbo
;
1275 static int silvermont_get_scaling(void)
1279 /* Defined in Table 35-6 from SDM (Sept 2015) */
1280 static int silvermont_freq_table
[] = {
1281 83300, 100000, 133300, 116700, 80000};
1283 rdmsrl(MSR_FSB_FREQ
, value
);
1287 return silvermont_freq_table
[i
];
1290 static int airmont_get_scaling(void)
1294 /* Defined in Table 35-10 from SDM (Sept 2015) */
1295 static int airmont_freq_table
[] = {
1296 83300, 100000, 133300, 116700, 80000,
1297 93300, 90000, 88900, 87500};
1299 rdmsrl(MSR_FSB_FREQ
, value
);
1303 return airmont_freq_table
[i
];
1306 static void atom_get_vid(struct cpudata
*cpudata
)
1310 rdmsrl(MSR_ATOM_CORE_VIDS
, value
);
1311 cpudata
->vid
.min
= int_tofp((value
>> 8) & 0x7f);
1312 cpudata
->vid
.max
= int_tofp((value
>> 16) & 0x7f);
1313 cpudata
->vid
.ratio
= div_fp(
1314 cpudata
->vid
.max
- cpudata
->vid
.min
,
1315 int_tofp(cpudata
->pstate
.max_pstate
-
1316 cpudata
->pstate
.min_pstate
));
1318 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS
, value
);
1319 cpudata
->vid
.turbo
= value
& 0x7f;
1322 static int core_get_min_pstate(void)
1326 rdmsrl(MSR_PLATFORM_INFO
, value
);
1327 return (value
>> 40) & 0xFF;
1330 static int core_get_max_pstate_physical(void)
1334 rdmsrl(MSR_PLATFORM_INFO
, value
);
1335 return (value
>> 8) & 0xFF;
1338 static int core_get_tdp_ratio(u64 plat_info
)
1340 /* Check how many TDP levels present */
1341 if (plat_info
& 0x600000000) {
1347 /* Get the TDP level (0, 1, 2) to get ratios */
1348 err
= rdmsrl_safe(MSR_CONFIG_TDP_CONTROL
, &tdp_ctrl
);
1352 /* TDP MSR are continuous starting at 0x648 */
1353 tdp_msr
= MSR_CONFIG_TDP_NOMINAL
+ (tdp_ctrl
& 0x03);
1354 err
= rdmsrl_safe(tdp_msr
, &tdp_ratio
);
1358 /* For level 1 and 2, bits[23:16] contain the ratio */
1359 if (tdp_ctrl
& 0x03)
1362 tdp_ratio
&= 0xff; /* ratios are only 8 bits long */
1363 pr_debug("tdp_ratio %x\n", (int)tdp_ratio
);
1365 return (int)tdp_ratio
;
1371 static int core_get_max_pstate(void)
1379 rdmsrl(MSR_PLATFORM_INFO
, plat_info
);
1380 max_pstate
= (plat_info
>> 8) & 0xFF;
1382 tdp_ratio
= core_get_tdp_ratio(plat_info
);
1387 /* Turbo activation ratio is not used on HWP platforms */
1391 err
= rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO
, &tar
);
1395 /* Do some sanity checking for safety */
1396 tar_levels
= tar
& 0xff;
1397 if (tdp_ratio
- 1 == tar_levels
) {
1398 max_pstate
= tar_levels
;
1399 pr_debug("max_pstate=TAC %x\n", max_pstate
);
1406 static int core_get_turbo_pstate(void)
1411 rdmsrl(MSR_TURBO_RATIO_LIMIT
, value
);
1412 nont
= core_get_max_pstate();
1413 ret
= (value
) & 255;
1419 static inline int core_get_scaling(void)
1424 static u64
core_get_val(struct cpudata
*cpudata
, int pstate
)
1428 val
= (u64
)pstate
<< 8;
1429 if (global
.no_turbo
&& !global
.turbo_disabled
)
1430 val
|= (u64
)1 << 32;
1435 static int knl_get_aperf_mperf_shift(void)
1440 static int knl_get_turbo_pstate(void)
1445 rdmsrl(MSR_TURBO_RATIO_LIMIT
, value
);
1446 nont
= core_get_max_pstate();
1447 ret
= (((value
) >> 8) & 0xFF);
1453 static void intel_pstate_set_pstate(struct cpudata
*cpu
, int pstate
)
1455 trace_cpu_frequency(pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1456 cpu
->pstate
.current_pstate
= pstate
;
1458 * Generally, there is no guarantee that this code will always run on
1459 * the CPU being updated, so force the register update to run on the
1462 wrmsrl_on_cpu(cpu
->cpu
, MSR_IA32_PERF_CTL
,
1463 pstate_funcs
.get_val(cpu
, pstate
));
1466 static void intel_pstate_set_min_pstate(struct cpudata
*cpu
)
1468 intel_pstate_set_pstate(cpu
, cpu
->pstate
.min_pstate
);
1471 static void intel_pstate_max_within_limits(struct cpudata
*cpu
)
1473 int pstate
= max(cpu
->pstate
.min_pstate
, cpu
->max_perf_ratio
);
1475 update_turbo_state();
1476 intel_pstate_set_pstate(cpu
, pstate
);
1479 static void intel_pstate_get_cpu_pstates(struct cpudata
*cpu
)
1481 cpu
->pstate
.min_pstate
= pstate_funcs
.get_min();
1482 cpu
->pstate
.max_pstate
= pstate_funcs
.get_max();
1483 cpu
->pstate
.max_pstate_physical
= pstate_funcs
.get_max_physical();
1484 cpu
->pstate
.turbo_pstate
= pstate_funcs
.get_turbo();
1485 cpu
->pstate
.scaling
= pstate_funcs
.get_scaling();
1486 cpu
->pstate
.max_freq
= cpu
->pstate
.max_pstate
* cpu
->pstate
.scaling
;
1488 if (hwp_active
&& !hwp_mode_bdw
) {
1489 unsigned int phy_max
, current_max
;
1491 intel_pstate_get_hwp_max(cpu
->cpu
, &phy_max
, ¤t_max
);
1492 cpu
->pstate
.turbo_freq
= phy_max
* cpu
->pstate
.scaling
;
1494 cpu
->pstate
.turbo_freq
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
1497 if (pstate_funcs
.get_aperf_mperf_shift
)
1498 cpu
->aperf_mperf_shift
= pstate_funcs
.get_aperf_mperf_shift();
1500 if (pstate_funcs
.get_vid
)
1501 pstate_funcs
.get_vid(cpu
);
1503 intel_pstate_set_min_pstate(cpu
);
1507 * Long hold time will keep high perf limits for long time,
1508 * which negatively impacts perf/watt for some workloads,
1509 * like specpower. 3ms is based on experiements on some
1512 static int hwp_boost_hold_time_ns
= 3 * NSEC_PER_MSEC
;
1514 static inline void intel_pstate_hwp_boost_up(struct cpudata
*cpu
)
1516 u64 hwp_req
= READ_ONCE(cpu
->hwp_req_cached
);
1517 u32 max_limit
= (hwp_req
& 0xff00) >> 8;
1518 u32 min_limit
= (hwp_req
& 0xff);
1522 * Cases to consider (User changes via sysfs or boot time):
1523 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1525 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1526 * Should result in one level boost only for P0.
1527 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1528 * Should result in two level boost:
1529 * (min + p1)/2 and P1.
1530 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1531 * Should result in three level boost:
1532 * (min + p1)/2, P1 and P0.
1535 /* If max and min are equal or already at max, nothing to boost */
1536 if (max_limit
== min_limit
|| cpu
->hwp_boost_min
>= max_limit
)
1539 if (!cpu
->hwp_boost_min
)
1540 cpu
->hwp_boost_min
= min_limit
;
1542 /* level at half way mark between min and guranteed */
1543 boost_level1
= (HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
) + min_limit
) >> 1;
1545 if (cpu
->hwp_boost_min
< boost_level1
)
1546 cpu
->hwp_boost_min
= boost_level1
;
1547 else if (cpu
->hwp_boost_min
< HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
))
1548 cpu
->hwp_boost_min
= HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
);
1549 else if (cpu
->hwp_boost_min
== HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
) &&
1550 max_limit
!= HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
))
1551 cpu
->hwp_boost_min
= max_limit
;
1555 hwp_req
= (hwp_req
& ~GENMASK_ULL(7, 0)) | cpu
->hwp_boost_min
;
1556 wrmsrl(MSR_HWP_REQUEST
, hwp_req
);
1557 cpu
->last_update
= cpu
->sample
.time
;
1560 static inline void intel_pstate_hwp_boost_down(struct cpudata
*cpu
)
1562 if (cpu
->hwp_boost_min
) {
1565 /* Check if we are idle for hold time to boost down */
1566 expired
= time_after64(cpu
->sample
.time
, cpu
->last_update
+
1567 hwp_boost_hold_time_ns
);
1569 wrmsrl(MSR_HWP_REQUEST
, cpu
->hwp_req_cached
);
1570 cpu
->hwp_boost_min
= 0;
1573 cpu
->last_update
= cpu
->sample
.time
;
1576 static inline void intel_pstate_update_util_hwp_local(struct cpudata
*cpu
,
1579 cpu
->sample
.time
= time
;
1581 if (cpu
->sched_flags
& SCHED_CPUFREQ_IOWAIT
) {
1584 cpu
->sched_flags
= 0;
1586 * Set iowait_boost flag and update time. Since IO WAIT flag
1587 * is set all the time, we can't just conclude that there is
1588 * some IO bound activity is scheduled on this CPU with just
1589 * one occurrence. If we receive at least two in two
1590 * consecutive ticks, then we treat as boost candidate.
1592 if (time_before64(time
, cpu
->last_io_update
+ 2 * TICK_NSEC
))
1595 cpu
->last_io_update
= time
;
1598 intel_pstate_hwp_boost_up(cpu
);
1601 intel_pstate_hwp_boost_down(cpu
);
1605 static inline void intel_pstate_update_util_hwp(struct update_util_data
*data
,
1606 u64 time
, unsigned int flags
)
1608 struct cpudata
*cpu
= container_of(data
, struct cpudata
, update_util
);
1610 cpu
->sched_flags
|= flags
;
1612 if (smp_processor_id() == cpu
->cpu
)
1613 intel_pstate_update_util_hwp_local(cpu
, time
);
1616 static inline void intel_pstate_calc_avg_perf(struct cpudata
*cpu
)
1618 struct sample
*sample
= &cpu
->sample
;
1620 sample
->core_avg_perf
= div_ext_fp(sample
->aperf
, sample
->mperf
);
1623 static inline bool intel_pstate_sample(struct cpudata
*cpu
, u64 time
)
1626 unsigned long flags
;
1629 local_irq_save(flags
);
1630 rdmsrl(MSR_IA32_APERF
, aperf
);
1631 rdmsrl(MSR_IA32_MPERF
, mperf
);
1633 if (cpu
->prev_mperf
== mperf
|| cpu
->prev_tsc
== tsc
) {
1634 local_irq_restore(flags
);
1637 local_irq_restore(flags
);
1639 cpu
->last_sample_time
= cpu
->sample
.time
;
1640 cpu
->sample
.time
= time
;
1641 cpu
->sample
.aperf
= aperf
;
1642 cpu
->sample
.mperf
= mperf
;
1643 cpu
->sample
.tsc
= tsc
;
1644 cpu
->sample
.aperf
-= cpu
->prev_aperf
;
1645 cpu
->sample
.mperf
-= cpu
->prev_mperf
;
1646 cpu
->sample
.tsc
-= cpu
->prev_tsc
;
1648 cpu
->prev_aperf
= aperf
;
1649 cpu
->prev_mperf
= mperf
;
1650 cpu
->prev_tsc
= tsc
;
1652 * First time this function is invoked in a given cycle, all of the
1653 * previous sample data fields are equal to zero or stale and they must
1654 * be populated with meaningful numbers for things to work, so assume
1655 * that sample.time will always be reset before setting the utilization
1656 * update hook and make the caller skip the sample then.
1658 if (cpu
->last_sample_time
) {
1659 intel_pstate_calc_avg_perf(cpu
);
1665 static inline int32_t get_avg_frequency(struct cpudata
*cpu
)
1667 return mul_ext_fp(cpu
->sample
.core_avg_perf
, cpu_khz
);
1670 static inline int32_t get_avg_pstate(struct cpudata
*cpu
)
1672 return mul_ext_fp(cpu
->pstate
.max_pstate_physical
,
1673 cpu
->sample
.core_avg_perf
);
1676 static inline int32_t get_target_pstate(struct cpudata
*cpu
)
1678 struct sample
*sample
= &cpu
->sample
;
1680 int target
, avg_pstate
;
1682 busy_frac
= div_fp(sample
->mperf
<< cpu
->aperf_mperf_shift
,
1685 if (busy_frac
< cpu
->iowait_boost
)
1686 busy_frac
= cpu
->iowait_boost
;
1688 sample
->busy_scaled
= busy_frac
* 100;
1690 target
= global
.no_turbo
|| global
.turbo_disabled
?
1691 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
1692 target
+= target
>> 2;
1693 target
= mul_fp(target
, busy_frac
);
1694 if (target
< cpu
->pstate
.min_pstate
)
1695 target
= cpu
->pstate
.min_pstate
;
1698 * If the average P-state during the previous cycle was higher than the
1699 * current target, add 50% of the difference to the target to reduce
1700 * possible performance oscillations and offset possible performance
1701 * loss related to moving the workload from one CPU to another within
1704 avg_pstate
= get_avg_pstate(cpu
);
1705 if (avg_pstate
> target
)
1706 target
+= (avg_pstate
- target
) >> 1;
1711 static int intel_pstate_prepare_request(struct cpudata
*cpu
, int pstate
)
1713 int min_pstate
= max(cpu
->pstate
.min_pstate
, cpu
->min_perf_ratio
);
1714 int max_pstate
= max(min_pstate
, cpu
->max_perf_ratio
);
1716 return clamp_t(int, pstate
, min_pstate
, max_pstate
);
1719 static void intel_pstate_update_pstate(struct cpudata
*cpu
, int pstate
)
1721 if (pstate
== cpu
->pstate
.current_pstate
)
1724 cpu
->pstate
.current_pstate
= pstate
;
1725 wrmsrl(MSR_IA32_PERF_CTL
, pstate_funcs
.get_val(cpu
, pstate
));
1728 static void intel_pstate_adjust_pstate(struct cpudata
*cpu
)
1730 int from
= cpu
->pstate
.current_pstate
;
1731 struct sample
*sample
;
1734 update_turbo_state();
1736 target_pstate
= get_target_pstate(cpu
);
1737 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
1738 trace_cpu_frequency(target_pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1739 intel_pstate_update_pstate(cpu
, target_pstate
);
1741 sample
= &cpu
->sample
;
1742 trace_pstate_sample(mul_ext_fp(100, sample
->core_avg_perf
),
1743 fp_toint(sample
->busy_scaled
),
1745 cpu
->pstate
.current_pstate
,
1749 get_avg_frequency(cpu
),
1750 fp_toint(cpu
->iowait_boost
* 100));
1753 static void intel_pstate_update_util(struct update_util_data
*data
, u64 time
,
1756 struct cpudata
*cpu
= container_of(data
, struct cpudata
, update_util
);
1759 /* Don't allow remote callbacks */
1760 if (smp_processor_id() != cpu
->cpu
)
1763 delta_ns
= time
- cpu
->last_update
;
1764 if (flags
& SCHED_CPUFREQ_IOWAIT
) {
1765 /* Start over if the CPU may have been idle. */
1766 if (delta_ns
> TICK_NSEC
) {
1767 cpu
->iowait_boost
= ONE_EIGHTH_FP
;
1768 } else if (cpu
->iowait_boost
>= ONE_EIGHTH_FP
) {
1769 cpu
->iowait_boost
<<= 1;
1770 if (cpu
->iowait_boost
> int_tofp(1))
1771 cpu
->iowait_boost
= int_tofp(1);
1773 cpu
->iowait_boost
= ONE_EIGHTH_FP
;
1775 } else if (cpu
->iowait_boost
) {
1776 /* Clear iowait_boost if the CPU may have been idle. */
1777 if (delta_ns
> TICK_NSEC
)
1778 cpu
->iowait_boost
= 0;
1780 cpu
->iowait_boost
>>= 1;
1782 cpu
->last_update
= time
;
1783 delta_ns
= time
- cpu
->sample
.time
;
1784 if ((s64
)delta_ns
< INTEL_PSTATE_SAMPLING_INTERVAL
)
1787 if (intel_pstate_sample(cpu
, time
))
1788 intel_pstate_adjust_pstate(cpu
);
1791 static struct pstate_funcs core_funcs
= {
1792 .get_max
= core_get_max_pstate
,
1793 .get_max_physical
= core_get_max_pstate_physical
,
1794 .get_min
= core_get_min_pstate
,
1795 .get_turbo
= core_get_turbo_pstate
,
1796 .get_scaling
= core_get_scaling
,
1797 .get_val
= core_get_val
,
1800 static const struct pstate_funcs silvermont_funcs
= {
1801 .get_max
= atom_get_max_pstate
,
1802 .get_max_physical
= atom_get_max_pstate
,
1803 .get_min
= atom_get_min_pstate
,
1804 .get_turbo
= atom_get_turbo_pstate
,
1805 .get_val
= atom_get_val
,
1806 .get_scaling
= silvermont_get_scaling
,
1807 .get_vid
= atom_get_vid
,
1810 static const struct pstate_funcs airmont_funcs
= {
1811 .get_max
= atom_get_max_pstate
,
1812 .get_max_physical
= atom_get_max_pstate
,
1813 .get_min
= atom_get_min_pstate
,
1814 .get_turbo
= atom_get_turbo_pstate
,
1815 .get_val
= atom_get_val
,
1816 .get_scaling
= airmont_get_scaling
,
1817 .get_vid
= atom_get_vid
,
1820 static const struct pstate_funcs knl_funcs
= {
1821 .get_max
= core_get_max_pstate
,
1822 .get_max_physical
= core_get_max_pstate_physical
,
1823 .get_min
= core_get_min_pstate
,
1824 .get_turbo
= knl_get_turbo_pstate
,
1825 .get_aperf_mperf_shift
= knl_get_aperf_mperf_shift
,
1826 .get_scaling
= core_get_scaling
,
1827 .get_val
= core_get_val
,
1830 #define ICPU(model, policy) \
1831 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1832 (unsigned long)&policy }
1834 static const struct x86_cpu_id intel_pstate_cpu_ids
[] = {
1835 ICPU(INTEL_FAM6_SANDYBRIDGE
, core_funcs
),
1836 ICPU(INTEL_FAM6_SANDYBRIDGE_X
, core_funcs
),
1837 ICPU(INTEL_FAM6_ATOM_SILVERMONT
, silvermont_funcs
),
1838 ICPU(INTEL_FAM6_IVYBRIDGE
, core_funcs
),
1839 ICPU(INTEL_FAM6_HASWELL_CORE
, core_funcs
),
1840 ICPU(INTEL_FAM6_BROADWELL_CORE
, core_funcs
),
1841 ICPU(INTEL_FAM6_IVYBRIDGE_X
, core_funcs
),
1842 ICPU(INTEL_FAM6_HASWELL_X
, core_funcs
),
1843 ICPU(INTEL_FAM6_HASWELL_ULT
, core_funcs
),
1844 ICPU(INTEL_FAM6_HASWELL_GT3E
, core_funcs
),
1845 ICPU(INTEL_FAM6_BROADWELL_GT3E
, core_funcs
),
1846 ICPU(INTEL_FAM6_ATOM_AIRMONT
, airmont_funcs
),
1847 ICPU(INTEL_FAM6_SKYLAKE_MOBILE
, core_funcs
),
1848 ICPU(INTEL_FAM6_BROADWELL_X
, core_funcs
),
1849 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP
, core_funcs
),
1850 ICPU(INTEL_FAM6_BROADWELL_XEON_D
, core_funcs
),
1851 ICPU(INTEL_FAM6_XEON_PHI_KNL
, knl_funcs
),
1852 ICPU(INTEL_FAM6_XEON_PHI_KNM
, knl_funcs
),
1853 ICPU(INTEL_FAM6_ATOM_GOLDMONT
, core_funcs
),
1854 ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS
, core_funcs
),
1855 ICPU(INTEL_FAM6_SKYLAKE_X
, core_funcs
),
1858 MODULE_DEVICE_TABLE(x86cpu
, intel_pstate_cpu_ids
);
1860 static const struct x86_cpu_id intel_pstate_cpu_oob_ids
[] __initconst
= {
1861 ICPU(INTEL_FAM6_BROADWELL_XEON_D
, core_funcs
),
1862 ICPU(INTEL_FAM6_BROADWELL_X
, core_funcs
),
1863 ICPU(INTEL_FAM6_SKYLAKE_X
, core_funcs
),
1867 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids
[] = {
1868 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP
, core_funcs
),
1872 static const struct x86_cpu_id intel_pstate_hwp_boost_ids
[] = {
1873 ICPU(INTEL_FAM6_SKYLAKE_X
, core_funcs
),
1874 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP
, core_funcs
),
1878 static int intel_pstate_init_cpu(unsigned int cpunum
)
1880 struct cpudata
*cpu
;
1882 cpu
= all_cpu_data
[cpunum
];
1885 cpu
= kzalloc(sizeof(*cpu
), GFP_KERNEL
);
1889 all_cpu_data
[cpunum
] = cpu
;
1891 cpu
->epp_default
= -EINVAL
;
1892 cpu
->epp_powersave
= -EINVAL
;
1893 cpu
->epp_saved
= -EINVAL
;
1896 cpu
= all_cpu_data
[cpunum
];
1901 const struct x86_cpu_id
*id
;
1903 id
= x86_match_cpu(intel_pstate_cpu_ee_disable_ids
);
1905 intel_pstate_disable_ee(cpunum
);
1907 intel_pstate_hwp_enable(cpu
);
1909 id
= x86_match_cpu(intel_pstate_hwp_boost_ids
);
1910 if (id
&& intel_pstate_acpi_pm_profile_server())
1914 intel_pstate_get_cpu_pstates(cpu
);
1916 pr_debug("controlling: cpu %d\n", cpunum
);
1921 static void intel_pstate_set_update_util_hook(unsigned int cpu_num
)
1923 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
1925 if (hwp_active
&& !hwp_boost
)
1928 if (cpu
->update_util_set
)
1931 /* Prevent intel_pstate_update_util() from using stale data. */
1932 cpu
->sample
.time
= 0;
1933 cpufreq_add_update_util_hook(cpu_num
, &cpu
->update_util
,
1935 intel_pstate_update_util_hwp
:
1936 intel_pstate_update_util
));
1937 cpu
->update_util_set
= true;
1940 static void intel_pstate_clear_update_util_hook(unsigned int cpu
)
1942 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
1944 if (!cpu_data
->update_util_set
)
1947 cpufreq_remove_update_util_hook(cpu
);
1948 cpu_data
->update_util_set
= false;
1952 static int intel_pstate_get_max_freq(struct cpudata
*cpu
)
1954 return global
.turbo_disabled
|| global
.no_turbo
?
1955 cpu
->pstate
.max_freq
: cpu
->pstate
.turbo_freq
;
1958 static void intel_pstate_update_perf_limits(struct cpufreq_policy
*policy
,
1959 struct cpudata
*cpu
)
1961 int max_freq
= intel_pstate_get_max_freq(cpu
);
1962 int32_t max_policy_perf
, min_policy_perf
;
1963 int max_state
, turbo_max
;
1966 * HWP needs some special consideration, because on BDX the
1967 * HWP_REQUEST uses abstract value to represent performance
1968 * rather than pure ratios.
1971 intel_pstate_get_hwp_max(cpu
->cpu
, &turbo_max
, &max_state
);
1973 max_state
= global
.no_turbo
|| global
.turbo_disabled
?
1974 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
1975 turbo_max
= cpu
->pstate
.turbo_pstate
;
1978 max_policy_perf
= max_state
* policy
->max
/ max_freq
;
1979 if (policy
->max
== policy
->min
) {
1980 min_policy_perf
= max_policy_perf
;
1982 min_policy_perf
= max_state
* policy
->min
/ max_freq
;
1983 min_policy_perf
= clamp_t(int32_t, min_policy_perf
,
1984 0, max_policy_perf
);
1987 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1988 policy
->cpu
, max_state
,
1989 min_policy_perf
, max_policy_perf
);
1991 /* Normalize user input to [min_perf, max_perf] */
1992 if (per_cpu_limits
) {
1993 cpu
->min_perf_ratio
= min_policy_perf
;
1994 cpu
->max_perf_ratio
= max_policy_perf
;
1996 int32_t global_min
, global_max
;
1998 /* Global limits are in percent of the maximum turbo P-state. */
1999 global_max
= DIV_ROUND_UP(turbo_max
* global
.max_perf_pct
, 100);
2000 global_min
= DIV_ROUND_UP(turbo_max
* global
.min_perf_pct
, 100);
2001 global_min
= clamp_t(int32_t, global_min
, 0, global_max
);
2003 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy
->cpu
,
2004 global_min
, global_max
);
2006 cpu
->min_perf_ratio
= max(min_policy_perf
, global_min
);
2007 cpu
->min_perf_ratio
= min(cpu
->min_perf_ratio
, max_policy_perf
);
2008 cpu
->max_perf_ratio
= min(max_policy_perf
, global_max
);
2009 cpu
->max_perf_ratio
= max(min_policy_perf
, cpu
->max_perf_ratio
);
2011 /* Make sure min_perf <= max_perf */
2012 cpu
->min_perf_ratio
= min(cpu
->min_perf_ratio
,
2013 cpu
->max_perf_ratio
);
2016 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy
->cpu
,
2017 cpu
->max_perf_ratio
,
2018 cpu
->min_perf_ratio
);
2021 static int intel_pstate_set_policy(struct cpufreq_policy
*policy
)
2023 struct cpudata
*cpu
;
2025 if (!policy
->cpuinfo
.max_freq
)
2028 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2029 policy
->cpuinfo
.max_freq
, policy
->max
);
2031 cpu
= all_cpu_data
[policy
->cpu
];
2032 cpu
->policy
= policy
->policy
;
2034 mutex_lock(&intel_pstate_limits_lock
);
2036 intel_pstate_update_perf_limits(policy
, cpu
);
2038 if (cpu
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
2040 * NOHZ_FULL CPUs need this as the governor callback may not
2041 * be invoked on them.
2043 intel_pstate_clear_update_util_hook(policy
->cpu
);
2044 intel_pstate_max_within_limits(cpu
);
2046 intel_pstate_set_update_util_hook(policy
->cpu
);
2051 * When hwp_boost was active before and dynamically it
2052 * was turned off, in that case we need to clear the
2056 intel_pstate_clear_update_util_hook(policy
->cpu
);
2057 intel_pstate_hwp_set(policy
->cpu
);
2060 mutex_unlock(&intel_pstate_limits_lock
);
2065 static void intel_pstate_adjust_policy_max(struct cpufreq_policy
*policy
,
2066 struct cpudata
*cpu
)
2069 cpu
->pstate
.max_pstate_physical
> cpu
->pstate
.max_pstate
&&
2070 policy
->max
< policy
->cpuinfo
.max_freq
&&
2071 policy
->max
> cpu
->pstate
.max_freq
) {
2072 pr_debug("policy->max > max non turbo frequency\n");
2073 policy
->max
= policy
->cpuinfo
.max_freq
;
2077 static int intel_pstate_verify_policy(struct cpufreq_policy
*policy
)
2079 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2081 update_turbo_state();
2082 cpufreq_verify_within_limits(policy
, policy
->cpuinfo
.min_freq
,
2083 intel_pstate_get_max_freq(cpu
));
2085 if (policy
->policy
!= CPUFREQ_POLICY_POWERSAVE
&&
2086 policy
->policy
!= CPUFREQ_POLICY_PERFORMANCE
)
2089 intel_pstate_adjust_policy_max(policy
, cpu
);
2094 static void intel_cpufreq_stop_cpu(struct cpufreq_policy
*policy
)
2096 intel_pstate_set_min_pstate(all_cpu_data
[policy
->cpu
]);
2099 static void intel_pstate_stop_cpu(struct cpufreq_policy
*policy
)
2101 pr_debug("CPU %d exiting\n", policy
->cpu
);
2103 intel_pstate_clear_update_util_hook(policy
->cpu
);
2105 intel_pstate_hwp_save_state(policy
);
2106 intel_pstate_hwp_force_min_perf(policy
->cpu
);
2108 intel_cpufreq_stop_cpu(policy
);
2112 static int intel_pstate_cpu_exit(struct cpufreq_policy
*policy
)
2114 intel_pstate_exit_perf_limits(policy
);
2116 policy
->fast_switch_possible
= false;
2121 static int __intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
2123 struct cpudata
*cpu
;
2126 rc
= intel_pstate_init_cpu(policy
->cpu
);
2130 cpu
= all_cpu_data
[policy
->cpu
];
2132 cpu
->max_perf_ratio
= 0xFF;
2133 cpu
->min_perf_ratio
= 0;
2135 policy
->min
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
2136 policy
->max
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
2138 /* cpuinfo and default policy values */
2139 policy
->cpuinfo
.min_freq
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
2140 update_turbo_state();
2141 policy
->cpuinfo
.max_freq
= global
.turbo_disabled
?
2142 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
2143 policy
->cpuinfo
.max_freq
*= cpu
->pstate
.scaling
;
2146 unsigned int max_freq
;
2148 max_freq
= global
.turbo_disabled
?
2149 cpu
->pstate
.max_freq
: cpu
->pstate
.turbo_freq
;
2150 if (max_freq
< policy
->cpuinfo
.max_freq
)
2151 policy
->cpuinfo
.max_freq
= max_freq
;
2154 intel_pstate_init_acpi_perf_limits(policy
);
2156 policy
->fast_switch_possible
= true;
2161 static int intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
2163 int ret
= __intel_pstate_cpu_init(policy
);
2168 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
))
2169 policy
->policy
= CPUFREQ_POLICY_PERFORMANCE
;
2171 policy
->policy
= CPUFREQ_POLICY_POWERSAVE
;
2176 static struct cpufreq_driver intel_pstate
= {
2177 .flags
= CPUFREQ_CONST_LOOPS
,
2178 .verify
= intel_pstate_verify_policy
,
2179 .setpolicy
= intel_pstate_set_policy
,
2180 .suspend
= intel_pstate_hwp_save_state
,
2181 .resume
= intel_pstate_resume
,
2182 .init
= intel_pstate_cpu_init
,
2183 .exit
= intel_pstate_cpu_exit
,
2184 .stop_cpu
= intel_pstate_stop_cpu
,
2185 .name
= "intel_pstate",
2188 static int intel_cpufreq_verify_policy(struct cpufreq_policy
*policy
)
2190 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2192 update_turbo_state();
2193 cpufreq_verify_within_limits(policy
, policy
->cpuinfo
.min_freq
,
2194 intel_pstate_get_max_freq(cpu
));
2196 intel_pstate_adjust_policy_max(policy
, cpu
);
2198 intel_pstate_update_perf_limits(policy
, cpu
);
2203 /* Use of trace in passive mode:
2205 * In passive mode the trace core_busy field (also known as the
2206 * performance field, and lablelled as such on the graphs; also known as
2207 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2208 * driver call was via the normal or fast switch path. Various graphs
2209 * output from the intel_pstate_tracer.py utility that include core_busy
2210 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2211 * so we use 10 to indicate the the normal path through the driver, and
2212 * 90 to indicate the fast switch path through the driver.
2213 * The scaled_busy field is not used, and is set to 0.
2216 #define INTEL_PSTATE_TRACE_TARGET 10
2217 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2219 static void intel_cpufreq_trace(struct cpudata
*cpu
, unsigned int trace_type
, int old_pstate
)
2221 struct sample
*sample
;
2223 if (!trace_pstate_sample_enabled())
2226 if (!intel_pstate_sample(cpu
, ktime_get()))
2229 sample
= &cpu
->sample
;
2230 trace_pstate_sample(trace_type
,
2233 cpu
->pstate
.current_pstate
,
2237 get_avg_frequency(cpu
),
2238 fp_toint(cpu
->iowait_boost
* 100));
2241 static int intel_cpufreq_target(struct cpufreq_policy
*policy
,
2242 unsigned int target_freq
,
2243 unsigned int relation
)
2245 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2246 struct cpufreq_freqs freqs
;
2247 int target_pstate
, old_pstate
;
2249 update_turbo_state();
2251 freqs
.old
= policy
->cur
;
2252 freqs
.new = target_freq
;
2254 cpufreq_freq_transition_begin(policy
, &freqs
);
2256 case CPUFREQ_RELATION_L
:
2257 target_pstate
= DIV_ROUND_UP(freqs
.new, cpu
->pstate
.scaling
);
2259 case CPUFREQ_RELATION_H
:
2260 target_pstate
= freqs
.new / cpu
->pstate
.scaling
;
2263 target_pstate
= DIV_ROUND_CLOSEST(freqs
.new, cpu
->pstate
.scaling
);
2266 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
2267 old_pstate
= cpu
->pstate
.current_pstate
;
2268 if (target_pstate
!= cpu
->pstate
.current_pstate
) {
2269 cpu
->pstate
.current_pstate
= target_pstate
;
2270 wrmsrl_on_cpu(policy
->cpu
, MSR_IA32_PERF_CTL
,
2271 pstate_funcs
.get_val(cpu
, target_pstate
));
2273 freqs
.new = target_pstate
* cpu
->pstate
.scaling
;
2274 intel_cpufreq_trace(cpu
, INTEL_PSTATE_TRACE_TARGET
, old_pstate
);
2275 cpufreq_freq_transition_end(policy
, &freqs
, false);
2280 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy
*policy
,
2281 unsigned int target_freq
)
2283 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2284 int target_pstate
, old_pstate
;
2286 update_turbo_state();
2288 target_pstate
= DIV_ROUND_UP(target_freq
, cpu
->pstate
.scaling
);
2289 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
2290 old_pstate
= cpu
->pstate
.current_pstate
;
2291 intel_pstate_update_pstate(cpu
, target_pstate
);
2292 intel_cpufreq_trace(cpu
, INTEL_PSTATE_TRACE_FAST_SWITCH
, old_pstate
);
2293 return target_pstate
* cpu
->pstate
.scaling
;
2296 static int intel_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
2298 int ret
= __intel_pstate_cpu_init(policy
);
2303 policy
->cpuinfo
.transition_latency
= INTEL_CPUFREQ_TRANSITION_LATENCY
;
2304 policy
->transition_delay_us
= INTEL_CPUFREQ_TRANSITION_DELAY
;
2305 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2306 policy
->cur
= policy
->cpuinfo
.min_freq
;
2311 static struct cpufreq_driver intel_cpufreq
= {
2312 .flags
= CPUFREQ_CONST_LOOPS
,
2313 .verify
= intel_cpufreq_verify_policy
,
2314 .target
= intel_cpufreq_target
,
2315 .fast_switch
= intel_cpufreq_fast_switch
,
2316 .init
= intel_cpufreq_cpu_init
,
2317 .exit
= intel_pstate_cpu_exit
,
2318 .stop_cpu
= intel_cpufreq_stop_cpu
,
2319 .name
= "intel_cpufreq",
2322 static struct cpufreq_driver
*default_driver
= &intel_pstate
;
2324 static void intel_pstate_driver_cleanup(void)
2329 for_each_online_cpu(cpu
) {
2330 if (all_cpu_data
[cpu
]) {
2331 if (intel_pstate_driver
== &intel_pstate
)
2332 intel_pstate_clear_update_util_hook(cpu
);
2334 kfree(all_cpu_data
[cpu
]);
2335 all_cpu_data
[cpu
] = NULL
;
2339 intel_pstate_driver
= NULL
;
2342 static int intel_pstate_register_driver(struct cpufreq_driver
*driver
)
2346 memset(&global
, 0, sizeof(global
));
2347 global
.max_perf_pct
= 100;
2349 intel_pstate_driver
= driver
;
2350 ret
= cpufreq_register_driver(intel_pstate_driver
);
2352 intel_pstate_driver_cleanup();
2356 global
.min_perf_pct
= min_perf_pct_min();
2361 static int intel_pstate_unregister_driver(void)
2366 cpufreq_unregister_driver(intel_pstate_driver
);
2367 intel_pstate_driver_cleanup();
2372 static ssize_t
intel_pstate_show_status(char *buf
)
2374 if (!intel_pstate_driver
)
2375 return sprintf(buf
, "off\n");
2377 return sprintf(buf
, "%s\n", intel_pstate_driver
== &intel_pstate
?
2378 "active" : "passive");
2381 static int intel_pstate_update_status(const char *buf
, size_t size
)
2385 if (size
== 3 && !strncmp(buf
, "off", size
))
2386 return intel_pstate_driver
?
2387 intel_pstate_unregister_driver() : -EINVAL
;
2389 if (size
== 6 && !strncmp(buf
, "active", size
)) {
2390 if (intel_pstate_driver
) {
2391 if (intel_pstate_driver
== &intel_pstate
)
2394 ret
= intel_pstate_unregister_driver();
2399 return intel_pstate_register_driver(&intel_pstate
);
2402 if (size
== 7 && !strncmp(buf
, "passive", size
)) {
2403 if (intel_pstate_driver
) {
2404 if (intel_pstate_driver
== &intel_cpufreq
)
2407 ret
= intel_pstate_unregister_driver();
2412 return intel_pstate_register_driver(&intel_cpufreq
);
2418 static int no_load __initdata
;
2419 static int no_hwp __initdata
;
2420 static int hwp_only __initdata
;
2421 static unsigned int force_load __initdata
;
2423 static int __init
intel_pstate_msrs_not_valid(void)
2425 if (!pstate_funcs
.get_max() ||
2426 !pstate_funcs
.get_min() ||
2427 !pstate_funcs
.get_turbo())
2433 static void __init
copy_cpu_funcs(struct pstate_funcs
*funcs
)
2435 pstate_funcs
.get_max
= funcs
->get_max
;
2436 pstate_funcs
.get_max_physical
= funcs
->get_max_physical
;
2437 pstate_funcs
.get_min
= funcs
->get_min
;
2438 pstate_funcs
.get_turbo
= funcs
->get_turbo
;
2439 pstate_funcs
.get_scaling
= funcs
->get_scaling
;
2440 pstate_funcs
.get_val
= funcs
->get_val
;
2441 pstate_funcs
.get_vid
= funcs
->get_vid
;
2442 pstate_funcs
.get_aperf_mperf_shift
= funcs
->get_aperf_mperf_shift
;
2447 static bool __init
intel_pstate_no_acpi_pss(void)
2451 for_each_possible_cpu(i
) {
2453 union acpi_object
*pss
;
2454 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
2455 struct acpi_processor
*pr
= per_cpu(processors
, i
);
2460 status
= acpi_evaluate_object(pr
->handle
, "_PSS", NULL
, &buffer
);
2461 if (ACPI_FAILURE(status
))
2464 pss
= buffer
.pointer
;
2465 if (pss
&& pss
->type
== ACPI_TYPE_PACKAGE
) {
2473 pr_debug("ACPI _PSS not found\n");
2477 static bool __init
intel_pstate_no_acpi_pcch(void)
2482 status
= acpi_get_handle(NULL
, "\\_SB", &handle
);
2483 if (ACPI_FAILURE(status
))
2486 if (acpi_has_method(handle
, "PCCH"))
2490 pr_debug("ACPI PCCH not found\n");
2494 static bool __init
intel_pstate_has_acpi_ppc(void)
2498 for_each_possible_cpu(i
) {
2499 struct acpi_processor
*pr
= per_cpu(processors
, i
);
2503 if (acpi_has_method(pr
->handle
, "_PPC"))
2506 pr_debug("ACPI _PPC not found\n");
2515 /* Hardware vendor-specific info that has its own power management modes */
2516 static struct acpi_platform_list plat_info
[] __initdata
= {
2517 {"HP ", "ProLiant", 0, ACPI_SIG_FADT
, all_versions
, 0, PSS
},
2518 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2519 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2520 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2521 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2522 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2523 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2524 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2525 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2526 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2527 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2528 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2529 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2530 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2531 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2535 static bool __init
intel_pstate_platform_pwr_mgmt_exists(void)
2537 const struct x86_cpu_id
*id
;
2541 id
= x86_match_cpu(intel_pstate_cpu_oob_ids
);
2543 rdmsrl(MSR_MISC_PWR_MGMT
, misc_pwr
);
2544 if (misc_pwr
& (1 << 8)) {
2545 pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2550 idx
= acpi_match_platform_list(plat_info
);
2554 switch (plat_info
[idx
].data
) {
2556 if (!intel_pstate_no_acpi_pss())
2559 return intel_pstate_no_acpi_pcch();
2561 return intel_pstate_has_acpi_ppc() && !force_load
;
2567 static void intel_pstate_request_control_from_smm(void)
2570 * It may be unsafe to request P-states control from SMM if _PPC support
2571 * has not been enabled.
2574 acpi_processor_pstate_control();
2576 #else /* CONFIG_ACPI not enabled */
2577 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2578 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2579 static inline void intel_pstate_request_control_from_smm(void) {}
2580 #endif /* CONFIG_ACPI */
2582 #define INTEL_PSTATE_HWP_BROADWELL 0x01
2584 #define ICPU_HWP(model, hwp_mode) \
2585 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2587 static const struct x86_cpu_id hwp_support_ids
[] __initconst
= {
2588 ICPU_HWP(INTEL_FAM6_BROADWELL_X
, INTEL_PSTATE_HWP_BROADWELL
),
2589 ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D
, INTEL_PSTATE_HWP_BROADWELL
),
2590 ICPU_HWP(X86_MODEL_ANY
, 0),
2594 static int __init
intel_pstate_init(void)
2596 const struct x86_cpu_id
*id
;
2599 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
)
2605 id
= x86_match_cpu(hwp_support_ids
);
2607 copy_cpu_funcs(&core_funcs
);
2610 hwp_mode_bdw
= id
->driver_data
;
2611 intel_pstate
.attr
= hwp_cpufreq_attrs
;
2612 goto hwp_cpu_matched
;
2615 id
= x86_match_cpu(intel_pstate_cpu_ids
);
2617 pr_info("CPU model not supported\n");
2621 copy_cpu_funcs((struct pstate_funcs
*)id
->driver_data
);
2624 if (intel_pstate_msrs_not_valid()) {
2625 pr_info("Invalid MSRs\n");
2631 * The Intel pstate driver will be ignored if the platform
2632 * firmware has its own power management modes.
2634 if (intel_pstate_platform_pwr_mgmt_exists()) {
2635 pr_info("P-states controlled by the platform\n");
2639 if (!hwp_active
&& hwp_only
)
2642 pr_info("Intel P-state driver initializing\n");
2644 all_cpu_data
= vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2648 intel_pstate_request_control_from_smm();
2650 intel_pstate_sysfs_expose_params();
2652 mutex_lock(&intel_pstate_driver_lock
);
2653 rc
= intel_pstate_register_driver(default_driver
);
2654 mutex_unlock(&intel_pstate_driver_lock
);
2659 pr_info("HWP enabled\n");
2663 device_initcall(intel_pstate_init
);
2665 static int __init
intel_pstate_setup(char *str
)
2670 if (!strcmp(str
, "disable")) {
2672 } else if (!strcmp(str
, "passive")) {
2673 pr_info("Passive mode enabled\n");
2674 default_driver
= &intel_cpufreq
;
2677 if (!strcmp(str
, "no_hwp")) {
2678 pr_info("HWP disabled\n");
2681 if (!strcmp(str
, "force"))
2683 if (!strcmp(str
, "hwp_only"))
2685 if (!strcmp(str
, "per_cpu_perf_limits"))
2686 per_cpu_limits
= true;
2689 if (!strcmp(str
, "support_acpi_ppc"))
2695 early_param("intel_pstate", intel_pstate_setup
);
2697 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2698 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2699 MODULE_LICENSE("GPL");